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Weak-measurement-induced phases and dephasing: Broken symmetry of the geometric phase
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Coherent steering of a quantum state, induced by a sequence of weak measurements, has become an active
area of theoretical and experimental study. For a closed steered trajectory, the underlying phase factors involve
both geometrical and dynamical terms. Furthermore, considering the reversal of the order of the measurement
sequence, such a phase comprises a symmetric and an antisymmetric term. Superseding common wisdom, we
show that the symmetric and the antisymmetric components do not correspond to the dynamical and geometrical
parts, respectively. Addressing a broad class of measurement protocols, we further investigate the dependence
of the induced phases on the measurement parameters (e.g., the measurement strength). We find transitions
between different topologically distinct sectors, defined by integer-valued winding numbers, and show that
the transitions are accompanied by diverging dephasing. We propose experimental protocols to observe these

effects.

DOI: 10.1103/PhysRevResearch.3.043045

I. INTRODUCTION

Geometrical phases are a cornerstone of modern physics
[1]. The work of Berry [2] provided a unifying language
that is key to understanding disparate phenomena including
the quantum Hall effect [3,4] and topological insulators [5],
sheds light on some features of graphene [6,7], and provides
the basis for geometric [8,9] and topological [10] quantum
computation platforms. Geometrical phases can be induced
not only by means of adiabatic [2] or nonadiabatic [11,12]
Hamiltonian manipulation, but also as a result of a sequence
of projective measurements [13—15]. In that case, the phase
is called the Pancharatnam phase, after the physicist who
discovered it in the context of classical optics [16]. Re-
cently, the possibility of inducing geometrical phases by weak
measurements [17,18] was demonstrated experimentally [19].
Moreover, a topological transition in the behavior of the geo-
metrical phase as a function of the measurement strength has
been predicted theoretically [20].

Here we outline a general framework for treating
measurement-induced phase factors and apply it to a broad
class of measurements. Our analysis addresses the nature of
the phase accumulated during a sequence of weak measure-
ments, a generalization of the concept of the geometrical
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Pancharatnam phase in the case of strong (projective) mea-
surements. In previous investigations, measurement-induced
phase factors were of a purely geometric origin [13,19,20].
In the presence of an additional Hamiltonian acting on the
measured system, an additional dynamical component ap-
pears [14]. We demonstrate that weak-measurement-induced
phases generically involve both geometrical and dynamical
components even in the absence of an additional Hamiltonian.
This fact went unnoticed in earlier studies that focused on re-
stricted classes of measurements. Quantum measurements are
characterized by Kraus operators describing the consequent
backaction [21-23]. While previous works focused on the
case of Hermitian Kraus operators, in the more general case
of non-Hermitian Kraus operators, considered here, not all of
measurement-induced phases can qualify as geometrical.

We also investigate the behavior of the phase with respect
to reversing the order of the measurement sequence. The
fact that there is no definite symmetry with respect to such
a reversal implies that measurement-induced phases can be
split into symmetric and antisymmetric components. Inter-
estingly, and superseding the common structure of phases
generated by conventional adiabatic Hamiltonian dynam-
ics, the symmetric and antisymmetric components do not
coincide with the dynamical and geometrical components,
respectively.

These general insights are then demonstrated through the
analysis of specific measurement protocols. We study two
types of such protocols: one which involves postselection and
a second which involves averaging over all measurement out-
comes (i.e., no postselection). Postselection refers to selecting
experimental runs that yield a desired set of measurement
readouts. An important quantity here is the postselection prob-
ability, i.e., the probability to have a predesignated readout
sequence. Concerning the other protocol, one averages the
readout-sequence-dependent phase over many experimental
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runs, which gives rise to a suppression factor also known as
dephasing.

Finally, we focus on topological transitions in the context
of measurement-induced phases. Previously, such transitions
were predicted for a restricted class of measurements with
Hermitian backaction [20]. Here we show that such transitions
may still take place when the backaction is non-Hermitian.
Under such general backaction, multiple distinct topologi-
cal sectors exist, forming a rich phase diagram. Transitions
between such sectors are marked by (i) a vanishing proba-
bility of the corresponding postselected sequence (the case
of postselective protocols) and (ii) diverging dephasing (the
case of averaging protocols).! We also propose and analyze
experimental setups that may test our predictions.

The paper is organized as follows. Section II first recaps the
theory of generalized quantum measurements. We then define
measurement-induced phases and discuss their classifications
into dynamical/geometrical and symmetric/antisymmetric
terms and the relation between these two classifications. In
Sec. III we specify the measurements and protocols to be
employed. We derive and analyze analytic expressions for
the induced phases, the postselection probabilities, and the
dephasing factors. Section IV presents a mostly numerical
analysis of the topological transitions vis-a-vis postselec-
tive protocols. Section V presents a similar analysis for the
phase-averaging protocol. In Sec. VI we discuss possible ex-
perimental implementations. A summary and conclusions are
presented in Sec. VII. Three Appendixes of technical nature
are included. Appendix A presents a justification of our choice
of scaling of the measurement parameters with the number of
measurements (cf. Sec. III). Appendix B provides an analytic
derivation of the critical line of topological transitions in the
postselective protocol (cf. Sec. IV). Appendix C provides the
justification for the averaged phase detection scheme pro-
posed in Sec. VI.

II. WEAK-MEASUREMENT-INDUCED PHASES:
DEFINITIONS AND GENERAL ANALYSIS

In this section we present a general analysis of
measurement-induced phase factors. We briefly recall the
theory of generalized quantum measurements in Sec. IT A.
We then proceed to define postselected and averaged
measurement-induced phases in Sec. II B. We analyze various
characteristics of these phases and discuss possible classifica-
tions thereof in Sec. I C.

A. Theory of generalized measurements

Describing a conventional projective measurement in
quantum theory requires a Hermitian observable O of the
measured system. The observable has a set of eigenstates
labeled by its eigenvalues A, O|A) = A|A). A projective mea-
surement yields a readout » which corresponds to one of the
eigenvalues A. If a readout r = A is obtained, the system
state becomes | "=*) = P;|v), where [¢) is the system

'A short exposition of our results pertaining to topological transi-
tions in the averaging protocols can be found in Ref. [24].

state before the measurement and P, = |A)(}| is the projec-
tor onto the corresponding eigenstate of (O (generalization
to the case of a degenerate spectrum is straightforward).
Note that |¢y=*) is not normalized. The probability of the
projective measurement yielding r = A is p,—, = [(A|¥)]|* =
(Y= =),

Generalized measurement [21-23] is an extension of the
orthodox concept of projective measurement. The extension
is based on treating the detector as an additional quantum-
mechanical object. The measurement is then conceptually
described as a two-step protocol: (i) The system is coupled
to the detector and then decoupled and (ii) the detector is
measured projectively. The strength of the interaction between
the system and the detector defines the measurement strength.

The formal description of such a protocol is as follows. Let
the system initial state be |/) in the system Hilbert space H
and the detector initial state be |D;) in the detector Hilbert
space Hq. During the first step, they interact via Hamiltonian
H, 4(t), which vanishes outside the interval ¢ € [0, T'] (i.e.,
the interaction Hamiltonian is switched on at + = 0 and off
att = T). In the second step, the detector is measured projec-
tively with readouts corresponding to some basis {|r)} in the
detector’s Hilbert space. The outcome of the first step is the
evolution of the system-detector state

T
W)IDy) — T exp <—i /0 Hs.d<r>dt)|w>|D,~>
=Y 1), ()

where 7 stands for time ordering; the last equality represents
a decomposition that can be performed for any pure state
in the system-detector Hilbert space Hs ® Hg4. For a spe-
cific system-detector Hamiltonian H; 4(¢) and detector’s initial
state |D;), the resulting system state can be written as [22]

[y ) = MPy), 2)

where the Kraus operators

T
M = (r|T exp (-if Hs-d(f)df>|Di> )
0

represent the measurement’s nonlocal backaction, following
the detector’s projective readout. The probability of obtaining
a specific readout r is

pr= (WD) = (YIMOTMO ). )

Conservation of probability ) . p, = 1 independently of the
system’s initial state |) implies

ZMU)TM(F) =1, 3)

r

where I is the identity operator acting in the system’s Hilbert
space. This is the only restriction on the Kraus operators,
which otherwise are arbitrary.’

2 Anticipating the use of multiple measurements in our protocols
below, we comment on the relation between the dynamics of a system
under measurement and the dynamics of an open system. Indeed, a
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One thus sees that a description of a generalized quantum
measurement does not require microscopic modeling of the
detector. It is sufficient to specify the set of possible read-
outs {r} and the corresponding Kraus operators M) acting
on the system. The Kraus operators are thus the analogs of
the projection operators P, that describe the backaction of
a projective measurement. If the Kraus operators M) are
Hermitian and (M))? = M then they can be interpreted
as projectors P, and the generalized measurement scheme
reduces to the projective measurement scenario.

It is important to realize the following difference between
projective and generalized measurements. In a projective mea-
surement, a specific readout » = A always corresponds to
the system being collapsed onto a specific state |1) o< P, |Y)
following the measurement. This is not necessarily so for
generalized measurements. Indeed, knowing the initial state
|[v) and the readout r, one finds the system state after the
measurement according to Eq. (2). However, knowing the
measurement readout alone does not suffice for the determi-
nation of [y(")). An example of the generalized measurement
backaction is presented in Fig. 1.

It is instructive to understand how the system observable
measured, the system-detector interaction Hamiltonian, and
the Kraus operators are related. For that, consider a simple
canonical example of the system-detector Hamiltonian

Hyq(t) = 10p0,11(1)0 @ AW, (©6)

where O is the system observable measured, AY is an opera-
tor acting in the detector Hilbert space Hg, A is the coupling
strength, and

0 i~ 0 ift<Qort>T o
o,r1() = .

0.1 1 ifo<t<T.

Note that the same measurement setup (the same system and
detector, same detector initial state, and same detector readout
basis) can be used with different observables O, particularly
with observables of the form R~'OR, where R is a unitary

detector can be regarded as the system’s environment, putting the
measurement-induced dynamics into the framework of open quan-
tum systems. However, the formal analogy is incomplete without
emphasizing a key difference between the measurement-induced and
open-system dynamics. The standard treatment of an open system
does not consider modulating the system-environment coupling or
directly controlling the environment in the course of experiment. As
a result, a classification into Markovian and non-Markovian open
system dynamics (depending on the environment properties) arises.
In contrast, measurement-based dynamics includes the following
aspects: modulating system-detector couplings to separate distinct
measurements, reading out the detector, and preparing the detector in
a specific initial state before the next measurement. As a result, the
measurement-induced dynamics is non-Markovian on the scale of a
single measurement (as the detector does not relax and thus preserves
memory of the system’s previous states during the measurement), but
is Markovian beyond the single-measurement timescale (the detec-
tor is read out and initialized before each measurement; therefore,
the result of a measurement depends only on the system state at
the beginning of the measurement and not on the previous system
states/measurement readouts).

FIG. 1. Backaction of a generalized measurement. After a pro-
1

jective measurement of the S; component of spin 5 that yields a
readout S, = —|—%, the initial state (red arrow) becomes aligned with
the north pole of the Bloch sphere (black arrow). A generalized
measurement’s backaction does not necessarily align the state with
an eigenstate of the measured observable; it only pulls the state
towards the north pole and may also rotate it around the z axis (green
arrow). These two effects of the backaction are illustrated by blue
dashed lines. Such a backaction appears in the measurement protocol

we consider in Sec. IIT A.

rotation in the system Hilbert space. The backaction of the
measurement then changes as

M 5 RTIMDR. (8)

Equation (8) defines a family of measurements of the same
class. Modifying the system-detector interaction, e.g., by se-
lecting an observable O’ with a different spectrum, modifies
the nature of the measurement at hand, thus introducing a
different measurement class. The measurement class may be
altered even more drastically, e.g., by keeping the same ob-
servable but taking a different detector (with different operator
AW different initial state |D;), different readout basis {|r)},
or even different Hilbert space H4). Thus, measurements of
different classes can apply to the same observable O but yield
drastically different backactions or even have different sets of
possible readouts r. In principle, nothing prevents us from
implementing measurements of different classes on a given
system at different times.

B. Measurement-induced phases

Consider a sequence of N + 1 distinct measurements per-
formed on a quantum system. Each measurement is fully
characterized by a set of Kraus operators {./\/l,(fk)}, where k =
1,...,N + 1 is the measurement number and r; is the mea-
surement readout. These can be measurements of the same
class yet measuring different system observables (e.g., same
strength measurements of the spin projection onto different
directions), in which case

M = R MR, ©)

where R; is a unitary rotation in the system Hilbert space
and the Kraus operator M does not depend on k. This is
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the case for the example considered in Ref. [20] and for the
one discussed in Sec. III. However, in the present section we
keep the analysis general. In particular, we allow for situations
where the Kraus operators for different measurements are not
simply related and even the number of possible readout values
i for different measurements can be different.

Consider a system prepared in a certain initial state |1y).
Assuming knowledge of all readouts {ry} of the measurement
sequence, the system state traverses a sequence of states

[y = MU - MTD M ). (10)

We choose the last measurement to be projective and posts-
elect the final state such that it coincides with the system’s
e . . 0

initial state, i.e., M;Vi, = Py = |¥o){¥o|. Then the system

state after completing the entire sequence of measurements

[Yns1) = [W0) (Yol MG - - M) (11)

differs from the initial state by a factor

Wol MY - - MYV} = /Pge™ . (12)

This factor has two components: Py, is the probability to
observe the readout sequence {ry, ..., ry, ry+1 = 0}, while
"% is the phase factor accrued by the state due to undergoing
measurement-induced evolution. In what follows we refer to
Xi) s the postselected measurement-induced phase.® In the
case where all the measurements are projective, x(,) reduces
to the projective-measurement-induced Pancharatnam phase
[13,15,16].

It is also possible to define the averaged measurement-
induced phase through

ST = 3 (Wl MY - M)
{r}

=" Py, (13)
{re}

31t is known that the phase of an individual quantum state can be
chosen arbitrarily, which is often referred to as the gauge freedom.
The phase defined here is gauge invariant. In order to understand
this, consider the two potential sources of non-gauge-invariance.
One source is the freedom of choosing the phase of the initial state
[¥o) — € |yry). One immediately sees that this freedom does not
affect Eq. (12); the physical reason is that, just as in Ref. [2], the
phase is defined via comparison of the state after some process with
the system’s initial state. The second source is the gauge freedom
associated with choosing the phase of the detector states |D;) and
|r), which would affect the phase of the Kraus operators M)
[cf. Eq. (3)] . This freedom is however eliminated by demanding
that when the system does not interact with detectors [H4(¢) = 0],
no phase is accumulated. In practice (cf. the experimental setups
proposed in Sec. VI A), both of these theoretical sources of gauge
noninvariance are made inconsequential by the structure of the in-
terferometer, which ensures that (i) the unaffected initial state is
compared to the state after a sequence of measurements, directly im-
plementing the first theoretical argument; (ii) the detector preparation
and readout are performed independently of the path taken by the
particle and therefore any phases associated with (r|D;) “cancel out”
in the interference pattern.

where the sum runs over all possible readout sequences {ry}
(such that ryy; = 0). Here x is the averaged measurement-
induced phase. The real parameter o > 0 has a mixed
meaning. It characterizes the dephasing due to averaging over
various measurement readout sequences {rr<y}; at the same
time, the finite probability of obtaining ry4+; = 0 in the last
projective measurement also contributes to «. Hereafter we
will refer to « as the dephasing parameter and to e~ as the
dephasing-induced suppression factor.

One may wonder why the averaged phase is defined
through the averaging of ¢ in Eq. (13) and not through
PR Py, ;" The reason is rooted in the phase measure-
ment procedure, discussed in detail in Sec. VI. Here we only
briefly explain the idea behind the procedure of observing
the averaged phase. Different readout sequences {r;} corre-
spond to mutually orthogonal states of detectors employed
throughout the sequence of measurements. At the same time,
measuring a phase requires interference between two states,
e.g., the unmeasured and the measured states. For measuring
the phase corresponding to a postselected sequence {ry}, one
can use an interferometer, in one arm of which the system
(spin of the flying particle) is measured and in the other
it is not [cf. Fig. 12(a)]. If the initial state of all detectors
coincides with the state corresponding to the postselected
readout sequence, the interference pattern exhibits a non-
vanishing visibility, which allows for measuring ;. This
may work for one particular postselected readout sequence.
However, averaging requires the consideration of numerous
readout sequences, the vast majority of which are orthogonal
to the sequence of null readouts, expected when no system-
detector coupling is present (i.e., when the interfering particle
goes through the reference interferometer arm which does not
involve coupling to detectors). To facilitate averaging over
different readout sequences, one needs to couple detectors to
both arms of the interferometer [cf. Fig. 12(b)]. This facilitates
maintaining coherence between the two arms independently
of the measurement readouts. In other words, readouts do not
constitute a “which path” measurement [25,26]. We design the
couplings such that traversing one arm of the interferometer or
the other, the system accumulates opposite phases ¢« and

e~ As a result, the phase factor that should be averaged is
2iX ()
e~ X,

C. Classification of measurement-induced phases

In Sec. IIB we defined postselected (12) and averaged
(13) measurement-induced phases. Here we investigate their
separation into dynamical and geometrical components and
their symmetry properties with respect to reversing the order
of the measurement sequence.

Consider a specific readout sequence {r;}. The system
traverses a trajectory in the Hilbert space corresponding to
states |y ), defined in Eq. (10). It is known that any quantum
system traversing a trajectory in the Hilbert space accumulates
a Pancharatnam phase [13,15,16]

arg(Yo|Py - - - Pilvo), (14)

where arg denotes the argument of a complex number and
Pr = |¥e) (Wrl/{(¥r|¥) are the projectors onto the respective
intermediate states. Does Eq. (14) coincide with x.;? In
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general, Pancharatnam’s geometrical phase (14) does not
coincide with xy., [Eq. (12)], implying that the latter has
geometrical and nongeometric (also known as dynamical)
components.

One can articulate a simple condition for x,; to be
purely geometrical. If the Kraus operators used in the
measurement sequence are Hermitian (./\/l,(:m = ./\/l,(:k)) and

positive semidefinite ((1ﬂ|./\/l,((rk)|1//) > 0 for any [¢)), then
W 1) = (Wl M 19) = (Wl ML 1) > 0. This

Wi+ k+1
implies that

arg (Yo MUY - MUV yrg) = arg (oY)

N—1
= arg(Volyw) +arg [ [ (Vs 12
k=0
= arg(Yo| Py - - P11vn), (15)

so that yy,,) coincides with the Pancharatnam phase.* Generi-
cally, however, the Kraus operators are not Hermitian. Then
(Vrr1|¥k) = (Wk|M,(<rj+ll)T|lﬁk) is not constrained to be real
(not to mention non-negative), Eq. (15) does not hold, and the
phases x,, are not uniquely determined by the measurement-
induced state trajectory (although knowledge of the trajectory
together with the measurement parameters clearly does deter-

mine the phase). We call the difference

M ) — arg (ol Py - - - Py [ o)

(16)

(d;
Xy = arg(ol MG -

the dynamical component of the measurement-induced phase.

This consideration implies that the averaged phase x too
may not be assigned the meaning of a purely geometrical
phase. However, in the case of averaging, our discussion be-
low does not provide an algorithm for separating the phase
into geometrical and dynamical components.

For adiabatic Hamiltonian evolution driven by a Hamilto-
nian H(¢ € [0, T']), the phase factor accumulated in the course
of the evolution can be split into dynamical and geometri-
cal (Berry) components [2]. These components present the
following property: Evolving the system in the opposite di-
rection, H(t) — H(T —t), keeps the dynamical component
unchanged and reverses the sign of the Berry component.
This has been the basis for separating dephasing in open
systems undergoing adiabatic evolution into dynamical and
geometrical components [27-32]. Evidently, it is of interest
to investigate the behavior of measurement-induced phases
under reversing the measurement sequence.

Consider the same protocol as in Sec. II B but with the in-
termediate measurements executed in the opposite order. The
postselected phase xy,,; [cf. Eq. (12)] is then defined through
(Wo |M(71) M(rN)hﬁO) (wolM(rN)T M(H)le )*. For
Hermitian Kraus operators, the last expression is equal to
(Yol MU .. M(r‘)lwo) , meaning that the phase x(,; re-
verses its sign while the probability of the readout sequence

“Note that this Pancharatnam phase is determined by the system’s
intermediate states and not by the measurement directions. The latter
coincide with the former only for projective measurements.

P,y is unchanged [cf. Eq. (12)]. For general (non-Hermitian)
Kraus operators, however, no simple relation exists between
the direct and the reversed protocols. Moreover, as we show
below, even the geometrical component of the phase .,
does not possess a simple symmetry with respect to the
reversal of the protocol’s direction. One may then define
the symmetric and the antisymmetric components of the
measurement-induced phases

sfla __ _(d=+1) (d=—1)
Xid = Xty T Xjny a7
)—( X(d +1) + X(d——l) (18)

where X{(Z )} for the direct (d = +1) and reversed (d = —1)
protocols are defined via

WOl MY - My = [PV (19)
Wol MV - MG o) = JPU="Dein " (20)

and the averaged phases ¥ ¢ are defined via

Z,X((n,a(d) _ Zp(d) 2”(:'“ (21

{re}
{re}

Similarly, we introduce the symmetric and antisymmetric
components of the probabilities and the dephasing parameter:

_ [pla=tpd=1
Py =V Puy Puy s (22)
P =\ PUTHD P, (23)
ot/ = @U=tD 4 =D, (24)

The above considerations lead to the following major
conclusion: Unlike in adiabatic Hamiltonian evolution, the
classification of contributions to the measurement-induced
phase into symmetric vs antisymmetric does not coincide
with the classification into dynamical vs geometrical contri-
butions. An intuitive understanding of this result relies on the
following observation: The intermediate states [iy) for the
direct and the reversed measurement sequences form different
trajectories (cf. Fig. 2), implying that the geometrical phase
components (14) are different in magnitude for the direct and
the reversed protocols. We present an explicit illustration of
this in Sec. II1 E 3.

III. WEAK-MEASUREMENT-INDUCED PHASES:
AN EXPLICIT EXAMPLE

In the rest of this paper we focus on a specific measurement
class (Sec. III A) and a speciﬁc set of measurement sequences
that make the system’s spin 3 5> follow closed trajectories on
the Bloch sphere (Sec. III B). In Sec. III C we present analytic
expressions for the postselected measurement-induced phase
under this protocol. In Sec. [II D we outline a procedure that
allows one to calculate the averaged phase in an efficient man-
ner. Explicit results, pertaining to certain limiting cases (e.g.,
nearly projective measurements), are presented in Sec. III E.
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FIG. 2. State trajectories of the system for the direct and reversed
measurement sequences may be drastically different. A spin—% Sys-
tem, whose states are represented on the Bloch sphere, is subject
to a sequence of generalized measurements, pertaining to the spin
projections around a given parallel (black line), in accordance with
the protocol described in Sec. III. All measurements of either the
clockwise (red) or the counterclockwise (green) sequences are read
out and postselected to have r, = 0. The yellow lines connect [y )
to |Y) by the shortest geodesic on the Bloch sphere. This line
represents closing the trajectories by a postselected projective mea-
surement at the end of the measurement sequence [see the discussion
between Egs. (10) and (12)]. It is known that, similar to the Berry
phase, the Pancharatnam phase (14) for a spin-% system may be
expressed in terms of the solid angle enclosed by the closed tra-
jectory. The trajectories under the direct and reversed measurement
sequences do not subtend the same solid angle on the Bloch sphere.
Their solid angles differ by sign and in absolute value. Clearly the
Pancharatnam phases [see Eq. (14)] under the two time-reversed
sequences are different.

A. Measurement model

Here we describe the measurement model that gives rise to
the specific backaction matrices used throughout the rest of
the paper. We consider a two-state system (with basis states
|0)s and |1)) and a two-state detector (with basis states |0)p
and |1)p) with the measurement procedure being as follows.
The detector is prepared in the state |D;) = |0)p. We choose
the system-detector interaction Hamiltonian (cf. Sec. [T A) to
be

A(t)
2
It is switched on during a time interval of duration 7, i.e.,

At <0) =A@ > T) =0; 6D are the vectors of Pauli ma-
trices (oy, 0y, 07) acting on the system/detector. The vectors

Hogq = [1— @ a)@m®.a®). (25

n®?) = (sin 6%/P cos /P sin /P sin /P cos 0¢/PY)

(26)

determine the system observable measured (n* - ¢*®) and the
effect of the system-detector interaction on the detector state.
Note that the vectors n® and n® are normalized, n® - n® =
n® . n® = 1, The arbitrary initial state of the measured sys-
tem |Y) = a,|0); + bs|1)s evolves under the system-detector

coupling according to
[¥)ID;) — exp [i%’(l - @ ¢“)m®. a“’))] [v)|D;)

= [y N0)p + [¥)1)p, 27

where g = fOT dt A(t). After the interaction has been switched
off, /P is measured projectively, yielding a readout r €
{0, 1} corresponding to the postmeasurement detector states
|r)p. The backaction matrices (representing the Kraus opera-
tors) are thus

MDD = R—l(n(s))M(r)R(n(s))’ (28)
with
1 0
) _
M= (O cos g+ isin gcosQ(D))’ (29
0 0
a1 _
M= <O isin gsin 0(D>ei¢“”>’ (30)
o) 00 g
< cos - sin =-e
R(n( )) = ( O] IO} ilﬂm>. (31)
sin =~ —cos 5-e

When n® = (0,0, 1), the matrices M alone determine
the backaction. For a general n), the matrix R(n") in-
duces a unitary rotation: The eigenbasis of (n® .g®) =
R™'m)oYRm™) is given by R~'(n*))[0/1);. One thus
sees that the role of M) is to determine the backaction in
the eigenbasis of the measured observable (n® . ¢®).

It is important to understand in detail the evolution of
the system state during the measurement process. Consider
the case of n® = (0, 0, 1). If the initial state |) = |0),, the
measurement yields » = 0 with probability 1 and the state
remains unchanged. For the initial state |{) = |1),, the prob-
abilities of the readouts are p,_o = 1 — sin® gsin? 6™ and
pro1 = sin® gsin? 6P); the state becomes |Y") = ¥r|1),
with a readout-dependent phase ¢,. For a generic initial state,
both readouts are possible with some probabilities p, [cf.
Eq. (4)], yet the backaction on the state does not reduce to
a phase multiplication. The » = 1 readout, whose backaction
is described by MV, projects the state onto |1),. For r =0
readout, M describes pulling the state towards the north pole
on the Bloch sphere (i.e., closer to |0),) and rotating it around
the z axis (cf. Fig. 1).

This rotation is a key feature of weak measurement and
is absent in the case of projective measurements. Indeed,
in a projective measurement, the » = 0 readout would im-
ply the final state |0); and any rotation around the z axis
would become insignificant. Note that this rotation only hap-
pens when M has an imaginary component, i.e., when
MO is non-Hermitian. The idiosyncrasy of Hermitian back-
action matrices has been discussed in Sec. IIC. It is this
non-Hermitian backaction that gives rise to asymmetric state
trajectories as shown in Fig. 2 (see Fig. 3 for a detailed
explanation).

SFor arbitrary n®, the effect is the same if considered in the eigen-
basis of (n® - ¢®).
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FIG. 3. Emergence  of asymmetry of  time-reversed
measurement-induced trajectories. Two measurement sequences
of spin projections (n® - o) onto subsequent directions n®
located on the same parallel (black line) are performed, a clockwise
and a counterclockwise one, respectively. We illustrate the effect
of the first two measurements of each sequence (clockwise and
counterclockwise). All measurements are assumed to yield readouts
r = 0 and are characterized by Kraus operators M [Eq. (28)]. The
initial state is represented by the red arrow and the measurement
axes are shown by black arrows. If the backaction operator M©
is Hermitian, the clockwise and the counterclockwise trajectories
are mirror reflections of each other (yellow arrows). However, for
non-Hermitian backaction, there is an extra rotation around the
measurement axes (cf. Fig. 1) leading to the two trajectories not
being simply related to each other (green arrows show the state
locations after the respective measurements; these locations are
connected by the blue arrows to show what the clockwise trajectory
is and what the counterclockwise one is).

We note in passing that the backaction matrices in Egs. (29)
and (30) can appear in a wider context than the toy detec-
tor model introduced here. In some contexts, measurements
with such backaction are known as partial or interaction-free
measurements [33-35] and can be implemented by optical
means [33,35] or in superconducting qubits [34]. A partic-
ularly natural setting for such backaction is presented by
imperfect optical polarizers. A polarizer is a detector in the
sense that the light can pass through the polarizer (identified
with r = 0) or not pass (be absorbed, reflected, etc., with
r = 1). An ideal polarizer, letting one polarization through
and completely reflecting the other, is equivalent to a strong
measurement being applied to a photon. A nonideal polarizer,
letting one polarization through completely while the other
polarization is partially reflected and partially transmitted, can
be described as a measurement with backaction matrices of
the form (29) and (30). Therefore, our proposed protocols,
detailed below, may in principle be implemented in a variety
of experimental settings.

B. Measurement sequences and scaling limit

Hereafter we focus on studying a specific family of mea-
surement sequences. We consider the system initial state

0 0
o) = cos Z{0); + sin S 1)s. (32)

We choose our measurements to be associated with the mea-
surement axes

n,(cs) = ( sin 9,:3) cos golgs), sin 9,55) sin <p,£s), cos 9,55)), (33)
where
O, o) = (0, 2mkd /(N + 1)), (34

ie., all the measurement axes belong to a particu-
lar parallel corresponding to the polar angle 6, and
d = 1 denotes whether the sequence is performed
clockwise/counterclockwise. We fix the measurement pa-
rameters g and n{”’ to be g and n®® = (sin6® cos p”,
sin 0P sin P, cos §), independently of the measurement
number k. For simplicity, we set 9®) = —m /2.

‘We will be interested in the limit N — oo, where the mea-
surement sequence becomes quasicontinuous. If one keeps g
and 6 constant when taking the N — oo limit, a sequence
of an infinite number of finite strength measurements be-
comes equivalent to a sequence of projective measurements
and yields the Pancharatnam phase (cf. Appendix A). In order
to avoid this trivial limiting case, one needs to scale g and 6
with N. In Appendix A we show that among the large number
of possible approaches to the continuum limit there is a unique
scaling procedure that avoids a trivial limit.

This nontrivial scaling procedure corresponds to g =
VAC/N and P = 7 /2 + A/+/CN with the parameters C >
0 and A € R. With such scaling, the backaction matrices in
Egs. (29) and (30) become

o (1 0
WO (0 ep(-208) o) O

N2

MO 0 0 36
o J€ro)) 30

The parameter C controls the measurement strength (how
much the state is pulled towards the measurement axis for
the r = 0 readout), while A € R controls the non-Hermiticity
of M [and M© in Eq. (28)]. Since non-Hermiticity is the
cause of asymmetric behavior (as was shown in Secs. II C and
IIT A), we call A the asymmetry parameter.

The non-Hermitian contribution to the measurement back-
action can be interpreted as Hamiltonian evolution

1 0
) _ .
M —(0 exp(—z%)

=<(1)

where At = N~!and H = A(I — UZ(S)). Therefore, this back-
action could in principle arise as a result of a measurement
with Hermitian backaction applied to a system evolving under
the Hamiltonian H. This, however, is not how the backaction
emerges here: The system does not have its own Hamiltonian,
nor does the detector model have any term in the Hamilto-
nian (25) acting solely on the system. Nevertheless, Eq. (37)
shows that for the purposes of investigating the effect on the
system state, the measurements we consider are equivalent to
measurements with a Hermitian backaction (determined by C)
supplemented with Hamiltonian evolution of the system (de-
termined by A). We find this equivalence useful for connecting

0 .
exp (— 21%)> exp(—iH At), (37)
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our results to the known results for Hamiltonian-evolution-
induced phase factors in Sec. Il E 3.6

C. Measurement-induced phase in postselected
measurement sequences

Here we investigate the behavior of the postselected phase
X[(i}:il) defined in Sec. II, Eqs. (19) and (20). We focus on a
specific readout sequence in which all detector readouts are
rr = 0. Such a choice is based on the following observation.
Within the measurement model described in Sec. IITA, r =0
readout implies that the detector state before a measurement
coincides with the detector state after the measurement This
allows for designing a simple observation scheme for X rk—O
as described in Sec. VI.

J

o~k ) =
5[1 —exp (

Using Eq. (35), diagonalizing M®§R?, and taking the limit
of N — 00, one finds that

1/P{(r‘f):O}ei)‘((rdk):m = irdlcost-1)-2 (cosh T+Z sinh v >, (40)
T
where Z=C+iA+indcos® and T =+/Z%— 72sin6.

Note that the definition of 7 through the square root allows
for a sign ambiguity. Since Eq. (40) is symmetric under 7 —
—1, the actual sign does not matter and one can choose any
convention for calculating the square root. Note also that the
prefactor ¢74©s=1 ig exactly the Pancharatnam phase of the
system subjected to a quasicontinuous sequence of projective
measurements along the parallel corresponding to 6.

The right-hand side of Eq. (40) obeys a number of sym-
metries. First, the expression is invariant under simultaneous
replacement of d — —d and 8 — 7w — 6. Second, the ex-
pression remains unaffected under d — —d and A — —A
accompanied by the complex conjugation. From the latter,
it follows that for A = 0, PY=D P(df_]) and X(d D=

rk—O Vk—o
— X{(’i ;E}l) (mod 2m). Thatis,atA =0 the probablhty only has
a nontrivial symmetric component and the phase only has
the antisymmetric component. Away from A = 0, the phase

®Note also that the scaling of the backaction matrix in Eq. (35)
is the “natural” one in the following case: The measurements are
implemented with polarizers, where the degree of polarization is
determined by the polarizer thickness. Indeed, for such a polarizer,
the degree of letting the “wrong” polarization through would drop
exponentially with the thickness L of the polarizer. At the same
time, different refraction indices for the two polarizations would also
result in a phase difference proportional to L. Adjusting the polarizer
thickness L ~ N~! according to the number N of measurements
employed would result in the backaction given in Eq. (35), applied
to the polarization of the transmitted light. This should enable a
relatively easy check of our predictions concerning the case when
all the measurements are postselected to yield r, = 0 (cf. Secs. III C,
IV, and VIA).

26 026
cos” 5 + sin Eexp(—

The parameter d = £1 denotes the direction of the mea-
surement sequence [cf. Eq. (34)]. We next calculate X{(d) for
both directions, keeping d unspecified. Using Eqs. (28)—(31)
and the explicit definitions for the initial state |y) [Eq. (32)],
the measurement axes n,(f) [Eqg. (33)], and the protocol direc-

tion d [Eq. (34)], we show that

mzo,e = (o MO - MO )

(1 0)SRDMOSRDW ((1)) (38)

where

2id) 1] —exp(— 24)]sing ) -
12\7:{)] sinf  sin® § +cos? exp (— 12\/71‘{)

(

and the postselection probability have both symmetric and
antisymmetric components (17), (22), and (23).

D. How to calculate the averaged phase

Here we derive a relatively simple expression for the aver-
aged measurement-induced phase ¥ ? in Eq. (21). While our
result does not constitute a fully analytical expression for i 4,
it facilitates general analysis and efficient numerical study of
the averaged phase behavior.

Note that, similarly to Eq. (38), for an arbitrary readout
sequence {ry},

(Yol MUY - M )

= 0)BRDPM™SRD ...sRDpIsRD (é) 41)

with MU®) defined in Eqgs. (35) and (36) and R’ defined in
Eq. (39). Then

ezi)-((d)_a(d)
2
=Y (ol MG+ MV |yo))
{r}

N /1\" 1 1
{ri}
T T
(1 1 @w(l 1
_ <o> ® (O) SRy (M) (O> ® (0) 42)

where SR = SR“) @ SR@, M/ =M™ @ M"Y, @ de-
notes the tensor product, and md) — Zr M f"‘)(SRfld). There-
fore,

ezl)( (d) _ )

0 0 0
(43)

=( 0 0 08ROV
_ [(SRé(‘d)(mt(d))N]

11’
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where
1+ 2imd cos 6 __indsinf __indsinf 0
N N N
__ imdsinf 1— 2C+iA 0 _ indsin6 1
d) _ N N N -
M = __indsing 0 ] — pCtiA _ indsin® +0 N2 )’ (44)
N N N

0 __indsinf __indsinf 1— 2imdcos® _ 4iA

N N N N

What enabled a fully analytical calculation in Sec. IIIC is the possibility to diagonalize M®SR? analytically. Here,

diagonalizing 9t4) analytically is a formidable task. However, it can be diagonalized numerically. Suppose one diagonalized
Mm@

MO =yvpy-1, (45)
with D = diag(A1, A2, A3, A4) and A; = 1 + x;/N + O(N~2). Then in the limit N — oo,
A= — (M@Y= [vDV Ty, (46)

with D = diag(e™, 2, e, ™).

The expressions (44) and (46) not only provide a means for efficient numeric calculation of the averaged phase, they also
allow one to make some analytic conclusions. Namely, one can show that the averaged phase obeys the same symmetries as
the postselected phase (cf. Sec. III C). Observe that MD g rp = UTIMEDU, where U = diag(1, —1, —1, 1). Therefore,
21"~ remains invariant under simultaneous replacement of d - —d and 6 — m — 6:

iy () _g(=d) . —d N
A e = lim [T oo r—o)N 1
N—oo

= lim (U 'MDUNY,, = Jim [~ OO uy,
— lim [(MD)Y],, = 2"~ (47)
N—oo

Further, MED |4, 4 = (M@)*, implying that €% = i invariant under applying complex conjugation and simultaneously
replacingd — —d and A — —A.

E. Limiting cases

The analytic results of Secs. III C and III D allow one to analyze the behavior of the postselected [Eq. (40)] and averaged
[Eq. (46)] phases in a number of limiting cases. In this section we discuss three limiting cases corresponding to A — oo,
C — oo,and C = 0.

1. Case of A - <

We start with the simplest limiting case of A — oo. This means that the backaction of r = 0 readouts strongly rotates the
system state around the measurement axis [cf. Eq. (35)]. This regime is equivalent to an almost adiabatic Hamiltonian evolution
supplemented by measurements that have a small effect [cf. Eq. (37) in Sec. Il B]. Consequently, one expects the measurement-
induced phase in this limit to coincide with the Berry phase wd(cos @ — 1) up to small corrections. This indeed turns out to be
the case. For the postselective protocol, we expand the logarithm of Eq. (40) at large A. For the averaging protocol, we perform
the diagonalization of Eq. (44) approximately at A — oo, after which we use Eq. (46). In both cases, we obtain

2 (in2 2 gin2
Xy = 3D = md(cosd — 1)+ = ;‘: o_r 43:; 9 162 sin (@A + 2md cos 6) — 2wd cos6] + O(A~3),  (48)

@ @ 72 sin? 0 e L
P{rk=0} =e = exp _T[l +2C — e " cos(2A 4+ 2md cosB)] + O(A™7) ). 49)

It is noteworthy that the results for the postselective and for the averaging protocols coincide as the r; % 0 readouts have
negligible probability. At higher orders in A~!, this is no longer so.

Note that the phases X{(Z)=0} and 3@ do not possess a definite symmetry under d — —d. In other words, they feature both
symmetric and antisymmetric components, in agreement with the symmetry-based analysis in Secs. III C and III D. The same

applies to the postselection probability P{(r‘i )20} and the dephasing factor e,

2. Case of C — oo

The limit of C — oo corresponds to almost projective measurements. Here one expects the induced phase to be the
Pancharatnam phase wd(cos 6 — 1) up to small corrections. For the postselective protocol, expanding Eq. (40), we find

@ 72 sin? 6

Xir=0y = wd(cos® — 1) + Y2 [A + 7d cos 0] + O(C™?), (50)
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C

For the averaging protocol, we find

72sin? 6

7“9 =md(cosd — 1)+

2 in2
T sin” 6
P(Z)ZO} = exp (——

sin(4A + 4mwd cos0) — 4(A + d cos6)

1 -3
[1 _ f} e >>. 51)

|:A+ndcos9—n sin” 0

} +0(C™, (52

2C? 16(A + 7d cos 9)?2
@ 72sin? 6 . 1 N 74 sin® 6 [ sin(2A + 27 d cos 0) Lo 53)
e = €X _— - — .
P c 2C 202 2(A + nd cos )

Note that the asymmetry with respectto d — —d is present in
the postselected phase but not in the postselection probability
(where it only appears in terms proportional to C~3). At the
same time, the asymmetry does appear in «(?) at this order,
showing the nontrivial effect of averaging.

When C — oo, one recovers the limit of projective
measurements, implying that the resulting phase x Z)—O is
the Pancharatnam phase. Since the postselection probab1l1ty
P(d) _oy = 1, other readout sequences cannot occur, and the
averaged phase is the same as the postselected one. At large
but finite values of C, the two phases are different. One can
clearly see the separation of the {r;y = 0} contribution from
that of all the other readout sequences in both the phases and
the postselection probability/dephasing factor. Remarkably,
the other sequences contribute only at O(C~2).

3. Caseof C =0

This limit corresponds to zero strength measurement. The
measurements always yield » = 0 readouts, and the corre-
sponding backaction (35) is equivalent to a Hamiltonian
evolution [cf. Eq. (37)]. On one hand, this can still be inter-
preted as the behavior under very weak measurements. On
the other hand, this limit can be understood as nonadiabatic
Hamiltonian evolution and treated within the framework of
Aharonov-Anandan phases [11]. As we show below, the two
treatments yield identical results.

The answer in this limit immediately follows from
Eq. (40), which yields

iy @ 5 ) _gyd) i sin
P{(i)zo}elx"k:(” e <COS{ +ZT§>,

(54)

where =iA 4+ imdcosf and .=
V(A +mdcos6)? +n2sin®6. Using the same technique
as in Sec. III C, it is possible to obtain the analytic form of the
geometrical component of the phase (14):

arg (ol Py - Py vo) = arg [ — e (cos¢ +an;;>

<,A7r2 sin® @ { sin 2¢ })}
x exp (i 1- .
¢? 2

(55)

[
The dynamical part of the phase is thus

Xire—o) — Aol Py -+ Pilro) = — - -
(56)

@ Am?sin® 0 { . sin 2¢ }

One sees that neither the dynamical nor the geometrical part
of the phase possesses a definite symmetry under d — —d.
Each has both a symmetric and an antisymmetric component.

In the present case C = 0, separation into the dynami-
cal and geometrical components can be obtained following
Aharonov and Anandan [11]. Indeed, the measurement back-
action can be interpreted as Hamiltonian evolution

MO =exp(—iH;At), M =0; (57)

H, =A(I —n" . 6"), Ar=N"! (58)

[cf. Eqs (28)—(31) and (35) (37)]. Then the dynamical phase

Zk o (Wk|Hig1 1Y) At in the limit N — oo is given ex-
actly by the right-hand side of Eq. (56). This demonstrates
consistency between our definition of the geometrical and
dynamical components of measurement-induced phases and
the conventional definition for the phases induced by Hamil-
tonian evolution. Further investigation of the separation of the
measurement-induced phases into dynamical and geometrical
components is left for future work.

IV. TOPOLOGICAL TRANSITIONS IN THE
POSTSELECTIVE PROTOCOL

In this section we investigate topological transitions con-
cerning the postselected phase x(d) 0)- We study these
transitions in Sec. IV A and discuss the resulting phase dia-

gram in the space of measurement parameters in Sec. IV B.

A. Essence of transitions

Consider the postselection probability P{(fi )=0} [cf. Egs. (19),
(20), and (40)] when the protocol is executed at, for example,
0 = 37 /4 [cf. Fig. 4(a)]. We note that In (/=3 (6 = 37 /4)
is bounded throughout the entire parameter space except for
a divergence near (C = 1, A = 2), indicating that P(rdj’]) —
0 at this special point. This is accompanied by a prominent
feature in the behavior of X@ +l)(9 = 37 /4) [cf. Fig. 4(b)]:
The phase X(d H)(@ = 37 /4) is ill-defined at the singularity
and makes a 277 wmdlng around the singular point. This is a
topological feature in the sense that it cannot be eliminated
by a smooth deformation of X(,”Z 31)(6 = 31 /4) as a function
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f =2

3 . -4 7T/2
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1l -10 -71/2
[ -12

0:»(a) -7t

FIG. 4. Vanishing of the probability and windings of the phase
in the postselective protocol {r; = 0}. (a) Contour plot of the log-
arithm of the postselection probability In P((d “)(9 =31 /4) (value
indicated by color) as a function of measurement parameters C and A
[cf. Eq. (40)]. Note the divergence at (C, A) =~ (1, 2). (b) Dependence
of the phase X(,d _g”(@ = 31 /4) (value indicated by color) on C and
A. The phase is ill-defined at the singularity point (C,A) ~ (1, 2).
Following the phase value around the singular point, the phase varies
continuously from —x to 7, i.e., makes a 27 winding.

of (C,A). Similar features emerge at other values of 6, with

different locations of the special point in the (C, A) plane.
For an arbitrary 6, the presence of a phase winding

implies that the phase is ill-defined at a certain value of

. d
(C,A). In Sec. VIA we show that ,/P(d) =0 is an
observable quantity. Therefore, the phase X _0}(6) being ill-

defined at (Cerit, Acrit) implies P2 (6, Corit» Acrit) = 0. The
converse is not necessarily true However, in our study of
measurement-induced phases we have not found instances
of the postselection probability vanishing without a phase
singularity.

In Sec. IVB we find the set of all points (Ceit, Acrit, Ocrit)
corresponding to the postselection probability vanishing. Be-
fore proceeding there, we now present a different view of what
happens at these special points.

By construction [cf. Egs. (19) and (20)], for each given 6,

(d) (9) is deﬁned Inodulo 2. It follows from Eq. (40) that

x{,‘f’ 00 =0)=x " 0= n) = 0(mod 27r). Without loss
of generality, one can assign x " _0}(0 =0) =0. On top of

that, demanding the continuity of X . _0 (0) as a function of
6, one removes the freedom of addrng multiples of 27 to
X{(:i) (0). One thus must have X{r _ (9 = 1) = 27n, where
nisa well deﬁned integer that characterlzes the entire depen-
dence of X{r oy on 0 at a given (C, A). It is natural to denote
by n the Wlndlng number, as it represents the number of times

the function ¢ (=0 ® winds around the origin in the complex

plane. Being an integer number,

x @) X @ e
L (" sp im0 ® _ Xinlo () = Xinlo ©

— 59
27 Jo do 27 (59)

n—

cannot change as X " _0 () is smoothly deformed, rendering
n a topological invariant. The presence of different values of
n at different measurement parameters C and A implies the
existence of a sharp transition where the value of n jumps
discontinuously. In other words, there rnust exist some critical
(Cerit> Acrit) at which the function X 0}(9) is ill-defined; it

| .
rr/z acrit 3"/4 w

(2}

FIG. 5. Phase X(r‘i _ng) = x [cf. Eq. (40)] as a function of 0 for
= 1 for C above and below the critical value C.;; ~ 1.925. The
winding number 7 [cf. Eq. (59)] is equal to O for C < Cg; and to —1
for C > C.;. The behavior of x(0 < 6.;) immediately above and
below the transition is identical, while the dependence of x (0 > O;)
differs by a 27 shift. This leads to x (6 = 6, C = Cqy) being ill-
defined. The dependence of P(d “) =Pon6at(C=Cy,A=1)
is shown in the inset. The 1ndeterm1nacy of x(0 = Ouit, C = Ceyy) 1S

enabled by P(6 = 6O, C = Cyye) = 0.

is sufficient for X{r . (9) not to be well defined at a single

60 = Oit. As drscussed above, this requires P{(r‘i )=0}(9crit) =0
Hence, such transitions between different values of the wind-
ing number n correspond to singularities like the one found
above.

Such transitions were reported in Ref. [20] for the case
of A = 0. There the existence of such transitions is evident
through a simple consideration. For the limit of infinitely
weak measurements (C = A = 0), x{(i ):0}(9) = 0, yielding
n = 0, while in the limit of projective measurements [(C —
00, A =0)], x0 o (0)=md(cos® — 1), yielding n = —d.
Therefore, there must be a transition at some finite C > 0
when A = 0.

For the present, more general case, the above consideration
does not apply. While at C — oo, X{(i):O} (0) =md(cosf — 1)
and n = —d for any A [cf. Eq. (40)], the phase at (C = 0,A #
0) is not identically zero. Therefore, one cannot guarantee the
existence of a transition at a certain C for an arbitrary value
of A. We find that transitions exist for |A| < Ag = 7w+/3/2 (cf.
Sec. IVB and Appendix B) and do not exist otherwise. An
example of such a transition is presented in Fig. 5.

Reference [20] also linked this type of transition to a
topological transition of the surface formed by measurement-
induced trajectories on the Bloch sphere. Consider the
sequence of states {|Yx—o... )} [cf. Eq. (10)] through which
the system passes under the sequence of measurements. For a
quasicontinuous sequence of measurements they form a qua-
sicontinuous trajectory on the Bloch sphere. This trajectory
is not closed. It can be argued [15,20] that the natural way
of connecting |Y¥y) with [Y¥yy1) o [g) is by drawing the
shortest geodesic on the Bloch sphere, which corresponds to
a postselected projective measurement at the end of the mea-
surement sequence [cf. the discussion between Egs. (10) and
(12)]. This guarantees that the trajectory is closed. Consider
now all trajectories induced when executing the protocol at
different 6 € [0, ] for a given (C, A). They form a surface
on the Bloch sphere (cf. Fig. 6). We have found numerically
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FIG. 6. Measurement-induced system trajectories {|v)} on the
Bloch sphere for (a) C = 2.3 > C,3 and (b) C = 1.5 < Cgy, above
and below the transition for A = 1. Different trajectories correspond
to the protocols executed at different 6. The red segments correspond
to the quasicontinuous sequences {| Yo, ~)}, While the yellow seg-
ments are the shortest geodesics on the Bloch sphere connecting [y )
with |¥y41) o |p). Above the critical measurement strength, the
surface wraps around the Bloch sphere, while below, it does not.
Confer Fig. 5 of Ref. [20] for the special case of A = 0.

that for C > C;, the surface always covers the Bloch sphere,
while for C < C; it never does. Therefore, the link between
the winding number of the measurement-induced phase and
the topology of the surface formed by the measurement-
induced trajectories exists beyond the case of A = 0, studied
in Ref. [20], notwithstanding the phase not being immediately
related to the trajectory (cf. the discussion in Sec. IIC).’

B. Critical line of the transition

We have demonstrated in Sec. IV A that there exist special
points (Crit, Acrits Gc(gt) ) where P{(Z):O}(O (d)) = 0. These special

crit

"We emphasize that the two transitions (in the phase wind-
ing number and in the topology of the surface formed by the
measurement-induced trajectories) always happen concomitantly. In
particular, the transition in the surface topology never takes place at
Al > Ay = /3/2.

(a)

4t

A

points are associated with phase winding features in the (C, A)
plane and with jumps in the winding number n(C, A) [cf.
Eq. (59)]. In fact, the set of all these points forms a critical line
shown in Fig. 7(a). The derivation of this result is presented in
Appendix B.

Note that the critical line for the postselective protocol
({rx = 0}) splits the (C, A) plane into two regions [phases;
cf. Fig. 7(a)]. These correspond to two different values of
the winding number n. The region below the critical line
corresponds to n = 0 (a topologically trivial phase). Indeed, at
(C,A) = (0, 0) the system is not influenced at all by the mea-
surements leading to x{i’:()}(e) = 0 and n = 0. Changing the
value of a topological index requires passing through a critical
point (Cit, Acrit) such that P[(Z ):0}(90(22 )=0atsomef = Gc(gt) .
Since any point within this region can be accessed from an-
other point by a continuous variation of parameters without
crossing the critical line, it follows that n = 0 throughout this
region. Similarly, (C — oo, A = 0) corresponds to projective
measurement and yields the Pancharatnam phase with n =
—d. The same connectivity argument implies that this is the
value of n throughout the region above the critical line.

We note that the transition only happens for A < Ap =
7+/3/2. While this follows from the solution of the problem
(cf. Appendix B), it is instructive to have an intuitive under-
standing of this fact. For this consider the case of C = 0. The
backaction of an r; = 0 measurement (and only r, = 0 are
obtained when C = 0) is equivalent to a Hamiltonian evolu-
tion for time Af = 1/N in a system with energy gap AE =
—2A [cf. Sec. I B and Eq. (37)]. Then the total evolution
under all the measurements in the N — oo limit is equivalent
to a Hamiltonian evolution for time 7 = NAt =1 with a
continuously evolving Hamiltonian, followed by a projective
measurement that ensures the return of the system state to
[¥0). The rate at which the Hamiltonian parameters are varied
is of the order of v = 1/T = 1.ForA — o0, AET ~ Av~! =
A > 1, so the evolution is adiabatic; the system state follows
meticulously the measurement/Hamiltonian axis and acquires
the adiabatic Berry phase X{(i ):0} (0) = md(cos6 — 1) leading
to a winding number n = —d. For A < oo, the evolution is
not adiabatic, implying that the phase will not coincide with
the Berry phase (cf. Sec. IIIE 1). At A = 0, the evolution is

(b)

T 4
2 3
3
C2
bis
3
H 1
0
0 —_—
0 1 2 Ay 3 A

FIG. 7. Critical lines of the topological transitions in the behavior of the weak-measurement-induced phase for the (a) postselective

(d=+1)
Xin=0)

color code. For d = —1, the transitions take place at the same (Ceyir, Acric) but at

) and (b) averaging (¥ “=*") protocols. The lines follow the coordinates (C.;, Acri). The critical polar angle

6=*Y is shown by the
gld=-1 _ o _ pld=+D)

e i »as can be inferred from the symmetries

discussed in Secs. III C and III D. The behavior at A < 0 can be inferred too employing those symmetries.
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C C

FIG. 8. (a) Dephasing ™" and (b) phase ¥+ [cf. Eq. (21)]
at = 3w /4 color coded as functions of the measurement strength
C and asymmetry A parameters. Note the two singularities at C ~ 2,
where o diverges. The phase makes 7= windings around the points
of divergent D,

totally nonadiabatic, the system does not have time to sense
the change in the Hamiltonian axis, and the acquired phase
X{(r‘i)zo}(Q) = 0, so n = 0. It is thus clear that there has to be a
transition between the two winding numbers at some value of
A = Ay, which is depicted in Fig. 7(a). The required vanishing
of the postselection probability P{(r‘i )20}(65;;’[)) atA = Ay is due
to the last projective measurement, implying that the state
to which the system arrives as a result of the nonadiabatic
Hamiltonian evolution is orthogonal to its initial state.’

The regimes of the Pancharatnam phase (C — oo) and of
the Berry phase (A — 00) share the same topological index n.
It is thus not surprising that they can be smoothly connected,
without crossing any critical lines, as follows from Fig. 7(a).

In the next section we analyze topological transitions of the
averaged phase and discuss the qualitative differences from
the transitions discussed above.

V. TOPOLOGICAL TRANSITIONS IN THE AVERAGING
PROTOCOL

The behaviors of the averaged phase ¢’ and dephasing
factor e=" bear numerous similarities to the postselected
phase X{(r‘i):m and postselection probability P{(rdk ):0}. However,
there are important qualitative differences that manifest in the
topological properties of i (4.

Similarly to the postselective protocol, the dephasing fac-
tor e=*" vanishes at specific values (Ciit, Acrits 9532) [cf.
Fig. 8(a)]. Equivalently, one can say that o‘® diverges at these
points. The phase ¥®* makes windings around the points of
divergent a?) [cf. Fig. 8(b)]. However, an important qualita-
tive difference is that ¥ ) is defined modulo 7 and not modulo
2 as the postselected phases [cf. its definition in Eq. (21)].
This implies that the minimum possible winding is of size
[cf. Fig. 8(b)], in contrast to the 27w windings of X{(i): o) in
Fig. 4(b).

The above distinction naturally leads to the fact that the
diagram of topological regimes can be richer in the averaging

$In fact, we find that for any (Cuit, Aci, 64)) the final state
after weak-measurement-induced evolution |yy) is orthogonal to
|[¥v+1) o |¥o), while the probability of observing the sequence of

{riz1...v = 0} is (Yw|¥w) # 0.

7
......... 0
-
i
1< A=1, C=1.9 T
...... A=1, C=2.0
----- A=1' C=4.0
— A=1, C=4.2 2
, =277
0 Bc,itz ecritl T
(a) 6
7
___________ —0
)
4
B e -7
A=0, C=3.3 ’
------ A=0,C=3.4
...... _2 n
0 Ocric2 Bcrita
(b) 6

FIG. 9. Dependence of the averaged phase x“=*"(0) on @ for
various C at (a) A = 1 and (b) A = 0.

protocol. Similarly to the protocol of the postselected phase,
we have 2%« — 1 for§ =0 and 0 = 7 [cf. Egs.(44)-
(46)]. However, since the averaged phase x@ is defined
modulo 7 and not 2, the good winding number definition
is

(60)

1 /” dx D) 1) — x0)
n=— do = .
7 Jo do b4

Similarly to n in Eq. (59), i1 is also integer valued but
demonstrates a larger spectrum of values. Indeed, in the limit
of C — 00 ¥'‘¥(0) = wd(cos® — 1), implying i = —2d; for
C=A=0, )‘((‘”(9) = 0 and 71 = 0, yet it is also possible to
have i = —d.

Switching between different values of 7(C, A) can only
happen at (Ceit, Acrit) for which there exists Qc(fft) such that
¢~ CaAifi) = () [making the phase @ (Cerits Acrit» %)
undefined]. The set of (Cgsi, Acric) forms a critical line
[Fig. 7(b)] separating the regimes of different 7. Here the
critical line splits the (C, A) plane into three regions. The out-
ermost and the innermost regions correspond to 77 = —2d and
i1 = 0 respectively. The middle one, which was absent in the
postselective protocol, corresponds to 7 = —d [cf. Fig. 9(a)].
We emphasize that the 7 = —d region can only be explored
with measurements that have non-Hermitian backaction oper-
ators (i.e., A # 0).

It is noteworthy that the presence of a middle region
is facilitated, yet not dictated, by the definition of the av-

eraged phase modulo 7. Indeed, as a matter of principle,
- (d)
one could define the postselected phase via P{(r‘ﬁez’xw =

(wol./\/lx'v) . ~M§r1)|1/f0)2 as opposed to Eq. (12). This would
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27T
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FIG. 10. Projections of the critical line (Cerit, Acrits Qérdit: +l)) for

the averaged phase [cf. Fig. 7(b)] onto the (a) (A, 8) and (b) (C, 6)
planes.

imply that X{(ri)} too (not only x@) is defined modulo 7.

Nevertheless, the winding properties of the function X{(rdk 1(9)
would not change with the change of definition. In particular,
the winding number n of X{(ri >=0} (6) would still acquire only
two values, 0 and —d (translating to 7 = 0 and —2d, respec-
tively). This demonstrates the nontrivial effect of averaging
over the readout sequences.

Several other features of the critical line behavior [cf.
Fig. 7(b)] are noteworthy. First, note that transitions as a
function of C happen only at A < Ay ~ 3.55. However, the
threshold value is different from that in the postselective pro-
tocol: Ay < Aj.

Second, for any A € (0, Ap) there are two transitions, which

correspond to two different critical polar angles ec(:-iir)- AtA =0
there is only one transition at C = C2, ~ 3.35 taking /i from
0 to —2d. The critical polar angles of the two transitions do
not merge as A = 0 is approached. This might be puzzling.
The resolution of the puzzle is that at A = 0, the transition
happens as ¥ ¥ (9) exhibits two jumps at different values of 6
[cf. Figs. 9(b) and 10(a)].
Third, for C < C2,, ~ 3.35, there are two transitions (i =
0 - —d and —d — —2d) as a function of A happening at
the same value of 6 [cf. Figs. 7, 10(b), and 11(a)]. For C >
Cgﬁt, there are again two distinct Ay, yet now the transitions
correspond to 7 = —2d — —d and —d — —2d and happen
at two different values of 6 [cf. Fig. 11(b)].

Finally, both the averaged and the postselected transition
have the same (A, Gc(ﬁl: +1)) at C = 0. This is easy to un-
derstand, as at C = 0 essentially no measurement takes place
and there is no difference between %@ (8) and X{,dk)}(e): The
only readout sequence that can be obtained is {r; = 0} (cf.

7
0
5 E
e A=1.4, Cc=1 :.‘/.‘.‘:.':‘w.‘..-_n
...... A=1.6,C=1 {
..... A=3.4,C=1
— A=3.6, C=1
-2 7T
0 "/2 ocrit T
(a) 0
7
................. 0
)
i .".-.'.""-7-.
=< A=0.1, C=3.5 T
...... A=0,2’ C=3.5
..... A=2.9’ C=3.5
. A=3.0' C=3.5 2
. -2 7T
0 Bc,itl "/2 ecritZ T
(b) 8

FIG. 11. Dependence of the averaged phase x“=+"(9) on 6 for
various A at (a) C = 1 and (b) C = 3.5.

Sec. Il E 3). However, already at arbitrarily small C, the crit-
ical lines of the two protocols behave in drastically different
ways.

In Sec. IV A we linked the topological transitions in the
postselective protocol to a change in the collective proper-
ties of measurement-induced state trajectories (cf. Fig. 6).
Establishing such a connection for the averaging proto-
col is not straightforward since averaging over the detector
readouts in the phase definition [cf. Eq. (21)] implies that
many measurement-induced trajectories are involved for each
value of protocol parameters. Recently, it has been pre-
dicted theoretically [36] and observed experimentally [37]
that measurement-induced dynamics can exhibit one or multi-
ple optimal (most probable) quantum trajectories depending
on the system parameters. Further, in the case of multiple
optimal trajectories the system may exhibit chaotic behavior
[38]. It would be interesting to investigate whether transitions
between these different regimes exist in our system and, if
they do, whether they are linked to the topological transitions
we report here.

VI. EXPERIMENTAL IMPLEMENTATION

In this section we discuss conceptual experimental setups
that enable observing the measurement-induced phases de-
fined and investigated above. We pay particular attention to
some practical aspects of measuring the averaged phase.

A. Interferometric detection schemes

In order to measure the effects discussed in the previ-
ous sections, it is crucial to have the ability to access the
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FIG. 12. Interferometry setups for observing measurement-
induced phases (a) x(,—o) and (b) ¥ [cf. Egs. (12) and (13)]. A
particle, whose spin represents the measured system, flies through
the interferometer. Weak measurements of its spin are denoted by
M, n, while the last postselected projective measurement is de-
noted by Py.. The protocol of (b) for detecting the averaged phase
involves two special features. First, the particle spin is flipped in one
arm as indicated by the “FLIP” boxes. Second, the detectors interact
with the two arms via different Hamiltonians (see Appendix C for
details).

measurement-induced phases. Here we define two conceptual
setups that facilitate measurement of the postselected =0}
and the averaged j phases [defined in Egs. (12) and (13),
respectively]. The setup for measuring x;,=o; is shown in
Fig. 12(a). A particle with spin in state |1y) enters a Mach-
Zehnder interferometer and is split into two arms. In one arm,
the particle is subjected to a sequence of weak measurements
and one projective measurement (implementing the protocol
described in Sec. III). In the other arm, the particle flies
through unaffected. As a result, the state of the particle and
detectors just before the particle reaches the final beam splitter
is

1 pas 1
V) =— — 1), =0)p, + —= Brysr,
%) = ol = 1) ,E"k )b ﬁ{%}j 0
N+1
x o)l + Dalwol MY - MV 1yo) T T 1)

k=1

(61)

where | & 1), denotes the particle being in the upper/lower

arm and |ry)p, is the state of the kth detector. We have ac-

counted here for the fact that as the particle is flying through

the lower arm, the detectors remain in their initial states

|re = 0) (which are the initial states of the detectors in the

measurement model described in Sec. III A). As a result, the
intensities observed at the interferometer exits E; , will be

Iy [1 1 v "
L= 5<5+5{;|<waw§v Vo MU ) P
iRe<wo|M§$>--~M§”)|wo>>, (62)

where I is the intensity of the incoming particle beam; the
second term on the right-hand side of Eq. (62) is less than % as
it accounts for the loss of particles due to discarding the runs
in which the last projective measurement yields ryy; = 1;
the last (interference) term gives /P, —oye'*«=". This scheme
thus enables the observation of the measurement-induced
phase for the readout sequence {r; = 0}. The scheme relies
crucially on the fact that the readouts r; = 0 correspond to the
detector initial state being unchanged.

The setup of Fig. 12(b) shows how the averaged phase ¥
can be measured. Now the particle interacts with the detectors
in both arms. Moreover, the kth measurement is performed
in both arms by the same physical detector that is later read
out, thus ensuring that the readout r; is the same in both
arms. However, measuring ¢** as defined in Eq. (13) through
interference requires that for each readout sequence {r;} the
particle acquires phase eX%) in one arm and e~ "X in the other
arm. In order to achieve that, we propose to flip the particle
spin when it enters and exits the lower arm and in addition to
use somewhat different particle-detector interaction Hamilto-
nians in the two arms. We give the details of the procedure
in Appendix C. The resulting intensities at the interferometer
exits Ej » are

I oY n
L= 5<;|(1//0|M§v Vo MU ) P

iReZ(<wo|M<N’N>~-~M§“)|wo>>2>, (63)
{re}

where the first term accounts for the particle loss in the
last projective measurement postselection and the interference
term is exactly ¢*%~* in Eq. (13).°

We stress that while for the reasons of theoretical sim-
plification we have considered the limit of the number of
measurements N — oo in the above sections, essentially the
same physics of asymmetric behavior of the phases, the posts-
election probability, and the dephasing parameter will appear
for sequences of measurements with any N > 2. Furthermore,
the points of vanishing postselection probability and the sin-
gularities of the dephasing parameter will be related to the
topological transitions in the phase behavior for finite N too.
However, some specific features (such as the shape of the
critical lines) will be modified in the case of finite N. In
particular, the results will depend periodically on A with the
period being T N.

B. Practicalities of averaging over readout sequences
in experiment

The definition of the averaged phase y in Eq. (13) re-
quires averaging the postselected phases x,,; over all possible
readout sequences {ry} weighted with appropriate probabili-
ties. However, this does not correspond to the interferometric
procedure for measuring j outlined above. Indeed, a particle

“Equation (63) is valid for arbitrary N for the protocol defined in
Sec. III. However, Eq. (63) does not apply to protocols with other
choices of the measurement axes n,(f) and/or the initial state |1).
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FIG. 13. Comparison of Monte Carlo simulations for (a) the av-
eraged phase ¥ “=*" and (b) the dephasing parameter o‘“=*" with
the results obtained using the semianalytical method of Sec. IIID.
The number of Monte Carlo samples (readout sequence realizations
{r,Ei)}) used is N,y = 100. The number of measurements in the se-
quence is denoted by N. The plots correspond toC =3 and A = 1.

flying through the interferometer will yield a specific readout
sequence {r¢} and a specific phase x,, with probability Py, ;.
The next particle will again yield a random readout sequence
{r;} and so on. Therefore, the actual measurement proce-
dure is identical to a Monte Carlo sampling of the readout
sequences rather than systematic summing over them. The
number of such sequences scales as 2V with the number of
measurements N. Sampling such a large number of sequences
(for large N) is impossible. However, the probability of a spe-
cific sequence {ry} determines both the frequency of obtaining
this sequence and its contribution to the sum, rendering it
possible to obtain an accurate estimate of y with a moderate
number of experimental runs.

We have performed a Monte Carlo study that simulates
the sampling of {r;} in the experiment. Namely, we randomly
generated the readout sequences according to the algorithm
outlined in Ref. [20] and calculated

1

Nes
. 2i i
(eXix)y = — 2 :e T, (64)
Ns i3

where N = 100 readout sequences {r,E[)} were generated for
sequences of N = 20 measurements. A comparison of the
Monte Carlo simulations to the results obtained using the
method of Sec. IIID is shown in Fig. 13. The Monte Carlo
curves reproduce the behavior for N — oo qualitatively and
closely follow the exact result for N =20. We therefore

conclude that the experimental procedure does allow one to
probe the physics discussed above with reasonable accuracy.
Although pinpointing the exact locations of the critical lines
of the topological transitions [where the terms in the sum
in Eq. (13) accurately cancel out to yield ¢**~* = 0] may
require a large number of experimental runs, establishing the
existence of several topological sectors with different winding
numbers 7 can be done without accumulating too large a
statistics.

VII. CONCLUSION

We have performed a detailed investigation of
measurement-induced phase factors. Our theory puts forth
two classifications of such phases: dynamical vs geometrical
phases and components which are symmetric/antisymmetric
with respect to the reversal of the measurement sequence.
Importantly, we have shown, based on general considerations
and on a specific example, that these two classifications do
not coincide.

We have demonstrated our theoretical framework via
analyzing a specific protocol, calculating postselected and
averaged measurement-induced phases, and investigating
their dependence on various measurement parameters. We
have shown that the projective-measurement-induced Pan-
charatnam phase and the Berry phase induced by adiabatic
Hamiltonian evolution can be viewed as two (out of several)
limiting cases of the phases induced by quasicontinuous se-
quences of weak measurements.

We have found and investigated topological transitions per-
taining to measurement-induced phases. We have found the
phase diagram of different topological regimes and discussed
its distinctive features. While we have investigated topolog-
ical transitions for a specific protocol, the generality of our
considerations may lead one to believe that such transitions
are a generic feature of measurement-induced phases, avoid-
ing the need to refer to a specific measurement model or
phase-inducing protocol. Nevertheless, the details of the phase
diagram may depend on the specific protocol and measure-
ment class.

Finally, we have proposed experimental setups facilitating
the observation of weak-measurement-induced phases and the
study of the effects discussed in this work. We believe that
weak-measurement-induced phase factors present a rich play-
ground that may be important for understanding topological
phases of matter in open quantum systems.
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APPENDIX A: INVESTIGATION OF DIFFERENT
SCALING REGIMES

As mentioned in Sec. III B, taking the limit N — oo in
our protocols requires adjusting (scaling) the measurement
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parameters g and 8P (cf. Sec. Il A), performing this as a
function of N. Here we explore the possible ways of scaling.
We show that the only nontrivial scaling regime corresponds
to the one presented in Sec. III B.

One can understand the need for scaling of the measure-
ment parameters in the quasicontinuous limit (N — oo) from
the following consideration. Arrange the measurements into
j sets (N > j > 1), that is, measurements k =1,...,N/j
form one set, k = N/j+1,...,2N/j are the second set, etc.
Within each set, the axes of the measured system observ-
ables are clustered at ¢y ~ @, = 2nd|(k — 1)j/N]|/j, where
L(k —1)j/N] is the set number; here |x] is the floor func-
tion. The spread of the actual ¢; from @, is OQ2wd/j)
and can be made arbitrarily small in the limit N — oo via
taking arbitrarily large values of j. Then this set of weak
measurements can be interpreted as a s1ngle ]SJrojective mea-
surement with the appropriate axis nk Indeed, if all
measurements in a set yield r, = 0, the backaction on the
system state can be described by [], R ’I(n(s))M (O)R(n(s)) ~

R @)Y MOWIR@ES), with M@ and R(n®) defined in
Eqs (29) and (31), respectlvely Therefore, (M©)N/J plays
the role of the effective backaction matrix M. In the limit
N/j — oo, with fixed measurement parameters g, 6°), and
o =—n/2,

0 (AD)

MO = (MOWI = (é 0)
unless sin gsin ®) = 0. Therefore, for generic measurement
parameters, a set of measurements all yielding » = 0 is equiv-
alent to a single projective measurement yielding r = 0. If at
least one measurement in the set yields r = 1, the form of MV
ensures that the system state is projected onto the | eigenstate
of nm ¢®), again making the backaction identical to that
of a smgle projective measurement [up to errors O(2wd/j)].
Since the backaction also determines the probabilities of the
outcomes (cf. Sec. I A), one concludes that the original pro-
tocol is equivalent to a quasicontinuous sequence of strong
measurements. The latter yields the Pancharatnam phase.

A nontrivial scaling limit thus requires limy,;_. |c0s g +
isin gcos @P|V/i > (. Since the scaling of the measurement
parameters should not depend on the number of groups
j but only on N, this is equivalent to limy_, |cos g+
isingcos 8PV > 0. Similarly, we require limy_, o | cos g +
isingcosOP|N < 1 as the opposite would imply that there
is zero probability of obtaining an » = 1 readout, making
the evolution completely deterministic (equivalent to Hamil-
tonian evolution). We allow the scaling of g = C’'N~¢ and
0P =g /2 — A’N~" with a, b > 0. The above requirements
then imply a = % With this choice, the single measurement
r = 0 backaction matrix becomes

M(()) — 1 » o 0
0 1-5 +i5As + O3 N03/2)

1 0
= (O exp (_Z%N‘/H + 0(N3b7Nb3/2))),
(A2)

where in the last step we defined C =C?/4 and A =
—A'C’/2.

‘We now need to choose the appropriate scaling of b. Again,
a qualitative consideration is useful here. Note that

MO = ! 0- 1/2-b
0 exp(—2SHAT—)

_ (! 0 oiHA
~ 0 exp(-2§) ’

where H = B(I — 0*) with B=AN"?"" and Ar = 1/N.
In other words, a measurement of the class we consider,
when yielding r = 0, can be decomposed into a Hamiltonian
evolution over time At, followed by a measurement with a
Hermitian backaction matrix. Let us first ignore the measure-
ment (set C = 0). Then the readout r = 0 is implied since
M® =0 [cf. Eq. (30)]. The evolution is a quasicontinuous
Hamiltonian evolution, with the magnetic field axis changing
its direction by A¢ = 2w d At after every time interval Az. In
the limit At — O (or equivalently N — o0), this becomes a
continuously evolving Hamiltonian with its axis changing at
the rate do/dt = 2md and the energy gap 2AN'/2~%. There-
fore, for b < %, the adiabatic theorem applies to the system as
the gap size is infinitely large; the system state will then metic-
ulously follow the measurement axis. Now, introducing C > 0
does not modify the picture much as the corresponding part of
the backaction pulls the state closer towards the measurement
axis, to which the state is close anyway. Numerical investi-
gation shows that this qualitative consideration is correct (cf.
Fig. 14). Moreover, one can analytically show that for b < 1,
the probability of getting all measurement outcomes ry = 0,
P(d) —g =1L while the phase X = —md(l — cos8) coin-
01des with the Berry phase for the corresponding Hamiltonian
evolution. The regime of b > % is also not interesting for us as
the non-Hermitian part becomes insignificant when N — 0o
and the problem reduces to that investigated in Ref. [20].

We conclude that the nontrivial scaling regime corresponds
toa=b=1 with g=/4C/N and 6P) =7 /2 + A/+/CN.
This is the regime presented in Sec. III B.

(A3)

)

APPENDIX B: FINDING THE CRITICAL LINE FOR THE
POSTSELECTIVE PROTOCOL

Here we look for the parameters (Crit, Acrits Gc(fi[) ) where
P(r‘i )_0} = 0. We focus on A > 0. The critical line at A <0
can be inferred using the symmetries discussed at the end of
Sec. III C. Equation (40) implies that Pr —oy = Ois equivalent

to

sinh T

cosht +Z =0. B1)
The real and imaginary parts of this equation represent two
equations for three parameters C, A, and 6. Therefore, one
expects the solution to represent a line in the space of these
three parameters.

We first observe numerically that if Eq. (B1) holds at
some (Crit, Acrit» Ocit) then the imaginary part of the left-

hand side of Eq. (B1) vanishes at (C, Acit, Ocm) for any C

[cf. Fig. 15(a)]. Assuming that this observation is exact, we
extract the relation between A and Q(fﬁt) as follows. We

expand Eq. (B1) at C — oo and demand that its imaginary
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N =

FIG. 14. Trajectories of the quantum state |y) [Eq. (10)] on the Bloch sphere in various scaling limits. Plotted are the trajectories induced
by sequences of N measurements around the parallel corresponding to 6 = 7 /4 (black) with all measurements yielding readouts r;, = 0.
The backaction matrix M® is given in Eq. (A3). The trajectories are plotted for b = 0 (purple), 0.1 (cyan), 0.3 (green), and 0.5 (red) using
C=1,A=1,and d = +1. All the trajectories with b < % converge towards the parallel line (i.e., the trajectory of the measurement axes) as
N — oo. This does not happen for b = % Moreover, the trajectory seems not to change with increasing N, suggesting that already at N = 20

measurements the measurement-induced trajectory has converged.

part vanishes to the leading order in C, obtaining the condition

@ — . (B2)

crit

Agit +md cosf

It is now straightforward to verify that this condition in-
deed implies that the imaginary part of the left-hand side
of Eq. (B1) vanishes. Indeed, when Eq. (B2) holds, Z =C

and T = vZ2 — 72sin2 67 is either purely real or purely
imaginary; therefore, Z, cosh 7, and sinh 7 /7 are all real.
Switching to the real part of Eq. (B1), we rewrite the

equation as
tcotht = —Z. (B3)

Squaring the equation and recalling that

72 4+ 72 5in2 0D (B4)

crit

Z = Ceit =

(where the sign of the square root is dictated by the fact that
C > 0), we obtain

2 e(d)

crit

o)

=xmsinf,/. (BS)

= 7% sin

sinh T

C=10
— C=100

n/Z ecrit 3"'/4
(a) )

Recall that only t being real or imaginary are the cases of
interest for us. For real 7, t/sinh v > 0, dictating the choice
of 4+ in Eq. (B5). Using this and Eq. (B4), we rewrite Eq. (B1)

as
NEZIEE sinze(g)
N _ cosht + v/sinh? 7 + 1

s p(d)
7 sin 6/

cosht +

=2cosht>2>0, (B6

implying that there are no solutions with real 7.

We thus look for solutions with T = ib, b € R. Since t and
—t are equivalent in Eq. (B1), we choose b > 0 without loss
of generality. Then Eq. (B5) becomes

b sinb 1
— —47sinf?Y = == . B7
sin b ent b 7T sin Gc(fft) ®&7

The right-hand side of Eq. (B7) is either >1/m or <—1/m.
One sees from Fig. 15(b) that [sinb/b| > 1/m only for b <
b. < m. In this range of b, sinb/b > 0; therefore, one has to
choose + in Eq. (B7). No solution of Eq. (B7) with + is a

27T

s (d=+1), . .
FIG. 15. (a) Imaginary part Im( P(d:g)”e’x"k:o’ Y = Im(y/Pel™+0) as a function of 6 for various C at A = 1. One can check that the

US

probability P{(,‘Z j)’}l) = 0at (Cerit & 1.925, Agic = 1, O &~ 1.894). The imaginary part vanishes at 6 = 6. for any C. (b) Dependence of sin b/b

and cos b on b. Here b, is such that sinb. /b, = 1/7.
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solution of Eq. (B1). Indeed,

sinh T
cosht +Z

T1

2
=cosh+ [1— ———
72 sin? Gc(zt) (B8)

=cosb++v1—sin’b

= cosb + |cosh|.

sinb .
= cosb 4 ——/n2sin? ) — b2
T b

Therefore, only the b yielding cosb < 0 will be actual solu-
tions of Eq. (B1). One can see from Fig. 15(b) that these are
be[n/2;b.].

Atb = b, sinb/b = 1/x, implying 0) = 7 /2, while b =
/2 implies sin QC(ZB = % Taking into account Eq. (B2), one

sees that for A 2> 0 only Qc(gtzﬂ) € [ /2;5m /6] are allowed
[which implies, again through Eq. (B2), that only A < Ag =
7+/3/2 are possible]. Now one can construct the critical line.
For each Hc(gt: D in this range, A is found from Eq. (B2); at
the same time one solves Eq. (B7) with 4+ numerically to find
b, which then yields Coip = /72 sin® 0'4) — b2. The resulting
critical line is shown in Fig. 7.

We note that the arguments presented above rely on the
initial assumption that P{(r‘i )20} can only turn to 0 when Eq. (B2)
holds. Abandoning this assumption, there might be in prin-
ciple additional critical sets (Cerit, Acrit, QC(ZB ) that are not
included in these considerations. Our numerical investigation,
though, showed no evidence of such points.

J

N+1

APPENDIX C: DETAILS ON THE AVERAGED PHASE
DETECTION SCHEME

The averaged phase detection setup shown in Fig. 12(b)
involves detectors interacting with two arms of the interfer-
ometer via different Hamiltonians. Denoting the upper/lower
arm as a = +1, we write

o - _*0
2

int

[1—am® . o)
X (H;D)O;D) + anfCD)o)gD) + angD)az(D)). (Cl)

For the upper arm, a = +1, which reduces to Eq. (25). For
the lower arm, a = —1, which leads to two modifications: The
signs of n)(CDZ are changed and —n® . ¢® is measured instead
of n® . ¢®. This results in a different detector backaction in

the lower arm, given by

M(r) — R*l(n(s))Ux(s)M(r)o_)Es)R(n(s))’ €2)
with
N 1 0 )
O = — O
M= (O cos g — i sin gcos 9(0)> =M, ()
. 0 0 -
M= — A
M= (O —isin gsin Q(D)e—iw(m> =M"", (C4

and the rotation matrix R(n*) defined in Eq. (25). The same
applies to the last postselected projective measurement, which
is implemented when g = 0?) = —® = 7/2.

The particle state just before passing the last beam splitter
is

1 } - ~
) =— > bnolvo) [ T 1Ire) o ol MY - MV o) | + 1)a + (olo @) MY - - Mo (0o)[0) | — 1)al.
{re}

k=1

where
o (ng) = R (ng)o "' R(ny) (C6)

is the “FLIP” operator applied twice in the lower arm. Below
we prove that

(Yola O ) MG - - M5O (ng) )
= (Yol MG - M |yrg)*. (C7)

Using this identity, Eq. (63) for the intensities at the interfer-
ometer’s exits immediately follows.
Proof of Eq. (C7). Note several identities. First,

(Yol MG - M |4rg)

= (1 0)RM"™ ... BRM(’1)8R<(1)>, (C8)

which follows from definitions of [v/g) in Eq. (32), ./\/l,(crk) in
Eq. (28), and R in Eq. (39). Second,

2mid
ax(‘)cSRaf) = exp (__m
N

n 1)G;S>3R"‘a;”. (C9)

(C5)

[
Finally,

(1 0)SRM™ ... SRM(")SR((1)>

T
= |:(l O)(SRM(r‘)...M(VN)SR((l))iI ‘

Using Eq. (C9), we show that
(Yolo® me) MY - - MV (ng) o)

(C10)

— (1 0)oPSReOM™ ... ;1™ I5Ro ((1))

— (1 0PSRN ... g SR o (3)
(C11

Since 6OM o =M and (1 0)o = (1 0),

(1 O)GZ(S)SRTUZ(S)M(’N) .- -M(r')O'Z(S)(SR-I-O'Z(S) <(1)>

=(1 0)R'M"™ ...sRTM"IsR" (é) (C12)
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Using M = M®T together with Eqs. (C8) and (C10), we
show that

(1 0SSR M™ ... sRTM"ISRT (é)

;
- [(1 0)SRM ... M"™SR (é)}

%
= [(1 0)SRM™) ... MR (é)]

= (Yol MG - M o), (C13)

which proves Eq. (C7).
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