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Abstract
Cyber-security has emerged as one of the most pressing issues for society with actors trying to use
offensive capabilities and those who try to leverage on defensive capabilities to secure their assets or
knowledge. However, in cyber-space attackers oftentimes have a significant first mover advantage
leading to a dynamic cat and mouse game with defenders. Cyber Threat Intelligence (CTI) on past attacks
bears potentials that can be used by means of predictive analytics to minimize the attackers first mover
advantage. Yet, attack prediction is not an established means and automation levels are low.

Within this work, we present Attack Forecast and Prediction (𝐴𝐹𝑃) which is based on MITRE
Adversarial Tactics, Techniques and Common Knowledge (ATT&CK). 𝐴𝐹𝑃 consists of three modules
representing different analytical procedures which are clustering, time series analysis, and genetic
algorithms. 𝐴𝐹𝑃 identifies trends in the usage of attack techniques and crafts forecasts and predictions
on future malware and the attack techniques used. We rely on time sorting to generate subgraphs of
MITRE ATT&CK and evaluate the accuracy of predictions generated by 𝐴𝐹𝑃 based on these. Results
of an experiment performed on the basis of 493 different malware, validate the utility of using 𝐴𝐹𝑃
for attack prediction. 𝐴𝐹𝑃 reaches for each module an F-score which is higher than an extrapolation
of observed probabilities (baseline) with an F-score of up to 0.83 for a single module. It can hence be
considered an effective means for predicting future attack patterns and help security professionals with
preparing for future attacks.
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1. Introduction

1.1. Motivation

Cyber-security has emerged as one of the most pressing issues confronting our globally con-
nected world. The World Economic Forum estimated that the damage related to worldwide
cyber-crime was $3 trillion in 2015. This number is expected to increase by 15% every year, reach-
ing $10.5 trillion annually by 2025 [1] [2]. Consistently, individuals, businesses and governments
are becoming increasingly concerned about the costs and threats presented by cyber-crime,
espionage, and cyber-warfare [3]. It is hence expected that the worldwide information security
market will reach $170.4 billion in 2022 [4].
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Attackers’ strategies quickly develop and are subject to dynamic innovations. Consequently,
the cyber-criminal world is evolving to exploit vulnerabilities in a faster and more profitable
way. To counter this threat, new approaches and investments in the field of cyber-security are
essential. ”The capabilities, persistence, and complexity of adversarial attacks in the present
threat landscape result in an arms race between security professionals, and threat actors.” [5]
Thereby the attacker seems to have a first mover advantage. Thus companies are often vulnerable
even to relatively basic assaults on their computer networks.

According to the Global Information Security Workforce Study, the global cyber-security
workforce will be short by 1.8 million people by 2022, a 20% increase since 2015 [6]. 66% of
respondents reported not having enough capacity to address current threats appropriately. The
resulting consequences emphasise the importance of gaining knowledge about cyber-attacks
to understand adversarial behaviour and increase the efficiency of dealing with threats [6].
Understanding and analyzing cyber-attacks that happened in the past and predicting patterns
of attacks for the future means an improvement of cyber-security in its ability to enhance one’s
position in the arms race between adversaries and defenders.

Therefore, predictive analysis could lead to an advantage for organisations to properly
allocate their scarce defence resources. Although predicting attacks is not a new procedure,
automating attack forecasting and predictions were options hardly used in the past. Rather,
attack predictions were largely based on subjective perceptions of experienced experts from the
cyber-threat landscape. Yet, experienced experts are rare and their time is even scarcer.

Automation of attack forecasting and prediction would substantially decrease attackers first
mover advantage by decreasing biases in predictions and minimise experts’ time spending on
generating forecasts.

1.2. Problem statement

As described, predicting future malware and their functioning is of especial interest. We thereby
consider a malware as a unique combination of attack techniques (software vector). Technically
predicting future malware is the prediction of (co-)occurrences of techniques in future malware
respectively predicting new malware nodes within the cyber-attack knowledge graph. These
predictions can increase cyber-security maturity. Currently, predictions mainly focus on short
term. However, medium respectively long term predictions are of high importance for security
professionals. Consistently, research and development of defensive measures take a lot of
time, whereas better prediction can reduce the time lead over attackers. Note that security
spending is an investment in the future security of a company and should hence follow the
dynamics of attacks guaranteeing the feasibility of defensive means. Yet, as medium and long
term predictions are scarce, research and development of defensive measures are subject to
high risk of obsolescence.

CTI (e.g. as it is provided by MITRE ATT&CK)1 contains information with the potential of
making predictions more accurate representing a great opportunity for ensuring cyber-security.
However, currently, predictions on future developments of attacks are rare and oftentimes are
largely based on experiences of some analysts rather than CTI. This low level of automation

1For an in depth discussion on CTI and the relation to MITRE ATT&CK refer to section 2
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regarding the prediction of new attacks causes many problems for cyber-security. First, experts
were distracted from their operations and generating predictions means extra workload for
them. Second, even the best and experienced experts perceive cyber-attacks only from a limited
and in this way subjective perspective. This is, human crafted predictions are prone to biases.

1.3. Research question and course of the study

To support cyber-security staff on a strategic level and make predictions on the development of
attacks more accurate, we investigate two questions:

i Are there any patterns or trends in the MITRE
ATT&CK that can be used for crafting medium to long term predictions on the threat
landscape?

ii How do different algorithms perform to predict future malware in a medium to long term?

To address these questions, we collect data about observed (”historic”) malware respectively
CTI by scraping information about software and their used techniques from theMITRE ATT&CK
database.

In a next step, we conduct a simple statistical analysis to identify the probability of techniques
used by a software and the distribution of the number of techniques per software. Building
on these results, there is a possibility to provide insights into the most important techniques
and how often they have been used in the past. Furthermore, this will provide decision-makers
with data instead of intuition to guide their decision-making process. We then predict new
malware as a future combination of techniques. Thereafter, we compare approaches to predict
impending attacks by fine-tuning the model by propagating trends.

Here we propose, on the one hand, to use genetic algorithms generating malware predictions
[7]. On the other hand, we make a dimensional reduction, followed by clustering approaches
i.e. hierarchical clustering. A time-series and regression analysis is conducted to identify trends
inside these clusters and craft predictions on new malware [8] [9].

To evaluate our algorithms we craft subgraphs from knowledge graphs using time sorting
and run the analysis on real data (knowledge at a specific point in time). We evaluate our
predictions with walk-forward validation.

In contrast to past work (please refer to section 2), we use predictive analytics not on an
operational but on a strategic level.

2. State of research and related work

2.1. Cyber-situational awareness

Situational awareness describes the “perception of the elements in the environment within
a volume of time and space, the comprehension of their meaning and the projection of their
status in near future.”[10] In the context of cyber-security, situational awareness can be divided
into three levels [11]. These are (1) monitoring of cyber-systems and intrusion detection, (2)
understanding of the current situation and its significance for cyber-security, and (3) projection.
The last aspect includes predictive capabilities and is hence the joint link to this work.
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2.2. Cyber threat intelligence

CTI is structured information extracted from monitored systems or intrusion detection systems
[12]. It includes actionable information on past attacks (evidence based knowledge). CTI is
often divided into four subcategories: (1) technical, (2) operational, (3) tactical, and (4) strategic
threat intelligence [13]. It includes tactics, techniques, and attack patterns (TTPs), indicators of
compromise (IOCs), tools, threat actors, date of discovery, and other information. Information
extracted from various sources of CTI is leveraged by many analysts to increase the efficiency
of defensive measures such as anomaly detection systems, intrusion detection systems, and
threat hunting [12].

Since a single individual, security analyst, security researcher or any other expert cannot
acquire all information on all threats, there is a high importance of sharing CTI among different
stakeholders to enable a holistic perspective [12]. Hence, there were great efforts to formalise
and standardise threat sharing and to develop a common language. One of those languages
is the Structured Threat Information eXpression (STIX) language 2, which is also utilised by
MITRE ATT&CK3.

MITRE ATT&CK is a globally accessible curated knowledge base and a model about adver-
sarial behaviour in cyber-attacks based on real-world observations. The MITRE Corporation
created ATT&CK out of the need to categorize and structure data of adversarial behaviour due
to the increasing number and relevance of cyber-attacks.

Through MITRE ATT&CK, a common taxonomy has been created to help understand adver-
sarial behaviour and improving defensive actions. MITRE ATT&CK is used as the foundation
for developing specific threat models by researchers, analysts and developers. The first model
was created in 2013, primarily focusing on the Windows enterprise environment. Since then,
the database has been extended to other platforms such as Linux, macOS and Android.

The foundation of MITRE ATT&CK is based on various techniques an adversary can use,
representing how an opponent will carry out an attack tactic. Each technique is associated
with one or more tactics. Tactics can be understood as phases of an attack and are therefore
consistent to the cyber kill chain [14]. These tactics answer the question why an adversary uses
a particular technique. The sequence of several techniques used during an attack is defined as
software. The software itself can be divided into malicious software (Malware) and legitimate
software (Tools).

The most recent version of MITRE ATT&CK represents 552 techniques across 13 tactics and
585 different softwares. MITRE ATT&CK consists of three parts: The Enterprise version focuses
on adversarial behaviour against enterprises, MITRE ICS version focuses consists of attacks
within industrial control systems and the mobile version focuses on attacks against mobile
devices.

Furthermore, beside CTI for attacker modelling, there is also information on defender mod-
elling including information on system vulnerabilities. This is for example the National Vul-
nerability Database (NVD)4 or the Common Vulnerabilities and Exposures (CVE) database5.

2https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/stix-20-finish-line
3https://attack.mitre.org/
4https://nvd.nist.gov/
5https://cve.mitre.org/

https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/stix-20-finish-line
https://attack.mitre.org/
https://nvd.nist.gov/
https://cve.mitre.org/
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This information can be used to understand trends, patterns and developments in software
vulnerabilities that would affect the threat landscape.

2.3. CTI based predictions for cyber-security

Researchers showed how discrete or continuous models and machine learning methods could be
applied to the cyber-security sector in recent years. Husák et. al [9] made a detailed comparison
of predictive methods applicable for both long term investigations and forecasts as well as short
term predictions, e.g. used for efficient threat hunting in cyber-security and divided them into
classes.

2.3.1. Short term predictions

Short-term attack projection assists security analysts in identifying the next step of an adversary.
One example is the Attack Hypothesis Generator (AHG) by Elitzur et al. [12]. Within their work,
they used a knowledge graph of historical malware based on the MITRE ATT&CK, AlienVault
Open Threat Exchange (OTX), and VirusTotal. Based on the knowledge graph, they predict
subsequent and linked attack techniques given some currently observed data. AHG performed
significantly better than an analyst in estimating the next step of an ongoing cyber-attack [12].
Within their work, Elitzur et al. [12] proved that short term predictions can be beneficial for
improving cyber-security and setting efficient defensive measures at place.

Furthermore, Zhan et al. [15] demonstrated the usage of short term attack predictions relying
on honeypots. They enabled attack predictions up to five hours ahead based on data gained from
their honeypot. Furthermore, Fava et al. [16] presents a methodology for projecting attacks
based on information gathered from Intrusion Detection Systems (IDS).

Each of the techniques mentioned above craft predictions to support security analysts at
an operational level in their day-to-day work. Husák et al. [9] showed that a wide range of
prediction methods achieve up to 90% accuracy in recognising adversarial network behaviour.

Further works are inter alia given by Qin and Lee [17]

2.3.2. Medium to long term predictions

Zhang et al. [18] provide a study applying data-mining and machine learning for predicting
the ”time to next vulnerability for a given software application”. However, they concluded that
the NVD has only low predictive power. This might be as there is a close link between the
occurrence of new attacks and the exploitation of vulnerabilities. Furthermore, Ozment [19]
highlighted that there is not enough information in freely accessible vulnerability databases
including NVD. This is, CTI about attacks might have a higher predictive power than data on
vulnerabilities. Further contributions investigating the possibility of predicting vulnerabilities
include the works from Alhazmi and Malaiya [20], Abraham and Nahir [21], and Nguyen and
Tran [22].
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3. Methodology

3.1. Hierarchical clustering

Al-Shaer et al [23] proposed agglomerative hierarchical clustering as the most effective means
of investigating associations within MITRE ATT&CK. Inspired by their approach we propose
the use of hierarchical clustering for finding these associations and predicting yet not existing
respectively unobserved links in the usage of attack techniques for crafting predictions on new
attacks (new malwares). We thereby calculate for each software the distance to every other
software and cluster the most similar ones. The distance between softwares is calculated based
on the phi-coefficient. We define the phi-coefficient between software i and software j (𝑟𝜙(𝑆𝑖, 𝑆𝑗))
as follows. For doing so, we formalize each software as a binary vector each bit denotes the
utilization or non-utilization of a specific technique.

𝑟𝜙(𝑆𝑖, 𝑆𝑗) =
𝑛11𝑛00 − 𝑛10𝑛01
√𝑛1⋅𝑛0⋅𝑛⋅0𝑛⋅1

(1)

where 𝑛11 describes the number of techniques that are used by both softwares, 𝑛00 the number
of techniques not used by both softwares and 𝑛10 respectively 𝑛01 the number of techniques
used by either software i or software j. Furthermore, 𝑛1⋅ respectively 𝑛⋅1 represent the total
number of techniques used by each software and 𝑛⋅0 respectively 𝑛0⋅ the number of unused
techniques by software i or j. For clustering we utilized Ward’s linkage [24] as it showed the
best results.

3.2. Principal component analysis

To identify hidden factors inside the data, principal component analysis (PCA) is a feasible
means [25]. It transforms the original data points to a new orthogonal basis. These basis vectors
are sorted by the ratio of variance they cover and then interpreted as underlying factors.

3.3. Time series analysis

The time-dependent structure of the attack data implies a time series analysis and forecasting.
We propose to use vector autoregression (VAR) [26]. One software is represented by a binary
vector of techniques with a date. Each technique can be interpreted as a time series in itself.
VAR then regresses a technique to itself and all other previous techniques. Therefore, a one-
step-ahead VAR(1) approach needs to fit 𝑘2 parameters, where 𝑘 is the dimension of techniques.

Given that the distribution of timestamps is highly uneven, we cannot perform a VAR
model fitting directly mainly because multiple software have the same time-stamp. Instead, we
introduced two different procedures. First, we did ordinary VAR with one software per point in
time. Second, we aggregated all software per year and analyzed it to identify trends based on a
yearly basis.

Within the first procedure, we extracted all data points where the timestamp is unique. The
new data set 𝑋short consists of 42 software ranging from 14-02-2019 to 10-06-2020 with non-
uniform distributed dates. This is the training set for a VAR(n) time series analysis with a lag of
𝑛. We performed six regressions with lags 𝑛 ∈ {1, … , 5, 15}.
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Predictions for future software can be made by the forecast method. It generates vectors
of float values. We transformed the prediction to software vectors by setting values above 0.5
to one and the rest to zero. We compare the first prediction for evaluation as further steps of
prediction generate the same software structure.

The second procedure involved aggregating all software per year. Next, all values are nor-
malised by dividing them by the number of software in the respective year. This table of relative
frequencies of techniques per year gets the subject of analysis. A time-series analysis like in
the first procedure is hereby impossible due to the small sample size. However, trends can be
identified analyzing the frequencies of techniques used in softwares.

3.4. Genetic algorithm

Genetic algorithms (GA) are a class of algorithms based on the biological process of evolution
[27]. Yet, the core idea is transferable to many other research areas. Central for this class of
analytical procedures is that the evolution of an initial population respectively the development
from a given state is an iterative process, improving their fitness.

Figure 1 gives the basic structure of the GA according to Höschel et al. [28].

Figure 1: Flowchart of a standard genetic algorithm (GA)

3.4.1. Initialisation

𝐴𝐹𝑃 interprets the observed software as the underlying population where each particular
technique is interpreted as a determinant of the fitness.

For the initial population, we use the observed probability of the utilization of a technique.
For lowering the computational complexity, the size of the initial population could hereby be
lowered. In this sense, the run-time can be decreased without significantly deterioration of the
accuracy.
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3.4.2. Fitness function

The definition of the fitness function is essential for each GA. Within 𝐴𝐹𝑃 we propose to take
three terms into account for describing the fitness function which are the probability term (𝑃𝑇),
the correlation term (𝐶𝑇) and the adjustment term (𝐴𝑇).
𝑃𝑇 considers the frequency of the utilization of a technique in every observed software

as an indicator for their fitness. By doing so, we obtain a probability vector 𝑞 ∈ ℝ𝑛 with
the probabilities of all 𝑛 techniques. The calculation involves multiplying each individual in
the respective population 𝑃 ∈ ℝ𝑛 ×𝑚, where 𝑚 are the generated softwares with 𝑛 potential
techniques with the vector 𝑞.
𝑃𝑇 can then be described as follows.

PT = 𝑞 ⋅ 𝑃 ∈ ℝ𝑚 (2)

As some techniques are more likely to appear together or conversely, some techniques are
more likely to appear separately, coocurences seem to have an additional information value.
This coocurrence of specific techniques can be interpreted as an indicator that they support
each other respectively increase the fitness or are even necessary prerequisites. We start with a
given generated software vector 𝑝 ∈ ℝ𝑛 with 𝑛 techniques and the technique correlation matrix
𝐶 ∈ ℝ𝑛×𝑛.

We then substract the unit matrix to remove the self-correlation.

𝐶̂ = 𝐶 − 𝐸 (3)

Furthermore, we multiply 𝑝 by 𝐶̂ to identify the correlation value for each technique in the
generated software. The resulting vector a with

𝑎 = 𝐶̂ ⋅ 𝑝 ∈ ℝ𝑛 (4)

is multiplied by the generated software. The sum of correlations 𝑘 for the used techniques is
the result.

𝑘 = 𝑝𝑇 ⋅ 𝑎 ∈ ℝ (5)

Lastly, this metric is normalized.

𝑘̂ = 𝑘
|𝑝|

(6)

To do this computation for 𝑚 populations in parallel, we extend the ideas mentioned above
as follows.

𝐴 = 𝐶̂ ⋅ 𝑃 ∈ ℝ𝑛 ×𝑚 (7)

where 𝑃 ∈ ℝ𝑛 ×𝑚 is the population matrix of 𝑚 generated software with 𝑛 techniques.
Masking the correlation value matrix 𝐴 again with 𝑃 results in a 𝑚 × 𝑚 matrix.
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𝐾 = 𝑃𝑇 ⋅ 𝐴 ∈ ℝ𝑚×𝑚 (8)

𝐶𝑇 is then described by the diagonal elements of the matrix CT = diag(𝐾).
We furthermore observe that the number of techniques used within a software is relatively

stable. Hence, 𝐴𝑇 is included to account for potential ”degenerations” of the predicted software
i.e. overfull software vectors. 𝐴𝑇 thereby takes a key role for determination of the accepted false
positive and false negative rates and hence for the accuracy of the algorithm. For this purpose,
the mean number of techniques in each software within MITRE ATTA&CK is calculated. First,
we calculate the occurrence 𝑜 ∈ ℝ𝑛 of different techniques for each predicted software from
𝑃 ∈ ℝ𝑛 ×𝑚 in parallel.

𝑜 = 𝑃 ⋅ 𝟙 ∈ ℝ𝑛 (9)

where 𝑃 is multiplied by 𝟙, a vector of ones, so that the occurrence vector 𝑜 represents the sum
of ones within the software vector and thus the number of techniques used per software.

In the next step, the difference between the vector 𝑜 and the mean value 𝜇 is calculated by
subtracting 𝜇 from all the values in 𝑜, which leads to the difference term (𝐷𝑇).

DT = 𝑜 − 𝜇 ⋅ 𝟙 ∈ ℝ𝑛 (10)

𝐴𝑇 penalizes deviations from the mean number of techniques used. We propose to rely on
the following formulation where 𝑃𝑆𝑇 penalizes positive deviations from the mean and 𝐵𝑆𝑇
remunerates negative deviations. 𝑃𝑆𝑇 can thereby be described as follows, where 𝑃𝐹 denotes
the penalty factor.

PST = 𝑑2

PF
∈ ℝ𝑛 (11)

Furthermore, 𝐵𝑆𝑇 can analogously be described as follows where 𝐵𝐹 is the ”bonus factor” for
deviations.

BST = 𝑑
BF

∈ ℝ𝑛 (12)

Since the differences are negative and the adjustment term AT is subtracted in the final fitness
function, the bonus has a positive effect on the fitness. 𝐴𝑇 thereby works against the tendency of
𝐺𝐴 to produce overfull software matrices for the predicted softwares. This behaviour happens
because it would increase the fitness scores since they are partly based on the occurrence
probabilities, and thus more techniques used would lead to higher fitness scores without 𝐴𝑇
favoring the degeneration of software.

The final adjustment function is now composed of the sum of the two terms PST and BST.

AT = PST + BST ∈ ℝ𝑛 (13)

The entire fitness function FT consists of the three main terms described above.

FT = (𝜆 ⋅ PT + (1 − 𝜆) ⋅ CT) − AT) (14)

Besides the BF and the PF, there is another degree of freedom. The factor 𝜆 influences the degree
to which the correlation and the relative probabilities of the techniques are included in the
fitness function.
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3.4.3. Selection

The selection function selects from the set of softwares those that should be used within the
predictive approach to will most likely be reused and recombinated to generate novel software or
in other words that are used by the GA to craft predictions. There are different selection methods.
We implemented a roulette wheel selection and a simple tournament selection. The implemented
tournament selection is a straightforward method of selection. It involves randomly selecting
two individuals from the current population and comparing their fitness scores. The individual
with the higher score wins the tournament and is included as a so called child in the new
generation to be recombinated using the crossover methods described in section 3.4.4. This
procedure is repeated until an entirely new child generation has been generated.

The roulette wheel selection method considers the relative fitness scores of each individual,
which have to be a positive value. Due to the architecture of our fitness function, fitness
scores might be negative, owing to which we had to adapt these scores first. We subtract the
smallest fitness value in the population from all other fitness values in the respective population.
This results in the smallest fitness value becoming zero and all other values correspondingly
non-negative. The resulting positive fitness values are then used for roulette wheel selection.
This selection method is a fitness proportional selection method, where the individual crossover
probability is calculated based on the individual fitness divided by the sum of the fitness of the
whole population. The fitness values are normalized so that the sum of the resulting fitness
values is one.

𝑝𝑖 =
𝑓𝑖

∑𝑁
𝑗=1 𝑓𝑖

(15)

where 𝑝𝑖 is the selection probability of an individual, 𝑓𝑖 the respective fitness score and ∑𝑁
𝑗=1 𝑓𝑖

the sum of fitness in the population.
This selection method can be thought of as a roulette wheel, where each individual takes

up an area on the wheel depending on their fitness. The probability of selecting a software
depends on the individuals’ fitness relative to the rest of the population. Our implementation
allows to individually specify the number of softwares that should be selected for crossover.

3.4.4. Crossover

The crossover operator is the implementation of recombination in the GA. Pairs of softwares
(also called parents) are crossed by exchanging segments of the respective bit strings between
the two parent softwares. This creates new softwares (children) based on the genetic makeup of
the two parents. The number of crossover points in the software vector is usually one or two,
implemented using one-point crossover and two-point crossover [29]. However, research has
shown that often a more significant number of crossover points can be beneficial [30] [31].

For one-point crossover, two selected softwares are passed and then cut at a random location
in the software vector. Two new offsprings are then generated by rejoining the two parent
softwares at their intersections. Correspondingly, the two-point crossover method, softwares
are cut at two points and then rejoined by combining the respective regions of the parents
software vectors to create two new offspring.
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Uniform crossover, produces on average (𝐿2 ) crossovers on chromosome strings of length 𝐿.
We implemented all three crossover operators to test whether the results differ significantly
between methods. The uniform crossover function is passed by two parent softwares 𝐴(𝑡)

and 𝐵(𝑡), determined by the selection operator in the previous step, as well as an exchange
probability 𝑝𝑠. The function returns two generated children 𝐶 𝑡+1 and𝐷𝑡+1 for the next generation
of individuals 𝑡 + 1 the exchange of bits is calculated and performed separately for each position
of the software vector. First, a random number between 0 and 1 is drawn, resulting in 𝑢. If this
number is less than or equal to the exchange probability 𝑝𝑠, the respective bit is exchanged [32].

𝑢 ≤ 𝑝𝑠 (16)

𝑐𝑡+1𝑖 = 𝑏𝑡𝑖 (17)

𝑑 𝑡+1𝑖 = 𝑎𝑡𝑖 (18)

This process is repeated up to the length 𝐿 of the parent’s software vector. If 𝑢 > 𝑝𝑠 the bits of
the parent softwares are copied to the children without flipping them.

3.4.5. Mutation

The mutation function intends to flip bits and thus prevent particular parts of the software
vector from being identical in different predicted softwares. This is also to prevent the search
for a solution only in a subspace of the original search space. Furthermore, while crossover
accounts for the reutilization of software and the recombination of different parts of a software,
mutations account for entirely new coding (new developments). Including both, GA seem to
come close to real software development processes. Mutations increase the exploratory power
of the GA. The probability that a bit mutates is set by a parameter 𝑝𝑚 and is usually relatively
low.

In our implementation, an array with the shape of the current population is randomly filled
with float numbers between 0.0 and 1.0. An element-wise comparison is then performed, and
wherever the values of the randomly generated numbers are below the probability 𝑝𝑚, the
corresponding bit is inverted. In the end, a mutated population is returned.

3.4.6. Optimizing hyper-parameters

In the previous sections, we defined the parameters BF, PF and 𝑝𝑚. They significantly influence
the behaviour of the GA and the trade-off between exploration and exploitation. These hyper-
parameters can be optimized regarding better predictive power. A global optimization routine
like simulated annealing [33] is utilized to produce the results stated in section 4.3. While running
the optimizer, we fixed the seed for the random number generators to ensure reproducibility.
Moreover, we selected the starting values manually and gave them boundaries to restrict search
space. The target function of the optimizer is the negative mean of 30 F1 scores of generated
software by the GA.

For comparison, we also tested a local optimization routine. However, the tested limited
memory Broyden– Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [34] converged to the start
values, and stuck in a local minimum.
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3.5. Generative adversial network

Generative Adversarial Networks (GAN) are a specific type of neural networks (NN) frequently
used in deep learning and are trained to produce new instances of objects similar to those
they were trained on. This is reached by two neural networks (NN), that compete against each
other. The first generates new samples (so called generator), in our case software, out of noise
input. The other discovers fake data (so called discriminator) [35]. After training, the generated
software looks like the observed software.

To create a GAN, one need to perform these steps

1. set up the GAN by defining the generator and discriminator,
2. provide samples of real software vectors,
3. create fake software,
4. train the GAN,

which are shown in detail in the following paragraphs.
Due to the small given data set and the exploitative intention, we start with simple models.

The generator aims to generate software the discriminator is not able to differentiate from
real software. The NN has 𝑙 input neurons, where 𝑙 is the dimension of the latent space (we
set 𝑙 = 50). There are 150 hidden neurons in the middle layer with relu activation function
and 192 neurons in the output layer with linear activation representing all techniques. The
discriminator tries to filter out fake software generated by the generator. It is a NN with 192
input neurons, 25 hidden neurons with relu activation and one output neuron with sigmoid
activation. Both networks are using Adam optimizer [36].

For training, the GAN is provided by real software samples drawn from the observed data
matrix 𝑋. Moreover, the generator creates new software out of a multivariate Gaussian noise
vector with dimension 𝑙. Finally, we train the GAN by training the discriminator on real samples
for this batch. Next, the generator creates new software, which the discriminator evaluates.
The generator is trained to fool the discriminator. In this setup, we trained batch-wise with the
size of 64 and 2000 iterations.

4. Evaluation

4.1. Database

For evaluation of the proposed methods, we rely on CTI that is presented in MITRE ATT&CK,
which is information on 493 malware and 552 unique techniques and sub-techniques these
malware rely on.

To be able to train and evaluate 𝐴𝐹𝑃, we split all available data on the ratio of 80:20. We
therefore sort all data by the date of discovery. 80 % of the malware (the malware discovered
first - respectively the oldest malware) is taken for training purposes and 20 % (newest malware)
for testing. This results in an evaluation period of approximately one year.

Note the imperfections within the database due to unequal time stamping. This is due to a
change in the data structure and represents a burden for evaluation as well as for prediction.
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Furthermore, we performed a preprocessing i.e. cleaning of the data. We thereby removed
degenerated software and techniques, the dimension is reduced by 64.7% from 552 × 585 to 192
× 449. Despite that, we kept 95.7% of the information in the data. This shows that the matrix
was strongly sparse in the beginning. By reducing the matrix, we kept the information but
decreased its complexity significantly.

4.2. Experimental setup

4.2.1. Evaluation metrics

We measure the performance of the predictions as the harmonic mean of precision 𝑝 and recall 𝑟
- commonly known as the F-score. This means, that for evaluation we measure the gap between
the actually observed softwares in the one year time period (Y) and those that were predicted
with the help of 𝐴𝐹𝑃.

𝐹 = 2 ⋅
𝑝 ⋅ 𝑟
𝑝 + 𝑟

(19)

Furthermore, we benchmark each module of𝐴𝐹𝑃with a simple simulation of attack evolution
(as a basic approach of attack prediction) based on the extrapolation of observed probabilities
for the utilization of each technique. For generating the baseline, we generated 100 softwares
by random picking of techniques. This basic simulation led to an F-score of 0.42. We take the
F-score of this extrapolation as a benchmark.

4.2.2. Outline of the experiment

In order to evaluate each implemented module of 𝐴𝐹𝑃, we perform a Walk forward evaluation
with a time horizon of one year. For every prediction we craft by using 𝐴𝐹𝑃 relying on the
training data set, we test whether there is a real attackwithin the evaluation data set. We consider
the highest parallelism/ correspondence of a predicted software and an observed software as
the adequate measure defining the prediction accuracy, where each observed software (software
from the evaluation dataset) can only be chosen once. In doing so, we evaluate the extent to
which 𝐴𝐹𝑃 is feasible to predict the development of new attacks within the time horizon of one
year which we define as a medium to long term horizon for attack predictions.

We thereby consider the four strategies for crafting attack predictions representing the
different modules implemented within 𝐴𝐹𝑃.

Algorithm 1 describes the schema of the experiment. Line 1 calls the selected procedure for
crafting predictions implemented within 𝐴𝐹𝑃. Line 2 to 4 calculates the precision and recall of
each prediction for a single prediction and an observed attack. In Line 5, the evaluation metric
is calculated for the prediction crafted and line 6 calculates the evaluation metric of the 𝐴𝐹𝑃 on
Y.
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Algorithm 1 Evaluation procedure
Input: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 , 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑌 , 𝐴𝐹𝑃_𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
Output: 𝑠𝑜𝑓 𝑡𝑤𝑎𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 , 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐

1: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠 ← 𝐺𝑒𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠(𝐴𝐹𝑃_𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 )
2: for Pred ∈Predictions do
3: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐺𝑒𝑡_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑟𝑒𝑑, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 , 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑌 )
4: 𝑟𝑒𝑐𝑎𝑙𝑙 ← 𝐺𝑒𝑡_𝑟𝑒𝑐𝑎𝑙𝑙(𝑃𝑟𝑒𝑑, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 , 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑌 )
5: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐(𝑃𝑟𝑒𝑑) ← 𝐺𝑒𝑡_𝑚𝑒𝑡𝑟 𝑖𝑐(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙)
6: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐 ← 𝑀𝑒𝑎𝑛(𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐(𝑃𝑟𝑒𝑑))
7: return 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐, 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑡𝑟 𝑖𝑐(𝑃𝑟𝑒𝑑)

Algorithm 2 shows the procedure of 𝐴𝐹𝑃.
VAR is called and executed with line 1 Line 3 calls and executes the GA, parameters are

set, and the respective selection, crossover, fitness and mutation functions are called, compare
Figure 1. Figure 2 shows the best fitness score in each generation and the course of the GA.
Last, in line 6 the GAN is called.

Figure 2: Evolution of the fitness scores in different generations of the GA

Algorithm 2 GenPredictions
Input: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 , 𝑛𝑢𝑚_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠, 𝐴𝐹𝑃_𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ
Output: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠

1: if AFP_approach = VAR then
2: 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡 𝑖𝑜𝑛𝑠 ← 𝐺𝑒𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠_𝑉𝐴𝑅(𝑛𝑢𝑚_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 )
3: else if AFP_approach = GA then
4: 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡 𝑖𝑜𝑛𝑠 ← 𝐺𝑒𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠_𝐺𝐴(𝑛𝑢𝑚_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 )
5: else
6: 𝑃𝑟𝑒𝑑𝑖𝑐𝑖𝑡 𝑖𝑜𝑛𝑠 ← 𝐺𝑒𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠_𝐺𝐴𝑁(𝑛𝑢𝑚_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑋 )
7: return 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑖𝑜𝑛𝑠

After initializing the start population , the algorithm executes the GA up to a predefined
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number of generations. Another essential part of the algorithm is the choice of the replacement
strategy. This strategy defines how newly created individuals are selected or what proportion
of the parents should be replaced by the children. The choice is crucial because, in addition to
the crossover, mutation and selection functions, it can improve the balance between exploration
and exploitation of the algorithm. However, there is no general best replacement strategy, as the
choice depends on many problem-specific factors [37]. Generally, a distinction is made between
generational (non-overlapping) GAs and steady-state (overlapping) GAs. In generational GAs,
the entire parent generation is replaced by a completely new offspring generation. In contrast,
in steady-state GAs the new generation consists of parts of the parent generation and the newly
created offspring.

We decided to use a general replacement strategy, where the offspring generation replaces
the parent generation. The disadvantage of this method is that possibly good individuals from
the previous generation are lost, and thus the average fitness of the total population decreases.
However, this also means that the chance of finding less good individuals (local optimum) is
lower. In our case, the population’s average fitness is secondary, and avoiding being ’stuck’ in a
local optimum is more critical.

4.3. Results

In a first step we applied, hierarchical clustering sorting the software based on the similarity
or dissimilarity to one another. The resulting dendrogram is presented in figure 3. It becomes
evident, that there are clear clusters that can be extracted from the dataset (types of malware).
This could enable prediction approaches within clusters.

Figure 3: Plot of agglomerative hierarchical clustering of software attacks

Thereafter, we used the data of the clusters to apply PCA. In this case, shown in fig. 4, it
was not possible to recognise a structure of temporal developments, and the data points were
distributed randomly.

Table 1 presents the results for 𝑛 ∈ {1, … , 5, 15} lags for the VAR(𝑛) time series model. The
mentioned table shows the corresponding average, maximum and minimum F-score. The
average ranges from 0.46 to 0.61, peeking at a lag of five. VAR shows with a lag of five a
maximal F-score of 0.83 and minimal F-score of 0.4. VAR hence shows in this implementation
an improved predictions on future malware for nearly every prediction with only insignificant
deterioration even for the worst prediction crafted by the VAR module compared to the baseline.

In addition, for the one-step-ahead forecast, the F-score and the index of the hit entry in the
test set are shown. For all lags, the first F-score was higher than average. Therefore, it could be
used as a heuristic.
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Figure 4: Software clusters with 3 dimensions after performing PCA, colored with reference to the
respective timestamps

Lag 𝑛 1 2 3 4 5 15

F-score avg 0.46 0.52 0.55 0.52 0.61 0.50
F-score min 0.27 0.0 0.29 0.0 0.40 0.0
F-score max 0.73 0.74 0.71 0.74 0.83 0.80
F-score first 0.53 0.58 0.67 0.50 0.62 0.67
# Techniques 20 10 6 4 7 5

Table 1
Comparison of results of VAR(𝑛) first prediction for different lag sizes.

Figure 5 gives an overview on the performance of the different modules of 𝐴𝐹𝑃. It shows a
clear superiority of 𝐴𝐹𝑃 compared with the baseline (simulation based on the extrapolation of
observations).

GAN performed with an average F-score of 0.46, slightly higher than the simulation. Since
we had 3500 parameters and 350 data points, the risk of over-fitting the model was high.

GA performed best of all methods explored. For evaluation, we executed the GA 50 times,
with a maximum generation size of 450 and a population size of 40 individuals each time. Here
we used the optimized parameters (see section 3.4.6), although these differ depending on the
crossover and selection methods used.

In the resulting 50 final generations each with 40 predicted software, we selected the best
one, i.e. the one with the highest fitness score. A selection of e.g. the five most successfully
predicted software led to equivalent results since the five best software from each run of the
GA hardly differed in their binary structure.

We used the reduced matrix with 192 techniques in the GA. With the help of the tournament
selection and uniform crossover operator, we achieved a mean F-score of 0.63.

With the roulette selection, against our expectations, a slightly worse F-score of 0.58 was
achieved. In addition, the run-time performance of the roulette selection was worse. Fortunately,
the variance of the individual F-scores was relatively low, with scores varying only between
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Figure 5: Boxplot showing the comparison in terms of the F-score results of different prediction
approaches. We used the simulation as a baseline and ran the Time Series with VAR(5).

F-values of 0.52 - 0.8 ensuring better estimations than the extrapolative approach (benchmark)
for every prediction. We used uniform crossover and one-point crossover for predictions with
the GA, as the results with two-point crossover was — with an average F-score of 0.53 —
significantly worse. However, the two-point crossover produced a larger selection of different
software, while the predicted software in the other two methods was similar for several runs of
the GA.

4.4. Discussion

With𝐴𝐹𝑃we present an automated attack predictor able to forecast newmalware developments,
where each malware is described as a software vector defining the techniques that are used by
the novel malware. We showed and validated the predictive power of GA, VAR and GAN based
on a Walk forward validation of predictions. 𝐴𝐹𝑃 can therefore be considered as an efficient
means for predicting software developments within a time horizon of a year. It needs to be
noted, that predictions are not exact rather, real software deviates slightly from most predictions.
Yet, predictions show considerable descriptive power. Furthermore, 𝐴𝐹𝑃 helps to increase
cyber-security maturity by significantly improving medium to long term predictive capabilities.
Furthermore, 𝐴𝐹𝑃 is completely automated saving (time) resources of security professionals
and security operation centers. The results of 𝐴𝐹𝑃 can be used to prepare proactively for future
attacks and improving investment decisions/ research spending of defenders. This is, defenders
can better prepare for attacks utilizing specific attack techniques by implementing adequate
counter measures. Furthermore, 𝐴𝐹𝑃 identifies trends in malware development respectively
within the utilization of techniques of new malicious software. Security professionals can rely
on this information and develop security measures for the most probable predictions even
before they where observed in the wild. 𝐴𝐹𝑃 can hence also be considered to be an enabler for
engineering secure systems within a dynamically changing threat landscape.

Especially GA seems to be suitable for predicting the development of new malware in the
medium to long term (respectively as evaluated in this work on the basis of one year). This is
as the GA shows very robust results with little variance in the predictive power as well as the
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highest mean F-score. Furthermore VAR showed high predictive power. Yet, it suffers from
high variance in precision of predictions. Although GAN promises high potential for medium
and long term attack prediction, it showed the worst results of the implemented algorithms yet
delivering significant improvements compared to the extrapolation of observations suffering
most from the limitations of low availability of data on past attacks. This is as 𝐴𝐹𝑃 implements
in its current version a GAN that is trained on a relatively small dataset (𝑋). Yet, the training
set of the GAN increases with every newly detected malware. This is, we expect the accuracy
of the GAN module to increase significantly with the size of CTI utilized.

Likewise, PCA suffers from the lack of data respectively the structure of the database it was
extracted. In the future, when data with different time stamps are available, it will most likely
become possible to gain deeper insights with this approach.

5. Conclusion, impact & future work

Improving defensive capabilities in cyber-space for improving cyber-security is one of the
key challenges that need to be solved to enable resilient societies and modern life, which is
increasingly penetrated by information technology.

Understanding the past and predicting the future is an approach being sought in the course
of time to develop new security profiles and software to help protect socially sensitive data
and critical infrastructure from attackers. Predicting future cyber-attacks can help businesses,
individuals and society. Minimising attackers first mover advantage therefore need to be a focal
point of research. Yet, it is barely considered or largely based on subjective opinions and biased
by individual perspectives of experts.

In this work, we present 𝐴𝐹𝑃 taking advantage of CTI for automatically crafting predictions
on future malware and their attack techniques used. In doing so, 𝐴𝐹𝑃 leverages on CTI to infer
patterns within time series of attacks, making it possible to gain insights to attack evolution
and development as well as deriving further relevant information (e.g. the popularity of specific
attack techniques) and crafts forecasts based on this information. 𝐴𝐹𝑃 thereby predicts new
attacks as a binary vector of techniques and provides hence actionable insights on the probable
development of the cyber-threat landscape. In this way, analysts, researchers and security
managers can prepare proactively for threats that are likely to occur in the future. Additionally,
cyber-risk managers can perform intelligent and proactive investments relying on 𝐴𝐹𝑃, as
well as staff training to minimise the attackers’ first mover advantage. The ability of 𝐴𝐹𝑃 to
predict the future course and the development of the threat landscape is a critical step towards
increasing levels of cyber-defence and security as well as its automation. The development
of an automated prediction process is an essential step towards the strategic defence against
cyber-attacks and can significantly increase cyber-security maturity for non-specific attacks.
In the long run, this anticipation of attacks can be expanded and used for successful attack
prevention.

Within our work we identified clusters and patterns that can be used for crafting medium to
long term predictions on future attack development empowering security analysts in classifying
upcoming software, discovery and reaction to trends. Furthermore, these trends promise useful
guidance in strategic actions taken by defenders e.g. security investment decisions. With
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𝐴𝐹𝑃, we automated the process of crafting attack medium to long term attack predictions and
forecasts. The different graph analytical approaches employed by 𝐴𝐹𝑃 show high potential for
attack prediction. Yet, GA and VAR show the most promising results.

Although reaching reasonable good results in medium to long term attack prediction, 𝐴𝐹𝑃
suffers a lack of data. Hence, it seems to be of utmost importance to gain and share CTI.
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