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a b s t r a c t 

Using machine learning (ML) techniques in general and deep 

learning techniques in specific needs a certain amount of 

data often not available in large quantities in technical do- 

mains. The manual inspection of machine tool components 

and the manual end-of-line check of products are labor- in- 

tensive tasks in industrial applications that companies often 

want to automate. To automate classification processes and 

develop reliable and robust machine learning-based classi- 

fication and wear prognostics models, one needs real-world 

datasets to train and test the models. The presented dataset 

consists of images of defects on ball screw drive spin- 

dles showing the progression of the defects on the spin- 

dle surface. The dataset is analysed via an initial object de- 

tection model available under: https://github.com/2Obe?tab= 

repositories . The reuse potential of the dataset lays in the de- 

velopment of failure detection and failure forecasting mod- 

els for the purpose of condition monitoring and predictive 

maintenance. The dataset is available under https://doi.org/ 

10.5445/IR/10 0 0129520 . 
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pecifications Table 

Subject Manufacturing Engineering 

Specific subject area The subject area is condition monitoring and lays in the intersection between 

the fields of Machine Learning (Computer Science) and Manufacturing 

Engineering/Mechanical Engineering. The subject area is of special importance 

for engineers who want to build intelligent and autonomous condition 

monitoring systems for the supervision of machine tool components. 

Type of data Image 

How data were acquired The data were acquired by a classical camera system mounted close to the 

system of interest during the operation of the system. Since the camera is 

mounted during operation different failure states are recorded which cannot 

be found in the literature so far. 

See section Experimental Design, Materials and Methods 

Data format Raw 

Analyzed 

Parameters for data collection For data collection a machine tool element like a ball screw drive like it is 

found in machine tools during industrial operation is considered. 

Description of data collection The data is collected by mounting the camera system onto the nut of the ball 

screw drive such that the camera looks vertically on the surface of the spindle. 

Hence the camera continuously records the surface of the component and is 

able to collect different conditions of the spindle. 

Data source location Institution: Karlsruhe Institute of Technology 

City/Town/Region: Karlsruhe 

Country: Germany 

Data accessibility Repository name: KITOpen 

Dataset for Defect Detection 

Data identification number: https://doi.org/10.5445/IR/10 0 0129520 

Direct URL to data: https://doi.org/10.5445/IR/10 0 0129520 

Dataset for Defect Classification 

Data identification number: https://doi.org/10.5445/IR/10 0 0133819 

Direct URL to data: https://doi.org/10.5445/IR/10 0 0133819 

alue of the Data 

• For industrial companies it is very important to keep the availability of machines as high as

possible which makes it necessary to supervise the condition of machine tool components.

The automation of this process saves cost and is necessary to build autonomous machines.

Though, building autonomous systems requires large amounts of data showing the effects of

interest. This is important because intelligent systems based on machine learning techniques

need sufficient data to learn from. In the context of the automatic detection of surface de-

fects, Cum grano salis the machine learning mode learns how images with defect and images

without defect are looking. If there is not sufficient data then the model can’t learn the spe-

cific characteristics. Since having data of defective components implies that a company has

defective components (which is costly and should be prevented), this data is often rare in

technical domains which in turn contradicts the need of large dataset for performant mod-

els. 

• Especially companies developing (intelligent) condition monitoring systems for machine tool

components benefit from the data. Since the availability of machines is of high importance

for most industries, the dataset addresses a large circle of users. 

• The dataset can be used by every company which wants to develop intelligent systems for

failure detection and condition monitoring. The dataset can be used for transfer learning to

enrich datasets from other technical domains supervising the condition of metallic surfaces.

Examples could be the renewable energy sector e.g. to find defects on turbines or the railway

sector e.g. to find defects on rails. 

• The novel dataset shows image data of worn ball screw drives in a timely context. 

• The dataset shows the progression of failures and delivers failures at different steps in time

which is of large value for practitioners who want to detect failures as soon as possible. 

https://doi.org/10.5445/IR/1000129520
https://doi.org/10.5445/IR/1000129520
https://doi.org/10.5445/IR/1000133819
https://doi.org/10.5445/IR/1000133819
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• The dataset contains worn and not worn surfaces for classification. The images are annotated

and the failures are provided with a segmentation mask indicating the size and location of

the failures. 

1. Data Description 

1.1. Dataset for defect classification 

The dataset is available in [1] and consists of 21853 150 × 150 pixel RGB images in the .png

format showing areas with and without failures (failures are so called pitting(s)). The dataset is

split such that approximately 50% of the images show pitting. Concretely, the dataset contains

11075 images without pitting and 10778 images with pitting. Each image is assigned with a

label ∈ { P , N }, where P stands for pitting and N stands for no pitting . Images followed by an

underscore pursue the same logic but are turned by 90 ° to introduce some variance in the data.

This effect can easily be reversed. 

The dataset was recorded using a camera system mounted to the ball screw drive nut as

described in [2] . The camera system as well as the test procedure is depicted in Figs. 8 and

9 below. The raw data for the 150 × 150 Pixel images shown in Fig. 1 are images taken by

the camera with a resolution of 2592 × 1944 Pixels, from which the images for the dataset are

selected and cut out. 

The authors emphasized the selection of the images regarding the representativeness of the

data. The dataset contains all sorts of conditions to which the BSDs are exposed in operation.

Fig. 1 shows some representative images for the images’ whole image set. There are images

showing no defect and no pollution like (a). There are images showing small pitting with no pol-

lution (b), small pitting with pollution (c), no pitting with pollution (d), and large pitting with
Fig. 1. Subset of the image data taken during the destruction test. 
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Fig. 2. Subset of images without pitting. 

Fig. 3. Subset of images with pitting. 

(  

s  

c

e) and without (f) pollution. Hence, the whole spectrum of conditions is covered. Figs. 2 and 3

how a larger subset of images with and without pitting. It is obvious that the correct classifi-

ation of images needs a substantial amount of domain knowledge. 
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Fig. 4. Annotated pitting size over time of a specific pitting development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Dataset for defect detection/segmentation 

Besides the classification of images, the authors introduce a dataset for instance segmentation

which addresses the research problem of image-based size extraction and stands out from the

already available datasets for metal surface defect detection like NEU-DET [3] , GC10-DET [4] , or

SD-saliency-900 saliency [5] with a more suitable representation of real-world problems due to

containing a high-class imbalance and pixel-wise annotation masks. Furthermore, this dataset is

ideally suited for application areas, namely models that are trained with little data and therefore

need to have a high model efficiency. 

Condition monitoring enabled by image-based size extraction to detect the current state of

a machine tool element, according to [6] , can, for example, lead to the reduction of equipment

failure cost, improved plant reliability, and optimized maintenance intervals towards a condition-

based maintenance strategy and is therefore obviously worthwhile considering. The automatic

detection and evaluation of a failure is a critical step towards autonomous production machines.

The introduced dataset is not only valuable for condition-based surface damage detection

models on BSDs but also through a size progress detection on image sequences for analysis of

wear development over time. This provides the community with a useful dataset for the de-

velopment and test of wear detection algorithms for all machine tool elements prone to wear

which can be recorded by a camera. Three important features are worth noting in particular. The

dataset contains tiny damages and hence is suited to develop models especially for the detec-

tion of small, respectively early defects. In addition to that, the dataset also includes pollution

origin from soil which makes detection more difficult together with foreign materials originat-

ing from e.g. the production process. As a third feature, the dataset contains the development

of the same failures over a period of time. This feature can be used to develop models for the

forecasting of failure progressions. To the best of our knowledge, such dataset does not exist in

the literature right now. In Fig. 4 , one exemplary course of an annotated size progress of the

dataset is displayed. 

As shown, the graph first remains for approx. 2/3 of the documented time interval at zero

due to the fact that there is no surface damage. As soon as a pitting occurs, it will only contin-

uously increase its size, in this figure represented by the pixel amount of the pitting in relation

to the total pixels in an image. The drawn circles render the size of a single pitting shown in

the image cutouts on the left to give an idea about the increasing pitting size. You can also see

in the images increasing soiling of the surface and, therefore, there is an increasing difficulty

to correctly annotate the pitting. This explains why the shown graph also contains decreasing

parts, which is obviously not possible in the real application and opens the possibility to de-

velop models able to cope with this situation. 
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Fig. 5. Different Image classification and Object detection types supported by the dataset. 
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While classification requires that its data(-points) are assigned to discrete values, such as

ategories [7] , and detection can be used for localization of objects within images [8] , it is rec-

mmendable to combine both to detect and classify single objects in images to get as close as

ossible to the perfect description of an image. Since these dataset annotations can be used

or classification as well as detection problems, it is attainable to detect the size of an object

nd further, with the given wear developments, forecast the pitting size of the future. Generally,

omputer vision classification and detection tasks can be divided into four types ( Fig. 5 ). 

Instance segmentation (d) as for classification and detection is a pixel-wise object detection

ethod useful for computer vision research tasks like extraction of shape and the exact size of

urface damage. Known as one of the most fundamental and challenging tasks in the computer

ision research area [9] , this dataset can also be used for semantic segmentation (a) as a pixel-

ise classification with no possibility to distinguish two or more adjacent objects from the same

lass, an image classification (b) for pitting recognition, and object detection (c) for single object

etection. 

While most of the related research datasets for damage detection on the metal surface are

ot annotated for pixel-wise object detection, the introduced dataset cannot only be used for

nstance segmentation but moreover for the analysis of developments of surface damage over

ime. The (a) NEU-DET [10] , shown in Fig. 6 , for instance, with its 1800 200 × 200 × 1 pixel

mages and six annotation classes (rolled-in scale, patches, crazing, pitted surface, inclusion,

cratches) or the (c) GC10-DET [4] with its 3570 2048 × 10 0 0 × 1 big images and 10 annotation

lasses (cresent gap, welding line, water spots, silk spot, inclusion, oil spot, crease, punching,

aist folding, rolled pit) can only be used for object detection problems. 

Compared with the instance segmentation (d) SD-saliency-900 dataset [5] with its 900

00 × 200 × 1 samples, the introduced dataset contains more irrelevant surface information

hich is an important challenge to address since many real-world problems contain a high-class

mbalance [11] . 

The dataset contains 1104 channel-3 images with 394 image annotations for the surface dam-

ge type “pitting”. The annotations made with the annotation tool labelme [12] are available in

SON format and hence convertible to VOC and COCO format. All images come from two BSD

ypes. 

The dataset is divided into two folders, data with all images as JPEG, labeled with all an-

otations, and saved_model with a baseline model. The authors also provide a python script to

ivide the data and labels into three different split types – “train_test_split”, which splits images

nto the same train and test data-split the authors used for the baseline model, “wear_dev_split”,

hich creates all 27 wear developments, and “type_split”, which splits the data into the occur-

ing BSD types. 
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Fig. 6. Different datasets for metal surface damage. 

Fig. 7. Pitting process. 

 

 

One of the two mentioned BSD types is represented with 69 images and 55 different image

sizes. All images with this BSD type come either in a clean or soiled condition. 

The other BSD type is shown on 325 images with two image sizes. Since all images of this

type have been taken with continuous time, the degree of soiling is evolving. 

Also, the dataset contains the above-mentioned 27 pitting development sequences. 
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Fig. 7 shows the evolving pitting development with and without the shown annotations from

ne of the 27 pitting developments. For convenience, only every third image starting at the

eginning of the pitting formation is displayed. 

. Experimental Design, Materials and Methods 

.1. Sensor system 

The sensor system used for the creation of the image dataset is depicted in Fig. 8 . 

The system is mounted onto the nut of the BSD using a mounting adapter numbered with

3. The camera (#1) looks through a hole in the so-called diffusor (#4) onto the spindle. Since

urning the spindle leads to a linear motion of the nut and the spindle is turning underneath,

he camera gets to see all raceways of the spindle. Using this setup, the whole spindle can be

hotographed. #2 is a manufactured housing enclosing the spindle which is used to ensure uni-

orm lighting conditions during the experiment. Additionally, the housing protects the camera

rom pollution. An important part of the system which is responsible for lightning of the im-

ges is the so-called diffusor which also implements the light sources. The light sources are two

tandards LED stripes mounted onto the surface where #4 is located. The diffusor itself is 3D-

rinted and consists of a semitransparent plastic leading to diffuse light. Since the LEDs are not

ointed onto the spindle but directly onto the housing, the light does not get directly onto the

pindle but is reflected by the housing and then further made more diffuse bypassing the diffu-

or. During tests, this setup was found to be yielding the best results for our purpose. The used

amera system is a standard Raspberry Pi V2 microcontroller camera which is a good tradeoff

etween resolution, costs, and necessary mounting space. The camera is set up to take images

ith a resolution of 2592 × 1944 pixels per image. 

.2. Test setup 

The dataset is generated on a test bench located at the Institute of Production Science at the

arlsruhe Institute of Technology. The test bench is depicted together with the mounted camera

ystems in Fig. 9 . 

The test bench is constructed such that a maximum of five spindles can be worn in parallel.

he spindles are positioned like the five on a dice, with the middle spindle being the leading

pindle connected to the motor. The other four spindles are operated by a chain drive connected
Fig. 8. Sensor system used for image generation. 
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Fig. 9. Test bench with mounted camera systems for image generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the central spindle, thus it is ensured that all spindles are operated in the same way. The

spindles used are standard 32mm diameter spindles with no special treatment or prestress. Each

spindle is preloaded with 70% of the C a given by the manufacturer, where 100% of the C a is the

axial load at which the manufacturer ensures a safe operation of 10 6 revolutions. In this case, the

C a is chosen with 12kN. With this setup, the camera automatically triggers a complete surface

recording every four hours. Between each image, the spindle is turned by an additional 22.5 °,
and an area of 150 × 150 pixels is cropped automatically from the large image. 

2.3. Data analysis baseline 

Regarding the introduced dataset, the authors also present a baseline model. The here used

model architecture is a Mask R-CNN (regional Convolutional Network) [13] with an on the COCO

dataset [14] pretrained Inception ResNet v2 [15] . The Mask R-CNN architecture is composed of

two stages, a faster R-CNN with a deep convolutional network composed of Inception v4 and

ResNet building blocks united in an Inception ResNet v2 architecture and an FCN (fully convolu-

tional network). Here the authors used the standard implementation as used in [13] . For further

implementation details please consider this source. 

With the chosen architecture, the authors achieved a mIoU (mean intersection over union)

baseline score of 0.316. It is noticeable that the model has difficulties predicting small pitting in

general ( Figs. 10 and 11 ). 

Examining the horizontal and vertical development of pitting and relating it to a binarized

model prediction, a zero-one principle - where zero corresponds to “not detected”, we can see

that pitting detection becomes more reliable as development increases. In Fig. 10 , the circum-

stance just described can be readily understood. The relative horizontal spread of the pitting

(width) is described on the x-axis and the relative vertical spread (height) is described on the

y-axis. The binarization of the detection is represented by the coloring of the points. Fig. 11 vi-

sualizes the just mentioned circumstance on selected examples. 

The pitting shown in image cutout (a) was due to its large horizontal and vertical spread

detected. While the not detected pitting in cutouts (b), (d), and the detected pitting in (c) are

relatively small. For convenience, the trained model will be provided. The code for the baseline

detection model is available under: https://github.com/2Obe/BSData . 

https://github.com/2Obe/BSData
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Fig. 10. Relationship between pitting detection and its relative size. 

Fig. 11. Prediction examples from the author’s model. 
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