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Abstract
This work presents multilayer phase-field simulation of selective sintering pro-
cess and the calculation of effective mechanical properties and residual stress
of the microstructure using the finite element method. The dependence of the
effective properties and residual stress on the process parameters, such as beam
power and scan speed, are analyzed. Significant partial melting of powders is
observed for large beam power and low scan speed, which results in low porosity
of the microstructure. Nonlinear relationship between the effective mechanical
properties and process parameters is observed. The increasing rate of effective
mechanical properties decreases with increasing beam power, while increases
with decreasing scan speed. The dependence of effective Young’s modulus and
Poisson’s ratio on porosity are well established using power law models. Stress
concentrations are found at the necking region of powders and the intensity
increases with the level of partial melting, which results in increasing resid-
ual stress in the microstructure. The numerical results reveal quantitatively the
process-microstructure-property relation, which implies the feasibility of the
subsequent data-driven approach.
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1 INTRODUCTION

Powder bed fusion (PBF) is one of the most popular additive manufacturing (AM) technologies enabling innovation in
the design of industrial products and bringing revolution to the series production of them [23,37,43]. Distinguished from
the other compositions in the category of PBF, selective sintering (SS) binds the powder bed driven via a scan of an energy
beam (mostly a laser beam or an electron beam) layer-wisely without creating a significant melt pool, which usually
results in a high product porosity [13,27,55]. Therefore, SS has been applied for industrial production in manufacturing
porous structures, especially medical scaffold and bones [10,45,50]. It is also feasible in producing components in which

Abbreviations: PBF, powder bed fusion; RVE, representative volume element; SS, selective sintering.
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the materials have relatively high melting/transition temperature [13,22,25] or request relatively low process temperature
in order to avoid the material transitions [17,42].

Microstructure and its evolution during the PBF essentially bridge the process parameters, majorly the power as well
as the scan speed of the beam, and the preheating temperature, to the end-up performance of manufactured components
[1,36,53]. Although experimental methods regarding insitu and real-time characterization maintain lasting high inter-
ests, modeling and simulation methods play a crucial role in exploring the process-microstructure-property relation and
thereby form the backbone of the correlation studies [23,30,53,55,56,59]. This enables the direct linkage between the
process parameters and the resultant microstructure, which influences largely the performance of the final product, by
providing clear-defined underlying physics. In the sense of tailoring size, distribution, and morphology of pores in a
functional porous structure, it specifically requires the detailed tracing of nonisothermal transient microstructure on the
mesoscale (i.e., 0.1 ∼ 100 μm [34]) as a result of interactive underlying physics, that is, the mass and thermal transfer,
coalescence as well as the grain growth , and even the partial melting of the particles. These requirements can be fulfilled
by phase-field method among the existent approaches. In our latest work, we proposed a thermodynamically consistent
nonisothermal phase-field model for selective sintering, which recapitulated processes during SS, such as a temperature
field with a high gradient, mass transfer through partial melting as well as diffusion, and particle/grain necking as well
as coarsening [55]. 3D simulations with a mesoscopic powder bed geometry were also performed and ready for further
calculation of the end-up mechanical properties.

On the other hand, with increasing and widespread attractions on tomographic characteristic methods, in which
phase-field method has shown its compatibility and robustness in reconstructing such characterizations with smoothed
(diffusive) interfaces [2,20,44], it is also interesting to perform accurate property calculations directly on a microstructure
with diffusive interfaces rather than conducting extra steps of determining the sharp interfaces from the characterized
microstructure [35]. There are generally two schemes to simulate the mechanical behavior on nonisothermal transient
microstructure: the coupled and segregated schemes. The coupled scheme considers explicitly the interaction between
the mechanical dynamics as well as thermal-/microstructure evolution. This scheme causes the entanglement between
the temperature and mechanical fields [33], and thus is time and resource consuming. Therefore, the segregated (or
weakly coupled) scheme is widely used in the current research [29], in which the thermal stress is calculated based on
the resultant microstructure with temperature field from the phase-field simulation, neglecting the reaction from the
mechanics on the thermal-/microstructure evolution.

Most of the mechanical analysis focuses on understanding the formation of residual stress during metal PBF. The
residual stress depends on the process parameters, such as scanning orientation, beam power, and scan speed. A few single
layer models were developed to study the influence of process parameters on the residual stress [16,38,48,56]. To further
include the cumulative component level of stress state in a multilayer structure, models with multiple thin layers were
developed to study residual stress and distortion of the structure. The multilayer model tends to quantitatively explain the
residual stress and distortion observed in experiments. For example, Williams et al. [51] predicted the distortion within
only 10% difference compare to the experimental measurement. The multilayer and multitrack model developed by Ren
et al. [40] is used to not only explain the experimental observation of residual stress but also to study the reduction of
distortion in additive manufacturing, where the simulation of the thermal stress uses a simplified homogeneous model.
To predict the deflection and residual stress of components manufactured with PBF at large-scale, part-scale multilayer
models were developed [4,6,11]. The simulation of the part-scale model uses layers around 1 mm [11]. At this scale, the
simplified homogeneous model is used not only in the thermo-mechanical analysis, but also in the simulation of the
thermal profiles of the powder bed [6]. Since PBF-manufactured components with complex geometry are considered in
these models, generation of the analysis-suitable mesh can also be problematic. Finite cell method instead of the finite
element method was adopted to simulate the PBF process at part-scale by means of a layer-by-layer activation process [4].
Few works directly considered mechanical analysis of the multilayer porous microstructure on the mesoscale, such as
porous 316L stainless steel fabricated by SS [52]. With increasing computation resources, a direct investigation of multi-
layer finite element simulation of microstructure during the SS process is possible and can give an in-depth insight into
the formation of residual stress.

By combining phase-field simulations, computational homogenization and thermo-mechanical analysis in the finite
element method, we present a comprehensive numerical study on the process-microstructure-property relation of
SS-processed 316L (SS316L). In particular, the microstructure and the transient thermal history were firstly calculated by
using the proposed nonisothermal phase-field model. They were subsequently transferred to the FE-based homogeniza-
tion and thermo-mechanical FE simulations, in order to evaluate the effective elastic properties and the thermal residual
stress. Thereby multilayer simulations based on an efficient scheme of layer-wise powder deposition were employed to
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generate representative volume elements (RVE) of sufficient large size. Using the proposed numerical scheme, massive
simulations have been carried out with varying beam power and scan speeds. The obtained large amount of data were
analyzed to unveil the influence of the process parameters on the porosity, the effective elastic properties and the residual
stress.

2 THEORETICAL MODELS

Assuming heat transfer, strongly dependent on the transient microstructure, is weakly coupled with mechanics, a
subsequent scheme is employed in this work, that is, the nonisothermal phase-field simulation for the coupled
thermal-/microstructure evolution and a subsequent thermo-mechanical simulation for the thermal stress and deforma-
tion of the microstructure.

2.1 Nonisothermal phase-field model of SS processes

Starting from a Ginzburg–Landau-type entropy density functional, the authors have developed a nonisothermal
phase-field model for simulation of the microstructure evolution and the thermal history during the SS process [55]. For
the sake of completeness, the model is briefly summarized here. Thereby both conserved and nonconserved order param-
eters (OPs) are employed to represent the polycrystalline metallic materials. The conserved OP 𝜌 indicates the substance
(incl. unmelted and partially melted region), while the nonconserved OPs {𝜂i}, i = 1, 2,… distinguish particles with
different crystallographic orientations. The numerical constraint

∑
i 𝜂i + (1 − 𝜌) = 1 allows {𝜂i} to be valued only when

𝜌 = 1, that is, grains only exist in the substance. A free energy functional ℱ , depending on OPs and the local temperature
field T, is derived as

ℱ (T, 𝜌, {𝜂i}) = ∫Ω

[
f (T, 𝜌, {𝜂i}) +

1
2

T𝜅𝜌|∇𝜌|2 + 1
2

T𝜅𝜂
∑

i
|∇𝜂i|2] dΩ, (1)

where the local free energy density is constructed in the form of a Landau polynomial as

f (T, 𝜌, {𝜂i}) = 𝜉

(
A𝜌 + B

∑
i
𝜂i

)
fht(T) + C(T)

[
𝜌2(1 − 𝜌)2]

+ D(T)
⎡⎢⎢⎣𝜌2 + 6(1 − 𝜌)

∑
i
𝜂2

i − 4(2 − 𝜌)
∑

i
𝜂3

i + 3

(∑
i
𝜂2

i

)2⎤⎥⎥⎦ . (2)

with

fht(T) = cr

[
T ln T

T0
− (T − T0)

]
,

C(T) = Cpt − Ccf(T − T0),

D(T) = Dpt − Dcf(T − T0).

In this formulation, multiple minima are presented including (𝜌 = 0, {𝜂1 = 0, 𝜂2 = 0,… , 𝜂N = 0}) for an atmo-
sphere/pore state and (𝜌 = 1, {𝜂1 = 1, 𝜂2 = 0,… , 𝜂N = 0}), (𝜌 = 1, {𝜂1 = 0, 𝜂2 = 1,… , 𝜂N = 0}), … , (𝜌 = 1, {𝜂1 = 0, 𝜂2 =
0,… , 𝜂N = 1}) for grain states with different orientations. Model parameters Cpt, Dpt, Ccf, and Dcf are related to the barrier
heights between minima with the subscript “pt” and “cf” denote the contribution from the potential term or the configu-
rational term, respectively. Heat term fht tilts the “multiwell” due to the local heat variation in certain phase, manifesting
the variable thermodynamic stability due to the change of local thermal conditions. T0 is an arbitrary temperature serv-
ing as the upper-bound reference temperature where parameters Cpt and Dpt are determined. Model parameters A, B, C,
and D as well as gradient constants 𝜅𝜌 and 𝜅𝜂 can be obtained by fitting the experimental temperature-dependent surface
and grain boundary energy 𝛾sf(T) and 𝛾gb(T) with a given diffusive interface, where the coefficient 𝜉 is employed to adjust
the heat contribution fht to the interface in order to favor the multivariable regression (see Supplementary Note 1 of [55]).
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Following our previous investigations [53–55], the kinetic of 𝜌 is governed by the Cahn–Hilliard equation as

�̇�(r, t) = ∇ ⋅
[

M∇
(
𝜕f
𝜕𝜌

− T𝜅𝜌∇2𝜌

)]
(3)

with the isotropic diffusive mobility formulated to consider not only contributions from mass transfer paths through
substance, atmosphere, surface, and grain boundary [49,53–55], but also the diffusion enhancement due to possible partial
melting [55], that is,

M = 1
2
(

C + D
) [

ΦssDss + ΦatDat + ΦsfDsf + ΦgbDgb
]
+ ΦM(T)Mmelt, (4)

where Dpath is the effective diffusivity of the mass transport via path = ss, at, sf, gb, and Φss, Φat, Φsf, and Φgb are also
interpolating functions to indicate substance (including solid and liquid), atmosphere/pore, surface and grain boundary,
respectively, which obtain unity only in the corresponding region. They can be simply formulated as

Φss = 𝜌3 (10 − 15𝜌 + 6𝜌2) , Φat = 1 − 𝜌3 (10 − 15𝜌 + 6𝜌2) ,
Φsf = 16𝜌2(1 − 𝜌)2, Φgb = 16

∑
i≠j

𝜂2
i 𝜂

2
j .

Notice that such formulation holds only when a limited melting phenomenon is assumed to occur around the surface
of particles. In this regard, the contribution of the partial melting is treated more like an enhanced surface diffusion when
T → TM. It is worth noting that the formulations in Equations 3-4 disregard the detailed melt flow dynamics as well as
contributions from intercoupling between mass and heat transfer.

As for kinetic for {𝜂i}, the Allen–Cahn equation is directly utilized, which is also the reduced from [54] without
temperature-gradient-driven grain boundary (GB) migration.

�̇�i = −L
(

𝜕f
𝜕𝜂i

− T0𝜅𝜂∇2𝜂i

)
. (5)

Here L can be explicitly formulated by using the GB mobility Ggb, GB energy 𝛾
T0
gb and the gradient model parameter

𝜅𝜂 as

L =
Ggb𝛾

T0
gb

T0𝜅𝜂
. (6)

It should be noted that the gradient model parameter of Equation 6 has been modified from the original equation
in [32] to T𝜅𝜂 for the physical coherence.

Finally, for the heat transfer equation, we have derived a heat transfer kinetic coupled with terms with transient OPs,
showing the latent heat brought by the microstructure evolution

crṪ(r, t) +
𝜕ept

𝜕𝜌
�̇�(r, t) +

∑
i

𝜕ept

𝜕𝜂i
�̇�i(r, t) = ∇ ⋅ (k ⋅ ∇T) + q(r, t). (7)

with a temperature-independent potential landscape ept as

ept(𝜌, {𝜂0}) = Cpt

[
𝜌2(1 − 𝜌)2] + Dpt

⎡⎢⎢⎣𝜌2 + 6(1 − 𝜌)
∑

i
𝜂2

i − 4(2 − 𝜌)
∑

i
𝜂3

i + 3

(∑
i
𝜂2

i

)2⎤⎥⎥⎦ ,
and the thermal effect incited by the beam is equivalently treated as a volumetric heat source with its distribution along the
depth direction formulated in a radiation penetration fashion, as the powder bed is regarded as an effective homogenized
optical medium, that is,

q(r, t) = Ppxy[rO(v, t)]da
dz

,
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in which the in-plane Gaussian distribution pxy with a moving center rO(v, t). P is the beam power and v is the scan velocity
with its magnitude v = |v| as the scan speed, which are two major processing parameters in this work. The absorptivity
profile function along depth da∕dz which is calculated based on [14,55].

It is obvious that when one ignores the effects of those latent heat induced by microstructure evolution (i.e., the
evolution of the pore/substance as well as unique grains), Equation (7) can be degenerated to the conventional Fourier’s
equation for heat conduction with an internal heat source. In this work, the spatial distribution of k within the system is
treated similarly as the diffusive mobility in Equation (4), yet only k on the substance (ss) and atmosphere/pores (at) are
specifically distinguished, that is,

k = kss + kat, (8)

with

kss = kssΦssI, kat = katΦatI.

2.2 Mechanical analysis

RVEs with simulated microstructure are then subjected to thermo-mechanical analysis and computational homogeniza-
tion based on the finite element approach. Therefore, in this and the following subsection, the related equations are
summarized. Consider the microstructure in the domain Ω surrounded by the boundary 𝜕Ω. Assuming the quasi-static
problem with small strain approximation, the microstructure is governed by the stress equilibrium

∇ ⋅ 𝝈 = 0 in Ω, (9)

where 𝝈 is the stress tensor, 0 represents the null vector, and the body force is ignored. For heterogeneous microstructures,
the anisotropic constitutive relation is given as

𝝈 = C ∶ (𝜺 − 𝜺0), (10)

where C is the stiffness tensor, the total strain 𝜺 is defined as the symmetric part of the displacement gradient ∇u

𝜺 = 1
2
(∇u + u∇) . (11)

For a general elasto-plastic thermo-mechanical problem, the eigenstrain 𝜺0 contains both the plastic strain and
thermal strain. In this article, only the thermal strain is considered and it is defined as

𝜺0 = 𝛼(T − T0)I, (12)

where 𝛼 is the temperature dependent coefficient of thermal expansion and I is the identity tensor.
The stress equilibrium is subjected to either displacement or traction boundary condition

u = u or 𝝈 ⋅ n̂ = t on 𝜕Ω, (13)

where u is the prescribed displacement on the boundary, n̂ is the normal vector of the boundary, and t is the applied
traction on the boundary.

As it is explained in more details later, the resultant porous structure from phase-field simulation is mapped to a
uniform finite element mesh with phase-dependent elastic properties. The variation of material properties across the
diffusive interface is influential to the mechanical result. Therefore, appropriate spatial interpolation of the mechanical
properties is necessary. In this preliminary simulation work on SS316L, isotropic mechanical properties are considered.
In particular, the Young’s modulus and the Poisson’s ratio, of the resultant microstructure are employed in the direct
interpolation scheme as employed in microstructure simulations (Equations (4) and (8)), that is,

E(𝜌J) = EssΦss(𝜌) + EatΦat(𝜌), 𝜈(𝜌) = 𝜈ssΦss(𝜌) + 𝜈atΦat(𝜌) (14)
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in which Ess and 𝜈ss are respectively the Young’s modulus and the Poisson’s ratio of the SS316L substance, while Eat and
𝜈at are of the atmosphere, respectively. Eat = 0.01 MPa and 𝜈at = 0. The interpolation functions Φss(𝜌) and Φat(𝜌) use the
same formulation as Equation (4).

Note that the interpolation can be also made on bulk and shear modulus (K and G), which are two independent elastic
constants of an isotropic stiffness tensor. Interpolation directly on the stiffness [26,57] or stress [7,19] are also employed
in coupling problems of phase-field and mechanics, which are essentially equivalent to the direct interpolation in K and
G as shown in Equation (19). The difference between interpolation on E and 𝜈 as well as K and G has been rarely dis-
cussed would be addressed in the upcoming work. Other interpolation schemes, such as the inverse interpolation scheme
proposed in [35], with their corresponding physical standpoint and numerical outcome should also be investigated.

2.3 Computational homogenization analysis

The microstructure obtained in multilayer phase-filed simulations is used as an RVE. To evaluate the effective properties
of the microstructure, we adopt the ideas of homogenization for the linear elasticity [41,46]. Based on the Hill’s criterion,
three kinds of boundary conditions can be applied: linear displacement boundary conditions, uniform traction bound-
ary conditions, or the related periodic boundary conditions. In the phase-field simulation, the boundary condition is not
periodic and thus the simulated microstructure is not periodic. Therefore, the periodic boundary condition for homog-
enization is inappropriate. Considering the fact that the Young’s modulus of the atmosphere is very small (0.01 MPa)
compared to the powders (180 GPa), it can lead to convergence difficulty when the traction boundary condition is applied.
Hence, the linear displacement boundary condition is chosen for homogenization, which is defined as

u = 𝜺0 ⋅ x̂ on 𝜕Ω, (15)

where x̂ is coordinates on the boundaries, and the constant tensor 𝜺0 represents the macroscopic strain. As the average
strain theorem shows,

⟨𝜺⟩ = 1
2V ∫Ω

(∇u + u∇)dΩ = 1
2V ∫

𝜕Ω
(u ⊗ n̂ + n̂ ⊗ u)dS = 𝜺0

2V
⋅ ∫

𝜕Ω
(x̂ ⊗ n̂ + n̂ ⊗ x̂)dS = 𝜺0, (16)

where V is the volume of the RVE. After solving the mechanics problem of the RVE under the given linear displacement
condition, the stress distribution inside the RVE can be obtained. Thus the volume average stress in the RVE, which
corresponds to the macroscopic stress, is evaluated as

⟨𝝈⟩ = 1
V ∫Ω

𝝈dΩ. (17)

Then the effective stiffness tensor of the RVE can be calculated using the relation

⟨𝝈⟩ = Ceff ∶ ⟨𝜺⟩. (18)

Note that in the computational homogenization, to obtain the effective stiffness tensor of a three-dimensional RVE,
six independent loading scenarios are simulated: normal stretching test along each of three Cartesian directions and
shearing test in each of three Cartesian coordinate planes. The average stress calculated with each boundary condition
can be used to calculate one column of the effective stiffness tensor Ceff.

In powder-bed based additive manufacturing, anisotropic porous structure and thus anisotropic effective elasticity can
be expected, particularly the orthogonal feature w.r.t. the building direction. In practice, by limiting for example, the pow-
der bed thickness of the single scan (around two layers of powders), the anisotropy can be avoided to a certain extent. This
has been regarded in the phase-field microstructure simulation. Thus, the resultant stiffness tensors are nearly isotropic
and can be characterized by the isotropic elastic constants. For instance, the isotropic constitutive relation can be given as

𝝈 = K𝜀trI + 2Ge, (19)

where K is the bulk modulus, G is the shear modulus, 𝜀tr = tr(𝜺) represents the trace of the strain tensor, and e = 𝜺 − 𝜀trI∕3
is the deviatoric strain tensor. Consider the superposition of linear elasticity, and denote �̃� and �̃� to be the sum of the
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stress field and strain field obtained with six boundary conditions, respectively. Then the effective bulk modulus K̃ and
effective shear modules G̃ can be evaluated as

K̃ = �̃�tr

3�̃�tr , G̃ = ẽ ∶ s̃
2ẽ ∶ ẽ

, (20)

where �̃�tr is the trace of the stress tensor, and s̃ = �̃� − �̃�trI∕3 is the deviatoric stress tensor. With the effective bulk
modules and shear modules, the effective Young’s modulus and Poisson’s ratio can be obtained as

Ẽ = 9K̃G̃
3K̃ + G̃

, �̃� = 3K̃ − 2G̃
2(3K̃ + G̃)

. (21)

For more details of homogenization in the linear elasticity, one can refer to [46].

3 SIMULATION SETUP

3.1 Finite element implementation

The models are numerically implemented by finite element method (FEM) within the simulator “NIsoS” developed by
authors based on MOOSE framework [47]. 8-node hexahedron Lagrangian elements are chosen to mesh the geometry.
Transient solver with preconditioned Jacobian-Free Newton-Krylov method (PJFNK) and backward Euler algorithm has
been employed for both problems. For nonisothermal phase-field simulations, the Cahn–Hilliard equation in Equation (3)
is solved in a split way [9,53–55,58]. Adaptive meshing and time stepping schemes are used to reduce computation costs.
The constraint of the order parameters is fulfilled using the penalty method. For mechanical analysis, the resultant OP
and temperature landscapes from the nonisothermal phase-field simulation are mapped onto a uniform mesh with the
mesh size of 60 × 60 × 60, and then used to interpolate the nonuniform distribution of material parameters. Dirichlet
boundary conditions are applied for the estimation of the effective mechanical properties and calculation of residual
stress. The large-scale parallel CPU computations for each simulation domain, which has DOFs on the order of 10 000 000
for both nonlinear system and auxiliary system, are performed with 72 processors and 2 GByte RAM per processor based
on OpenMPI. Each simulation consumes on the order 10 000 core h.

Table 1 gives the material properties and size distribution and powder properties (incl. the mean diameter d with the
corresponding standard deviation sd and the cut-off diameter dcut) of SS316L powders in the argon atmosphere following
our previous work [55]. ℜ in the table represents the ideal gas constant.

3.2 3D-multilayer simulation scheme

Figure 1 depicts the scheme of the 3D-multilayer SS simulation, including two major stages. In the microstructure simu-
lation stage, it can further separated into four steps as shown in Figure 1A. In short, SS316L powders are firstly deposited
into a 250 μm × 250 μm × 250 μm cubic domain under a given gravitational force using grain piling software (e.g.,
GrainGeo module from the commercial software GeoDict®). After the deposition, the center coordinate and radius of
each unique powder are recorded as a vertex of an adjacency network generated according to given adjacency distance.
In order to enhance the computational efficiency of phase-field finite simulation, the Welsh–Powell algorithm and the
grain tracking are performed on the network to find the optimized assignment of OPs {𝜂i} among the powders, that is,
near-least of {𝜂i} is assigned, meanwhile powders assigned with the same OP 𝜂i are sufficiently distanced to avoid pos-
sible coalescence [55]. Next, those powders are imported into the simulator as the initial conditions for correspondingly
assigned OP 𝜂i and, eventually, perform the phase-field simulation. After finishing the simulation of a layer, this resultant
microstructure is voxelized and imported back into the grain piling software, then perform the deposition of the next pow-
der layer. These four steps are repeated until the objective layer number (or height) is reached. In this article, we printed
three layers as shown in Figure 1B, because the preliminary study demonstrates that the resultant size of the RVEs is
sufficient to be statistically representative. Once a microstructure simulation finishes, the resultant spatial distribution
of the substance and temperature is directly mapped as the nodal value (denoted as 𝜌J and TJ) from an adaptive mesh to
a uniform mesh to perform the mechanical analysis of the next stage, including the computational homogenization as
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T A B L E 1 Material properties and size distribution of the SS316L powders used in simulations

Properties Expressions (T in K) Units References

Nonisothermal phase-field TM ∼ 1700 K

Dsf 0.40 exp
(
−2.200 × 105∕ℜT

)
m2/s [3]

Dgb 2.40 × 10−3 exp
(
−1.770 × 105∕ℜT

)
m2/s [3]

Dss 2.17 × 10−5 exp
(
−2.717 × 105∕ℜT

)
m2/s [31]

Ggb 3.26 × 10−3 exp
(
−1.690 × 105∕ℜT

)a m4/(J s)

Mmelt ∼ 3.45 × 10−13 b m5/(J s)

kss 10.292 + 0.014T J/(s m K) [28]

kat ∼ 0.06 J/(s m K) [15]

css 3.61 × 106 + 1272T J/(m3 K) [28]

cat 717.6 J/(m3 K) [5]

ℒss 2.4 × 109 J/m3 [28]

Thermal Mechanics Ess 180c GPa [18]

𝜈ss 0.3c - [18]

𝛼ss 0.019c 1/K [18]

Powder size distributions d 35 μm

sd 10 μm

dcut 15 μm

aActivation energy is obtained from [8] while the prefix factor is estimated as unity at TM after normalization.
bEstimated as 100Dsf∕2(C + D).
cObtained at 293 K.

(A) (B)

F I G U R E 1 (A) Schematics of 3D-multilayer SS simulations of microstructure and mechanical properties. Four steps in the
microstructure simulation (Stage I) are labeled. (B) The workflow of the 3D three-layer SS simulation performed in this work
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well as thermo-mechanical simulations. This is achieved by employing the MOOSE-embedded SolutionUserObject
class and associated functions.

The aforementioned simulation scheme is proposed for general cases involving the needs of concerning polycrys-
talline structure and properties, which would considerably build up the computational assumption to the numer-
ical calculations. Focusing solely on porous structure and related mechanical properties, only one grain orienta-
tion (i.e., one 𝜂) was employed, meaning the “OP Assignment & Coloring” step was tentatively skipped in this
article. Systematic investigations on influences from the polycrystalline structure will be covered in our upcoming
works.

4 RESULTS AND DISCUSSION

4.1 Morphology and porosity under varying process parameters

We firstly performed a series of 3D-multilayer phase-field simulations on the microstructure of SS processed samples
varying pairs of beam power and scan speed (hereinafter as P-v pairs) in order to investigate the dependence of resultant
morphology and porosity on the selection of P-v pair. The morphology and corresponding absolute porosity 𝜑 of selected
P-v pairs are presented in Figure 2, which can be roughly divided into two groups. From A2 to A4, the scan speed v is
fixed at 100 mm/s while the beam power P is sequentially increased from 15 to 30 W. From A5 to A7, on the other hand,
v is sequentially decreased from 150 to 75 mm/s while fixing P at 20 W. Both groups show the variation of resultant

F I G U R E 2 (A1)–(A7) Morphologies of SS processed three-layer powder bed with varying beam power and scan speed. Corresponding
P-v sets are also denoted as points in the absolute porosity map in (B). The dash-dotted line in (B) is the median isoline (40%) of the resultant
porosity
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microstructure from less-bound powders to continuous pieces with smooth surface morphology, implying an enhanced
partial melting. It demonstrates that both increasing beam power and decreasing scan speed can improve the densification
of the powder bed via enhancing partial melting. This effect can be also reflected in the reduction of the porosity, which
drops from 44.4% to 36.1% for the scan speed decrease from 150 to 75 mm/s at beam power of 20 W, and from 43.5% to
35.5% for the beam power increase from 15 to 30 W at a scan speed of 100 mm/s. Due to the monotonic relation of 𝜑 to
P and v respectively within the testing P-v plane, that is, monotonic reducing 𝜑 with both increasing P and decreasing
v, we thereby perform the thin plate spline (TPS) extrapolation of 𝜑 over the testing P-v plane, as shown in Figure 2B.
The distribution over P-v plane presents a similar pattern as the one examined on the single layer in [55], yet it might be
suffered from issues due to insufficient sampling, such as over-fitting, which requires further investigation with adequate
sample size in the follow-up works.

It should be also noted that before the calculation of this overall absolute porosity the simulated sample should be
subject to a virtual polishing, in order to remove the surface effect. As indicated by Figure 3A2, the surface roughness
on the last printed layer differ from the pore morphology in the region of previous layers, which has experienced multi-
rounds of scanning and becomes dense. We virtually polish the simulated sample by a height ΔH, while denote the left
sample height by HR. The choice of ΔH is according to the segment-wise calculation along the scan direction (SD) and the
building direction (BD) and the convergence of the calculated porosity shown in Figure 3B. Note that the cross sectional
porosity along the scanning direction varies much less, indicating that the size of the RVE in the respective direction is
sufficient.

Even though preferred in porosity reduction, a SS process with either high beam power or low scan speed is not
applicable in the practical manufacturing. Taking some of the mostly addressed disadvantages for instance, a high beam
power would lead to large energy consumption and intensified powder scattering with its following side-effects [21], while
a low scan speed would significantly delay the manufacturing process. It thus raises interest in optimizing the porosity
control via the P-v pair, in this regard the potential relation between porosity and P-v pair is in demand. As divided by the
porosity median 40.0% in the Figure 2B, the P-v pair located at the lower-right region leads to limited partial melting and
thus higher porosity, while the upper-left region leads to significant partial melting (or even full melting) and thus lower
porosity, revealing a possible allometric relation 𝜑 ∝ P−mvn with positive-defined indices m and n. However, the porosity
seems not uniquely dependent on the specific energy (proportional to P∕v)—a widely accepted porosity identifier, since
the porosity contours are apparently not parallel to the isoline of P∕v (Figure 2B), which has also been revealed both
numerically [53,55] and experimentally [39]. This requires further assistance from the data-driven statistical methods,
such as multivariable frequentist or Bayesian approaches.

F I G U R E 3 (A) Segment-wise porosity histogram of the sample produced under 20 W-100 mm/s along (A1) scan direction (SD) and
(A2) building direction (BD) with chosen reference height HR as well as polishing height ΔH denoted. (B) Convergence study in estimation of
the effective mechanical properties of a RVE with different ΔH



ZHOU et al. 11 of 17

4.2 Effective mechanical properties

Different process parameters result in different morphology of the microstructure and thus different mechanical prop-
erties of the RVE. In this subsection, we show the dependence of the effective elastic properties on the process
parameters.

As explained in the last section, near the top surface of the as-simulated microstructure the cross-sectional porosity
is larger than that in the interior region. Therefore, the surface “polishing” by cutting off the top surface of height ΔH is
needed, as shown in the inset of Figure 3B. The thickness of the polishing layer ΔH, in other words the remaining height
HR in the x3 direction has large influence on the elastic stiffness in the x3 direction.

Take the case of the beam power of 20 W and the scan speed of 100 mm/s as an example. For a polishing thickness of
ΔH = 70 μm, in other words HR = 180 μm, the calculated effective stiffness matrix is

Ceff =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.63 1.88 1.70 0.00 −0.07 0.07
1.88 6.67 1.73 −0.08 −0.01 0.04
1.70 1.73 6.09 −0.04 −0.07 0.03
− 0.02 −0.07 −0.02 2.55 0.02 −0.01
− 0.02 −0.01 −0.05 0.03 2.52 0.01
− 0.03 −0.11 −0.00 −0.02 0.02 2.62

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 104 MPa. (22)

It is noticeable that the component C33 is around 10% smaller than C11. The anisotropy can be due to the lay-
ered wise building of the RVE. In the simulations, every newly deposited powder bed consists of about two layers of
powders, and it should be appropriate to minimize the anisotropy. On the other hand, this anisotropy can also result
from the surface roughness in the top layer, as demonstrated in Figure 3A2. To investigate this, we increase the thick-
ness of the polishing layer ΔH. Figure 3 shows the dependence of effective Young’s modulus on the polishing height
ΔH. It can be seen that the estimated Young’s modulus and Poisson’s ratio converge after ΔH = 100 μm with corre-
sponding RVE height of HR = 150 μm. The relative difference of Young’s modulus compared to the convergent value
is less than 0.3%, and the difference between C11 and C33 becomes negligible. It should be noted that the requested
polishing height depends on the processing parameters, in particular the level of partial melting of the powders.
Therefore, the appropriate height for estimation of the effective mechanical properties varies with process parame-
ters. In the following, we use HR = 150 μm which guarantees that the surface roughness is removed for all simulated
microstructure.

Figure 4A shows the variation of effective mechanical properties with respect to different beam powers at the same
scan speed of 100 mm/s. With the increasing beam power, the effective Young’s modulus and the Poisson’s ratio increase
around 5.5% and 9.0% (normalized w.r.t. the bulk values, i.e., Ess and 𝜈ss), respectively. This increment is due to an increase
of density (or decrease of porosity) of the RVE at a high beam power with high degree of partial melting. It can also be
seen that the relationship between the effective mechanical property and beam power is nonlinear, where the slope of
the curves decreases with increasing beam power. This indicates the effective mechanical properties slowly convergent to
the mechanical properties of bulk stainless steel at high beam power. Similar results are found for different scan speeds at
the same beam power of 20 W. Since the small porosity is observed with a small scan speed, larger effective properties are
observed with decreasing scan speed. With decreasing scan speed, the effective Young’s modulus and the Poisson’s ratio
increase around 8.0% and 8.5% (normalized w.r.t. the bulk values), respectively. The decreasing of the effective properties
slows down at higher scan speed. This is because the partial melting of the powder is very small and the morphology of
the microstructure is almost unchanged at a high scan speed, where the porosity of the RVE converges to initial porosity
without partial melting. As a consequence, the effective properties also converge to the initial effective properties of the
RVE without partial melting.

As discussed above, both cases show nonlinear relation between process parameter and effective mechanical proper-
ties. Different process parameters result in different morphology of the microstructure and different porosity. Although
it is not straightforward to estimate the influence of morphology of the microstructure on the effective properties, there
are various models to study the influence of porosity on the effective mechanical properties.
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(A) (B)

F I G U R E 4 Normalized effective properties of the RVE for different process parameters. The modulus and Poisson’s ratio are
normalized with the bulk values Ess and 𝜈ss, respectively. (A) The increase of Young’s modulus and Poisson’s ratio along with beam power
increase. (B) The drop of Young’s modulus and Poisson’s ratio along with scan speed increase

(A) (B)

F I G U R E 5 Dependence of the effective properties of the RVE on porosity. (A) For Young’s modulus, the dash-dotted line is the power
law model defined in Equation (23) with fE = 1.978 ± 0.062 with R2 = 77.0%. (B) For Poisson’s ratio, dash-dotted line for power law model
defined in Equation (25) with f𝜈 = 0.155 ± 0.004 and R2 = 93.5%, dashed line for linear model defined in Equation (24) with
b = −0.248 ± 0.009 and R2 = 86.5%

For the dependence of Young’s modulus on porosity, one of the widely used models is the power law
model [24]

E = Ess(1 − 𝜑)fE , (23)

where Ess is the Young’s modulus of the bulk material, 𝜑 is the porosity, and fE is the characteristic exponent for the
power law dependence of the Young’s modulus. This model was verified for aluminum foams by Kováčik, Marsavina,
Linul [24]. Using the above equation, the dependence of Young’s modulus on porosity can be established from the sim-
ulation results. Figure 5A shows the fitting results which leads to the characteristic exponent of fE = 1.978 ± 0.062 with
correlation coefficient R2 = 77.0% (note the margin of error (MoE) with 95% confidential level is employed to represent
the uncertainties of regressed parameters hereinafter). This agrees well with metal foam material which is expected to be
in the range of 1.8–2.2.
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The dependence of Poisson’s ratio on porosity is relatively less studied, and it remains an open issue [12]. There are
two models which are generally used in establishing a direct relationship between Poisson’s ratio and the porosity, namely
a linear model and a power law model [24]

𝜈 = 𝜈ss + b𝜑 = 𝜈ss +
3 (1 − 5𝜈ss)

(
1 − 𝜈2

ss
)

2 (7 − 5𝜈ss)
𝜑, (24)

𝜈 = (𝜈ss + 1)(1 − 𝜑)f𝜈 − 1, (25)

where 𝜈ss is the Poisson’s ratio of the bulk material,𝜑 is the porosity and b is a material dependent constant. It is character-
istic for a particular material and is only dependent on 𝜈0. fv is the characteristic exponent for Poisson’s ratio dependence
on porosity in the power law model. The linear model does not necessarily dictate the relationship between the porosity
and the resulting Poisson’s ratio, and it fails at a high porosity. But for the current simulation with porosity around 0.35,
both models work well as shown in Figure 5B. The simulation data of Poisson’s ratio and the respective porosity were suc-
cessfully regressed to the power law as well as the linear model. The fitting results of the linear model lead to the material
dependent constant b = −0.248 ± 0.009 with R2 = 86.5%, the fitting results of the power law model lead to characteris-
tic exponent f𝜈 = 0.155 ± 0.004 with R2 = 93.5%. For the linear model, a large deviation of the fitting results b = −0.248
was found compare to analytical estimation b = −0.124, as well as a smaller R2 than the power law model. Therefore, the
power law model is more suitable for establishing the relationship between Poisson’s ratio and porosity than the linear
model.

4.3 Residual stress

During SS the temperature field is heterogeneous and depends strongly on the powder morphology, microstructure
evolution and processing parameters. The substance cools down also differently. Along with the heterogeneity of the
microstructure, it gives rise to thermal residual stress. In particular, residual stress can be generated due to the thermal
contraction of the new layer against the previous layers. The dependence of the thermal residual stress in the simulated
microstructure upon process parameters and porosity is investigated in this subsection.

We consider the fused microstructure and let it cool down to the room temperature from the temperature profile at the
last step of the phase-field simulation, as illustrated in Figures 6. The free deposited powders of the top layer can expand
freely in the powder or melt state. But starting from the fused state in the last step of phase-field simulation, it is not
anymore free but constrained by the surrounding material. We assume the fused top layer is stress-free at high temperature
state before cooling. The thermal stress is activated when cooling starts. In the calculation of the residual stress due
to thermal contraction, the constrain is enforced by applying rigid supports on the boundaries of the microstructure
except for the top surface, which is set to be free. Then residual stress is evaluated as the average von Mises stress in the
microstructure.

With increasing beam power, a higher temperature can be observed on the top layer of the microstructure. It leads
to larger temperature gradient between the top layer and the substance, as well as a larger thermal contraction in the
microstructure when cooling down to the room temperature. Therefore, at a constant scan speed of 100 mm/s, the residual
stress increases with increasing beam power, as shown in Figure 6A. A larger residual stress is also found with a smaller
scan speed, as shown in Figure 6B, where the beam power is 20 W for all simulations. At a lower scan speed, higher
level of partial melting can be observed which results in a smaller porosity or a larger density of the microstructure. It
means that the residual stress is directly dependent on the density of the microstructure manufactured in SS process.
Figure 6 also shows that the stress concentration happens at the necking region of two particles where partial melting takes
place.

It should be noted that the local high thermal stress can activate the plastification of the material, which goes beyond
the scope of this paper. The plastic strain would turn to compensate the thermal strain, and thus it should reduce
the thermal stress in the microstructure. In other words, the simulated thermal stress using linear elasticity may over-
estimate the residual stress in the printed part. The simulation of plastic deformation of the microstructure will be carried
out in the future work.
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F I G U R E 6 Residual stress in the RVE after cooling down from the stress free temperature to room temperature. Larger residual
stress can be found with a high degree of partial melting at high beam power or small scan speed. (A) Dependence of residual stress on beam
power. Profiles of the in-processing local temperature and the residual stress after cooling down to 294 K under selected beam powers (15 and
25 W) are correspondingly plotted in (A1) and (A2). (B) Dependence of residual stress on scan speed. Profiles of the in-processing local
temperature and the residual stress after cooling down to 294 K under selected scan speeds (75 and 125 mm/s) are correspondingly plotted in
(B1) and (B2)

5 CONCLUSIONS

In this work, 3D multilayer phase-field simulations of the SS process and the mechanical analysis of the porous
microstructure using the finite element method are presented. Different process parameters, such as beam power and
scan speed, are considered to generate different microstructure. A high level of partial melting of powders is observed
for a large beam power and a small scan speed, which results in small porosity of the microstructure. Furthermore, the
computational homogenization analysis and mechanical analysis are performed using these microstructures to study the
dependency of effective mechanical properties and residual stress on process parameters and porosity. When the beam
power increases from 15 to 30 W at the same scan speed of 100 mm/s, the effective Young’s modulus and the Poisson’s
ratio increase around 5.5% and 9.0% (normalized w.r.t. the bulk values), respectively. When the scan speed increases
from 75 to 150 mm/s, the effective Young’s modulus and the Poisson’s ratio decrease around 8.0% and 8.5% (normalized
w.r.t. the bulk values), respectively. A nonlinear relationship between the effective mechanical properties and process
parameters is found. The increasing rate of effective mechanical properties decreases with increasing beam power, while
increases with decreasing scan speed. The dependencies of effective Young’s modulus and Poisson’s ratio on porosity
are well established using power law models. Stress concentrations are found at the necking region of powders, and
the residual stress in the microstructure increases with increasing beam power and diminishes with increasing scan
speed.



ZHOU et al. 15 of 17

ACKNOWLEDGEMENTS
The authors acknowledge the financial support of German Science Foundation (DFG) in the framework of the Collabora-
tive Research Centre Transregio 270 (CRC-TRR 270, project number 405553726, subprojects A06 and A07), the Research
Training Groups 2561 (GRK 2561, project number 413956820, subproject A4), and Priority Program 2256 (SPP 2256,
project number 441153493). The authors also greatly appreciate their access to the Lichtenberg High-Performance Com-
puter and the technique supports from the HHLR, Technische Universität Darmstadt. Open Access funding enabled and
organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

DATA AVAILABILITY
The authors declare that the data supporting the findings of this study are available within the paper. Source codes of
MOOSE-based application NIsoS and related utilities are cured in the online repository bitbucket.org/mfm_tuda/nisos.
git.

REFERENCES
[1] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, Steels in additive manufacturing: A review of their microstructure

and properties, Mater. Sci. Eng. A 772 (2020), 138633.
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