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A B S T R A C T

This paper investigates the impact of model granularity and temporal resolution on simulated energy flow items,
self-sufficiency and self-consumption of grid-connected residential PV-battery systems. For such a purpose, three
models with increasing levels of granularity are implemented for both PV modules and batteries. In addition,
three temporal resolutions (i.e., 1 s, 1 min, and 1 h) of weather data and building electrical loads are considered.
The simulation results for a PV-battery system in Lindenberg, Germany show that temporal resolutions have
negligible impact on self-consumption and self-sufficiency, but cause noticeable differences of most power profiles
observed in the PV-battery system. As for the impact of model granularity, the self-consumption is approximately
44% for the coarsest models, 48% for the models with the intermediate level of granularity, and 52% for the most
refined models; the self-sufficiency is 83%, 78%, and 80%, respectively, for the three models.
1. Introduction

With the decreasing cost of photovoltaic (PV) modules and the rising
concerns on environmental problems caused by fossil fuel consumption,
solar PV has been the fastest growing distributed power generation
technology. According to the U.S. Department of Energy (Feldman and
Margolis 2020), there were 68 GWAC power capacity from PV in the U.S.
by the end of September 2020. Of the 68 GW, 41 GW were utility-scale
PV and 27 GW were distributed PV. Since 2010, the residential PV
market has grown by approximately 40% per year on average, which has
led to 14 GW AC power installed for residential PV systems in the U.S.
More developed PV markets exist in some European countries. In Ger-
many, for example, there was a total of about 43 GW of installed solar PV
power by the end of 2017 (Wirth 2018), 74% of which were distributed
on buildings, mostly on the rooftop of residential buildings. There are
two basic types of residential PV systems: standalone (also known as
off-grid PV systems) and grid-connected (also known as grid-tied or
utility-interactive PV systems). The majority of residential PV systems are
grid-connected, relying on the power grid at all times to balance the PV
power supply and the building electricity demand. The ever-increasing
penetration of solar PV into residential buildings contributes to a sus-
tainable society by cutting user's utility bills, reducing fossil fuel
ng).
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consumption and mitigating the greenhouse gas emissions to the envi-
ronment. However, due to the intermittent nature of solar energy and the
mismatch between power generation and power demand, a high pene-
tration of PV capacity in the grid may lead to technical challenges of
reliable power grid operation. Onsite storage devices, such as batteries,
can be one of the effectivemeans to not only smooth the PV system power
generation and significantly increase the degree of autonomy, but also
increase the economic return on investment.

There exist many studies on residential PV-battery systems, as
demonstrated by the rich body of available publications included in a
number of review papers (Chauhan and Saini 2014; Hoppmann et al.,
2014; Luna-Rubio et al., 2012). From the perspective of PV-battery sys-
tem design, numerous previous studies are related to either
techno-economic analysis or optimal sizing. The work on
techno-economic analysis (Brusco et al., 2016; Hoppmann et al., 2014;
Kosmadakis et al., 2019; Linssen et al., 2017; Parra and Patel 2016; Silva
and Hendrick 2017) intends to evaluate the costs, benefits, sensitivity
factors, and uncertainties that could potentially affect the performance of
PV-battery systems. Several performance metrics—such as
self-consumption, self-sufficiency, levelized cost of energy, and life-cycle
cost—are often used to facilitate the comparison of different system
configurations and designs. The work on optimal sizing intends to apply
optimization techniques for PV-battery system sizing. In this regard,
March 2021

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:weimin.wang@uncc.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dibe.2021.100046&domain=pdf
www.sciencedirect.com/science/journal/26661659
www.editorialmanager.com/dibe/default.aspx
https://doi.org/10.1016/j.dibe.2021.100046
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dibe.2021.100046


Nomenclature

APV PV module area (m2)
CapWh energy capacity of the battery (Wh)
Eg0 bandgap of PV material (eV)
Gtotal total solar irradiance on PV modules (W/m2)
kB Boltzmann constant (J/K)
Ki temperature dependence of the short circuit current (A/K)
I electric current (A)
I0 reverse saturation current (A)
I0;STC reverse saturation current at the standard test conditions

(A)
Iph PV photocurrent (A)
ISC short circuit current of a PV module at the standard test

conditions (A)
MPP maximum power point
n ideality factor
ncycle;t number of battery charging/discharging cycles at time t
Ns number of cells in series of a PV module
NOCT nominal operating cell temperature (K)
P real power (W)
Pbat;DC DC power charged into (þ) or discharged from (�) the

battery (W)
Pcharge power used to charge the battery (W)
Pdischarge power discharged from the battery (W)
Pgrid;export power exported to the grid (W)
Pgrid;import power imported from the grid (W)

Pload building electrical load (W)
PPV AC power generated by the PV modules (W)
PPV ;DC DC power generated by the PV modules (W)
q electron charge (Coulomb)
Q useable capacity of the battery at a given current (Ah)
Rs series resistance of a PV cell (Ω)
Rsh shunt resistance of a PV cell (Ω)
SC self-consumption
SOC battery state of charge
SOCmin minimum limit of battery state of charge
SOCmax maximum limit of battery state of charge
SS self-sufficiency
t time (hour)
Tair ambient air temperature (K)
Tcell operating temperature of solar cells (K)
V voltage (V)
Vbat battery voltage (V)
Vcutoff battery cut-off voltage when discharging (V)
Vmax battery maximum allowed voltage when charging (V)
VOC open circuit voltage of a battery cell (V)
αcycle battery cyclic aging factor
αcalendar battery calendric aging factor
β temperature coefficient of PV electrical efficiency (1/K)
ηcharger battery inverter/charger efficiency
ηPV ;rated PV module rated electrical efficiency
ηPV ;temp PVmodule electrical efficiency at an operating temperature
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Mulder et al. (2013) determined the optimal sizing of a PV-battery sys-
tems in the context of different remuneration schemes (i.e., the combi-
nation of different selling prices and self-consumption fees of PV power).
Okoye and Solyali (2017) developed a mixed integer linear programming
(MILP) model to optimize the size of standalone residential PV-battery
systems. Li (2019) applied a genetic algorithm to size residential
PV-battery systems for minimizing the total annual cost of electricity.
Mulleriyawage and Shen (2020) used MILP to optimally size the battery
storage capacity for minimizing annual cost including both energy and
battery degradation-based cost. Ru et al. (2013) developed an optimi-
zation model to determine the battery size for grid-connected PV systems
for the purpose of power arbitrage and peak shaving. Zhang et al. (2017)
applied a multi-objective genetic algorithm to optimize the battery size
and operation parameters, towards maximizing the self-sufficiency and
net present value of a PV-battery system.

All aforementioned studies on techno-economic analysis and optimal
sizing rely on electrical load profiles and PV generation profiles as the key
inputs. In these studies, building electrical load profiles are usually
assumed to be known in advance, which can be obtained by either field
measurements or simulation models. For PV power profiles, some studies
(e.g., Beck et al., 2016; Langenmayr et al., 2020; Linssen et al., 2017) rely
on field measurements to establish these profiles while others (e.g.,
Hoppmann et al., 2014; Zhang et al., 2017) calculate PV power from
meteorological data (e.g., solar irradiance and air temperature). Wher-
ever the data are sourced from, the temporal resolutions of PV power and
building electrical load profiles need to be considered carefully because
they may affect system performance evaluation. Most previous studies
have used the temporal resolution ranging from 1 min to 1 h.

In addition to temporal resolution, the granularity of PV-battery
system models has impact on the accuracy of results as well. In this
paper, the granularity refers to the level of detail captured when
abstracting the reality of PV and battery behaviour in the modelling
process. By considering more state variables, parameters, and lower-level
processes, a model with fine granularity leads to higher fidelity of results
2

than a model with coarse granularity. However, a finer-grained model
takes more effort to develop and validate, and may result in an increased
computational cost. A variety of models for PV modules and batteries are
observed in previous studies. For PV models, Ru et al. (2013) calculated
the PV power simply from the rated efficiency and solar irradiance.
Okoye and Solyali (2017) considered the impact of PV cell temperature
and aging on power generation. Ibrahim et al. (2017) used a random
forest model to predict PV power generation, which requires a large set of
measured data, such as PV power, solar radiation, and ambient temper-
ature be available to train the random forest model. Zhang et al. (2017)
used an electrical equivalent single-diode model to capture the
current-voltage characteristics of PV modules. For battery modelling,
except for Zhang et al. (2017), who used an improved Shepherd battery
model, the majority of previous studies used simple battery models.
These simple battery models do not capture battery voltage and current
characteristics and thus cannot consider the dynamic behaviour of bat-
tery charging and discharging processes.

Both temporal resolution and model granularity are regarded
important considerations in PV-battery system performance assessment
(Ibrahim et al., 2017) because they affect the accuracy of simulation
results, the efforts of model development and implementation, the
computation time (especially for design optimization), and even data
availability. Therefore, understanding the impact of temporal resolution
and model granularity on PV-battery system performance is important
for techno-economic analysis and optimal design of PV-battery systems.
However, there exists limited work in this niche area except for a few
studies on the impact of temporal resolutions. For example, Beck et al.
(2016) calculated the self-consumption of a PV-battery system with
different temporal resolutions (namely, 10s, 30s, 1 min, 5 min, 15 min,
and 1 h) of PV power and building electrical load. They found that
temporal resolutions had negligible impact on the result of
self-consumption. Ried et al. (2015) made a similar conclusion that
different temporal resolutions (i.e., 1 min, 5 min, 15 min, and 1 h) had
minor impact on self-consumption and self-sufficiency of residential PV
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battery systems. However, they found that the number of battery full
cycles was underestimated by 11% with the use of 1-h temporal resolu-
tion relative to the 1-min temporal resolution. Burgio et al. (2020)
studied the impact of temporal resolution and time averaging on the
performance analysis of a PV-battery system. Three temporal resolutions
(i.e., 15, 30, and 60 min) were obtained from the 3-min load profile of a
real building. They concluded that the temporal resolution had negligible
impact on the calculation of savings on the electricity bills but the
60-min load profile substantially underestimated both the feed-in and the
withdrawal contractual power by 21% and 38%, respectively.

This paper intends to investigate the impact of model granularity and
temporal resolution on performance simulation of residential PV-battery
systems. The major contributions of this paper include the following.
First, the paper fills a knowledge gap in literature that lacks the study on
how the granularity of modelling PVmodules and batteries affects system
performance simulation. Second, the paper corroborates a few earlier
studies on the impact of temporal resolutions of building electrical load
and PV power on certain performancemetrics. Third, the findings on how
power flows, self-consumption and self-sufficiency change with model
granularity and temporal resolutions are important to support future
research by shedding light on the proper selection of component models
and input data resolutions for the performance simulation of PV-battery
systems. In the rest of this paper, the analytical approach is presented
first. Then, the PV models and the battery models are sequentially
described in Sections 3 and 4. Simulation inputs, such as building load,
weather data, and PV and battery parameters, are provided in Section 5.
Results are presented and discussed in Section 6. The paper ends with
some conclusions and suggestions for future work.

2. Approach

2.1. PV-battery system configuration and controls

In general, depending on the point of battery connection, residential
PV-battery systems can be configured as direct current (DC) coupled
systems and alternating current (AC) coupled systems. DC-coupled sys-
tems have the battery connected to the DC link of the PV inverter while
AC-coupled systems have the battery connected to the PV output via a
bidirectional battery inverter. AC-coupled systems are prevalent because
they are easily reconfigurable and generally more efficient in applica-
tions where PV energy is mostly used at the time of generation (Ardani
et al., 2016). Therefore, this paper considers an AC-coupled PV-battery
system that consists of PV modules, a PV inverter, a battery stack, a
battery inverter charger, electrical accessories (e.g., wires, overcurrent
protection devices, junction boxes, and switches) and structural compo-
nents (e.g., PV mounting systems). The photovoltaic modules are
mounted on the building roof and are connected to a single-phase
inverter. A bidirectional inverter connects the battery to the AC side of
the system. All electrical loads inside the household are connected to the
system on the AC side. The system itself is grid connected. Fig. 1 shows
Fig. 1. Visualization of possible power flows between PV electricity generation, batte
blue lines indicate the DC power. Power flows along the line directions are positive.
referred to the Web version of this article.)
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possible power flows between the system components.
This study uses a simple control mechanism (Fig. 2) commonly

deployed in existing PV-battery systems. The core idea underlying the
simple control mechanism includes: 1) building electrical demand is
satisfied first by the PV power, then by the battery and finally by the grid
and 2) excess PV power is first stored in the battery and the remaining
power is then exported to the grid. When the battery is charged or dis-
charged, a couple of constraints need to be followed. First, the battery's
state of charge (SOC)must be within its boundary values (i.e., SOCmin and
SOCmax) at all times. Second, the AC power charged to (Pcharge) or dis-
charged from (Pdischarge) the battery must be within certain limits, which
are determined differently depending on how the battery is modelled.
For example, the battery charging power limit may be set to ensure the
SOC after charging to be less than SOCmax , or it can be set to ensure the
battery voltage limit is not exceeded.
2.2. Performance metrics

The performance of residential PV-battery systems can be evaluated
with different metrics, representatives of which include self-
consumption, self-sufficiency, and economic performance criteria such
as levelized cost of energy, net present value, and life-cycle cost. All these
performance metrics are derived from the series of power flows over a
certain study period. Therefore, we will investigate the impact of model
granularity and temporal resolution on power flow items, self-
consumption and self-sufficiency. Economic performance metrics are
not covered in this paper because all economic parameters (e.g., the
discount rate and the interest rate), capital costs, and electricity tariff are
highly location-dependent and thus make it difficult to make generic
conclusions.

Self-consumption (SC) is defined as the electricity generated by PV
that is consumed locally by the household divided by the overall PV
generation. Using the power flow items in Fig. 1, the equation to calcu-
late SC is expressed as:

SC¼
P

PPV �P
Pgrid;exportP

PPV
(1)

where all summations are made across the system operating life.
Self-sufficiency (SS) describes the share of the household electricity

consumption that is supplied by the PV-battery system. SS is calculated
as:

SS¼
P

Pload �
P

Pgrid;importP
Pload

(2)

3. PV simulation models

Three PV simulation models are considered in this paper with
increasing levels of granularity. All three models calculate the PV power
ry storage, power grid and electrical loads. Red lines indicate the AC power while
(For interpretation of the references to colour in this figure legend, the reader is



Fig. 2. Flowchart of the control mechanism used for the PV-battery system.

Fig. 3. PV cell electrical equivalent circuit.
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based on weather variables, including solar irradiance and ambient
temperature.

3.1. PV model 1

As the simplest one of the three models considered, Model 1 assumes
that the PVmodules operate at their rated efficiency throughout its entire
life.

3.2. PV model 2

PV Model 2 uses a similar approach as Model 1, but captures the
impact of cell temperature and aging on PV electrical efficiency. To ac-
count for the temperature impact, the following equation is used (Dubey
et al., 2013):

ηPV ;temp ¼ ηPV ;rated

�
1� β

�
Tair þ NOCT � 293

800
Gtotal � 298

��
(3)

where, ηPV ;rated and ηPV ;temp represents the PV module efficiency respec-
tively at standard testing conditions (STCs) and at an operating tem-
perature different from the STCs; β is the temperature coefficient (1/K)
that varies with PV materials; NOCT is the nominal operating cell tem-
perature (K) and Tair the ambient air temperature (K); Gtotal is the total
solar irradiance on PV modules (W/m2).

The degradation of PV modules under actual operating conditions is
due to environmental stresses, such as temperature, moisture, thermal
cycling, ultraviolet light exposure, and high voltage (Sharma and Chan-
del 2013). PV degradation due to aging is modelled as a constant
degradation rate per year, which is evenly distributed to all time steps
used in the simulation.

3.3. PV model 3

Simulation model 3 is based on an equivalent electrical circuit for PV
cells, as shown in Fig. 3. The circuit consists of a current source, a diode, a
shunt resistance (Rsh) and a series resistance (Rs) (Nguyen and Nguyen
2015). The model includes the electrical behaviour of solar cells and is
therefore more realistic than the efficiency-based models.

For most PV modules, solar cells are connected in series to obtain an
adequate working voltage. Let NS denote the number of cells serially
connected in a PV module, the following equations are used by PV Model
4

3 (Nguyen and Nguyen 2015).
The solar irradiance Gtotal leads to the cell photocurrent Iph:

Iph ¼ ½ISC þKiðTcell � 298Þ� ⋅ Gtotal

1000
(4)

where, ISC is the short circuit current in Ampere (A) at the STCs; Ki, in
A=K, is the temperature dependence of the short circuit current.

At the STCs, the cell's reverse saturation current I0;STC is obtained by:

I0;STC ¼ ISC

exp
�

q⋅VOC
NS ⋅kB ⋅n⋅Tcell

�
� 1

(5)

where, q ¼ 1:602*10�19 is the electron charge in Coulomb; VOC is the
open circuit voltage (V) of a PVmodule at the STCs; kB ¼ 1:381*10�23 J=
K is the Boltzmann constant; and n is the ideality factor of the diode.

The reverse saturation current varies with cell temperature, which is
described as:

I0 ¼ I0;STC

�
Tcell

298

�3
exp

�
q Eg0

n kB

�
1
298

� 1
Tcell

��
(6)

where, Eg0 is the semiconductor's bandgap (1.1 eV for silicon).
For a PV module, the voltage-current characteristic equation is given

as:

IðVÞ¼ Iph � I0

2
64exp

0
B@q

V
NS
þ I Rs

n kBT

1
CA� 1

3
75�

V
Ns
þ IRs

Rsh
(7)



Fig. 4. Battery cell electrical equivalent circuit.
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where, RS is the series resistance (Ohm, Ω) of a solar cell; and Rsh is the
shunt resistance (Ω) of a solar cell.

Based on Eq. (7), the maximum power point (MPP) can be found. This
MPP multiplied by the number of installed modules is then regarded as
the PV array's electric power output (PPV;DC). Once the DC power output
is available, the AC power (PPV , see Fig. 1) can be calculated after ac-
counting for the PV inverter efficiency and the power factor.

4. Battery simulation models

In parallel with PV models, this paper considers three battery models
with increasing levels of granularity. The first two models simplify bat-
tery as an “energy bucket” that holds a quantity of electrical energy.
Energy can be released from or stored into the bucket as long as the
amount of energy in the bucket satisfies its limits. In contrast to the first
two models, the third model is more sophisticated by capturing the
battery's electrochemistry behaviour to some extent. It needs to be noted
that several different types of battery (e.g., lead acid and lithium-ion) can
be deployed in residential PV systems. Because lithium-ion batteries are
increasingly used for residential electrical storage, they are the primary
consideration in the battery models discussed here.

4.1. Battery model 1

Battery Model 1 simulates an ideal storage device without perfor-
mance degradation. At any given time, the amount of energy that can be
charged to or discharged from the battery is merely subject to the
constraint of the battery's minimum and maximum SOC requirement. In
this model, the battery's SOC is continuously tracked according to:

SOCtþΔt ¼ SOCt þ Pbat;DCðtÞΔt
Capwh

*100 (8)

Pbat;DC ¼

8><
>:

Pcharge*ηcharger ðchargingÞ

�Pdischarge

ηcharger
ðdischargingÞ (9)

where, Pbat;DC is the DC power (W); Pcharge and Pdischarge represents the AC
power (W) respectively for charging and discharging (see Fig. 1); CapWh

is the battery's initial energy capacity (Wh); ηcharger is the energy effi-
ciency of the battery charger.

4.2. Battery model 2

In comparison with battery Model 1, Model 2 accounts for the bat-
tery's roundtrip efficiency and the impact of aging on battery perfor-
mance. Modelling battery aging and life expectancy is an active research
subject. In general, the lifetime of lithium-ion batteries strongly depends
on the ambient temperature and the charge/discharge rates. One direct
outcome of aging is the increase of internal battery resistance, which
degrades cell performance (e.g., reduced energy capacity) over the bat-
tery's lifetime. Model 2 considers two aging mechanisms: cycle aging and
calendar aging. Cycle aging refers to the degradation of electrode active
materials' reversibility, caused by the use of battery. Calendar aging
comprises all aging processes that degrade battery cells independent of
charging and discharging cycles. The predominant mechanism of calen-
dar aging is the evolution of passivation layers caused by interactions
between electrolyte and electrode active materials (Keil et al., 2016).

Due to the consideration of battery aging, Model 2 has an ever-
decreasing energy capacity expressed as:

Capwh;t ¼Capwh
�
1�αcyclencycle;t �αcalendar

t
8760

�
(10)

where, ncycle;t is the number of battery charging/discharging cycles; acycle
and acalendar are the cyclic and calendric aging factors.
5

In this model, in addition to the charger efficiency, the battery's
roundtrip efficiency is considered and it is introduced into Eq. (9) in a
similar manner as ηcharger , attributing the storage losses equally to
charging and discharging as the square root of the roundtrip efficiency.

4.3. Battery model 3

Battery Model 3 differs from the previous two simple battery models
because it is based on an electrical equivalent circuit (Yao et al., 2013) for
a battery cell. As Fig. 4 shows, the circuit consists of a voltage source, a
series resistance R0 and two resistor-capacitor (RC) elements (i.e., R1C1

and R2C2). The voltage source represents the open circuit voltage (VOC),
the value of which depends on the battery's SOC. The series resistance
mainly captures the electrolyte resistance whereas the two RC-elements
represent the contact resistance and the contact capacitance between
the electrolyte and the anode and the cathode, respectively.

Electric current (I) is the main input variable for this battery model.
Based on the electric current, the procedure of determining the battery
voltage (Vbat) is described below:

Step 1. Determine the battery's SOC:

SOCtþΔt ¼ SOCt þ IðtÞ Δt
Q

*100 (11)

where Q is battery's useable capacity in Ah for the given electric current.

Step 2. Calculate the battery's open circuit voltage (VOC) based on the
SOC from Step 1. The relationship between VOC and SOC needs to be
predefined.
Step 3. Calculate the battery's overvoltage. The overvoltage comes
from the voltage over the series resistance R0 and the voltage over the
two RC-elements.
Step 4: Calculate the battery's voltage Vbat by adding the overvoltage
to the open circuit voltage.
Step 5: Once the battery voltage is calculated, it is checked against the
battery's operation limits. If the battery voltage falls below the cut-off
voltage (Vcutoff ) when discharging, or exceeds the maximum allowed
voltage (Vmax) when charging, the battery is disconnected to prolong
its life expectancy.

Battery Model 3 considers aging and the roundtrip efficiency in the
same manner as battery Model 2.

5. Building load, weather data and simulation parameters

5.1. Building electrical load

Electricity is used in buildings for different energy end uses such as
space heating, cooling, lighting and plug loads. Precise electrical load
profiles of households can be measured in the field or calculated from
energy simulation software. Because the paper concentrates on PV-
battery systems, building electrical load profile is directly taken from
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the literature. Tjaden et al. (2015) compiled a total of 74 freely accessible
residential load profiles for single-family households. All load profiles are
synthesized from field measurements and have 1-s intervals. The first
load profile is used in this paper. Each data point in the load profile
comprises of three phases of active and reactive power. The power values
of the three phases are summed up to obtain the active power and
reactive power, based on which the power factor can be derived.

The load profile has an annual electricity consumption of 3240 kWh
and a peak load of 22 kW occurred in the early morning on January 28.
The annual daily average load demand is 8.9 kWh/day. Fig. 5 shows the
daily profile averaged across the whole year. However, it must be noted
that actual daily profiles have much greater fluctuations, which will be
further discussed in Section 6.

5.2. Weather data

The Baseline Surface Radiation Network (2018) provides weather
data of 1-min intervals for many locations over the world. The weather
data for Lindenberg, Germany (Latitude 52.2�, Longitude 14.1�) in the
year of 2012 are used in this paper. Specifically, weather data used to
support this work includes the global horizontal solar irradiance, the
diffuse horizontal solar irradiance, the direct normal solar irradiance,
and the air temperature. These data are pre-processed to deal with
missing or evidently unreasonable values (e.g., air temperature more
than 40 �C and solar irradiance being negative). After cleaning, the global
horizontal solar irradiance has a peak value of 1072 W/m2 and a mini-
mum value of 0. The weather data indicates an annual global horizontal
solar irradiance of 1120 kWh. Fig. 6 shows the daily solar irradiance
profiles averaged across the whole year. Again, actual solar irradiance
profiles have much greater fluctuations than what Fig. 6 shows.

Because PV modules are usually tilted on the roof, solar irradiance
values in the weather data need to be processed further to obtain the total
solar irradiance Gtotal on the PV surface, as used in Eqs. (3) and (4). Based
on the isotropic sky diffuse model, the total solar irradiance consists of
three components: beam, isotropic diffuse, and solar radiation diffusely
reflected from the ground, for which the calculation can be found in
Duffie and Beckman (2013).

5.3. PV-battery system specifications

Commercial PV modules (SW 250 mono) from SolarWorld (2018) are
referred to set the PV parameters (Table 1), where most parameter values
are taken from the manufacture's product data sheets.

Table 2 provides the lithium-ion battery cell parameters, the values of
Fig. 5. Annual average daily

6

most which are for the lithium ferro phosphate battery as discussed in
Yao et al. (2013). Fig. 7 shows the modelled open circuit voltage curve
relative to the cell's state of charge (SOC). For a single cell, the maximum
charge voltage (Vmax ¼ 3:55V) corresponds to the SOC of 100% while
the discharge cut-off voltage (Vcutoff ¼ 2:65V) corresponds to the SOC of
0. In this work, the open circuit voltage curve in Fig. 7 is implemented as
a 16th order regression equation.

In addition to the PV and battery parameters, there are several other
miscellaneous parameters. The PV inverter and the battery charger/
inverter have a constant efficiency of 97% and 94%, respectively. The
battery has a roundtrip efficiency of 88%.

6. Results and discussion

Implemented in MATLAB, the PV-battery system simulation model is
generic to handle different inputs, including weather data, building
electrical loads, and PV and battery parameters. Based on the typical roof
area available for PV installation and system design in Germany, PV and
batteries are sized in this paper as follows: the PV array, consisting of 2
strings of 12 serially connected modules, has a rated DC power of 6 kW;
the battery stack, consisting of 14 cells in series and 300 cells in parallel,
has a maximum energy capacity of 16.3 kWh.

6.1. Simulation matrix

The model granularity for PV and battery simulations, as discussed in
Sections 4 and 5, increases from low (or coarse) corresponding to Model
1 to high (or refined) corresponding to Model 3. In addition to model
granularity, three different temporal resolutions, namely, 1 s, 1 min, and
1 h, are considered for building load and weather data. The combination
of model granularity and temporal resolution leads to the simulation
matrix shown in Table 3. In this table, the model granularity refers to the
case of having the same level of granularity for both PV and battery. For
example, the low level of granularity has PV Model 1 and battery Model
1. The combinations of PV and battery models with mixed levels of
granularity are not pursued. In addition, the scenario of running the
refined models with hourly data is not pursued because the charging and
discharging characteristics in the detailed battery model make sense only
for short timesteps.

Recall that in Section 5, the original source of building electrical load
has 1-s intervals while the original source of weather data has 1-min
intervals. To perform simulations at temporal resolutions different from
the time intervals of the original data source, we use the averaging
operation on relevant variables (e.g., electrical load, solar irradiance, and
electrical load profile.



Fig. 6. Annual average daily solar irradiance profile.

Table 1
PV module parameters.

Parameter Name Symbol Value Reference

Number of cells in series per
module

NS 60 SolarWorld (2018)

Ideality factor n 1:2 Nguyen and Nguyen
(2015)

Cell series resistance RS 0:0001 Ω Nguyen and Nguyen
(2015)

Cell shunt resistance RSh 1000 Ω Nguyen and Nguyen
(2015)

Temperature dependence of
ISC

Ki 0:00004 A=K SolarWorld (2018)

Nominal operating cell
temperature

NOCT 46�C SolarWorld (2018)

Area per solar module Amodule 1:677 m2 SolarWorld (2018)
Module open circuit voltage Voc 37.8 V SolarWorld (2018)
Module short circuit current Isc 8.28 A SolarWorld (2018)
Annual PV aging factor ηPV :loss 0:5 % Jordan and Kurtz

(2013)
Rated efficiency ηPV ;rated 14:91 % SolarWorld (2018)
Temperature coefficient β 0:0045=K SolarWorld (2018)

Table 2
Lithium-ion cell parameters.

Parameter Name Symbol Value Reference

Capacity Qcell 1:1Ah Yao et al. (2013)
Energy capacity Capwh;cell 0:0039kWh Yao et al. (2013)
Cycle aging acycle 0:0022 %=cycle Ansean et al. (2016)
Calendar aging acalendar 2 %=year Leadbetter and Swan (2012)
Cell series Resistance R0 0:08 Ω Yao et al. (2013)
Resistance R1 R1 0:015 Ω Yao et al. (2013)
Capacitor C1 C1 800 F Yao et al. (2013)
Resistance R2 R2 0:05 Ω Yao et al. (2013)
Capacitor C2 C2 4000 F Yao et al. (2013)
Minimum SOC SOCmin 10% Parra and Patel (2016)
Maximum SOC SOCmax 90% Parra and Patel (2016)

Fig. 7. Battery cell's open circuit voltage vs. state of charge.

Table 3
Simulation matrix resulted from different considerations of model granularity
and temporal resolution.

Model Granularity Level Temporal Resolution

1 s 1 min 1 h

Low (Model 1) X X X
Intermediate (Mode 2) X X X
High (Model 3) X X –
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ambient air temperature). For example, the hourly ambient air temper-
ature is obtained by averaging the temperature of all 60 min within that
hour. Similarly, the ambient air temperature in all 60 s is assumed the
same as that at the corresponding minute.
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6.2. Comparison of energy flows

The PV-battery system has been simulated for 20 years. Table 4
summarizes different energy flow items within three years (i.e., 1st, 10th,
and 20th) for all 8 simulation scenarios. Fig. 1 can be referred to for the
meanings of the energy flow items. In Table 4, for each temporal reso-
lution, the numbers in parentheses under the columns of Mode 1 and
Model 3 indicate the percentage differences of the results relative to the
intermediate level of model granularity (Mode 2). Table 4 shows the
following:

� Energy balance was maintained for all simulation runs, as demon-
strated by the sum of energy supply (i.e., PV, battery discharge, and
grid import) being equal to the sum of energy consumption (i.e., load,
battery charge, and grid export).

� The coarse models (Model 1) had the same results across different
years because they did not consider the impact of aging on PV and



Table 4
Annual energy flows of the modelled PV-battery system for the 1st, 10th, and 20th years. All energy flows have the unit of kWh.

Year Energy Item Temporal Resolution and Model Granularity

1 h 1 min 1 s

Model 1 Model 2 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

1st PV (
P

PPV ) 6459 (3%) 6251 6589 (4%) 6323 5927 (�6%) 6591 (4%) 6324 5929 (�6%)
Battery discharge (

P
Pdischarge) 1351 (2%) 1331 1460 (2%) 1436 1395 (�3%) 1470 (2%) 1446 1402 (�3%)

Grid import (
P

Pgrid;import ) 562 (�1%) 569 555 (�2%) 569 633 (11%) 556 (�2%) 569 637 (12%)
Load (

P
Pload) 3239 (0%) 3239 3239 (0%) 3239 3239 (0%) 3239 (0%) 3239 3239 (0%)

Battery charge (
P

Pcharge) 1524 (�8%) 1663 1647 (�8%) 1794 1751 (�2%) 1659 (�8%) 1807 1762 (�2%)
Grid export (

P
Pgrid;export ) 3609 (11%) 3250 3719 (13%) 3294 2965 (�10%) 3719 (13%) 3294 2967 (�10%)

10th PV (
P

PPV ) 6459 (8%) 5969 6589 (9%) 6037 5660 (�6%) 6591 (9%) 6039 5661 (�6%)
Battery discharge (

P
Pdischarge) 1351 (7%) 1265 1460 (7%) 1364 1382 (1%) 1470 (7%) 1374 1389 (1%)

Grid import (
P

Pgrid;import ) 562 (�13%) 645 555 (�15%) 652 657 (1%) 556 (�15%) 653 662 (1%)
Load (

P
Pload) 3239 (0%) 3239 3239 (0%) 3239 3239 (0%) 3239 (0%) 3239 3239 (0%)

Battery charge (
P

Pcharge) 1524 (�4%) 1587 1647 (�4%) 1711 1741 (2%) 1659 (�4%) 1723 1753 (2%)
Grid export (

P
Pgrid;export ) 3609 (18%) 3054 3719 (20%) 3104 2720 (�12%) 3719 (20%) 3104 2721 (�12%)

20th PV (
P

PPV ) 6459 (14%) 5656 6589 (15%) 5720 5363 (�6%) 6591 (15%) 5722 5364 (�6%)
Battery discharge (

P
Pdischarge) 1351 (41%) 956 1460 (52%) 960 1372 (43%) 1470 (53%) 963 1379 (43%)

Grid import (
P

Pgrid;import ) 562 (�42%) 967 555 (�48%) 1070 681 (�36%) 556 (�48%) 1077 685 (36%)
Load (

P
Pload) 3239 (0%) 3239 3239 (0%) 3239 3239 (0%) 3239 (0%) 3239 3239 (0%)

Battery charge (
P

Pcharge) 1524 (27%) 1199 1647 (37%) 1203 1729 (44%) 1659 (37%) 1208 1741 (44%)
Grid export (

P
Pgrid;export ) 3609 (15%) 3141 3719 (12%) 3308 2449 (�26%) 3719 (12%) 3316 2449 (�26%)
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battery. In contrast, Model 2 andModel 3 had different results (except
for the load) across different years because of their consideration of
aging impact. Annual PV aging factor was modelled at 0.5%; hence,
the PV energy generated at the 10th year and the 20th year reduced,
respectively, by 5% and 10% relative to the 1st year.
Fig. 8. Impact of model granularity on interactions with the battery

8

For a given model granularity, the temporal resolution had a minor
impact on the simulated energy flows. Relative to the simulation results
with 1-min temporal resolution of input data, the corresponding energy
flows with 1-s resolution of data had less than 1% difference whereas the
energy flows with 1-h resolution of data had up to about 10% difference.
and the power grid across the system operating life of 20 years.
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Temporal resolution affects simulation results via a couple of aspects: 1)
the hour angel calculated at each timestep varies with temporal resolu-
tions and thereby may cause the difference of beam solar irradiance on
PV; and 2) the building electrical load varies with the timeframe used to
average the 1-s data. The finding on the impact of temporal resolution on
simulation results is consistent with the previous work (Beck et al.,
2016).

For a given temporal resolution, the impact of model granularity
varied significantly with energy flow items and years. The numbers in
parentheses in Table 4 represent the percentage differences between the
results fromModels 1 and 3 and the results fromModel 2. These numbers
indicated that depending on the number of years that the PV-battery
system had operated in the field, Model 1 predicted 3%–15% more PV
energy than Model 2 while Model 3 consistently predicted 6% less PV
energy than Model 2 for all years. Model 1 over predicted PV energy
because it did not consider the impact of temperature and aging on PV
module efficiency.

The impact of model granularity on battery charge and discharge as
well as on grid export and import cannot be easily inferred from the three
years of data in Table 4. Therefore, using Model 2 as the reference, the
percentage differences of power flows related to battery and grid in-
teractions are calculated for the other two levels of model granularity
over all 20 years. Fig. 8 shows the results. Only results for the cases of 1-
min temporal resolution are shown in Fig. 8 because very similar trends
have been observed for the other two temporal resolutions. The figure
indicates the following:

� The impact of model granularity on battery charge and discharge
followed the same trend: the percentage difference increased steadily
and slowly for the first 12 years but rapidly for the remaining years.
Specifically, relative to Model 2, Model 1 had 2% and 52% more
energy for battery discharge respectively in the 1st year and the 20th
year, but for battery charge it had 2% less energy in the first year and
37%more energy in the 20th year. In contrast, Model 3 had about 3%
less energy for battery charge and discharge than Model 2 in the 1st
year but about 43% more energy for battery charge and discharge in
the 20th year.
Fig. 9. Comparison of power profiles from the three considered temporal resolutions,
has positive values while power for battery discharging and grid importation has ne
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� Model granularity affected grid energy input and export differently.
Relative to the intermediate level of model granularity (i.e., Model 2),
the coarse granularity (i.e., Model 1) had 12%–21% more energy
exported to the grid but up to 48% less energy imported from the grid.
In contrast, the refined granularity (i.e., Model 3) had 10%–26% less
energy exported to the grid but varied percentage differences of en-
ergy imported from the grid, starting from 11% in the 1st year to
�36% in the 20th year.

A couple of notes are worth mentioning. First, the percentage dif-
ferences discussed previously in Table 4 and Fig. 8 may depend heavily
on the sizing of PV and battery. In this study, PV and battery are sized
large enough to satisfy the instantaneous building loads for most times.
The magnitudes of grid energy export and import are small, which may
have magnified the corresponding percentage differences. Secondly, all
energy flow items are compared in their annual cumulative values.
However, close or even identical magnitudes of cumulative energy may
have significantly different energy profiles, as will be elaborated in the
next subsection.
6.3. Impact of temporal resolution on daily power profiles

To compare the daily power profiles corresponding to the three
temporal resolutions, the PV power, battery power and grid power are all
generated from Model 2 on the day of March 27. Fig. 9 clearly show the
significant difference of all power profiles between the 1-h temporal
resolution and the other two temporal resolutions. In particular, though
the accumulated daily energy consumption is identical, the load profile
with second resolution has many spikes and frequent fluctuations while
the hourly profile is much flat.

Spikes of building load and PV power have a large impact on battery
charging and discharging. Whether such impact can be accounted for
depends on the granularity of battery models. For example, Fig. 10 shows
the battery behaviour in the days of March 27–29. All operation variables
(i.e., current, voltage and SOC) are generated by the detailed battery
model (Model 3). It can be seen from this figure that the battery voltage
has been maintained in between the maximum charge voltage and the
minimum discharge voltage (i.e., the cut-off voltage). In addition, the
namely, 1 s, 1 min, and 1 h. The power for battery charging and grid exportation
gative values. The profiles are generated from Model 2.



Fig. 10. Example of battery current and voltage limit captured by the detailed battery model. Battery current is positive for charging and negative for discharging.
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battery SOC varies within its limits: 10% for the minimum SOC and 90%
for the maximum SOC. In this figure, two places are marked where the
voltage limit for charging is reached (between the 10th and 20th hour)
and the minimum SOC is reached (between the 70th and 80th hour). In
both cases, battery is disconnected, as indicated by the battery current
being 0 in the upper part of Fig. 10. However, only Model 3 is capable of
capturing the limit of charging voltage.
Fig. 11. Self-consumption of the PV-battery system simulated with different
model granularity and temporal resolutions. The self-consumption is calculated
at the end of the system's 20-year operating life.

Fig. 12. Self-sufficiency of the PV-battery system simulated with different
model granularity and temporal resolutions. The self-sufficiency is calculated at
the end of the system's 20-year operating life.
6.4. Comparison of self-consumption and self-sufficiency

Fig. 11 and Fig. 12 respectively show the self-consumption and self-
sufficiency of the studied PV battery system at the end of the system
lifetime. Similar to the findings on individual energy flow items as dis-
cussed in Section 6.1, temporal resolutions had negligible impact on the
results. As for the impact of model granularity, the self-consumption was
44% for Model 1, 48% for Model 2, and 52% for Model 3; the self-
sufficiency was approximately 83%, 78%, and 80%, respectively for
the three models, no matter which temporal resolution was used.

7. Conclusions

PV and battery are the two essential components of residential PV-
battery systems. Appropriate models of PV and battery are thus crucial
to system performance assessment, optimal design and operational
strategy development. For both PV modules and batteries, three models
with increasing level of granularity were implemented and compared
with respect to their impact on system simulation. The coarse PV model
considered the rated electric efficiency only; the intermediate model
included the impact of cell temperature and aging on the efficiency of PV
power generation; and the refined model used an equivalent electrical
circuit model to capture the current-voltage characteristics. Similarly, the
coarse battery model regarded the battery as a perfect energy bucket; the
intermediate model incorporated the aging impact and the roundtrip
efficiency of battery storage; and the refined model used an electrical
circuit to capture the battery dynamics under charging and discharging
conditions. In addition to model granularity, three temporal resolutions
(i.e., 1 s, 1 min, and 1 h) of weather data and building electric loads were
considered. A total of 8 simulation scenarios with different combinations
10
of modelling granularity and temporal resolutions were investigated for a
grid-connected residential PV-battery system in Lindenberg, Germany.
Major findings from this work include the following:
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� For a given modelling granularity, temporal resolutions had a minor
impact on the simulated energy flows. All energy flow items had less
than 1% difference between the 1-s and 1-min temporal resolutions
while up to 10% difference between the 1-h and 1-min temporal
resolutions was observed for certain energy flow items. This finding
demonstrates that temporal resolution is not critical when cumulative
energy flows are the primary consideration (e.g., self-consumption
and self-sufficiency).

� Depending on the year of system operation, the coarse PV model
(Model 1) predicated 3%–15%more PV energy than the intermediate
model (Model 2) while the refined model (Model 3) consistently
predicted 6% less PV energy than the intermediate model.

� For all three temporal resolutions, the model granularity had
noticeable impact on the power flows that involve the interactions
with the battery and the electric grid. The impact of such power
profile differences on battery operation can be captured only via the
refined battery model.

� When the cumulative energy flows are considered to calculate self-
sufficiency and self-consumption, the impact of model granularity
can be observed but not much. The self-consumption was approxi-
mately 44% for Model 1, 48% for Model 2, and 52% for Model 3; the
self-sufficiency was 83%, 78%, and 80%, respectively for the three
models.

The work presented in this paper could be extended further in future.
First, the impact of model granularity and temporal resolutions could be
investigated for other sizing options to understand how the conclusions
made from this study could vary with sizing. Secondly, the impact of
model granularity on optimal sizing of residential PV-battery systems
could be pursued. Given the minor impact of temporal resolutions on
power flow items, 1-min resolution of weather and load profiles should
be sufficient when pursuing optimization studies.
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