KIT | KIT-Bibliothek | Impressum | Datenschutz

Supervised Machine Learning Approaches on Multispectral Remote Sensing Data for a Combined Detection of Fire and Burned Area

Florath, Janine; Keller, Sina ORCID iD icon

Abstract:

Bushfires pose a severe risk, among others, to humans, wildlife, and infrastructures. Rapid detection of fires is crucial for fire-extinguishing activities and rescue missions. Besides, mapping burned areas also supports evacuation and accessibility to emergency facilities. In this study, we propose a generic approach for detecting fires and burned areas based on machine learning (ML) approaches and remote sensing data. While most studies investigated either the detection of fires or mapping burned areas, we addressed and evaluated, in particular, the combined detection on three selected case study regions. Multispectral Sentinel-2 images represent the input data for the supervised ML models. First, we generated the reference data for the three target classes, burned, unburned, and fire, since no reference data were available. Second, the three regional fire datasets were preprocessed and divided into training, validation, and test subsets according to a defined schema. Furthermore, an undersampling approach ensured the balancing of the datasets. Third, seven selected supervised classification approaches were used and evaluated, including tree-based models, a self-organizing map, an artificial neural network, and a one-dimensional convolutional neural network (1D-CNN). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000142589
Veröffentlicht am 31.01.2022
Originalveröffentlichung
DOI: 10.3390/rs14030657
Scopus
Zitationen: 22
Web of Science
Zitationen: 16
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2072-4292
KITopen-ID: 1000142589
Erschienen in Remote sensing
Verlag MDPI
Band 14
Heft 3
Seiten Art.-Nr.: 657
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 29.01.2022
Schlagwörter remote sensing; classification; burned area mapping; fire detection; deep learning; Sentinel-2 images; self-organizing maps; undersampling; imbalanced dataset; convolutional neural network
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page