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 Introduction 1

Worldwide, scientists have been giving attention to magnetism since long time. Magnetic materials are 

highly appealing because of their applications in vast area of scientific and technological fields, such as 

in biomedicine, drug delivery, imaging, environmental remediation processes, robotics, engineering, 

miniaturized devices, electronics, spintronics and data storage.
1
 Development of new materials and 

techniques increase the growth in the fields of spintronics, electronics, and data storage. The capability 

of storing data in hard drives is increased tremendously in the last three decades. From oldest generation 

hard disk with a capability of recording up to 2 Kbits to present day’s storing devices with a capability 

of more than 1 Tbits.
2
 To enhance the potential of data storage, scientists have been working on new 

materials. In the recent years, research in the area of multifunctional nano-sized and nano-structured 

molecular materials has gained tremendous amount of attention. This multi-functionality can be 

achieved through a molecular approach by combining different molecular units responsible for particular 

properties or properties in the same compound.
3
 The control of these properties at a molecular level 

results in the application of these materials in nano devices.
4
  Interaction among electrons and localized 

magnetic moments in these materials lead to various potential technological applications, specifically in 

electronic devices. Such materials also exhibit peculiar magnetic field induced transitions and 

switchable conductivity by changing the magnetic field, temperature, magnetic order or spin state.
5–7

 

Miniaturization of electronic devices and data storage led to the idea to use single molecules to store 

data or perform logical operations. In 1990, the study of a [Mn12(CH3COO)16(H2O)4O12] 

2CH3COOH.2H2O complex - usually known as Mn12OAc - exhibited interesting magnetic properties 

such as slow magnetic relaxation, strong magnetic anisotropy and can retain magnetizations long even in 

the absence of an applied field and at low temperature.
8,9

  It led to large numbers of studies in the field 

of molecular magnetism and complexes which exhibited similar properties and are considered as Single 

molecule magnets (SMMs). SMMs exhibit magnetic memory arising purely from the molecule itself, 

hence making it potentially useful in a wide range of advanced technologies. This was an important 

achievement in the field of molecular magnetism. SMMs are metal-organic compounds containing one 

or a few paramagnetic centers. However, for SMM in order to be successful, it depends on the magnetic 

blocking temperature TB. Blocking temperature is the temperature at which the relaxation time (t) is 

equal to the experimental measuring time of the technique used (τm).
10
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A magnetic nanoparticle exhibit superparamagnetic behavior above blocking temperature. Below this TB 

, it exhibits the magnetic properties similar to the bulk material. A suitable TB can be achieved in the 

presence of a high spin ground state and a large magnetoanisotropy.
11

   

Transition metals like V(III), Mn(II/III/IV), Fe(II), Fe(III), Co(II/III), Ni(II) and Cu(II) have been used 

in SMMs.
11

 Complexes containing Mn(III) in high spin are the most explored SMMs because of its large 

easy axis anisotropy. SMMs with 3d-metal ions often contain two or more spin centers. Hence, the 

coupling of the individual spin centers to a total spin by the exchange coupling J plays a crucial role in 

the design of SMMs. Strong J implies an energetically isolated ground state. The exchange coupling is 

often mediated by diamagnetic ligands.
11,12

 Therefore, the combination of appropriate ligands with 3d 

metals can result in interesting magnetic properties. However, in the last decade, the focus of SMMs 

research shifted towards lanthanide (f) ions because of their ability to show large anisotropies.  

Ab initio methods are generally used to study ligand environment in order to fabricate molecular devices 

capable of storing information.
13

 Quantum chemical calculations can be used as an alternative to costly 

experimental hit and trials. High level ab initio calculations have reportedly been used for interpretation 

and design of SMMs. The development of pseudospin Hamiltonian and execution of this Hamiltonian 

gives the useful quantities such as crystal field splitting and the g-factors. Furthermore, comparison of 

theoretical results is done with experimental finding. However, now a days, interpretation of the 

obtained data can also be used as a predictive tool.
13–15

 

In this present work, 3d and 4f complexes are studied by quantum chemical methods to understand their 

magnetic behavior. The project has been carried out within the collaborative research center SFB 

TRR88 "Cooperative Effects in Homo- and Heteronuclear Complexes (3MET)" in collaboration with 

the groups of Prof. van Wüllen and Prof. Krüger from TU Kaiserslautern as well as Prof. Powell from 

Karlsruhe Institute of Technology. For the theoretical description, methods are needed that can take the 

open shell character of the molecules, several electronic states and spin orbit coupling into account. In 

this work, ab initio calculations have been performed to understand the magnetic behavior of the 

transition metal and lanthanide based systems. The investigations were focused on 3d/4f systems with 

different ligand fields and geometries in this work. 

This thesis is organized as follows. In chapter 2, the general background of magnetic properties is 

described. This includes the classification of different magnetic materials based on their macroscopic 
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properties as well as the microscopic properties of spin centers in molecules. In chapter 3, the electronic 

structure of SMMs is explained in detail and the role of transition and lanthanide metal ions are 

explained. In chapter 4, the used quantum chemical methods are presented. The applications are divided 

into two groups. Chapter 5 is devoted to calculations on transition metal ions more specifically Ni
2+

 and 

Co
2+

. In case of Ni
2+

, three different Ni
2+

 complexes with increasing complexity starting with a 

mononuclear compound with just one Ni
2+

 center in distorted octahedral surrounding with SNi=1. In the 

second, one of the ligands is reduced forming a second spin center SL=1/2. The third is a binuclear Ni 

complex where the metal centers are connected by the ligand with SL=1/2. For Co
2+

, first three different 

Co
2+ 

complexes with SCo = 3/2 in different ligand fields varying from tetrahedral, distorted octahedral to 

almost perfect octahedral surrounding were studied. In a further example, a Co
2+

 spin center is studied 

with and without an additional electron on the ligand.  

In chapter 6, calculations on lanthanide metal ions (Ln = Gd, Dy, Er, Ho, Tb) are presented. Two similar 

Ln3 complexes with change in the ligand substitution were studied. Firstly, each Ln(III) center was 

studied individually by replacing the other two centers with diamagnetic Y(III) to explore the properties 

of the individual spin centers. To deduce, further information on the interaction of the spin centers, two 

magnetic centers were studied together. Also, two different Gd(III) complexes were studied.  

Summary and outlook are given in chapter 7. 
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 Background 2

In the present scenario, interest in magnetic materials like SMMs or SIMs is increasing day by day. 

Development and understanding of new materials on a miniature scale is at the root of progress in many 

areas of materials science. In this chapter, basic concepts should be cleared.  

 2.1 Origin of Magnetism 

The Ancient Greeks and Chinese had the knowledge about strange and rare stones (known as lodestone 

which is naturally magnetized piece of the mineral magnetite) with the power to attract iron. Iron 

magnets were considered only source of magnetism at that time. Then in 1750 Michell in England and in 

1785 Coulomb in France discovered law of interaction between magnetic poles but it was still not 

related to the electric current flow. Later in 1820, during a presentation of the flow of an electric current 

in a wire, Hans Christian Oersted, a Danish scientist, observed that current in the wire resulted a nearby 

compass needle to move.
16

(Figure 2.1)  

 

 

After reading Oersted’s observation about the effect of an electrical current on a compass needle, a 

French physicist, Andre-Marie Ampere concluded that electrical charge in motion is responsible for a 

magnetic field which was a very interesting conclusion because until then it was considered that 

permanent magnets and earth are only source for magnetic fields and electrical charge in motion was not 

involve in these cases This resulted in a introduction of molecular magnet. After this study, concept of 

Figure 

1:   

Figure 2.1 presence of magnetic field around the current carrying wire shown by a magnetic compass 
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magnetic moment was explained through Ampere’s circuital law which states that the line integral of the 

magnetic field along a closed path is equal to µo time the total current. 

 
∮ 𝐵. 𝑑𝑙 = 𝜇𝑂𝐼 

2.1 

During the same period when Ampere’s law was discovered, Jean-Baptise Biot and Felix Savart, two 

French physicists worked on an equation (known as Biot-Savart law) for calculating the magnetic field 

generated by a constant electric current which shows a relation between the magnitude, direction and 

length of the electric current to the magnetic field
17

. The resulted equation is (2.2): 

 
𝑑𝐵 =  

𝜇𝑜𝜇𝑟

4𝜋
×

𝐼𝑑𝑙𝑠𝑖𝑛𝜃

𝑟2
 

2.2 

Where I is current, r is a distance and 𝜃 is the angle between distance and direction of the current. Biot-

Savart law is comparable with Ampere’s circuital law. 

 

 2.2  Classification of magnetic materials 

Magnetic material can be classified depending on different ordering of magnetic moments as shown in 

Figure 2.2   

 

 Figure 2.2: Different magnetic materials: paramagnetic, ferromagnetic and anti ferromagnetic  
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2.2.1 diamagnetism 

18
In the absence of applied magnetic field, diamagnetic materials have no magnetic moment because of 

the completely filled electrons in the orbital which results in the cancelation of the magnetic moment. 

When subjected to an external magnetic field, the materials have small susceptibility and magnetization. 

In case of diamagnetic materials, susceptibility is temperature independent.
19

 

2.2.2 paramagnetism 

In case of paramagnetic material, atoms or ions have unpaired electrons. In this case, magnetic moment 

of atoms show random arrangements when there is no applied field resulting in zero magnetic moment. 

However, If it is put through an external magnetic field, magnetic moment of each atom align itself in 

the direction of the applied field producing positive magnetization According to the Curie law, it 

becomes difficult to arrange the atomic magnetic moment in an order as temperature increases and 

hence the susceptibility decreases.
19,20

 

2.2.3 ferromagnetism 

Ferromagnetic materials have unpaired electron spins which lined up parallel with each other in a region 

known as domain. As ferromagnetic materials display this long-range ordering phenomenon, magnetic 

moment of individual atom does not cancel out. When placed in a external magnetic field, it exhibits 

strong magnetization but special thing about ferromagnetic substance is if external magnetic field is 

removed, material still remains magnetic. The magnetic susceptibility is relatively very high in 

ferromagnets but in this case, materials are generally measured in terms of saturation magnetization i.e 

magnetization if all domains are aligned. Transition elements like Fe, Co and Ni shows ferromagnetic 

behavior. As temperature increases ferromagnetic material behaves as paramagnetic and that transition 

temperature is the Curie temperature (Tc).  

2.2.4 anti-ferromagnetism 

  Antiferromagnetic material possesses the atomic magnetic moments arranged in a usual pattern like 

ferromagnetic substance but pointing in opposite direction. Therefore, the magnetic moment Cancel out 

each other and results in net magnetic moments equals to zero. Behavior of this material is similar to 

paramagnetic material and this transition temperature is Neel temperature. Some examples of anti-

ferromagnets are Cr and MnO. 
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2.2.5 ferrimagnetic 

 The ferrimagnetic materials are similar to anti-ferromagnetics, in this case also the magnetic moments 

are aligned anti-parallel like anti-ferromagnetics but the magnitudes of magnetic moments are different 

here. The classical examples of ferrimagnets are the salts of transition metals known as ferrites. Ferrite 

has AB2O4 formula where A is divalent metal cation (Fe
2+

, Co
2+

) and B is trivalent metal cation (Fe
3+

). 

 2.3  Basic principle of magnetic materials  

Magnetic field in other words is a force on moving charge which is consistent with the Lorentz force 

law. Origins of magnetic field can be  

i. Electric current  

ii. moving charges 

iii. magnetic moment 

H is a free magnetic field, when applied to a material, behavior of the material is known as its magnetic 

induction, B, which in other words is the number of lines of force passing through a unit area of 

material
21

. Dependence of B and H on each other can be explained by using the equation: 

 𝐵 = 𝜇0(𝐻 + 𝑀) 2.3 

Here, M is the magnetization. It gives the information about the property of a material and shows how 

dipole moments of the molecule interact with each other and 𝜇0 is the permeability. The SI unit for M 

and H is  A m⁄  and for 𝜇0 is Weber/(Am). Therefore, unit of B is weber/m
2
 or tesla (T). Earth’s field is in 

microtesla (µT), conductor carrying 5 A is in millitesla and the largest field produced in a laboratory till 

now is 45 T. 

Magnetic flux or flux density,Φ, i.e the product of the magnetic field and the area. Usually, magnetic 

flux varies depending if it’s outside the material or inside the material. This difference between the 

internal and external flux allows a classification of magnetic materials.  

2.3.1 Susceptibility and Permeability 

When a magnetic field is applied to a magnetic material, its response can be represented as susceptibility 

and permeability. 

Magnetic susceptibility is a measure of the magnitude to which a material is magnetized in the presence 

of a given applied magnetic field.
22

 Relation between Magnetization and magnetic field is given by 
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𝜒 =  

𝑴

𝑯
 

2.4 

Magnetic permeability is a quantity which accounts for relative increase or decrease in the magnetic 

field in a material with respect to applied magnetic field in which the material is placed. Relation 

between magnetic flux and magnetic field is  

 
µ =  

𝑩

𝑯
 

2.5 

In terms of magnetic flux, diamagnetic material repel lines and paramagnetic or antiferromagnetic have 

flux less inside than outside whereas ferromagnetic material has magnetic flux inside higher than outside 

and Permeability changes with the level of applied magnetic field and it is highly structure sensitive, 

therefore, it depends on purity, heat treatment, deformation
22

 etc. 

Respective values of susceptibility and permeability helps in classification of magnetic material by 
22

: 

 Empty spave; χ = 0 and µ = 1 because no matter is there to magnetize  

 Diamagnetic; χ < 1 and µ is slightly less than 1 

 Paramagnetic and anti-ferromagnetic; χ < 1 and µ slightly greater than 1
23

 

 Ferromagnetic and ferromagnetic; χ << 1 and µ<< 1 

Relation between M or B versus H is used to plot graphs known as magnetization curve as shown in 

figure 2.3. M-H curves show for diamagnetic material, a negative slope which implies susceptibility and 

permeability is negative. For para- and anti-ferromagnetics, the slope is positive, means susceptibility 

and permeability is positive. In case of ferro- and ferrimagnets susceptibility and permeability are large 

and positive and are functions of the applied field. 

                     
Figure 2.3: M-H curves for ferromagnetic; paramagnetic; and diamagnetic material 
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2.3.2 Curie Law 

In a paramagnetic material, magnetization is directly proportional to an appltied magnetic field. As the 

temperature increases, it will become harder to remain in order for atomic magnetic moments or electron 

spin. The relation is reveresed i.e the susceptibility is inversely proportional to the absolute temperature. 

This relationship is defined as the curie law. 

 

 
𝜒 =  

𝐶

𝑇
 

2.6 

In ferromagnetic, anit-ferromagnetis and ferrimagnetic case, it is noted that electron spins are aligned in 

an ordered even in the absence of magnetic field. This is known as spontaneous magnetization.
24

 As the 

temeprature increases, spontaneous magnetization vanishes. For more general cases, Curie-Weiss law is 

considered in which interaction between neighbouring magnetic moments (𝜃) taken into account by:  

 
𝜒 =  

𝐶

𝑇 − 𝜃
 

2.7 

When 𝜃 is positive it means at low temperature material is ferromagnetic. As the critical temperature 

increases, magnetic order fades and the material exhibits paramagnetic behavior. But if 𝜃 is negative 

below transition temperature, material remains as anti-ferromagnetic. This transition temperature is 

known as Curie temperature (Tc) in ferromagnetism and Neel temperature (TN) for antiferromagnets as 

shown in figure 2.4 

 

 

 
Figure 2.4: -Difference in magnetic susceptibility with temperature for diamagnetic, paramagnetic, ferromagnetic    

and Anti-ferromagnetic (Source: Wikipedia) 
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 2.4   Properties of Magnetic Material 

2.4.1 Hysteresis 

Materials like ferromagnets display a long-range ordering phenomenon in which atomic magnetic 

moments are arranged parallel with each other in a domain. Inside the domain, it is extremely 

magnetized. The bulk sample is considered demagnetized because domains in the sample are arranged 

randomly with each other Thus when an external magnetic field is applied results in a lineup of the 

magnetic domains resulting increase in the magnetic flux density within the material so that if the 

external applied magnetic field is removed sample remains magnetized and do not return to zero. To 

make magnetization zero, a magnetic field is applied in opposite direction and it makes a loop known as 

hysteresis loop as shown in Figure 2.5. The absence of retrace ability of the magnetization is the 

property known as hysteresis and magnetic domains in the material are related to it.
14

 commonly, this 

behavior can be seen in ferromagnetic materials 

 

 

 

 (a) Non-linear magnetization curve starts at zero and when all the magnetic domains are aligned 

in the direction of a field. It attains the saturation level .means maximum magnetization at a 

maximum temperature (i.e Curie temperature) it can reach. If the magnetic field is removed, 

material still shows magnetization.
25

 

 (B)  Here magnetic field, H, equals to zero, but material is still partially magnetized as partial 

magnetic domain arrangement occurred. 

 (C)  Saturation level is attained in the opposite direction of the applied magnetic field. 

Figure 2.5: Hysteresis loop for a ferromagnetic material, M is magnetization, H is applied field (Source: Wikipedia) 
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 (D)  Magnetic field in opposite direction is applied to demagnetize the material. 

2.4.2 Coercivity 

  If the applied magnetic field is applied in reverse direction in hysteresis loop to reverse the 

magnetization curve, magnetic induction reduces to zero which is equals to coercivity (Hc). The opposite 

field needed to decrease zero is known as intrinsic coercivity (Hci).  

2.4.3 Anisotropy 

Magnetic anisotropy follows where magnetic susceptibility fails to fulfill curie law. Magnetic anisotropy 

is the directional dependence of the magnetic moment in material and various factors are responsible for 

its origination
26

: Crystalline structure of the material is responsible for magnetocrstalline anisotropy. It is 

an intrinsic property of the material and depends on the direction of the material’s magnetization. 

Magnetocrystalline anisotropy is generated by the atomic structure and bonding in the magnetic 

material. This anisotropy process also gives rise to energy due to lattice distortion in order to minimize 

its total free energy. Magnetic system when get deformed because of magnetization is known as 

magnetostriction.  

 2.5    3d/4f ions as magnetic centers 

3d and 4f ion usually are the origin of magnetic properties and behave as magnetic centers because of 

their localized unpaired electrons. Hence magnetic properties are described by the electronic states of 

these centers. Origin of magnetism can be understood with quantum mechanics of electronic angular 

momentum; it has two sources- orbital motion and spin. For magnetism of electron, two basic 

approaches are taken, wave mechanics, because of Schrödinger and matrix mechanics, because of 

Heisenberg.  

In wave mechanics, fundamental Schrödinger equation is:  

 

 𝐻𝜓 = 𝐸𝜓 2.8 

𝐻 is Hamiltonian operator in the Schrödinger equation. It represents the sum of the kinetic and potential 

energy. 

But cartesian coordinates (x,y,z) are not suitable for many problems like in the case of an atom, where 

the nucleus serve as a natural center. Therefore in case of atomic systems, orbitals can be chosen as 
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product of a radial and spherical harmonics which can be classified by quantum numbers it is 

appropriate to take into account the relation between Laguerre polynomials and spherical harmonics 

 𝜓𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑛(𝑟)𝑌𝑙𝑚(𝜃, 𝜙 ) 2.9 

2.5.1 Slater Determinant 

Accuracy in computational calculations becomes more challenging with the increase in number of 

electrons. Therefore, it is important to introduce many electron wave functions. The complete wave 

function of an electron is product of both spatial part and spin part which is called spin orbital
27

. 

According to the orbital approximation, an N-electron atom contains N occupied spin orbitals. 

According to Pauli exclusion principle (explained in section 2.5.3 in detail), no two spin orbitals in this 

case must be identical. So to represent it mathematically
28

, it can be written as  

 

𝜓(1,2, … , 𝑁) =
1

√𝑁!
|

𝜑1(1)    𝜑2(1)   ⋯ 𝜑𝑁(1)

𝜑1(2)    𝜑2(2) ⋯   𝜑𝑁(2)
⋮            ⋮         ⋱        ⋮

𝜑𝑁(𝑁)    𝜑𝑁(𝑁) ⋯ 𝜑𝑁 (𝑁)

| 

2.10 

This expression is called as slater determinant. Rows are number of electrons and columns are orbitals 

and N! is for normalization.  

The Hamiltonian for system with N electrons can be written as:  

 
𝐻 = ∑ {−

1

2
∇𝑖

2 −  
𝑍

𝑟𝑖
} +  ∑

1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

𝑁

𝑖=1

 
2.11 

The energy of the state represented by slater determinant is given by: 

 
𝐸 = ∑ 𝐼𝑎

𝑎

+ 
1

2
∑(𝐽𝑎𝑏

𝑎,𝑏

−  𝐾𝑎𝑏) 
2.12 

  where the sums run over all occupied orbitals. First term represents one –electron part, Jab is for 

coulomb interactions and Kab is for exchange integrals, a and b are spin orbitals and factor ½ corrects for 

the double counting of pairs. 

Solution of this Schrödinger equation results in the set of mathematical equation called wave functions. 

These wave functions (ψ) are also separated into radial function, R, it depends on the distance of the 

nucleus r from the electron and the angular function, Y, it depends on 𝜃 and 𝜑. The radial parts of the 

wave function are defined by the quantum numbers n and l and angular parts of the wave function are 

defined by l and ml. 
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2.5.2 Quantum Numbers 

  So what do quantum numbers represent? Quantum numbers give information about the allowed 

solutions to the Schrödinger equation. The principal and angular quantum numbers are represented by n 

and l and the magnetic quantum number is given by ml. Many other properties of the electron can be 

determined by these quantum numbers 
29

.  

 Principle Quantum Number (n): 

..Energy of the electron level is described by the principle quantum number. An electron with an 

n value defines the nth electron shell. Even though, this value n is not itself responsible for any 

magnetic properties still it decides value of the l and ml quantum numbers which influence 

magnetic properties. 

 The Orbital quantum number (l) 

Principle quantum number (n) decides value of l. So l = n-1. It decides the magnitude of the 

orbital angular momentum of the electron and for an individual electron, the magnitude of the 

orbital angular momentum is related to the angular momentum quantum number (equation 2.13) 

 |𝐿| =  √𝑙(𝑙 + 1) ℏ 2.13 

Labels for the atomic orbitals i.e s, p, d and f are decided by the given values of l. For s orbitals, l 

= 0, for p orbitals l = 1 and so on. Radial distribution of the wave function is also predicted by 

the value of l. Subshells of the orbitals are also determined by l for example for n = 1, l =0 and s 

has one orbital.  

 

 The magnetic quantum number, ml 

  Magnetic quantum number ranges from –l to +l. When l = 1, ml have values from -1, 0, +1 

which tells that p orbitals exist in three orientations when an external magnetic field is applied. 

𝑚𝑙ℏ gives the direction of field along the angular momentum. 

 The spin quantum number, s 

  Spin quantum number has the value  
1

2
 for each electron and the magnitude of spin angular 

momentum can be calculated using spin quantum number as shown below in equation 2.14: 

 |𝑆| =  √𝑠(𝑠 + 1) ℏ 2.14 

             Like magnetic quantum number ml, there is ms with allowed values of −
1

2
 and +

1

2
  only.  
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Ordering of atomic orbitals is energetically favored. Energy of the electron depends on n and l. 

Therefore electrons with lower angular momentum have lower energy because smaller l attracts more 

towards the nucleus due to shielding effect as compared to higher l values.  

2.5.3 Pauli Exclusion Principle 

  In early 20
th

 century, Wolfgang Pauli submitted a paper in which he concluded that in an atom there 

cannot be two or more equivalent electrons, for which in strong fields the values of all four quantum 

number coincide.  This principle was used for further study of many particle systems in quantum 

mechanics by Heisenberg 
30

 and Dirac.
31

 In these studies of Pauli exclusion principle as to occupy the 

same quantum state for two electron is prohibited, antisymmetric many electron wave functions were 

constructed and it proved that for these functions two particles in the same state is not possible
32

. 

2.5.4 Hund’s Rules  

  In 1925 Freidrich Hund established rules from a combination of an experimental studies and quantum 

mechanics. After his observation, he stated few rules which commonly known as Hund’s rule 
33

:  

1. In the many electron system, multiple states arise from same configuration but the state with 

maximum total spin is the ground state indicating that the  

2. States of same configurations possessing same total spin, the ground state is one with highest 

angular momentum quantum number L. 

3. If the shell is less than half filled then the state with lowest value of J is the ground state whereas 

if the shell is more than half filled then the ground state is with highest value of J. 

2.5.5 Spin-orbit coupling 

  As mentioned in the section 1.5.1, an electron carries both spin angular momentum and orbital angular 

momentum. Orbital angular momentum of an electron results in magnetic moment with a related 

magnetic field but it’s not an only source of magnetic moment in an electron. Spin of an electron also 

responsible for a magnetic moment. In the magnetic field, orbital motion interacts with electron’s 

magnetic moment. This interaction is known as spin-orbit coupling. Extent of spin-orbit coupling is 

measured by assuming the orbiting motion of the nucleus around the electron specified by the nuclear 

charge and the nuclear number, Z (2.15). Usually, Hamiltonian for spin-orbit coupling is given by 

 ℋ =  𝜆 𝑳. 𝑺 2.15 

With the l and s quantum number of each electron, total angular momentum is calculated. However, the 

way of calculation for total angular momentum varies with the magnitude of orbit-orbit, spin-spin and 
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spin-spin couplings. For many electron systems, two different methods for estimating total angular 

momentum are possible 
33

: 

Aside from the attraction between the nucleus and electrons, other two major factors which contributed 

to the atomic system’s energy: 

1) Inter-electronic repulsion, that results in the energy separation between the terms of the given 

configuration. 

2) Spin-orbit interaction gives rise to the energy gaps between the components of the term. 

Russell-Saunders coupling or in general terms also known as LS coupling is preferred for light atom in 

which spin-orbit interaction is weak, the electronic repulsion dominates over spin-orbit interaction. 

Hence, to calculate the total angular momentum, first orbital angular momentum and spin angular 

momentum from each individual electron are calculated to obtain the total orbital momentum and total 

spin momentum (equation 2.16) and then the total angular momentum is obtained by combing total 

orbital momentum and total spin momentum (equation 2.17) 

 
{

𝐿 =  |𝑙1 −  𝑙2 |, |𝑙1 − 𝑙2| + 1, … . , 𝑙1 +  𝑙2

𝑆 = |𝑠1 − 𝑠2 |, |𝑠1 − 𝑠2| + 1, … . , 𝑠1 + 𝑠2
 

2.16 

 𝐽 = 𝐿 + 𝑆, 𝐿 + 𝑆 − 1, … . . , |𝐿 − 𝑆| 2.17 

 

2.5.6 The Anomalous Zeeman effect  

The Dutch physicist Pieter Zeeman observed that when an atom is placed in an external magnetic field, 

the atomic energy levels split which results in spectrum change. This phenomenon is known as Zeeman 

effect 
34

 (as shown in figure 2.8).
35

 

 

 
Figure 2.6: Splitting of energies in presence of magnetic field 
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When there is no spin angular momentum, it is known as normal Zeeman effect. But for more complex 

arrangement of lines in the spectrum which is a result of spin-orbit coupling is given by the anomalous 

Zeeman effect, this is much more common. Zeeman Hamiltonian is given by
36

 

 ℋ =  𝑔𝑒𝜇𝐵. 𝑆. 𝐵 2.18 

 Here,𝑔𝑒 is a constant and value for it is 2.00. This g is known as landè g-factor
37

 which van be 

calculated by using L, S and J as given in equation 2.19 

 
𝑔 =  1 +  

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

2.19 

 

 

Scientists have been working on the development of new materials such as single molecule magnets. 

Single molecule magnets (SMM) are much in attention because of their advantages of the molecular 

scale with the properties of bulk materials. However, for SMM in order to be successful depends on the 

magnetic blocking temperature TB, because value of Tb depends on rate magnetic field.  SMM based on 

3d and 4f elements attracted more attention in few years because of their promising advancement in 

molecular magnetism. In next chapter, it is described in detail. 
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 Single Molecule Magnets  3

Single molecule magnets possess the classical macroscale properties of a magnet to the quantum 

properties of a nanoscale quantity
1
. It is described as the molecule which can maintain its magnetization 

even if an external magnetic field is removed 
38,39

. It has benefits of the molecular scale with the 

properties of bulk magnetic material and is desirable for high-density information storage and for 

quantum computing, furthermore because of its molecular nature it leads to interesting quantum effects. 

SMMs can be possible in different shapes and sizes and give permission for selective substitutions of the 

ligands that changes the coupling to the environment and achievable exchange of the magnetic ions due 

to which magnetic properties show considerable change without altering the structure or coupling
1,40,41

  

The first SMM was discovered in 1996, after studying a transitional metal compound with 

dodecametallic manganesesacetate (Mn12OAc) synthesized by Prof. Tadeusz Lis
42

 in 1980.  

 

 

In Figure 3.1, it can be seen that there are twelve Mn atoms in this molecular structure, four Mn(IV) ions 

are in inner ring like tetrahedron and eight Mn(III) ions are in outer ring forming octagon with sixteen 

acetate groups covering the magnetic core from nearby molecules. Magnetic properties of Mn12OAc was 

shown by using high-field electron paramagnetic resonance (EPR) and measurements  with a 

superconducting quantum interference device (SQUID) magnetometer suggesting that the ground state 

of the given molecule is S = 10. The antiferromagnetic coupling between the Mn(III) ions with spin of S 

Figure 3.1: Molecular structure of Mn12OAc and chemical structure of its core. Orange spheres are Mn
3+

( S =2), 

Red spheres are Mn
4+

 (S = 3/2) and white spheres are oxygen atoms 
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= 2 and the Mn(IV) ions with spin of S = 3/2 results in the large ground state spin S = 10. The low lying 

electronic states are usually described by the spin of the ground state taking zero field splitting of the 

different Ms levels by spin orbit coupling into account which is a precondition for a potential energy 

barrier for magnetization reversal.
43,44

  The zero field splitting parameter D in this case is around -0.5 

cm
-1

 and the sign of the D indicates the energy barrier as shown in Figure 3.2. If D is negative that 

means it is easy axis type anisotropy. 

 

 

Large energy barrier contribute in the magnetization of SMM in one direction. For Mn12OAc molecule 

barrier is between E (ms = 0) – E (ms = ±10) = 100D = 70 K. When magnetic field is applied at 2 K in 

order to magnetize the above mentioned molecule it was observed that after removing the magnetic 

field, even after two months, magnetization is about 40 % of the saturation.
45,46

 After few studies, 

magnetic hysteresis loops for Mn12OAc was calculated and likelihood of magnetic data storage at the 

molecule was observed by looking at the hysteresis loop 
8
. 

After the observations of interesting properties in molecule Mn12OAc leads to new beginnings in 

development of molecular nano-materials. Large numbers of molecular complexes were synthesized as 

SMMs based on d-block and f-block ions.
47–49

 due to their large spin ground states. SMMs are 

interesting because of their magnetic bi-stable nature i.e energy barrier between reversal of a spin form 

Figure 3.2: Plot of the potential energy versus the magnetization direction for a SMM with a ground state spin of S = 10.  
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+Ms to –Ms, represented in the form of double well potential energy shown in figure 3.3 in which each 

well means the lowest energy ±Ms and it is usually given by:  

 𝑼𝒆𝒇𝒇  =  𝑆2|𝐷| 3.1 

 

 
𝑼𝒆𝒇𝒇  = (𝑆2 −

1

4
) |𝐷| 

3.2 

 

Where S is the ground state spin of the system, equation (3.1) is for integer and equation (3.2) is for non-

integer spins respectively, D is the ZFS parameter. D is positive if smallest Ms state is lower in energy 

than the larger Ms state but D is negative when it is vice versa. When U i.e. energy barrier of a system is 

greater than the thermal energy, system remains magnetized even after removing an applied magnetic 

field because the system cannot rearrange its magnetic moment, hence it remain in a potential energy 

minimum. This is also responsible for a magnetic hysteresis at low temperatures.
50,51

 

If the ground state spin of the complex is S > ½, then it leads to zero field splitting (ZFS) which can be 

expressed by Hamiltonian given below:
52

 

 
�̂� = 𝐷 [�̂�𝑧

2 −
1

3
𝑆(𝑆 + 1)] + 𝐸(�̂�𝑥

2 − �̂�𝑦
2) 

3.3 

 

Where S is the total spin, D and E are the zero field splitting (ZFS) parameters; E is the rhombic ZFS 

parameter and D is the axial ZFS parameter; expressed as; 

 
𝐷 =  

3

2
𝐷𝑧𝑧 

3.4 

 

 
𝐸 =

1

2
(𝐷𝑥𝑥 − 𝐷𝑦𝑦) 

3.5 

 

Dxx, Dyy and Dzz (in equation 3.4 and 3.5) are principle values of the D tensor.  

The Spin-Hamiltonian to describe the coupling of the two spins centers can be given as 
53,54

 

 𝐻𝑆𝐻 = −2𝐽𝑆1. 𝑆2 3.6 

 

The Hamiltonian has a spin states which are related to spin quantum number S in order of a range of |S1 

+ S2| to |S1 - S2|. Energy between two states are calculated as  
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 Δ𝐸(𝑆) = 𝐸(𝑆) − 𝐸(𝑆 − 1) = −2𝐽𝑆 3.7 

 

 3.1   Transition metals  

Researchers are very curious, when it comes to d-block systems because inspite of having several 

disadvantage like, 

i. Magnetic moments are smaller 

ii. Spin-orbit coupling constant is not very high 

iii. Ligand field coupling is stronger than the spin orbit coupling which extinguish first order 

orbital contribution. 

this makes it less suitable for having high Ueff and/or hign blocking temperature (TB), if it is compared 

with their equivalent lanthanides. However, as more knowledge in the study of 3d single-molecule or 

single-ions in a ligand filed is gained, new ideas that give permission to couple the anisotropy of ions to 

create a poly-nuclear system can begin. In last decades, large number of studies have been done on first 

row transition elements like Mn(II), Fe(II), Co(II), Ni(I)(II) and Cr(II)
11,12,51

. 

Anisotropic zero field splitting parameter D and E play role in lifting the degeneracy of the MS levels 

related to a given S. There are two possible ways that contribute in the ZFS and consequently to the 

magnetic anisotropy: 

i. First order spin-orbit coupling which explains the mixing of spin and orbital angular momentum 

in the ground state of a molecule 

ii. Second order spin-orbit coupling which means mixing of excited states with the ground state. 

To measure the splitting of states after spin-orbit coupling, spin-orbit coupling parameter (λ) is used 

which can be given as:
49–51

 

 
𝜆 =

𝜁

2𝑆
 

3.8 

 

Where ζ spin-orbit coupling constant and S is the total spin of the system  

In 3d ions, splitting of the orbitals depend on; 

 Geometry of the system 

 Valence state of the metal ion present in the system 
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 Nature of ligands 

 Size of d orbitals 

Orbitals in d-subshell pointing directly at the ligand experience more repulsion i.e. less stable and higher 

in energy.
55,56

 

 

 

Ni(II) in an octahedral ligand field is considered here as an example for second order spin orbit 

coupling, Ni
2+

 has d
8
 configuration which has 

3
F as ground term state which splits into three states 

3
A2g, 

3
T1g and 

3
T2g in octahedral field (shown in Figure 3.5(b)). As geometry of a molecule cannot be always 

be in accurately symmetric whether it is octahedral or tetrahedral. Thus, in distorted octahedral field, 

triplet ground state is no longer degenerate which result in mixing of 
3
T1g and 

3
T2g states with ground A 

term. This lifting of degeneracy of states is responsible for anisotropy, which is important for knowing 

the properties of SMM. 
57

 

Figure 3.3 Crystal field splitting in some common geometries 
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In Figure 3,5(a), Co
2+

 is taken here as an example, In case of Co
2+

 ground state term is 
4
F which in 

octahedral field splits into 
4
T1g, 

4
T2g and 

4
Ag.. 

4
T1g is ground state term, with 

4
T2g and 

4
Ag as first and 

second excited states. 

  

(a) 

Figure 3.4 Tanabe –Sugano diagram for (a) d
7
 system; (b) d8 system and (c) orgel diagram( Source: Wikipedia) 
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However as explained in orgel diagram in Figure 3.6 ground state term is different for different 

coordination number and geometry.
58

 This illustrates that by changing the coordination number which in 

turn changes the geometry of a system; it can lead to huge changes in the magnitude of magnetic 

anisotropy of d-block metal ions, which is a governing property of magnetic behavior of SMM.  

 3.2   Lanthanide Metal 

In case of lanthanides, orbital angular momentum plays an important role for the calculations of 

magnetic properties. Rare-earth ions do not behave like transition metal ions, in case of d electrons f 

transition metal crystal field splitting is stronger than spin orbit coupling as mentioned in above section, 

however, when it comes to 4f metal ions spin orbit coupling is stronger than crystal field effects.
59

 

Electron-electron interaction, Ligand-field, spin-orbit coupling, exchange interaction and magnetic field 

are responsible for splitting of the electronic states of a magnetic system. Behavior of electrons present 

in d orbitals and f orbitals in the presence of different effect interactions
60

 can be observed as 

 4f has Hex smaller than HLF and Hso. 

 Hmag and Hex has comparable energy  

General electronic configurations of 4f atoms is [Xe]4f
n
6s, with n increasing from 0 to 14,

 
however, 

there are few exceptions like La, Ce, Gd, Lu with the electronic configuration of [Xe]4f
n
5d

1
6s

2
. In 

lanthanides, trivalent state is most stable that means loss of 5d and 6s electrons.
61

 

  

(b) 

Figure 3.5: Orgel diagram for d
n
 configuration for tetrahedral and octahedral (Source: Wikipedia) 
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Information from unpaired 4f electrons are used to get ground multiplet 
2S+1

LJ, where S is total spin, L is 

total orbital angular momentum and J is total angular momentum.
62

 Spin-orbit coupling results in the 

splitting of the multiplet term with same L and S. If subshells are more than half filled then J = L+S is 

lowest in energy and if it is less than half-filled then J = L-S is lowest in energy. Energies of the term 

2S+1
LJ is given by  

 
𝐸 = (

𝜆

2
) [𝐽(𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆(𝑆 + 1)] 

3.9 

 

Here λ is the spin-orbit coupling as mentioned in equation 3.8. Each J has 2J+1 degeneracy states which 

can further split  in various other interactions as shown below.
63,64

 

 

 

If magnetic field is applied, 2J+1 level split into further MJ energy levels which is –J ≤ MJ ≤ 

+J.
56,59,60,63,64

  The Zeeman Effect can be defined by using spin Hamiltonian as 
60

 

 𝐻 = 𝜇𝐵. 𝑔𝐽. 𝐽. 𝐵 3.10 

 

Where 𝑔𝐽 is Landé factor which can be obtained by L, S and J;  

Figure 3.6 Energy scale of the 4f ions  
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𝑔𝐽 =  1 +

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

3.11 

 

Curie law is followed by lanthanide free ions for calculating the magnetic susceptibility; 

 
𝜒𝑀 =  

𝑁𝐴𝑔𝐽
2𝜇𝐵

2

3𝑘𝑇
𝐽(𝐽 + 1) 

3.12 

 

Here χ
M

 is the molar susceptibility and NA is the Avogadro number. 

 

 

In the present work, complexes with 3d and 4f ions are calculated and their magnetic properties are 

studied. Zero field splitting parameters, g-factors and magnetic susceptibilities calculated to see if or 

how the given complexes fit for SMMs. 

 

 

Table 3.1- Term symbols, landè factor, and magnetic susceptibility for 4f ions 
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 Quantum Calculations 4

The Schrödinger equation is the most elementary equation in non-relativistic quantum mechanics and it 

can be described as time- independent and time-dependent. Time-independent Schrödinger equation is: 

 �̂�Ѱ(x, R) =  𝐸Ѱ(x, R) 4.1 

 

x and R are space and spin coordinates of N electrons and spatial coordinates of M nuclei described by 

wave function Ψ. E is the total energy of the system and �̂� is Hamilton operator which includes the 

kinetic energy of electron and nuclei, potential energy of electron-nucleus interactions, electron-electron 

interaction and nucleus interaction(given in equ. 4.2) 

 

�̂� =  −
1

2
∑ ∇𝑖

2 −

𝑁

𝑖=1

1

2
∑

1

𝑀𝑎
∇𝑎

2

𝑀

𝑎=1

− ∑ ∑
𝑍𝑎

𝑟𝑖𝑎

𝑀

𝑎=1

𝑁

𝑖=1

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ∑ ∑
𝑍𝑎𝑍𝑏

𝑅𝑎𝑏

𝑀

𝑏>𝑎

𝑀

𝑎=1

 

4.2 

 

In above equation, a and b goes over all M nuclei, i and j goes over all N electrons. 

However, as the size of the system increases solving Schrödinger equation becomes effortful. Hence, for 

many-electron system approximate wave function is required. The variational method is an alternative 

solution for this issue. According to the variational theorem, energy calculated with any reference wave 

function Φ is always greater or equal to the ground state energy E0 

 〈Φ|�̂�|Φ〉

〈Φ|Φ〉
 ≥  𝐸0 

4.3 

 

Such reference wave function is usually constructed as CI wave function which is expressed as a linear 

expansion  

 

Ψ𝑘 = ∑ 𝑐𝑘𝐼Φ𝐼

𝑁

𝐼=1

 

4.4 

 



 

30 
 

Where ck is expansion coefficients and Φ𝐼 is basis functions. With the CI methods expansion coefficients 

are determined by variational method. The Hartree-Fock method is one of the variational methods with a 

function comprising of a Slater determinant. Hartree-Fock equation can be derived by minimizing the 

energy with respect to spin-orbitals 

 �̂�𝜙𝑖 = 𝜖𝑖𝜙𝑖 4.5 

 

Where �̂� is Fock operator which is an effective one-electron operator given as a  

 �̂� =  ℎ̂ + 𝐽 − �̂� 4.6 

 

ℎ̂ accounts for the kinetic energy of an electron and potential energy of the electron interacting with the 

nucleus, 𝐽 is the Coulomb operator describing Coulomb interaction of an electron with the other 

electrons and �̂� is exchange operator which is difficult to explain and does not have a simple classical 

explanation. It arises from the antisymmetry requirement of the wavefunction. The Hartree-Fock 

equations can be solved by the linear combination of N atomic orbitals (LCAO)
65

 to form MOs: 

 

𝜙𝑖 = ∑ 𝑐𝜇𝑖

𝑁

𝜇=1

𝜒𝜇 

4.7 

 

Where 𝑐𝜇𝑖 are the expansion coefficients and 𝜒𝜇 are the atomic orbitals. However, the Hartree Fock 

method has limitations. In HF theory the movement of electrons is correlated with the electron exchange 

only which inhibits two electrons with parallel spins to be in the same point in space. The possibility of 

finding electron i at some point is not effected by movement of another electron j if they have opposite 

spin. Also in the case where more than one electronic configuration is crucial for the understanding of 

certain near degenerate electronic states then HF method has shortcomings. 

 4.1 Complete Active Space Self Consistent Field 

As discussed above single reference approach is not valid where an orbital near-degeneracy problem 

appears. In multi reference method wave functions, single excitations are required from inactive to 

virtual, inactive to active and active to virtual orbitals complying with Brillouin’s theorem.
66

 Complete 

active space self-consistent field (CASSCF) wave function consist of CI expansion of active orbital 

subspace including core-virtual, active –virtual and core –active excitations.
67

 In this method, all 
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determinants which are derived from the set of active orbitals are treated as a reference function. Active 

space CAS(N,M), which represents N electrons in M orbitals, is given by total spin and a fixed set of 

orbits as linear combination of slater determinants which includes all possible states represented by N 

electrons in M orbitals.  

 

 

Configuration state function (CSF) or sum of slater determinants is taken as a wave function (𝜓0) for 

multi reference method. Single excited wave function can be modified under Brillouin condition:
67

 

 
𝜓𝑝𝑞 =  

1

√|𝛾𝑝𝑝 − 𝛾𝑞𝑞|

�̂�𝑝𝑞𝜓0 
4.8 

 

Where �̂�𝑝𝑞 is a spin averaged excitation operator, 𝛾𝑝𝑝 is the occupation number of the orbital, 𝜓𝑝𝑞 is 

single excited function.  

Two operators can be used to show the excitations as expressed in equation 3.4 and 3.5. Here indices 

p,q,r,s represents general molecular orbital, indices i,j,k,l represents core MO and indices t,u,v,w as 

active molecular orbitals 

 𝐹𝑝𝑞
𝑐𝑜𝑟𝑒 =  ℎ𝑝𝑞 + ∑{2(𝑝𝑞|𝑖𝑖) − (𝑝𝑖|𝑞𝑖))}

𝑖

 
4.9 

 

 
𝐺𝑝𝑞

𝑎𝑐𝑡 =  ∑ 𝛾𝑡𝑢

𝑡𝑢

{(𝑝𝑞|𝑡𝑢) −
1

2
(𝑝𝑡|𝑞𝑢)} 

4.10 

 

Figure 4.1: CASSCF orbitals, where inactive orbitals are doubly occupied and full CI calculations are carried out in active space 
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CASSCF method includes complete CI calculation in the active space, density matrices calculations, 

operators 𝐹𝑐𝑜𝑟𝑒, 𝐺𝑎𝑐𝑡 and 𝐽 running over the active orbitals 

Magnetic properties of the metal complexes are calculated and interpreted with sufficient accuracy by 

using certain existing programs.  Zero field splitting parameters, are anisotropy parameters g-factors and 

magnetic susceptibilities calculated using the SCF; CASSCF and SOCI programs. The further 

development and implementation was done by T Bodenstein
68

 by taking the methods for calculating 

magnetic properties of the Bochum program package for the ab initio calculation of open-shell 

electronic structures which was originally developed in the working group of V.Stammeler (Bochum). 

Versions from Bochum, Karlsruhe and Tübingen (in collaboration with R.F. Fink) of individual 

programs put together.  

4.2 CAS-SO-CI approach 

Low-lying spin states of a spin system is described by using method of configuration interaction (CI), 

wave function for all possible spin configuration is generated within the set of active orbitals and the 

many-electron Hamiltonian is diagonalized with in the full space of all these possible spin 

configurations. These calculations result in the energies of the low –lying spin states and from there by 

using equation 3.7 exchange coupling constant J can be calculated. However, this method often resulted 

in not so accurate numerical values and also it was computationally costly to get more accurate values. 

In CAS-CI approach, molecular orbitals are divided in to three subspaces: inactive space, active space 

and virtual space just like CASSCF method The single set of orthogonal molecular orbitals obtained by 

a state-averaged CASSCF calculation is further used by CAS-CI calculations, where a full CI in the 

active space is done and it gives explanation of all electronic states that belong to the active space.  

However, in CAS-CI, LS state covalent state is stronger than the ionic state; therefore, orbitals produced 

by state averaged CASSCF method have good description of covalent states than the ionic i.e charge 

transfer states. Hence, energy for the charge transfer is not accurate by covalent orbitals which led to 

underestimation of values of J. Modified CAS-CI (MCAS-CI) approach
54

 corrects the charge transfer 

state in the wave function by taking relaxation energy (R) for the charge transfer state. This method is 

not computationally costly and do not involve complicated calculations of matrix elements.  

Implementation for the calculation of spin-orbit coupled CAS-CI method is done by T.Bodenstein
68

 for 

spin-orbit calculations. It includes algorithm based on the determinant-based full CI approach by 



 

33 
 

Knowles and Handy
69

 and the SOCI method by Sjøvoll, Gropen and Olsen.
70

 The implemented 

Hamiltonian includes: 

 �̂� = �̂�0 +  �̂�𝑠𝑜 +  �̂�𝑍𝑀 + �̂�𝑀𝐶𝐴𝑆𝐶𝐼 4.11 

 

Where �̂�0 is the electronic Born-Oppenheimer Hamiltonian, �̂�𝑆𝑂is spin-orbit operators, �̂�𝑍𝑀 is Zeeman 

operator and �̂�𝑀𝐶𝐴𝑆𝐶𝐼 operator. 

Davidson diagonalization
71

 (59) method is used for the diagonalization of the CI matrix, as for the large 

active space, the memory requirement of an N × N matrix makes difficult for direct diagonalization. In 

the implemented program
68

 used for these calculations, Diagonal elements and relaxation energies ca be 

calculated directly. Matrix vector products can be calculated independently of each other. According to 

the implemented Block-Davidson algorithm, it acts as an iterative subspace in which eigenvector 𝑐𝑘, the 

kth eigenvector of the Hamiltonian, is converted in a linear vector:
68,72

 

 

𝑐𝑘 = ∑ 𝑎𝑖
𝑘

𝐵

𝑖

𝑏𝑖 

4.12 

 

Where 𝑏𝑖 is the basis and the 𝑎𝑖
𝑘 are expansion coefficients 

As mentioned in reference 46, if a basis does not contain any part of a vector, algorithm may not 

converge but by starting with the appropriate basis, this problem can be fixed. 

4.1.1 Spin orbit operators: 

If relativistic contribution is considered for many-particle states, the starting point for the derivation of 

relativistic Hamiltonian generally is the relativistic equations of motion. Relativistic corrections can be 

made. In the present program
68

, calculation of the energy differences in systems is done in which the 

non-scalar spin orbit effects dominate which includes spin orbit coupling and spin dipolar interaction
73

. 

For a good approximation of quasi-relativistic description, this associated Hamiltonian operator can be 

used: 

 
�̂�𝐷𝐶𝐵 = ∑ �̂�𝐷𝑖𝑟𝑎𝑐

𝑖

(𝑖) +
1

2
∑ �̂�𝑐𝑜𝑢𝑙𝑜𝑚𝑏(𝑖, 𝑗) +

𝑖𝑗

 �̂�𝐵𝑟𝑒𝑖𝑡(𝑖, 𝑗) 
4.13 

 

 �̂�𝐵𝑟𝑒𝑖𝑡(𝑖, 𝑗) = �̂�𝑅𝑒𝑡𝑎𝑟𝑑𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗) +  �̂�𝐺𝑎𝑢𝑛𝑡(𝑖, 𝑗) 4.14 
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Where �̂�𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝑖, 𝑗) =  
1

𝑟𝑖𝑗
 explains the instantaneous Coulomb interactions, �̂�𝐵𝑟𝑒𝑖𝑡(𝑖, 𝑗)is the 

relativistic corrections to the two-particle interactions. The �̂�𝑅𝑒𝑡𝑎𝑟𝑑𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗) corrects the electrostatic 

interaction and �̂�𝐺𝑎𝑢𝑛𝑡(𝑖, 𝑗) term is for magnetic interaction between two electrin current. 

Equation 4.13 results as the beginning for many approximations. The Zeeman interaction of the spin 

magnetic moment of an electron induces the magnetic field in the presence of an electric field E 

 �̂�𝑠𝑜
(1)(𝑖) =

𝑒

2𝑚𝑒𝑐2
�̂�𝑖

𝑇(𝐸 × �̂�𝑖) 
4.15 

 

Equation 4.15 takes different form because of the electric field resulted by the atomic nuclei K, where 

the angular momentum operator of the electron i with respect to the nucleus K with the distance of riK. 

 
�̂�𝑠𝑜

(1)(𝑖) = ∑
𝑍𝐾𝑒2

8𝜋𝜖0𝑚𝑒
2𝑐2

𝐾

�̂�𝑖
𝑇(�̂�𝑖𝐾 × �̂�𝑖)

𝑟𝑖𝐾
3  

4.16 

 

However, for multi electron systems, fields generated by the other electrons are also taken into account 

and the resulting effective interactions results in three spin orbit operators: 

 
�̂�𝑆𝑂

(1)
=

𝛼2

2
∑

𝑍𝐾�̂�𝑖
𝑇𝑙𝑖𝐾

𝑟𝑖𝐾
3

𝑖𝐾

, 
4.17 

 

 
�̂�𝑆𝑠𝑂

(2)
= −

𝛼2

2
∑

�̂�𝑖
𝑇𝑙𝑖𝑗

𝑟𝑖𝑗
3

𝑖𝑗

, 
4.18 

 

 
�̂�𝑆𝑜𝑂

(2)
= −

𝛼2

2
∑

�̂�𝑖
𝑇𝑙𝑖𝑗

𝑟𝑖𝑗
3

𝑖𝑗

, 
4.19 

 

 

Above mentioned spin-orbit operators explains one electron interaction and two electron interaction. 

Equation 4.18 explains the interaction of the spins of electron’s own movement in the presence of other 

electrons and equation 4.19 gives the interaction of spin of one electron with the orbitals movement of 

the other electron. The two-electron term have a different sign and hence compensate parts of single-

particle terms 4.17 which physically corresponds to the observed shielding. 

Spin Hamiltonian after taking spin operator into account results in: 

 �̂�𝑆𝑂 = �̂�𝑆𝑂
(1)

+ �̂�𝑆𝑠𝑂
(2)

+  �̂�𝑆𝑜𝑂
(2)

 4.20 
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For excitation i         j, two Slater determinant consisting spin orbit operator takes a form of: 

 
�̂�𝑖𝑗

𝑆𝑂 = 〈𝑖|ℋ̂𝑆𝑂(1)|𝑗〉 +  
1

2
∑ 𝑛𝑘

𝑘

{〈𝑖𝑘|ℋ̂𝑆𝑂(1,2)|𝑗𝑘〉 − 〈𝑖𝑘|ℋ̂𝑆𝑂(1,2)|𝑘𝑗〉

− 〈𝑘𝑖|ℋ̂𝑆𝑂(1,2)|𝑗𝑘〉}                                                                        
 

 

4.21 

 

 

ℋ𝑆𝑂(1) and ℋ𝑆𝑂(1,2) are spin orbit operators as discussed above and 𝑛𝑘 is the occupation number. By 

adding the fix occupation number factor in equation 4.21 mean-field approach can be introduced by 

taking the average over the two-electron contribution of the valence shell or in case of CASSCF 

calculations average over the two electron contribution over active space.
73

  

 
�̂�𝑝𝑞

𝑆𝑂𝑀𝐹 = 〈𝑝|ℋ̂𝑆𝑂
(1)

|𝑞〉 +  
1

2
∑ 𝑛𝑟

𝑓𝑖𝑥(𝑟)

{〈𝑝𝑟|ℋ̂𝑆𝑂
(2)

|𝑞𝑟〉 − 〈𝑝𝑟|ℋ̂𝑆𝑂
(2)

|𝑟𝑞〉

− 〈𝑟𝑝|ℋ̂𝑆𝑂
(2)

|𝑞𝑟〉}     

                                                                    
 

 

4.22 

 

In the present program, �̂�𝑆𝑂𝑀𝐹 operator also considers different shielding effects in atomic shells that 

cannot be generated by a single scaling factor. The two-electron term works efficiently for lanthanide 

systems also. 

 4.2  Zero Field Splitting Parameters 

The Zero field splitting parameters (D; and E) considered as a fitting parameters for experimentally 

determined electron paramagnetic resonance (EPR). The main source of ZFS is interaction of the orbital 

angular momentum and spin angular momentum which results in lifting of the degenerate states with 

few cm
-1

.  

The components of the tensor including only angular momentum operator led to the magnetic 

parameters, which results in different spins and calculation of magnetization, magnetic susceptibility.
74

 

Generally, effective Hamiltonian for calculating the zero field splitting (ZFS) in the absence of magnetic 

field is given as  

 �̂�𝑆
𝑍𝐹𝑆 = �̂�𝑇𝐷�̂� 4.23 
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Where �̂� is the spin operator and D is 3 × 3 matrix 

 

𝐃 =  (
𝐷11   𝐷12    𝐷13

𝐷21  𝐷22   𝐷23

𝐷31  𝐷32   𝐷33

) 

4.24 

 

 

As D is a traceless tensor i.e sum of diagonal elements is zero. First, analytical matrix of effective 

Hamiltonian is expressed non diagonal tensor with a complete D component and then diagonalization is 

performed to get the ZFS tensor components. Matrix elements ⟨𝑆, 𝑀𝑠|𝐻|𝑆, 𝑀𝑆
′⟩ are solved to get D 

tensor. 

The ZFS Hamiltonian takes a form of  

 
�̂�𝑆

𝑍𝐹𝑆 = 𝐷 (�̂�𝑧
2 −

1

3
�̂�2) + 𝐸(�̂�𝑥

2 − �̂�𝑦
2) 

4.25 

 

Where S is the total spin and  �̂�2 =  �̂�𝑥
2 + �̂�𝑦

2 + �̂�𝑧
2, D and E are zero field parameters.. D is axial 

parameter and E rhombic parameter. These two parameters play an important role for magnetic 

anisotropy. These two parameters are related to the diagonal elements of the tensor 

 
𝐷 =  

1

2
(−𝐷𝑥𝑥 − 𝐷𝑦𝑦 + 2𝐷𝑧𝑧) =  

3

2
𝐷𝑧𝑧 

4.26 

 

 
𝐸 =  

𝐷𝑦𝑦 − 𝐷𝑥𝑥

2
 

4.27 

 

Relationship between D and E is given by  

 |D| ≥ 3𝐸 ≥ 0 4.28 

 

Matrix elements are calculated with |𝑆, 𝑀𝑆⟩ spin functions of the ground state and diagonalization is 

performed on the obtained matrix producing the energies of the sub-levels after spin-orbit coupling.
75,76

 

If D is positive that means system has easy plane magnetism however if D is negative that means system 

has easy axis magnetism which shows magnetic axis lies in z axis. 

However, for a system with  𝑆 ≥ 2, the relative Hamiltonian can be expressed as Stevens operator; 
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H =  ∑ ∑ 𝐵𝑘
𝑞

𝑘

𝑞= −𝑘𝑘

�̂�𝑘
𝑞
 

4.29 

 

 

Where 𝐵𝑘
𝑞
 is crystal field parameter and �̂�𝑘

𝑞
 are operator equivalent, k is the rank and q is order which 

can be even, odd, positive and negative. 

From last decades many researchers worked on extended Stevens operator, from conventional Stevens 

operator by Stevens in 1952 to Rudowicz (1985, 1987, 1988) to Hoffman (1990) to Ryabov(1999).
77

 

Generalized algebraic for of ESOs can be represented in terms of angular momentum operators  

 

𝑂𝑘
𝑞 =

𝛼

2𝐹𝑘,𝑞
∑ 𝑎(𝑘, 𝑞; 𝑚)[𝐽+

𝑞 + (−1)𝑘−𝑞−𝑚𝐽−
𝑞]𝐽𝑧

𝑚

𝑘−𝑞

𝑚=0

               

  (𝑞 = 0,1,2 … … , 𝑘) 

4.30 

 

Where factor 𝛼 = 1 for all q if k is an odd integer and 𝛼 = 1 or ½ for even and odd q with even k and F is 

a coefficient with largest common factor for all a(k, q; m). 

In the program, the spin-orbit-coupled wave functions are projected onto this subspace. The SOCI wave 

functions then subjected to a Löwdin orthogonalization.
78

 This has the advantage of to preserve the 

original character of the wave functions. Then, the numeric effective Hamilton operator constructed on 

the basis of the eigenfunctions of �̂�𝑧 in S. 

 4.3  Calculation of g-matrices  

In the presence of external magnetic field, energy levels of a system split into respective sub levels. This 

can be describe by model Zeeman Hamiltonian  

 �̂�𝑍𝐸 =  g. 𝜇𝐵. 𝐵. 𝑆 4.31 

 

Where S is total spin, B is magnetic field and g is g-tensor which describes direction of the magnetic 

axis.  

In the case of free atoms, ion or lanthanides where total angular momentum J dominates and energy 

levels of J is given as 2J+1. 

According to Wigner-Eckart theorem, Zeeman Hamiltonian can be written as  
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 �̂�𝑍𝐸 =  𝑔𝐽. 𝜇𝐵. 𝐵. 𝐽 4.32 

 

Where 𝑔𝐽 Landé formula as is mentioned in above sections. Landé factor can be derived by using 

equation 4.32 which can be also written as   

 �̂�𝑍𝐸 =  𝜇𝐵. 𝐵. (𝐿 + 𝑔𝑠𝑆) 4.33 

 

 

Assuming 𝑔𝑠 = 2  

 
𝑔𝐽 = 1 +

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
  

4.34 

 

 

But in the above mentioned case few assumptions are made and should also keep in mind that with the 

consideration of uniform magnetic field, one should also consider the non-uniform field generated by 

nuclear magnetic field and electric quadrupole moments which is responsible for hyperfine structure and 

it is very sensitive to the atomic wave function. 

Zeeman interaction can be put into three categories and gives the details about the properties of an ion 

embedded with ligand  

4.3.1 In the presence of weak field 

In the presence of weak field, spin orbit multiplets are closer resulting in the lift of degeneracy of J 

multiplets. In weak field; J is approximated as good quantum number. Example for this case is rare earth 

ions, as in rare earth 4f ions are shielded by the by the 5s and 5p orbitals which pushes ligand ions away. 

4.3.2 In the presence of Intermediate field 

This case is suitable for many iron salts where first crystal field effect is considered and after that spin-

orbit coupling affect is studied as a perturbation. 

4.3.3 In the case of strong field 

In the case of strong field, L and S considered as strong quantum number. It can be seen in transition 

ions where crystal field energy is stronger and the ground state energy splits into crystal field term. In 

this case crystal potential is changed by one-electron orbit and new configuration of minimum energy is 
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calculated and then electron-electron interaction was switched on. Usually, case of strong field is related 

to covalent bonding in which wave functions containing the explanation of localized terms of magnetic 

behavior of an ion are inadequate. But many properties can be studied by symmetry of the surroundings. 

In the current program 
68

, g-factor is calculated by using two different approaches: (i) Sampling method 

(ii) ,Mapping  method. In anisotropic materials, g predicts the shape of matrix. For a pseudospin S = ½, 

Zeeman splitting is given by 

 
∆𝐸𝑍

�̃�=1/2
= 𝜇𝐵√∑ 𝐵𝑖

𝑖𝑗𝑘

𝑔𝑖𝑘𝑔𝑖𝑘𝐵𝑗 
4.35 

 

4.3.4 Sampling Method 

In this method, a grid is described around the magnetic system and a finite magnetic field with varying 

strength in the defined direction is applied. The electronic states energies in the presence of the magnetic 

field are calculated by using perturbation theory.
79

 G-factor was considered constant dimensionless 

quantity with the value approximately ≅ 2.00232 but later it was established that spin-orbit interaction is 

the main reason for the deviation from the constant g-factor value of the free electron.
80,81

 In the 

presence of magnetic field, behavior of electronic states is adapted to a linearly Zeeman expression 

(−
∆𝐸

∆𝐵
) ~𝑔𝜇𝐵∆𝑀𝑆 

 4.35 

 

 

The linear contribution to the g-factor can be determined for a given Ms value. Magnetic Induction is 

then projected onto a hemisphere. In the implemented project, an icosahedron is inscribed with surfaces 

labeled. as n-fold In this way 10n
2
 geodesic triangles are constructed in the hemisphere. Then the vector 

with the largest g-factor is identified as the main magnetic axis. After that coordinates on a circle which 

are orthogonal to first vector are scanned. Then the third axis is calculated by calculating the vector 

product of the first two. 

4.3.5 Mapping Method 

In the Zeeman splitting, given in equation 4.34 the products of the g-matrices can be combined as 

𝐆 = 𝐠𝐠T  4.36 

 

Where T indicates transponation 

 

Figure 4.2: Mapping Method (Adapted from Reference 64) 
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The G converts like a Cartesian symmetrical tensor known as Abragam-Bleaney tensor. The g-factors 

correspond to the square roots of the eigen values of G, the main magnetic axes the eigen vectors. For 

calculation of G, the values generated by equation 4.31 and 4.33 in pseudospin base Zeeman splitting 

can be connected with each other.
68

 

The elements of G can be calculated by comparing coefficients.
68,82

 For �̃� = 1/2 results in: 

ΔE =  𝜇𝐵√2 ∑ 𝐵𝑖

𝑖𝑗

𝐵𝑗 ∑ 〈𝐾𝑛
𝜀|�̂�𝑖 + 𝑔𝑒�̂�𝑖|𝐾𝑛

𝜀〉

𝜀,𝜀′=+,−

〈𝐾𝑛
𝜀′

|�̂�𝑗 + 𝑔𝑒�̂�𝑗|𝐾𝑛
𝜀′

〉 
 4.37 

 

 

Here, the sum  ∑𝜀,𝜀′ goes through over the two components of the nth Kramer doublet in the energy 

levels. Whereas for pseudospin �̃� = 1, this expression changes a bit and the sum runs over three 

components of the pseudo triplets.  Equation 4.34 gives the following for components 

𝐺𝑖𝑗
𝑛,�̃�=1/2

=  2 ∑ 〈𝐾𝑛
𝜀|�̂�𝑖 + 𝑔𝑒�̂�𝑖|𝐾𝑛

𝜀〉

𝜀,𝜀′=+,−

〈𝐾𝑛
𝜀′

|�̂�𝑗 + 𝑔𝑒�̂�𝑗|𝐾𝑛
𝜀′

〉 
 4.38  

 

 

As part of SOCI calculation, first the Zeeman matrices in the three spatial directions in CI basis 

constructed and then transformed into the spin-orbit coupled SOCI states. By using equation 3.35, the 

elements of the tensor G is calculated and through diagonalization of the g-factors and the main 

magnetic axes can be found out. 

 4.4 Magnetic Susceptibility 

General equation  −�⃗�. �⃗⃗� is used to determine the energy of the system in the magnetic field from the 

beginning. From this equation 4.35 can be derived. The ZFS is may not only the reason for the 

anisotropic behaviour, as well because of orbital degeneracy and spin-orbit coupling in direct manner.
83

 

Response of the spin states to a field perturbation can be determined by studying the experimental 

magnetic properties. The magnetization (M) can be determined:  
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𝑴(𝐵, 𝑇) =  
𝑁𝐴

𝑍(𝐵, 𝑇)
∑ 𝜇𝑆,𝑀𝑆

𝑆,𝑀𝑆

exp (−
𝐸𝑆,𝑀𝑆

(𝐵)

𝑘𝐵𝑇
) 

 4.39 

 

 

Where NA is the Avogadro number which after multiplying, and the denominator is the partition 

function: 

𝒁(𝐵, 𝑇) =  ∑ exp (−
𝐸𝑆,𝑀𝑆

(𝐵)

𝑘𝐵𝑇
)

𝑆,𝑀𝑆

 
 4.40  

 

 

Where kB is the Boltzmann constant which is equal to 1.380 × 10−23J. K−1 and energy expressed in cm
-

1
, it is equal to 0.695 cm−1. K−1 

But if the system is behaving anisotropic then keeping in mind the state specific magnetic moments 

derived from equation 4.35 results in the magnetization as: 

𝑴(𝐵, 𝑇) =  𝑁𝐴𝑘𝐵𝑇
𝑑 ln (𝑍(𝐵, 𝑇))

𝑑𝐵
 

 4.41  

 

 

Result of macroscopic sample depends on the temperature. The magnetic susceptibility is variation of 

the magnetization in the presence of different field 

𝝌(𝐵, 𝑇) =  𝑁𝐴𝑘𝐵𝑇
𝑑2 ln (𝑍(𝐵, 𝑇))

𝑑𝐵2
 

 4.42  

 

 

In general to determine the properties of a magnetic material, the simulation of experimental data was 

done by using the spin Hamiltonian operators and this experimental data is usually acquired from the 

measurement with SQUID magnetometers. Susceptibility curves are obtained by simulating 

magnetization (M) of a canonical ensembles (u, v ∈  {𝑥, 𝑦, 𝑧}) : 

𝝌𝒖𝒗 =  
𝜕𝑀𝑢

𝜕𝐻𝑣
 

 4.43 
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𝝌𝒖𝒗 =  𝑁
𝜕

𝜕𝐻𝑣

∑ (−
𝜕𝐸𝑛

𝜕𝐻𝑢
)𝑛 𝑒𝑥𝑝 (−

𝐸𝑛

𝑘𝐵𝑇
)

∑ exp (−
𝐸𝑛

𝑘𝐵𝑇
)𝑛

 

 4.44 

 

 

Magnetization behaves approximated linearly 𝑀 ≈  𝜒𝐻 in small field. By taking the Boltzmann average 

over all the possible states, magnetic susceptibility can be calculated. Magnitude of the Zeeman splitting 

produced by the field in the experiments is generally very small, thus in equation 4.44 differential 

quantity (
𝜕𝐸𝑁

𝜕𝐻𝑢
) can be substitute with a difference instead:

79
 

𝝌𝒖𝒗 ≈  
𝑁

𝐻𝑣

∑ (−
𝜕𝐸𝑛

𝜕𝐻𝑢
)𝑛 𝑒𝑥𝑝 (−

𝐸𝑛

𝑘𝐵𝑇
)

∑ exp (−
𝐸𝑛

𝑘𝐵𝑇
)𝑛

 

 4.45 

 

 

≈  
𝑁

𝐻𝑣

∑ (−
𝐸𝑛(𝐻𝑢) − 𝐸𝑛(0)

𝐻𝑢
)𝑛 𝑒𝑥𝑝 (−

𝐸𝑛

𝑘𝐵𝑇
)

∑ exp (−
𝐸𝑛

𝑘𝐵𝑇
)𝑛

 

 4.46 

 

 

Susceptibility is determined by this approximation using weighted energy differences. With the help of 

the partition function in equation 4.47, equation 4.44 can additionally be expressed as equation 3.48: 

𝒁 =  ∑ exp (−
𝐸𝑛

𝑘𝐵𝑇
)

𝑛
 

 4.47 

 

 

𝝌𝒖𝒗 =  𝑁𝑘𝐵𝑇
𝜕2 ln 𝑍

𝜕𝐻𝑣𝜕𝐻𝑢
 

 4.48 

 

 

The differential part in equation 4.48 shown above can be determined numerically also; 

𝜕2𝑍(𝐻)

𝜕𝐻𝑢
2

=  
𝑍(𝐻 − ℎu) − 2𝑍(𝐻) + 𝑍(𝐻 + ℎu)

ℎ2
+ 𝑂(ℎ2) 

 4.49 
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In the implemented program, in order to determine the magnetic susceptibilities energies of all interested 

states in a temperature range are needed. These energies are obtained by diagonalizing spin Hamiltonian 

operators. The program is using the Fortran program by V.Staemmler (Bochum). This program 

determines the eigenvalues of a Hamiltonian operator with the magnetic centers i,j,…: 

�̂�𝑆 = ∑ ∑ 𝐽𝑖𝑗�̂�𝑖
𝑇�̂�𝑗 + ∑ 𝐷

𝑛

𝑖=1

𝑛

𝑗>𝑖

𝑛

𝑖=1

�̂�𝑧,𝑖
2 + 𝜇𝐵 ∑ �̂�𝑧,𝑖𝑔𝑖

𝑛

𝑖=1

𝐻𝑧 

 4.50 

 

 

To determine the magnetic properties of n number of centers, Dimension of the product of Zeeman 

states is given by  

�̂�𝑧,𝑗 ⊗𝑖=1
𝑛 |𝑖, 𝑆𝑖, 𝑀𝑆,𝑖⟩ = 𝑀𝑆,𝑗 ⊗𝑖=1

𝑛 |𝑖, 𝑆𝑖, 𝑀𝑆,𝑖⟩  4.51 

 

𝐷𝑖𝑚(𝑆) =  ∏
𝑖=1

𝑛

(2𝑆 + 1) 
 4.52 

 

Equation 4.52  result in increase of number states and therefore, for huge Hilbert spaces Davidson-Liu 

algorithm as discussed in the above section is used to determine the lowest energy states. Additionally, 

Program was updated to add the part to calculate rhombic zero-field splitting parameter E along with the 

anisotropic g-factors which result in complex spin Hamiltonian operator: 

�̂�𝑆 = ∑ ∑ 𝐽𝑖𝑗�̂�𝑖
𝑇�̂�𝑗 + ∑ 𝐷𝑖(�̂�𝑧,𝑖

2

𝑛

𝑖=1

𝑛

𝑗>𝑖

𝑛

𝑖=1

−
1

3
𝑆𝑖(𝑆𝑖 + 1) +

𝐸𝑖

𝐷𝑖
(�̂�+,𝑖

2 + �̂�−,𝑖
2 ))

+ 𝜇𝐵 ∑ �̂�𝑖
𝑇

𝑛

𝑖=1

𝐷𝑖𝑎𝑔(𝑔𝑥,𝑖, 𝑔𝑦,𝑖 , 𝑔𝑧,𝑖)𝐻 

 4.53 

 

 

To stimulate the magnetic susceptibilities, equation 3.44 or equation 3.46 is used. In the present thesis, 

few 3d and 4f complexes are studied to investigate the respective magnetic properties of the complex. 

The implemented program present is used to calculate the eigen-states of a multi spin Hamiltonian 

operator described in equation 4.53 and to simulate the magnetic susceptibilities in order to compare it 

with the experimental data. 
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 4.5  Calculation Scheme 
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 Applications (I)-Transition Metals (3dn) 5

In the present work, magnetic properties of transition metal (Ni and Co) complexes are calculated for 

different systems including mononuclear and polynuclear complexes by applying various theoretical 

methods. The aim is to search for SMMs. Criteria for this are ground states with large S values which 

can for example be achieved by strong ferromagnetic exchange 
11

. Furthermore magnetic anisotropy is 

needed. For this purpose, understanding of zero field splitting is crucial. The zero field splitting 

parameters are not only important in the field of single molecule magnets but also for numerous 

applications in bioinorganic chemistry and catalysis. Though, being an important factor it is difficult to 

measure ZFS parameters experimentally as the magnitude of these factors are very small, hence it is 

calculated computationally 
84

. Ni(II) and Co(II) transition metals are compelling choices for SMM, since 

these two 3d ions often exhibit considerable magnetic anisotropy and the probability is high that this can 

lead to high energy barriers
84–86

. Usually, the magnetic exchange-coupling between paramagnetic 

centers is studied with diamagnetic ligands. and magnetic exchange coupling can be interpreted by 

Goodenough-Kanamori rules.
87,88

 However, exchange coupling becomes weak if the distance between 

the centers is increased. One approach to obtain stronger couplings is to put paramagnetic ligands as 

bridging ligands which results in direct exchange interactions giving strong magnetic coupling.
89,90,91

 

One of the first studies done with radical ligands is V(tetracynoethylene) which produced excellent 

spontaneous magnetization above room temperature. After that a series of paramagnetic ligands has 

been studied including nitroxide, nitronyl nitroxide
92

, verdazyl and dithiadiazolyl radicals, and 

semiquinione
93

. Often, these paramagnetic ligands exhibited strong metal-radical exchange within the 

molecule. Below magneto-structural studies are shown to understand the behavior which is responsible 

for high or low anisotropies, ferromagnetic or antiferromagnetic spin-spin coupling. Therefore the 

electronic structures of Ni and Co complexes with radical ligands are investigated in the following 

sections. 
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5.1 Ni (II) 

 

 

 

 

As it is mentioned several times above that in case of transition metals, ligand field dominates spin orbit 

coupling, hence 
3
F further splits in to its three components i.e single 

3
A2g, 

3
T2g and 

3
T1g (as shown in 

Figure 5.1).In this work we will present three case studies with Ni(II) ion (i) mononuclear complex (ii) 

radical complex and (ii) polynuclear complex. The complexes are synthesized in the group of Prof. H.-J 

Krüger (Technical university of Kaiserslautern). Calculations shown here are based on the density 

functional theory (DFT) using TURBOMOLE
94

  package. Two basis sets def-SV(P) and def2-TZVP 

with the generalized gradient approximation (GGA) functional BP86 were used to perform each 

calculations. Firstly, for all Ni(II) complexes, only the positions of the hydrogen atoms were optimized 

using the X-ray structure. Then, these structures are taken to perform complete active space self-

consistent field (CASSCF) calculations with the program of Meier and Staemmler
67

 with code optimized 

by T .Bodenstein
68,128

 for magnetic systems. 

 

 

 

Figure 5.2: Ni-complex (1) 

Ni (II) has a 3d
8
 configuration giving rise to 25 states 

including 10 triplets and 15 singlets. In the SOCI all 45 

microstates belonging to this spin state have to be 

considered. In the free ion, this corresponds to F, P, D, G 

and S states among which 
3
F is the ground state. 

 

 

Figure 5 1 Scheme of LF splitting 
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5.1.1  [𝐍𝐢(𝐈𝐈)𝐋]𝟐+ 

For a given Ni(II)-ligand system, coordinates were divided in two sets, (I) in which carbon, nitrogen and 

Nickel atoms were fixed (X-ray) and (II) in which nothing was fixed (DFT). After optimization we 

found out that energy in case of def2-TZVP is lower than def-SV (P). Bond distances of Ni-N are 

slightly shorter in Case A than Case B. The optimized geometries show Ni-N bond lengths of 1.99, 2.01, 

2.03, 2.09, 2.17 and 2.17 Å in case of X-ray whereas in case of DFT, bond lengths are 2.01, 2.03, 2.06, 

2.09, 2.22 and 2.27 Å which is in agreement with reported values.
95,96

 So the first goal is to find the 

correct set of reference orbitals to assign in active space which can be easily done by localizing the 

orbitals. Boys localization method is used in CASSCF, this method gives MOs as compact as possible. 

Active space considered here in CASSCF calculations is CAS (8, 5) i.e 8 valence electrons in 5 d 

orbitals. The orbitals were optimized for a state average over the ten triplet states belonging to the 
3
F and 

3
P states of free ion which means all 3d orbitals are considered as same weighted. The ground state 

orbitals are related to eg orbitals. In the presence of quasi octahedral ligand field, the next excited state is 

8000 cm
-1

 higher in energy than the ground state in case of X ray whereas in case of DFT, excited state 

is 7000 cm
-1

 higher in energy than the ground state. Zero field splitting of ground state is around 5 cm
-1

 

in X.ray and around 9 cm
-1

 in case of DFT (as shown below in Table 5.1.1).Triplet is the ground state 

whereas the lowest singlet state which belongs to 
1
D was found to be about 18343 cm

-1
 in Case of X-ray 

and
 
17800 cm

-1
 in case of DFT above the ground state.

.1
S is found to be above 70000 cm

-1
 from the 

ground state in both the cases so we can neglect it. For further calculation of magnetic properties, we 

will discuss about the X-ray structure as in this case interactions with the nearby molecules and counter 

ions can change the structure where as DFT calculations considered for an isolated gas phase molecules. 
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[𝐍𝐢(𝐈𝐈)𝐋]𝟐+ 

X ray DFT 

CASSCF SOCI CASSCF SOCI CASSCF SOCI CASSCF SOCI 

0.00 0.0 

5.2 

8.1 

16329 

 

 

16307 

16432 

16702 

0.0 0.00 

8.9 

11.9 

15055 15083 

15254 

15426 

8552 8347 

8464 

8627 

16835 16941 

17089 

17159 

7542 7234 

7340 

7644 

15552 15795 

15852 

15876 

8973 9061 

9109 

9233 

  7678 7784 

7958 

8086 

  

10753 10733 

10822 

10825 

  10303 10263 

10364 

10376 

  

15460 15069 

15346 

15484 

  13914 13588 

13862 

13945 

  

 

Magnetic susceptibilities were calculated using averaged partition sums 
97

. by averaging over different 

field directions of the lowest triplet and D tensors were calculate by effective Hamiltonian theory 
98,99

. 

The D-tensor and g-tensor are calculated by the SOCI calculations. It is observed that D is positive (as 

shown below in Table 5.1.2) implying that the ms=0 component is lowest in energy 
100

. The g tensors 

were calculated for triplet states by taking lowest three energies from SOCI calculations with pseudospin 

S = 1.0 for which g is rather isotropic in the order of 2.2 as given below in Table 5.1.2. The calculated 

magnetic susceptibility gradually increases to 1.29 cm
3
K/mol (as shown below in Figure 5.1.1b). At low 

temperature it drops suddenly. In Figure 5.1.1a the energies of the lowest three states are shown with 

respect to the external magnetic field and it is observed that in case of magnetic applied in x and y 

direction, change in ground state and second excite state was relatively large while in case of z direction 

ground state doesn’t show change in ground state. It can be interpreted that complex has easy axis in xy 

plane.  

 

Table 5.1 1 : CASSCF and SOCI energies in cm
−1

 for the electronic states of [Ni(II)L]
2+
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 Dxx Dyy Dzz g1 g2 g3 

 -0.74 -3.69 4.43 2.25 2.27 2.20 

Axes of D-tensor Magnetic main axes 

x 0.91 -0.40 0.06 -0.32 -0.05 0.94 

y 0.40 0.91 0.05 0.94 -0.04 0.31 

z -0.08 -0.02 0.99 0.02 0.99 0.06 

 E1 E2 E3 D E E/D 

0.00 5.18 8.13 6.65 1.47 0.22 

  

 

 

5.1.2  [𝐍𝐢(𝐈𝐈)𝐋−]+ 

In this case study, in mononuclear Ni(II) complex , its azopyridine ligand is also hosting a radical 

electron thus making it a radical complex. Addition of electron resulted in 135 orbitals, 132 doubly 

occupied and 3 singly occupied orbitals. It is confirmed by visualizing natural molecular orbitals 

(NMOs). In the radical [Ni(II)L−]+system, the additional electron is present in the π-electron system of 

(a) (b) 

Table 5.1 2 : D-tensor and energies in cm
−1

 as well as the g-tensor and the magnetic main axes for 

the lowest triplet state of [Ni(II)L]
2+.

 

Figure 5.1 1: (a) Energies of the triplet ground state component of [Ni(II)L]
2+

 (b) Magnetic Susceptibility of triplet 

ground state with Magnetic field B = 1.0 and 5.0 T [Ni(II)L]
2+
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the azopyridine ligand as shown in Figure 5.1.2 and this proposes second spin center in the system. The 

ligand orbital is orthogonal to the two singly occupied Ni orbitals in the ground state. In this case the 

coordinates were also divided in two sets (i) in which carbon, nitrogen and Nickel atoms were fixed (X-

ray) and (ii) in which nothing was fixed (DFT) but we found out that both optimized structure have 

approximately equal energies. The optimized structure has shown no changes in the structure. It has 

same bond distances. Energy was found out to be lower in case of def2-TZVP basis set than def-SV (P). 

Active space considered here is CAS (9, 6) i.e 9 valence electrons in 6 orbitals. Addition of electron 

resulted in 90 spin free states including 20 quartets, 70 doublets. Quartet states are four-fold degenerate 

(i.e. ±3/2, ±1/2) and doublet states are doubly degenerate (i.e. ±1/2) which results in total 220 spin-orbit 

states. We found out that in that the two spin center couple ferromagneticlly resulting in quartet state as 

ground state which resulted in two Kramer’s doublets with zero field splitting of around 8.7 cm
-1

 and 

next lowest doublet state was found about to be 353 cm
-1

 and after that next excited doublet state lies 

above 7000 cm
-1

 higher in energy. The g-tensors and zero field splitting parameters were analyzed by 

using quartet ground state with a pseudo spin of S = 3/2. The result of the wave function analysis gives a 

positive sign for D which is in agreement with the results obtained for the g-tensor. The g tensor for the 

ground state is almost isotropic in the order of 2.2 ( as shown in Table.5.1.4)and same were also 

calculated for lowest three Kramer’s doublets and it is observed that second Kramer’s doublets is axial 

while third Kramer’s doublets is slightly axial in the range of 2.3-2.5. The quartet ground state and next 

excited doublet state is taken into account in order to calculate magnetic susceptibilities with B = 1.0 and 

5.0 T, and it is observed that χT increases to 2.24 cm
3
K/mol at low temperature. At around 100 K, the 

doublet state starts to get populated which led to decrease in the χT at higher temperature. 

 

 Table 5.1 3: CASSCF and SOCI energies in cm
−1

 for the electronic states of [Ni(II)L
-
]

+
 

Figure 5.1 2: Singly occupied natural orbitals obtained for the quartet ground state obtained at DFT 

level for compound 2 (contour value: 0.09) 
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S = 3/2 Dxx Dyy Dzz g1 g2 g3 

 -1.10 -1.76 2.87 2.20 2.22 2.14 

Axes of D-tensor Magnetic main axes 

x -0.42 -0.90 0.04 -0.85 -0.51 -0.04 

y 0.89 -0.43 -0.08 -0.51 -0.85 0.06 

z -0.09  0.005 0.99  0.03 -0.07 0.99 

 D E J 

4.3 0.3 235 

KD E1= 0.0 E2= 8.7 E3 = 353 

g1 g2 g3 g1 g2 g3 g1 g2 g3 

3.88 4.90 2.09 0.52 0.48 6.37 2.39 2.47 2.28 

x 

y 

z 

-0.44 

0.88 

-0.09 

-0.89 

-0.45 

-0.004 

-0.04 

0.08 

0.99 

0.35 

-0.92 

0.09 

0.93 

0.36 

0.01 

-0.04 

0.08 

0.99 

-0.91 

0.38 

-0.06 

-0.39 

-0.91 

0.04 

-0.04 

0.06 

0.99 

 

spin X ray DFT 

CASSCF SOCI CASSCF SOCI 

3/2 0 0.0 

8.7 

0 0.0 

8.7 

1/2 352 353 352 353 

Table 5.1 4: D-tensor in cm
−1

 and g-factor for the lowest electronic states of [Ni(II)L
−
] 

+
. g-tensors are calculated for 

the pseudo spin S=3/2 as well as for individual Kramers dublets (KD) S=1/2. Energies, zero field splitting parameters 

and the exchange coupling constant are given in cm
−1

 . 
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(a) (b) 

(c) 

Figure 5.1 3: (a) and (b) Magnetic Susceptibility of quartet ground state with the next excited state with Magnetic field B 

= 1.0 and 5.0 T [Ni(II)L
-
]

+
 (c) Energies of the  lowest three KDs of [Ni(II)L

-
]

+
 



 

54 
 

5.1.3  [𝐍𝐢(𝐈𝐈)𝐋−𝐍𝐢(𝐈𝐈)]𝟑+ 

In this case study, we studied magnetic properties of binuclear metal centers with an additional electron 

present on the ligand. 

 

 

The ligand orbital is orthogonal to both the Ni orbitals in the ground state i.e Ni1 spin S1 = 1, ligand spin 

SL = ½ and Ni2 spin S2 = 1. Active space considered here is CAS (17, 11) i.e 17 valence electrons in 11 

orbitals. We found out that in that the three spin center couple ferromagneticlly resulting in sextet state 

as ground state which resulted in three Kramer’s doublets with zero field splitting of 6.0 cm
-1

 and next 

excited state is quartet state was found about to 90 cm
-1

 and after that next excited doublet state lies at 

186 cm
-1

 higher in energy. The g-tensors and zero field splitting parameters were analyzed by using 

sextet ground state with a pseudo spin of S = 5/2. The result of the wave function analysis gives a 

positive sign 

                                                                                                          

 

 

 

 

 

 

for D tensor. The g tensor for the ground state is almost isotropic in 

the order of 2.2. The g tensors were also calculated for lowest three 

Kramer’s doublet that belong to lowest sextet state and it is observed 

that first and three Kramer’s doublet is highly axial while second 

Kramer’s doublet is showing slightly anisotropic behavior in the 

range of 3.7-5.5. The sextet ground state and next excited quartet 

and doublet states are taken into account in order to calculate 

magnetic susceptibilities as energy gap between the ground states 

and excited states is not very significant, and it is observed that χT 

increases to 5.36 cm
3
K/mol at low temperature (as shown in Figure 

5.1.5(a) and (b)). 

(a) (b) 

 

Figure 5.1 4: (a) Ni complex in with two Ni(II) center connecting with a bridge ligand (b) Additional electron 

present on the bridging ligand (contour value: 0.09) 
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At around 30 K, as the higher excited states start to get populated, decrease in the χT at higher 

temperature is observed. The lowest three KD is used to plot the energies as function of an external 

magnetic field shown in 5.1.5(c).  

 

 

 

 

 

 

 

 

 

 

 

 

S = 5/2 Dxx Dyy Dzz g1 g2 g3 

 -0.26 -1.09 1.35 2.21 2.25 2.16 

Axes of D-tensor Magnetic main axes 

x 0.92 0.37 0.04 -0.17 -0.03 -0.98 

y -0.36 0.92 -0.05 -0.98  0.05 0.17 

z -0.05  0.03 0.99  0.04 -0.99 -0.04 

 D E  

State KD Spin-orbit states 

 

 

Sextet 

1 0.00 

2 6.00 

3 13.15 

 

Quartet 

5 90.30 

6 101.46 

Doublet 8 186.25 

Doublet 9 367.97 

 

Quartet 

10 453.00 

11 466.89 

Table 5.1 5  Spin-orbit states energies in cm
−1

 for the electronic states of [Ni(II)LNi(II)]
3+

 

Table 5.1 6  D-tensor in cm
−1

 and g-factor for the lowest electronic states of [Ni(II)L
−
] 

+
. g-tensors are calculated for 

the pseudo spin S=3/2 as well as for individual Kramers dublets (KD) S=1/2. Energies, zero field splitting 

parameters and the exchange coupling constant are given in cm
−1

 . 



 

56 
 

2.03 0.4  

KD E1= 0.0 E2= 6.0 E3 = 13.15 

g1 g2 g3 g1 g2 g3 g1 g2 g3 

2.24 1.28 10.23 4.11 3.71 5.51 0.28 0.23 10.74 

x 

y 

z 

-0.93 

0.36 

-0.05 

-0.04 

0.05 

0.99 

-0.36 

-0.93 

0.03 

0.94 

-0.33 

0.05 

0.33 

0.94 

-0.03 

-0.04 

0.05 

0.99 

0.91 

-0.40 

0.06 

-0.40 

-0.91 

0.03 

-0.04 

0.05 

0.99 

 

  

 

 

(a) (b) 

(c) 

Figure 5.1 5: (a) and (b) Magnetic Susceptibility of ground state with the excited state with Magnetic field B = 1.0 and 

5.0 T, (c) Energies of the lowest three KD that belong to ground state  
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 5.2  Co (II) 

Co (II) has [Ar]4s
2
3d

7
 electronic configuration and in case of octahedral geometry i.e. six-fold 

coordination, there are two possibilities for this 3d
7
 (i) the high spin where total spin S = 3/2 as d-

electron spins are arranged as shown in Figure 5.2.1 with three unpaired electrons; and (ii) the low spin 

where total spin S = ½ as number of unpaired electron is only one. Orientation of electrons is decided by 

the strength of the crystal field ligand. In case of tetrahedral geometry, HS orientation is preferred.
101

  

 

In the calculation shown below, HS electronic configuration is considered that means total spin S = 3/2. 

Hence, this configuration results in 50 spin free state with 
4
F as ground state and 

4
P, 

2
H, 

2
G, 

2
F, 

2
P 2x

2
D 

as higher excited states. After spin-orbit coupling, these 50 spin free states give rise to 120 spin orbit 

states. In the presented work here, Co (II) complexes are calculated with different ligand field to find out 

how surrounding of a metal center helps in tuning its magnetic properties. First three complexes were in 

the collaboration with Dr Guo Peng, Nanjing Tech University, China and the last complex is in 

collaboration with Prof. Dr. Annie Powell’s group, KIT. 

5.2.1 Co (II) with different ligand substitution 

 

Figure 5.2 1: Scheme of d
7
 electrons in HS (high spin) and LS (low spin) 

(a) 
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In the case of structure a, Co(II) ion is in distorted tetrahedral geometry, attached with two same ligand 

in a asymmetrical manner and bond distance of Co-N and Co-O is in the range of 1.97-1.90 Å and bond 

distance of Co-O is shorter than Co-N  which is in agreement with the previously reported value.
102

 

However, in case of structure b and structure c is in octahedearl geometry where the Co(II) ions are 

attached to two nitrogen atoms and four oxygen donors from two ligands and two methanol molecules. 

Structure 2 has distorted octahedron geometry while structure 3 is near to perfect octahedron. In both the 

structute (b) and (c), the ligands are similar except in structure (c), group –NO2 is replaced CH2OCH3 

group as can be seen in Figure 5.2.2. Equitoral bond distances of Co-N and Co-O for both structure (b) 

and (c) are longer than axial bond length it shows that both the structures are compressed. All 

calculations on structures a-c are done on the X-ray structures. The positions of the hydrogen atoms 

were reoptimized with density functional calculations using BP86 functional/def-SVP basis set with the 

Turbomole program package 
94

. Based on these structures, the basis sets of Co, O and N were extended 

to def2-TZVP. State average CASSCF calculations were performed including all quartet states with 7 

electrons in the five 3d orbitals were performed. Based on the CASSCF orbitals, SOCI (spin orbit 

configuration interaction) calculations were performed with a program developed in Karlsruhe and 

Kaiserslautern,
68

 by taking a spin-orbit mean field approach for the 2-electron-spin-orbit integrals 

103,104
.g-tensors are obtained by the Abragam-Bleaney tensor which are described by Gerloch and 

McMeeking
105

.
 

The magnetic susceptibilities are calculated by Boltzmann averaging from the 

derivatives of the energy with respect to the magnetic field. 

 

(b) (c) 

Figure 5.2 2: The structure of (a) [Co (L1)2]; where L1 = 4-nitro-2-((E)-(propylimino) methyl) phenol; (b) [Co (L2)2(CH3OH)2] 

L2 = 2,4-dinitro-6-((E)-(propylimino) methyl) phenol and (c) [Co (L3)2(CH3OH)2] where L3 = 2-(methoxymethyl)-4-nitro-6-

((E)-(propylimino)methyl)phenol); 
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Quartet states (4F) Complex 1 Complex 2 Complex 3 

1 0 0 0 

2 1941 544 127 

3 3674 982 498 

4 6110 5484 5793 

5 7288 7701 7792 

6 8650 8284 7991 

7 10971 15044 15488 

First doublet 15741 13310 12979 

 

CASSCF caluclation were performed using CAS(7,5) as active space. According to CASSCF 

caluclations ,splitting of the 
4
F states is shown in Table 4.1.7 and it is observed that in complex 1, the 

ground state is separted by 1941 cm
-1

in energy from next state, however in case of complex 2 and 3. The 

energy gap between the ground state and the next state by 544 cm
-1

 and 127 cm
-1

, respectively, which is 

relatively smaller than the complex 1 . The lowest doublet states are found at the energies of 15741 cm
-1 

for 1, 13310 cm
-1

 for 2 and 12979 cm
-1 

for 3, respectively. These lowest doublet states are at much 

higher energy than the lowest three quartet state which implies that doublet states do not interfere in the 

SOCI calculations. After SOCI calculations, ground quartet state of complex 1 is well separated from 

the next quartet state which lies at 2032 cm
-1

. Ground quartet state split into two Kramer’s doublets with 

zero field splitting of 76 cm
-1

. In case of complex 2 and complex 3, the ground quartet state with an 

energy difference of 187 cm
-1

 and 275 cm
-1

 respectively. The lowest three quartet states of the CASSCF 

calculations interact strongly in the SOCI calculation, leading to six KDs in the range of 1500 cm
-1

 as 

shown in Table 4.2.2. g-tensors for lowest quartet state was calculated by analyzing the wave function 

using pseudospin S = 3/2 which gives gx = 2.27, gy= 2.10, gz = 2.60, D = -36.4 cm
-1

 and E = 6.3 cm
-1

. 

The g-tensors were also calculated for individual KDs (as given in Table 5.2.3) which agree well with 

the sign of D implying of easy axis magnetic anisotropy in complex 1. The simulated magnetic 

susceptibility (χT) for complex 1 is 2.60cm
3
K/mol.  In case of complex 2 and 3, the g factors of the first 

Table 5.2 1: Energies of the 7 lowest quartet states and the lowest doublet state obtained in the CASSCF calculations. All 

energies are given in cm
-1

 relative to the lowest quartet state. 
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KD doublet show highly anisotropic behavior (as shown in Table 5.2.3). Magnetic susceptibility (χT) for 

2 and 3 is 2.99 and 2.86 cm
3
K/mol. 

 

KDs Complex 1 Complex 2 Complex 3 

1 0 0 0 

2 76 187 275 

3 2032 698 486 

4 2186 1029 916 

5 3702 1340 1086 

6 3845 1484 1205 

7 6291 5806 6282 

 

 

KD  Complex 1 Complex 2 Complex 3 

1 

gx 1.261 2.423 2.886 

gy 0.989 1.824   2.613 

gz 7.574 7.821 7.305  

2 

gx 3.291 2.493 2.434 

gy 2.420 2.160 2.898 

gz 5.196 5.175 0.175 

3 

gx - 2.642 1.089 

gy - 1.109 0.447 

gz - 5.611   1.983 

 

Table 5.2 2: Energies of the 7 lowest Kramers doublets obtained in the spin orbit CI calculations. All energies are given in cm
-1

 

relative to the lowest Kramers doublet. 

Table 5.2 3: The calculated g-tensors (S' = 1/2) of the lowest Kramers doublet for 1-3. 
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Figure 5.2 3: Magnetic Susceptibility of ground state with the excited state with Magnetic field B = 1.0 and 5.0 T 

(a) complex 1, (b) complex 2 and (c) complex 3 

(a) (b) 

(c) 
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5.2.2 Co(II) radical complex 

 

In this case study we have a Co(II) complex in a distorted tetrahedron geometry where Co(II) ion is 

connected with two chloride and two nitrogen  donor atoms from ligand. Co(II) is bit out of plane as can 

be seen in Figure 5.2.4. The bond lengths of Co-N and Co-Cl are in range of 1.99 Å an 2.22 Å 

repectively, the N1-Co-N2 and Cl1-Co-Cl2 bond angles are 80.77 and 108.88 respectively, which is in 

agreement with the previously reported values.
106,107

. The positions of the hydrogen atoms were 

reoptimized with density functional calculations with the TURBOMOLE program package 
94

. Based on 

these structures, the basis sets of Co is extended to x2c-TZVPall while for O and N def-SV(P) is used 

with BP86 functional. Based on the CASSCF orbitals, SOCI (spin orbit configuration interaction) 

calculations were performed with a program developed in Karlsruhe and Kaiserslautern,
68

 by taking a 

spin-orbit mean field approach for the 2-electron-spin-orbit integrals.
103,104

 The g-tensors are obtained by 

the Abragam-Bleaney tensor which are described by Gerloch and McMeeking,
105 

magnetic 

susceptibilities are calculated by Boltzmann averaging from the derivatives of the energy with respect to 

the magnetic field.  

In this Co(II) system, additional electron is located on the π-electron system of the ligand which resulted 

in a second spin center in the complex. Active space in this case is considered to be CAS(8,6) i.e 8 

electrons in 6 orbitals. Co(II) is d
7
 i.e three orbitals singly occupied in ground state, so the Co spin is Sco 

= 3/2 and the additonal electron on the ligand resulted in spin SL = ½. Two spin center couple anti-

ferromagnetically because Co orbitals and ligand orbital is non orthogonal, resulting triplet as a ground 

state. State average CASSCF calculations were performed including ten triplet states with 8 electrons in 

the six orbitals were performed. In CASSCF calculations, triplet is the ground state and the next two 

(a) (b) 

Figure 5.2 4: The structure of (a) [Co (L)2Cl2]; (a) top view (b) side view; ( Violet – Cl; black – Co; blue – nitrogen; red - 

oxygen 



 

63 
 

state is quintet and triplet state which is 1138 cm
-1

 and 2320 cm
-1

 higher in energies , repectively. After 

the CASSCF caluccation, SOCI caluclations were performed and the ground triplet state as expected 

splits further into its component with zero field splitting is 17 cm
-1

. The next excited quinete state is 

quintet state is 2900 cm
-1

 higher in energy than the ground state. As energy gap between ground state 

and next state is nearly 3000 cm
-1

,implying second order spin orbit effect. From the energy it can also be 

interpreted that ground state is well isolated hence the magnetic parameters were calculated for ground 

state only. Wavefunction of ground state was studied using pseudo spin S = 1 to calulate the D , E and 

g-tensors. Calculated g tensors are gx = 2.19, gy = 2.07 and gz = 2.32 which is nearly isotropic. The 

positive sign of D indicates ms = 0 as lowest component in ground state. Contributuion of E in E/D = 

0.26 is quite large. The Energies of the lowest three states of the SOCI calculation were calculated with 

respect to magnetic field shown in Figure.The calculated magnetic susceptibility χT increases to 1.21 

cm
3
Kmol

-1
. 

 

 

Spin orbit state (cm
-1

)  Dxx Dyy Dzz  g1 g2 g3 

0.000 -1.62 -14.59 16.22  2.19 2.07 2.32 

17.84  0.51 

 0.61 

 0.60 

-0.19 

-0.59 

0.77 

-0.83 

0.51 

0.18 

x 

y 

z 

0.50 

0.63 

-0.58 

0.84 

-0.49 

0.19 

0.16 

0.59 

0.78 

30.81 

2936.37 

2940.00  D E 

2960.72 24.33 6.48 

2982.12 

2985.137 

 

Table 5.2 4:  Lowest spin-orbit energy levels. D-tensor and energies in cm
-1

 as well as the g-tensor and the 

magnetic axes for the lowest triplet state 
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  Co complex without additional electron 

In this case study, complex discuss above is only studied but there is no additional electron present on 

the ligand. Therefore, in this case we have active space 7 electrons in 3d orbitals (7,9). All the 

computational details are same as above mentioned. The orbitals here were optimized for a state average 

of seven quartet state belonging to lowest ground term only. The 3d
7
 configuration of Co(II) ion has 50 

spin free states; 10 quartet state and 40 doublet state but spin-orbit coupling resulted in 120 states as 

explained above. In CASSCF calculation, we observed that next quartet state is 2336 cm
-1

 higher in 

energy than th e ground quartet state. The ground state in [Co(II)L]Cl2 is quartet state which resulted in 

two Kramer’s doublets with the zero field splitting of 36 cm
-1

. Next state is doublet state which is 2286 

cm
-1

 higher in energy ( as shown in Table 5.2.5). 

 

 

 

 

 

 

Figure 5.2 5: (a) calculated magnetic susceptibility with B = 0.1 and 5.0 T; (b) Energies of the components of the 

triplet state in a magnetic field (applied in each direction) 

(a) (b) 
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KDs Spin orbit 

state (cm
-1

) 

g1 g2 g3 

1 0.00  2.33 2.40 2.16 

2 36.15 x 

y 

z 

0.48 

0.60 

-0.62 

0.33 

0.53 

0.77 

-0.80 

-0.59 

0.05 
3 2286.24 

4 2622.38 D =  18.01      E = 0.85 

5 2961.22 KD1 KD2 

6 3304.50 E1 = 0.00 E2 = 36.14 

 g1 g2 g3 g1 g2 g3 

 4.38 5.04 2.15 0.33 0.30 6.48 

x 

y 

z 

0.17 

0.16 

-0.97 

0.55 

0.79 

0.23 

0.81 

-0.57 

0.04 

0.03 

0.13 

0.99 

0.57 

0.80 

-0.12 

-0.81 

0.57 

-0.04 

 

The analysis of wave function shows positive sign for D. With spin of 3/2; g is isotropic in the order of 

2.3cm
3
K/mol. The g factor is also calculated for individual Kramer’s doublets and second Kramer’s 

doublets is axial. In the simulation of the magnetic susceptibility ground state quartet state is considered 

which increases upto 2.49cm
3
K/mol (as shown in figure 5.2.6). 

Table 5.2 5: Lowest spin-orbit energy levels;  g-tensor and the magnetic axes for the ground state and lowest two Kramer’s 

doublet along with zero field splitting parameter 
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 Additional Electron  

 

 

In this case, Co in the complex is replaced with diamagntic Zn(II) to make the complex one spin center 

and calculations were done on additional electron. For [Zn(II)L]Cl2 , active space is one electron in one 

orbital (1,1).The ground state is doublet state and as there is only one doublet state that means SOC 

calculations result in one Kramer’s doublets and as expected no zero field splitting (as shown in below 

in 5.2.6). With spin of ½ , g is isotropic in the order of 2.00. Magnetic susceptibility is calculated or the 

ground state which increases up to 0.37 cm
3
K/mol. 

 

 

(a) (b) 

Figure 5.2 7: Additional electron present on the ligand [Co (L)2Cl2]; 

Figure 5.2 6: (a) calculated magnetic susceptibility with B = 0.1 and 5.0 T; (b) Energies of the components of the 

lowest two KD in a magnetic field (applied in each direction) 
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5.3 Conclusion 

In the end, for all systems, we performed spin orbit configuration interaction calculations (SOCI) based 

on orbitals from complete active space self-consistent field calculations. In the SOCI all Slater 

determinants in an active space of the 3d-orbitals and the singly occupied ligand orbital are considered 

to obtain the low lying electronic states, their zero-field splittings, g-tensors and magnetic 

susceptibilities. The Ni centers are coupled ferromagnetically to the ligand electron. In Ni(II)-radical 

system, the resulting S=3/2 ground state is split by 9 cm
-1

 into two Kramer’s doublets. Ni(II) complex 

with bridging ligand complex has an S=5/2 ground state split into 3 Kramer’s doublets. For section 

5.2.1, three mononuclear Co(II) complexes complex 1 is in tetrahedral geometry, whereas complexes 2 

and 3 is in distorted octahedral geometry. All the three mononuclear complexes have shown an easy 

axial anisotropy. However, section 5.2.2, Co center coupled anti-ferromagnetically to the radical 

electron present on the ligand, resulting triplet as a ground state and next higher state which is quintet 

lies 3000 cm
-1

 higher in energy. 

 

 

 

 

  

Spin orbit state (cm
-1

)  g1 g2 g3 

0.00 

0.00 

 2.00 2.00 2.00 

x 

y 

z 

0.00 

0.00 

1.00 

1.00 

0.00 

0.00 

0.00 

1.00 

0.00 

Table 5.2 6 : Lowest spin-orbit energy levels; and g-tensors 
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6 Applications II- Lanthanide (4f
n
) 

 

In the presented work, we also investigated a few lanthanide complexes. Our aim was to study the 

magnetic properties of these lanthanide complexes to see if there is a potential to use these complexes in 

future as molecular magnetic materials. Lanthanide-based single molecule magnets are great center of 

attraction because of their high magnetic anisotropy and strong spin-orbit coupling, which possibly 

results in a ground state with large angular momentum
1,108,109

 and because of that the interest in Ln(III) 

SMM increased over transition metal SMM. However, the presence of Lanthanide in a complex makes 

the theoretical description more difficult than for 3d metal ions because there is high contribution of 

orbital component.
110

 In this thesis a detailed study of magnetic properties of different families of 

complexes with Ln(III)= Gd (III), Dy(III), Er(III) , Ho(III), Tb(III) is presented. First mononuclear 

lanthanide complexes studied and then polynuclear complexes. 

While for 3d compound orbitals for the SOCI calculations were in general obtained by CASSCF, ROHF 

was used for the lanthanide complexes. In ROHF an average over selected slater determinants is used to 

calculate the energy and to optimize the orbitals. The energy is given in equation 6.1 

 
𝐸 =  ∑ 2𝑓𝑟ℎ𝑟𝑟 + ∑ 𝑓𝑟𝑓𝑠(2𝑎𝑟𝑠𝐽𝑟𝑠 − 𝑏𝑟𝑠𝐾𝑟𝑠)

𝑟,𝑠𝑟

 
6.1 

where the factors fr are fractional occupation numbers. If fr is equal to 0, this indicates a virtual orbital 

that does not take place in any slater determinant and if it is equal to 1, the orbital is doubly occupied in 

all  slater determinants; a and b are Roothaan parameters which are obtained by taking the average over 

the high spin states of chosen f- elements. The appropriate a and b parameters were provided by Prof. C. 

van Wüllen, Technical University of Kaiserslautern. Here, with CASSCF calculations, ROHF 

calculations were also performed to study the validity of the method. 

6.1 Mononuclear-Complex Ln3-ethoxy complex 

Two Lanthanide systems are studied here which were synthesized in Prof. Dr Annie Powell’s group, 

Karlsruhe,  and are based on molecules studied earlier.
110–112

 Both systems have Ln(III) as a central main 

frame forming a triangle. The major difference in the two structures is different ligands. Structure 1 (as 
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shown in Figure 6.1.2a) is Ln3(L)3(µ3-OH)2(H2O)4Cl2  and structure 2 (as shown in Figure (6.1.2b)) is 

Ln3(L3)(µ3-OH)2(CH3OH)(H2O)2Cl3 where L is 3-ethoxysalicylaldhehyde. 

 

 

In structure 1 and structure 2, the Ln ions are in +3 oxidation state and the Ln(1), Ln(2) and Ln(3) ions 

are connected to each other by two bridging hydroxyl oxygen atoms. Three ethoxy ligands are linked to 

each Ln(III) ion but in structure 1 one Ln(III) center is linked with two water molecules and two Ln(III) 

centers are linked with water molecules and chloride ions. Whereas in structure 2 one Ln(III) center is 

linked with a chloride ion and -MeOH and two Ln(III) centers are connected with water molecules and 

chloride ions. For both the complexes, each Ln center has a coordination number equal to eight and the 

coordination geometry can be explained as a distorted square anti-prism by the positions of the 

surrounding atoms. The bond angle and bond length for both complexes are given in Table 6.1.1 and 

Table 6.1.2 and they fall in the range of reported bond lengths and angles in the literature.
113–117

 

 

 
Figure 6.1 1: Structure of ethoxysalicylaldheyde 
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Center 1 Center 2 Center 3 

Ln(1)-O1 

 

Ln(1)-O2 

 

Ln(1)-O3 

 

Ln(1)-O4 

 

Ln(1)-O5 

 

Ln(1)-O6 

 

Ln(1)-O7 

 

Ln(1)-Cl 

 

O1-Ln(1)-O2 

 

O2-Ln(1)-O3 

 

O3-Ln(1)-O4 

 

O4-Ln(1)-O5 

 

2.33 

 

2.34 

 

2.35 

 

2.37 

 

2.38 

 

2.39 

 

2.50 

 

2.68 

 

140.0 

 

101.65 

 

71.91 

 

132.80 

 

Ln(2)-O1 

 

Ln(2)-O2 

 

Ln(2)-O3 

 

Ln(2)-O4 

 

Ln(2)-O5 

 

Ln(2)-O6 

 

Ln(2)-O7 

 

Ln(2)-O8 

 

O1 Ln(2)-O2 

 

O2-Ln(2)-O3 

 

O3-Ln(2)-O4 

 

O4-Ln(2)-O5 

 

2.33 

 

2.33 

 

2.35 

 

2.35 

 

2.36 

 

2.37 

 

2.38 

 

2.50 

 

141.31 

 

105.98 

 

75.48 

 

139.43 

 

Ln(3)-O1 

 

Ln(3)-O2 

 

Ln(3)-O3 

 

Ln(3)-O4 

 

Ln(3)-O5 

 

Ln(3)-O6 

 

Ln(3)-O7 

 

Ln(3)-Cl 

 

O1 Ln(3)-O2 

 

O2-Ln(3)-O3 

 

O3-Ln(3)-O4 

 

O4-Ln(3)-O5 

 

2.31 

 

2.34 

 

2.35 

 

2.36 

 

2.37 

 

2.40 

 

2.50 

 

2.69 

 

140.42 

 

145.16 

 

72.44 

 

135.29 

 

Figure 6.1 2:(a) structure 1, (b) structure 2 

Table 6.1. 1: Ln-O bond distances (Å) for all Lanthanide ions (Ln = Gd,Tb, Dy, Ho, Er) for structure 1 

with repective surrounded oxygen atoms. 
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O5-Ln(1)-O6 

 

O6-Ln(1)-O7 

 

Cl-Ln(1)-O1 

 

Cl-Ln(1)-O2 

 

Cl-Ln(1)-O3 

 

Cl-Ln(1)-O4 

 

Cl-Ln(1)-O5 

 

Cl-Ln(1)-O6 

 

Cl-Ln(1)-O7 

 

60.65 

 

130.53 

 

99.19 

 

92.51 

 

143.00 

 

77.61 

 

140.73 

 

80.28 

 

78.33 

O5-Ln(2)-O6 

 

O6-Ln(2)-O7 

 

O7-Ln(2)-O8 

136.96 

 

76.97 

 

132.88 

O5-Ln(3)-O6 

 

O6-Ln(3)-O7 

 

Cl-Ln(3)-O 

 

Cl-Ln(1)-O2 

 

Cl-Ln(1)-O3 

 

Cl-Ln(1)-O4 

 

Cl-Ln(1)-O5 

 

Cl-Ln(1)-O6 

 

Cl-Ln(1)-O7 

 

60.63 

 

128.62 

 

91.59 

 

100.37 

 

79.77 

 

144.57 

 

79.98 

 

140.09 

 

78.69 

 

 

Center 1 Center 2 Center 3 

Ln(1)-O1 

 

Ln(1)-O2 

 

Ln(1)-O3 

 

Ln(1)-O4 

 

Ln(1)-O5 

 

Ln(1)-O6 

 

Ln(1)-O7 

 

Ln(1)-Cl 

 

O1-Ln(1)-O2 

 

O2-Ln(1)-O3 

 

2.33 

 

2.33 

 

2.35 

 

2.35 

 

2.35 

 

2.36 

 

2.50 

 

2.68 

 

98.85 

 

79.29 

 

Ln(2)-O1 

 

Ln(2)-O2 

 

Ln(2)-O3 

 

Ln(2)-O4 

 

Ln(2)-O5 

 

Ln(2)-O6 

 

Ln(2)-O7 

 

Ln(2)-Cl 

 

O1-Ln(2)-O2 

 

O2-Ln(2)-O3 

 

2.30 

 

2.34 

 

2.35 

 

2.35 

 

2.36 

 

2.37 

 

2.49 

 

2.69 

 

140.28 

 

72.02 

 

Ln(3)-O1 

 

Ln(3)-O2 

 

Ln(3)-O3 

 

Ln(3)-O4 

 

Ln(3)-O5 

 

Ln(3)-O6 

 

Ln(3)-O7 

 

Ln(3)-Cl 

 

O1-Ln(3)-O2 

 

O2-Ln(3)-O3 

 

2.31 

 

2.32 

 

2.34 

 

2.35 

 

2.38 

 

2.39 

 

2.48 

 

2.71 

 

140.90 

 

73.57 

 

Table 6.1. 2: Ln-O bond distances (Å) for all Lanthanide ions (Ln = Gd,Tb, Dy, Ho, Er) for structure 2 

with repective surrounded oxygen atoms. 
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O3-Ln(1)-O4 

 

O4-Ln(1)-O5 

 

O5-Ln(1)-O6 

 

O6-Ln(1)-O7 

 

Cl-Ln(1)-O1 

 

Cl-Ln(1)-O2 

 

Cl-Ln(1)-O3 

 

Cl-Ln(1)-O4 

 

Cl-Ln(1)-O5 

 

Cl-Ln(1)-O6 

 

Cl-Ln(1)-O7 

 

73.12 

 

73.07 

 

135.70 

 

82.65 

 

95.60 

 

143.24 

 

137.39 

 

94.46 

 

76.83 

 

80.72 

 

78.89 

O3-Ln(2)-O4 

 

O4-Ln(2)-O5 

 

O5-Ln(2)-O6 

 

O6-Ln(2)-O7 

 

Cl-Ln(2)-O1 

 

Cl-Ln(2)-O2 

 

Cl-Ln(2)-O3 

 

Cl-Ln(2)-O4 

 

Cl-Ln(2)-O5 

 

Cl-Ln(2)-O6 

 

Cl-Ln(2)-O7 

 

135.75 

 

76.39 

 

128.98 

 

129.95 

 

94.25 

 

102.88 

 

78.83 

 

144.18 

 

78.23 

 

138.43 

 

78.75 

O3-Ln(3)-O4 

 

O4-Ln(3)-O5 

 

O5-Ln(3)-O6 

 

O6-Ln(3)-O7 

 

Cl-Ln(3)-O1 

 

Cl-Ln(3)-O2 

 

Cl-Ln(3)-O3 

 

Cl-Ln(3)-O4 

 

Cl-Ln(3)-O5 

 

Cl-Ln(3)-O6 

 

Cl-Ln(3)-O7 

 

131.06 

 

60.10 

 

77.54 

 

74.76 

 

90.34 

 

107.21 

 

78.68 

 

77.42 

 

136.01 

 

145.86 

 

79.15 

 

For the calculation of the magnetic properties of the individual Ln(III) canters, two Ln(III) ions are 

replaced with Y(III) ions to make a given complex mononuclear. In this way each center is studied 

individually. For all calculations, density functional theory (DFT) is used using the TURBOMOLE
94

 

package. The BP86 functional and the x2c-TZVPall basis set
118

 for Ln, x2c-SV(P)all basis set for Y and 

def-SV(P) basis set for rest of the atoms were applied. The bond distances of Ln (= Dy, Ho, Er, Gd, Tb)-

O agree with the reported literature.
117,119

 The optimized systems were used in Complete Active Space 

SCF (CASSCF) calculations followed by spin-orbit coupling calculations. The fourth order Douglas-

Kroll-Hess hamiltonian was included, where scalar relativistic contributions were taken into account. 

Spin orbit coupling is also calculated using ROHForbitals and all the calulations are compared. 
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6.1.1 Gd(III) 

The properties exhibited by Gd(III) ions is different from the rest of the lanthanide ions, and the reason 

behind it is the spherically symmetric electronic structure of Gd(III).
120

 This highly symmetric structure 

arises from the seven unpaired electron in seven 4f orbitals, making a high spin paramagnetic ion. 

Gd(III) is an undesirable choice for SMMs because of its magnetic isotropy or in other words absence of 

an intrinsic magnetic anisotropy. Therefore, SMM-behavior of Gd(III) complex can be induced by weak 

anisotropy caused by the Kramer’ doublet obtained from the ground state. 
121,122

 Although it is not 

expected to be the  right candidate for SMM studies, Gd(III) still proves itself useful to study many other 

magnetic properties like spin-glass properties
123

 and due to its isotropic nature it can be used for the 

analysis of the magnetic exchange coupling. The knowledge of the magnetic coupling can be used to 

make better SMMs with anisotropic lanthanides 
121

. The half-filled 4f orbitals give rise to a ground state 

with a total spin of S =7/2, however, possessing a half-filled shell results in zero total orbital angular 

momentum (L). Therefore, the total angular momentum (J) is dependent on the total spin momentum 

only which makes J = S. As the total orbital angular moment is zero in the case of Gd(III) ions, implying 

that the ground state is a pure S state, second order spin orbit coupling is observed because the first order 

effect diminished.
120

 Considering all electronic configurations of 4f
7
 results in 1 octet, 48 sextets, 392 

quartets and 782 doublets as spin free states. The ground state of the Gd(III) ion is a single octet state 

which belongs to 
8
S and the next state is a sextet state after a large energy gap. The ground multiplet of 

the octet state i.e. 
8
S7/2 splits in the ligand field into four Kramer’s doublets and because of second order, 

the splitting of the octet ground state is minute
124

, which helps in determine the interaction with the 

surrounding.
125

 

6.1.1.1  Complex 1 

In case of complex 1, the active space in the CASSCF calculations is taken as CAS(7,7), 7 electron in 7 

orbitals. As the ground state is not spatial degenerate and all electrons are singly occupied in the S=7/2 

Figure 6.1. 3: Three different Ln(III) positions.(Color scheme : purple, Ln; white, Y; red, O; yellow, Cl, All 

carbons and hydrogens are in light Skelton) 
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state, the orbitals are calculated by taking the ground state. For spin free states for all the three centers, 

the next excited state lies at 41,000 cm
-1

 higher in energy, which is a huge gap and it ensured that the 

ground state is well isolated and there is no mixing from higher states and therefore for the further spin 

orbit calculations only the eight lowest states corresponding to the ground state are included. In case of 

Gd, as L = 0 there is only spin coupling calculations, it is observed that ground state 
8
S splits in four 

Kramer’s doublets which exhibits a very small energy difference within the range of 1 cm
-1

 which is in 

agreement with the reported values.
124,125

 In case of ROHF method, the same behavior is observed for 

the splitting, which it is in the range of 0.70 cm
-1

.  

 

 

Structure 1(Spin orbit states) 

 center a center b center c 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.00 

 

0.00 0.00 0.00 0.00 0.00 

KD2 0.27 

 

0.16 0.23 0.33 0.38 0.26 

KD3 

 

0.51 0.33 0.55 0.54 0.63 0.43 

KD4 0.89 

 

0.60 1.04 0.77 0.85 0.59 

 

The g-tensor including all eight states is calculated and it is found highly isotropic in order of 1.99 

which agrees well with the expected value. In case of Gd(III), with respect to the accuracy, the 

calculations yield D and E equal to zero. Furthermore, because of the small energy gaps between the 

four lowest Kramer's doublets, the g-factors for individual Kramer's doublets are meaningless in case of 

Gd(III). 

The simulated magnetic susceptibility (χT) at B= 0.1 T is 7.84 cm
3
K/mol which remains constant at 

room temperature but suddenly decreases at low temperature which is consistent with the previously 

reported data.
126

 The energies of the 4 KDs with respect to magnetic field show that at high magnetic 

Table 6.1. 3: Energies (cm
-1

) of the lowest Four Kramer’s doublet of Gd(III) complexes obtained after Spin-

Orbit coupling. 
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field splitting of KDs is around 30 cm
-1

 while zero field splitting is under 1 cm
-1

 as shown in Figure 

6.1.5 

 
 

 

 

(a) (b) 

Figure 6.1 4:(a) Magnetic susceptibility of three Gd centers in a magnetic field B =0.1 T(b) Magnetic 

Susceptibility of three centers in Magnetic field B = 5.0 T in case of structure 1 

(a) (b) 
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6.1.1.2 Complex 2 

For complex 2, active is same as before CAS(7,7). For spin free states for all the three center, next 

excited state lies approximately around 41,000 cm
-1

 higher in energy same as complex 1. No orbital 

contribution dictates no spin orbit coupling, hence after spin coupling calculations, it is observed that 

ground state 
8
S splits in four Kramer’s doublets which exhibits very small energy difference within the 

range of 1 cm
-1

. In case of ROHF method however, for center 1 and 3 splitting is observed in the range 

of 0.50 cm
-1

 while in case of center 2, splitting increased to 3 cm
-1

. 

 

 

 

Structure 2(Spin orbit states) 

 center a center b center c 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.00 

 

0.00 0.00 0.00 0.00 0.00 

KD2 0.18 

 

0.18 0.27 0.51 0.11 0.11 

KD3 

 

0.29 0.29 0.45 1.40 0.24 0.24 

(c) 

Figure 6.1 5: Zeeman plot of structure 1 of Gd(III) including Kramer’s doublet (a) magnetic field in x-direction (b) 

magnetic field in y-direction and (c) magnetic field in z-direction 

Table 6.1.4: Energies (cm
-1

) of the lowest four Kramer’s doublets of Gd(III) complexes obtained after Spin-

Orbit coupling. 
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KD4 0.39 

 

0.40 0.70 2.73 0.43 0.44 

 

g-tensors including all eight states is calculated and it is found highly isotropic in order of 1.99 and g-

tensors calculated for individual Kramer’s doublets, KD 1 and 4 have shown a highly anisotropic 

behavior for each center same as complex 1 as shown in Table 6.1.5. The simulated magnetic 

susceptibility (χT) at B= 0.1 T is 7.84 cm
3
K/mol (as seen in Figure 6.1.6) which remains constant at 

room temperature but suddenly decreases at low temperature which is consistent with the complex 1. 

The energies of 4 KD s with respect to magnetic field shows that at high magnetic field splitting of four  

KDs is around 30 cm
-1

 while splitting at zero field is under 1 cm
-1

 as shown in Figure 6.1.7 

 

 KD1 KD2 KD3 KD4 ZFS parameter 

Center 1 x 

y 

z 

 0.005 

 0.004 

13.91 

1.01 

0.83 

9.63 

5.75 

6.07 

4.36 

 1.21 

 0.67 

13.23 

D = -0.03 

E  = 0.005 

Center 2 x 

y 

z 

0.14 

0.11 

13.79 

3.20 

2.39 

8.69 

4.31 

3.09 

8.02 

0.31 

0.21 

13.72 

D = -0.04 

E  = 0.01 

Center 3 x 

y 

z 

1.11 

0.62 

13.30 

5.29 

4.21 

6.55 

1.51 

1.27 

9.49 

0.05 

0.04 

13.89 

D = 0.03 

E =  0.006 

 

Table 6.1. 5: Main g-tensor values for individual Kramer’s doublets 
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(a) (b) 

(a) (b) 

(c) 

Figure 6.1 7: Zeeman plot of structure 2 of Gd(III) with (a) magnetic field in x-direction (b) magnetic field in y-

direction and (c) magnetic field in z-direction 

Figure 6.1 6:  (a) Magnetic susceptibility of three Gd centers in Magnetic field B =0.1 T(b) Magnetic Susceptibility of 

three centers in Magnetic field B = 5.0 T in case of structure 2 
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6.1.2 Dy(III) 

Dy(III) has [Xe]4f
9
 configuration that means 9 electrons in 7 orbitals which results in total spin of S = 

5

2
 

and total orbital momentum L = 5. Total angular momentum J can be calculated by using |L + S|….|L – 

S| which led to J = 
15

2
,

13

2
,

11

2
,

9

2
,

7

2
,

5

2
.  Dy(III) ion contains 735 states without spin orbit coupling 

which includes 21 sextets, 224 quadruplets and 490 doublets. According to 
2S+1

LJ, the ground state term 

for Dy(III) ion is 
6
H15/2. As we discussed above sections that in case of lanthanides spin-orbit coupling 

dominates ligand field interaction, hence, the energy levels split in terms of J.  

6.1.2.1  Complex 1 

In structure 1, two Dy(III) centers are linked with water molecule and chloride ion along with the ligand 

and on one Dy(III) center, chloride ion is replaced by water molecule. On each Dy
3+

 center, CASSCF 

calculation and ROHF calculations were performed. As predicted, ground state is 
6
H15/2 and spin-orbit 

coupling resulted in eight Kramer’s doublets which belongs to the ground MJ = ±15/2 for each Dy 

center and the next excited term for each center in case of both CASSCF and ROHF calculations is 

around 3600 cm
-1

. However, in case of zero-field splitting energy, CASSCF energies are larger than in 

case of ROHF calculations with a difference of approx. 150 cm
-1

 (as given in Table 6.1.6)  

 

 

Structure 1(Spin orbit states) 

 center a center b center c 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.00 

 

0.00 0.00 0.00 0.00 0.00 

KD2 236.31 

 

111.81 313.36 161.28 255.69 125.92 

KD3 

 

306.76 146.82 493.89 252.33 312.17 171.98 

KD4 404.50 

 

198.29 559.56 305.93 415.17 214.23 

KD5 

 

491.80 252.19 628.89 342.71 544.65 272.06 

KD6 630.19 303.36 701.00 371.53 640.25 316.673 

 Table 6.1. 6:  Energies (cm
-1

) of the lowest eight Kramer’s doublet of Dy(III) complexes obtained after spin-

orbit coupling for structure 1 
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KD7 691.67 353.82 749.05 389.88 713.40 364.82 

KD8 

 

839.94 417.01 989.23 519.67 849.65 410.73 

 

Using the Aniso program, g-tensors for each Kramer’s doublets were calculated by taking pseudospin S 

= ½ for individual dysprosium centers and their main values are given in the Table 6.1.8 below. In each 

case it can be easily seen that first two Kramer’s doublets is highly anisotropic and also the Kramer’s 

doublets seven and eight are anisotropic. If, for all three Dy centers, the direction of anisotropic g-tensor 

is projected and the magnetic axes are in opposite direction from each other which means the complex 

possesses a toroidal magnetic moment (as can be seen in Figure 6.1.8). In eight Kramer’s doublets, first 

(lowest) Kramer’s doublets is highly axial but as it goes through KDs which belong to higher excited 

states its axialty decreases up to the KD 4 and then again start to increase forming mirror symmetry.
127

 

Zero field splitting parameters i.e. D and E parameter is approximately in the range of E/D ≤ |1/3|, and 

each center calculation predicts that for Dy(I) center rhombic parameter E is slightly bigger but for 

Dy(2) and Dy(3) centers, contribution from rhombic zero field parameter is small. Magnetic 

susceptibility is calculated for B = 0.1 T and 5.0 T for the lowest 
6
H15/2 states for each center and it is 

observed that in all three centers it sharply increases at low temperature 11 K which slowly reaches up to 

13.64 cm
3
Kmol

-1
 at 300 K, which is in agreement with the reported values.

128
 However when magnetic 

field increased to 5.0 T, for Dy(1) magnetic susceptibility increases at 36 K then increases to 13.59 

cm
3
Kmol

-1
 at 300 K, for Dy(2), magnetic susceptibility increases at 50 K then goes to 13.59 cm

3
Kmol

-1
 

at 300 K and for Dy(3) magnetic susceptibility increases at low 7 K then slowly reaches to 13.59 

cm
3
Kmol

-1
. It can be observed from the energy differences in the Zeeman plot shown below in Figure 

6.1.10 (c), (d), (e) that easy axis lies in x and y plane which supports toroidal magnetic moment. 
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 KD1 KD2 KD3 KD4 KD5 KD6 KD7 KD8 ZFS parameter 

Center 

1 

x 

y 

z 

 0.10 

 0.06 

19.47 

4.72 

2.07 

14.29 

5.42 

9.98 

0.71 

 4.69 

 1.01 

11.92 

 3.91 

 3.03 

14.14 

 1.11 

 0.27 

16.24 

 1.54 

 0.28 

18.32 

 0.04 

0.002 

19.33 

D = 7.45 

E  = 2.20 

Center 

2 

x 

y 

z 

0.005 

0.002 

19.58 

0.15 

0.13 

16.30 

3.17 

2.09 

11.99 

6.64 

10.60 

1.67 

2.68 

2.38 

11.67 

3.51 

2.93 

5.02 

9.51 

11.22 

1.11 

0.007 

0.002 

19.78 

D = -10.42 

E  =    1.76 

Center 

3 

x 

y 

z 

0.04 

0.02 

19.56 

2.79 

1.51 

15.08 

5.69 

2.10 

11.13 

5.45 

0.34 

10.87 

4.18 

0.455 

12.87 

3.02 

1.60 

15.10 

0.33 

0.05 

18.68 

0.09 

0.04 

19.11  

D = -8.29 

E =   0.66 

 

Figure 6.1 8: Toroidal magnetic moment of Dy3(L)3 (µ3-OH)2(H2O)4Cl2 (structure 1) 

Table 6.1 7  Main g-tensor values for individual Kramer’s doublets and D & E parameters for structure 1 
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(a) (b) 

(c) 

Figure 6.1 9:  Magnetic susceptibility of three Dy centers in Magnetic field B =0.1 T(b) Magnetic Susceptibility of three 

centers in Magnetic field B = 5.0 T in case of structure 1 

Figure 6.1 10: Zeeman plot of structure 1 including three lowest Kramer’s doublets (a) magnetic field in x-direction (b) 

magnetic field in y-direction and (c) magnetic field in z-direction 
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6.1.2.2 Complex 2 

In case of structure 2, all Dy(III) ions are linked with water molecules and chloride ions along with the 

ligand. On each Dy
3+

 center, CASSCF calculation and ROHF calculations were performed. As found 

earlier, the ground state is 
6
H15/2 and spin-orbit coupling resulted in eight Kramer’s doublets which 

belongs to the MJ = ±15/2 ground state for each Dy center and the next excited term for each center in 

case of both CASSCF and ROHF calculations is around 3600 cm
-1

.
.
However, in case of the zero-field 

splitting energy, in case of center 1( i.e. Dy center 1) CASSCF energies are smaller than in case of 

ROHF calculations with a difference of approx. 300 cm
-1

 (as given in Table 6.1.8) whereas as in case of 

other two Dy centers it is like observed in case of structure 1, CASSCF energies are larger than ROHF 

energies by 130 cm
-1

. 

 

 

Structure 2(Spin orbit states) 

 center a center b center c 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.00 

 

0.00 0.00  0.00 0.00 0.00 

KD2 100.98 

 

411.98 225.53  104.07 253.84 126.20 

KD3 

 

147.30 615.15 302.91  139.40 358.24 178.54 

KD4 217.38 

 

726.80 368.88  180.20 403.33 197.46 

KD5 

 

338.55 957.55 512.65  234.77 506.26 236.20 

KD6 

 

448.72 1000.23 629.85  295.52 560.35 261.47 

KD7 643.48 1430.73 688.31  325.296 655.56 309.27 

KD8 

 

747.24 1658.73 790.41  355.96 883.13 421.75 

 

g-tensor for eight lowest Kramer’s doublets is calculated and it can be seen in Table 6.1.10 that all the 

eight Kramer’s doublets for all the three centers  are found to be highly anisotropic which is very typical 

Table 6.1 8 Energies (cm
-1

) of the lowest eight Kramer’s doublets of Dy(III) complexes obtained after Spin-

Orbit coupling for structure 2 
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for Dysprosium. The g-tensor components from main magnetic axes of lowest Kramer’s doublets are 

taken to plot the magnetic direction and it can be seen that structure 2 also exhibits toroidal magnetic 

moment. The rhombicity ratio λ = E/D for Dy(I) is 0.16 and for Dy(II)  is 0.13 whereas for Dy(III), E is 

a bit large which makes λ is equal to 0.32.
129,130

 Magnetic susceptibility is calculated for magnetic field 

B = 0.1 T, including all the lowest sixteen states, in all three centers (Dy(I), Dy(II), Dy(III)) it increases 

up to 13.61 cm
3
K/mol at 300K as shown in Figure 6.1.12(a), for magnetic field B = 5.0 T for center 1, 

center 2 and center 3 resulted in the rapid increase of magnetic susceptibility at 10K, 11K, 50K 

respectively and eventually attained a value of 13.63 cm
3
K/mol at 300K. The Zeeman plot is plotted 

using lowest three states (ground state and two excited states) by considering B = 2.0T. 4.0 T, 6.0 T, 8.0 

T & 10 T in x, -y & -z direction. By considering the energy differences in all centers, it can be seen that 

splitting is larger in x & -y direction than in –z direction implying easy axis in xy plane. 

 

 

 

 

 

 

 

Figure 6.1 11: Toroidal magnetic moment of Dy3(L3)(µ3-OH)2(CH3OH)(H2O)2Cl3  (structure 2) 
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 KD1 KD2 KD3 KD4 KD5 KD6 KD7 KD8 ZFS parameter 

Center 1 x 

y 

z 

 0.77 

 0.10 

18.26 

1.67 

0.07 

17.16 

1.71 

0.71 

12.80 

 6.44 

 3.64 

 9.30 

 3.91 

 1.10 

13.32 

 1.72 

 1.17 

17.62 

 0.16 

 0.11 

17.57 

 0.15 

0.009 

18.32 

D = -5.50 

E  =  0.88 

Case 2 x 

y 

z 

0.17 

0.10 

19.12 

5.72 

4.01 

11.74 

3.23 

2.08 

11.13 

2.68 

0.44 

11.77 

2.25 

0.39 

15.17 

2.34 

0.57 

14.24 

 1.43 

 0.94 

14.19 

0.46 

0.27 

16.96 

D = -6.84 

E  =  0.90 

Case 3 x 

y 

z 

0.11 

0.10 

19.34 

2.92 

2.31 

14.18 

3.78 

2.90 

10.90 

3.64 

2.01 

12.23 

3.32 

0.96 

14.31 

1.90 

0.49 

15.47 

0.59 

0.36 

17.51 

0.09 

0.01 

19.06  

D = -6.81 

E =   2.20 

 

  

 

(a) (b) 

Figure 6.1 12: (a) Magnetic susceptibility of three Dy centers in Magnetic field B =0.1 T(b) Magnetic Susceptibility of 

three centers in Magnetic field B = 5.0 T in case of structure 2 

Table 6.1 9: Main g-tensor values for individual Kramer’s doublets and Zero field splitting parameter for structure 2 
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Structure 1 and 2 haven’t shown a major change because of change in ligand in both cases magnetic 

susceptibility is around 13.60 cm
3
K/mol and both structures have toroidal magnetic moment which 

shows capability of attaining the maximal magnetization which can be expected from Dy center 

complexes. 

 

(a) (b) 

(c) 

Figure 6.1 13: Zeeman plot of structure 2 including three lowest Kramer’s doublets (a) magnetic field in x-

direction (b) magnetic field in y-direction and (c) magnetic field in z-direction 
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6.1.3 Er(III) 

Erbium has electrons configuration with 4f
12

6s
2
 as outermost shell. As expected being in lanthanide 

group, Er(III) is the most stable oxidation state. According to Er(III), it has 11 electrons in 7 orbitals 

with the total spin of S = 3/2 and total orbital angular momentum, L = 6,.resulting in a quartet state as a 

ground state. 

However, after spin-orbit coupling, ground state splits further into the multiplets of J, total angular 

momentum, leading to 
4
I15/2 as ground state, with 

4
I13/2, 

4
I11/2, 

4
I9/2 as next excited states. The lowest state 

leads to eight Kramer’s doublets in the ligand field. Below calculations were performed with two 

complexes containing Er(III) as metal center.  

6.1.3.1 Complex 1 

In Table 6.1.11 energies for each center with Er(III) were calculated and compared. Without spin-orbit 

coupling, the lowest quartet states are split by the ligand field in the following way: ground state at 0.0 

cm
-1

 and the next excited quartet states which belong to 
4
I ranges to 344 cm

-1
,330cm

-1
, 349 cm

-1
for 

center a, center b and center c, respectively along with next excited doublet around 18011.31, 17968.87 

& 18239.23 cm
-1

, respectively. The large energy gap between the quartet and the excited doublet state 

suggests that the influence of the doublet states is low.  After spin orbit coupling, the ground state 

produced eight Kramer’s doublets and the next excited states are at 6650, 6621 and 6669 cm
-1

 in center 

1, center 2, and center 3, respectively, for CASSCF and for ROHF, they are around 6545, 6532 and 6553 

cm
-1

, respectively, which is in agreement with the results for other Er complexes. 
115,116,131–135

 First 

excited KD of CASSCF is approximately 60 cm
-1

 higher in energy as compared to first excited KD of 

ROHF. 
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Structure 1(Spin orbit states) 

 center 1 center 2 center 3 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.00 0.00 0.00  0.00 0.00 0.00 

KD2 72.75 33.32 73.89  21.01 96.52 32.60 

KD3 154.50 58.86 124.00  49.47 179.66 62.22 

KD4 213.46 83.32 156.16  65.02 277.71 98.36 

KD5 406.14 146.66  286.41  117.36 444.36 153.33 

KD6 477.82 180.26  355.55  141.44 512.29 190.86 

KD7 574.69 222.47  458.89  188.73 576.54 211.30 

KD8 629.164 258.13  604.13  273.65 667.79 267.62 

 

In complex 1, lowest eight Kramers doublets for all three Er(III) center are in the energy range of 650 

cm
-1

 and 300 cm
-1

 for CASSCF and ROHF methods respectively. Through the computed gxx, gyy and gzz 

of the lowest Kramer’s doublets for each center it can be predicted that it is rather axial (as seen in Table 

6.1.11). Although, the next excited Kramer’s doublets have shown transverse anisotropic behavior. The 

gzz axis of lowest KD for each center is plotted for each center as seen in Figure 6.1.14 and it can be 

clearly visible that for each center, orientation of gzz axis point towards the ligand. Magnetic 

susceptibilities for Er(1), Er(2), Er(3) for magnetic field 0.1 T at 300K was 10.96, 11.10 and 10.92 cm
3
K 

mol
-1

, respectively, magnetic susceptibilities obtained here is bit lower than the values expected for free 

ion but plausible reason for this can be assumption of the diamagnetism 
86,89

. For the magnetic field 5.0 

T, magnetic susceptibilities gradually increase to 10.95, 11.10 and 10.92 cm
3
Kmol

-1
 at 300 K, 

respectively. In the Figure 6.1.16 energy difference of lowest three KD is plotted with respect to 

magnetic field in particular direction is shown and it is observed that all center mainly has easy axis in x 

and y direction, while in z direction energy difference is comparatively less. According to Zero field 

splitting parameter, E/D ratio for Er(1) is 0.26 which is bit large vale from the expected value but Er(2) 

and Er(3) it is 0.16 and 0.09, respectively. 

Table 6.1 10 Energies (cm
-1

) of the lowest eight Kramer’s doublets of Er(III) complexes obtained after Spin-

Orbit coupling for structure 1 
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 KD1 KD2 KD3 KD4 KD5 KD6 KD7 KD8 ZFS parameter 

Center 

1 

x 

y 

z 

 2.09 

 1.69 

13.46 

5.74 

7.48 

2.16 

5.60 

7.61 

2.92 

 4.22 

 7.50 

 0.20 

 4.12 

 2.64 

 7.93 

 4.98 

 1.65 

 9.40 

 4.43 

 1.41 

11.81 

 1.07 

 0.77 

 15.03 

D = -3.18 

E  =  0.83 

Center 

2 

x 

y 

z 

4.99 

2.09 

12.03 

0.88 

0.23 

13.15 

4.82 

2.04 

7.86 

1.46 

0.58 

10.32 

4.64 

3.41 

7.55 

2.42 

0.63 

11.48 

6.09 

7.57 

4.17 

0.53 

0.39 

16.23 

D = 4.30 

E  = 0.71 

Center 

c 

x 

y 

z 

0.93 

0.58 

14.72 

3.19 

1.94 

10.13 

6.09 

9.71 

1.44 

3.17 

2.19 

9.77 

2.86 

0.73 

9.72 

3.55 

1.17 

10.16 

2.87 

0.85 

12.52 

2.27 

0.50 

14.89  

D = 3.53 

E =  0.35 

 

Figure 6.1 14: Direction of g-tensors of the ground state KD of Er3 center for structure 1: (color scheme 

purple, Er; red, O; yellow, Cl; all hydrogen and carbon and bridge O atom is removed for clarity 

Table 6.1 11 Main g-tensor values for individual Kramer’s doublets and Zero field splitting parameter for Er(III) for 

structure 1 
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(a) (b) 

(a) (b) 

(c) 

Figure 6.1 15:(a) Magnetic susceptibility of three Er centers in Magnetic field B =0.1 T(b) Magnetic 

Susceptibility of three centers in Magnetic field B = 5.0 T in case of structure 1 

Figure 6.1 16: Zeeman plot of structure 1 including three lowest Kramer’s doublets with (a) magnetic field 

in x-direction (b) magnetic field in y-direction and (c) magnetic field in z-direction 
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6.1.3.2 Complex 2 

In this case, it is same as in complex 1 discussed above,  without spin orbit coupling lowest state is as 

expected quartet state and the next excited quartet state is at 14.64, 15.84 and 17.23 cm
-1

 for center 1, 

center 2 and center 3, respectively, with a next excited doublet at higher energies. In case of complex 2, 

spin orbit coupling calculations followed by CASSCF method resulted in larger zero field splitting with 

the difference of 20 cm
-1

 relative to what is seen in complex 1 and spin orbit states in ROHF method 

showing smaller zero field splitting. The lowest eight Kramer’s doublets are in the order of 750 cm
-1

 and 

300 cm
-1

 in CASSCF and ROHF calculations, respectively. First excited KD is about 100 cm
-1

 higher in 

energy than the ground KD. The next excited multiplet of J is at 6600 cm
-1

 in each center.  

 

 

Structure 2( spin-orbit states cm
-1

) 

 center 1 center 2 center c 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

KD1 0.000 

 

0.00 0.000 0.00 0.000 0.00 

KD2 90.010 

 

15.82 97.698 28.50 117.891 38.90 

KD3 170.569 

 

49.41 176.571 63.44 210.866 68.99 

KD4 294.314 

 

99.96 250.633 97.83 327.447 111.59 

KD5 462.300 149.84 448.375 161.09 538.318 179.23 

KD6 535.788 183.48 541.192 208.70 592.532 206.25 

KD7 602.147 212.24 609.121 230.10 656.149 231.84 

KD8 689.354 261.09 698.503 276.60 743.664 280.86 

 

The g-tensors computed are for the energies taken from the CASSCF orbitals (as seen in Table 6.1.13), 

first and last KD have shown an axial behavior while KD in between are exhibited transverse anisotropic 

nature. Orientation of the main magnetic axis that is gzz taken from the ground KD predicts that 

Table 6.1 12 Energies of the lowest eight Kramer’s doublets of Er(III) complexes obtained after Spin-Orbit 

coupling for structure 2 
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magnetic axis from each center is working opposite direction and pointing out of the plane (as seen in 

Figure 6.1.17). Rhombicity ratio (E/D), which is derived from zero field splitting parameter, for center 1 

is bit close to 1/3 whereas it is small in case of center 2 and center 3. Calculated magnetic 

susceptibilities with B = 0.1 T was 10.75, 10.84 and 10.76 cm
3
Kmol

-1
 at 300 K and with B = 5.0 T was 

10.74, 10.83 and 10. 75 at 300 K for center 1, center 2 and center 3 respectively as can be seen in Figure 

6.1.18. By observing the energy change with respect to the magnetic field, it can be seen that center 1 

has an easy axis in x direction while center 2 and 3 have easy axis in y and z direction which is in 

contradiction with the complex 2. 

  

 

 

 KD1 KD2 KD3 KD4 KD5 KD6 KD7 KD8 ZFS parameter 

Center 

1 

x 

y 

z 

 0.64 

 0.13 

14.82 

2.67 

1.88 

12.76 

3.80 

0.63 

9.17 

 4.05 

 0.75 

 8.76 

 3.76 

 0.31 

 9.88 

 3.79 

 0.77 

 9.26 

 5.36 

 3.08 

 9.01 

 3.13 

 0.87 

13.71 

D = 2.95 

E  = 0.73 

Center 

2 

x 

y 

z 

1.69 

0.91 

14.53 

4.39 

3.25 

9.16 

3.71 

2.54 

9.85 

3.44 

0.43 

8.45 

5.38 

8.58 

0.15 

4.96 

1.78 

10.03 

4.56 

3.06 

9.49 

0.88 

0.35 

14.23 

D = 2.22 

E  = 0.12 

Center 

3 

x 

y 

z 

0.53 

0.23 

15.16 

3.54 

2.24 

11.59 

3.52 

0.78 

10.74 

5.60 

7.78 

1.60 

2.90 

0.67 

8.65 

4.58 

0.67 

9.85 

2.65 

0.77 

12.44 

2.97 

0.52 

13.67  

D = 2.82 

E =  0.29 

 

Table 6.1 13: Main g-tensor values for individual Kramer’s doublets and Zero field splitting parameter for Er(III) for 

structure 2 

Figure 6.1 17: Direction of g-tensors of the ground state KD of Er3 center for structure 2: (color scheme purple, Er; 

red, O; yellow, Cl; all hydrogen and carbon and bridge O atom is removed for clarity 
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Figure 6.1 18: (a) Magnetic susceptibility of three Er centers in Magnetic field B =0.1 T(b) Magnetic 

Susceptibility of three centers in Magnetic field B = 5.0 T in case of structure 1 

Figure 6.1 19: Zeeman plot of structure 2 including three lowest Kramer’s doublets (a) magnetic 

field in x-direction (b) magnetic field in y-direction and (c) magnetic field in z-direction 
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Important observations derived from the calculations with the Er(III) ion is that in this case, a toroidal 

magnetic moment was absent, reason for this could be the presence of prolate nature in Er(III)
136

 ion in 

which electron density expand axially resulted in different orientation of gzz axis to the magnetic center 

triangle as compared to Dy(III) ion. 

6.1.4  Ho(III) 

The Ho(III) ion in the complexes have 4f
10

 configuration resulting in quintet as a ground spin, triplet and 

singlet as excited spins. 4f
10

 electronic configuration creates 35 quintet, 210 triplet and 196 singlet spin 

states.
137

 After spin orbit coupling in Ho(III) where L = 6, S = 2 and J = | L +S | = 8, the ground state 

term is 
5
I8 which gives rise to 17 non-degenerate lowest states and the next excited states belongs to 

5
I7.  

6.1.4.1 Complex 1 

For complex 1, in calculation for CASSCF method active space is taken as 10 electrons in 7 orbitals 

which are responsible for as discussed above quintet as a ground state and next excited quintet state is 26 

cm
-1

 higher in energy for each center. Spin orbit coupling produced 17 low lying states by 591, 585 and 

624 cm
-1

 for center 1, center 2 and center 3, respectively and the first excited state just above the ground 

state is not very far away but just at 5.12, 0.97 and 13.47 cm
-1

 for center 1, center 2 and center 3, 

respectively and the next excited state which belongs to term 
5
I7 state is about 5200 cm

-1
 higher in 

energy. Magnetization comes through the second order Zeeman interaction as the lowest states are non-

degenerate
138

 In ROHF calculations, the spin orbit states obtained are lower in energy as compared to 

the CASSCF method (as seen in Table 6.1.14 below). In case of ROHF method, zero field splitting is 

1.37, 0.03 and 2.93 cm
-1

 for center 1, center 2 and center 3, respectively and the next excited state is 

5100 cm
-1

 higher in energy. Nevertheless, both methods provided energies well in the range of other 

reported values.
137,139–141

 

 

Structure 1 

center 1 center 2 center 3 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

0.000 0.00 0.000 0.00 0.00 0.00 

5.12 1.37 0.97 0.03 13.47 2.93 

54.85 28.98 125.95 69.47 80.18 47.20 

Table 6.1.14 Energies (cm
-1

) of the 17 states of Ho(III) complexes obtained after Spin-Orbit coupling for 

structure 2 
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Magnetic properties are calculated from the lowest six states as three pseudo doublets, at low 

temperature. When g tensors were calculated for non-Kramers doublet, two g factors were zero except 

one, implying that magnetization was only in one direction and not in other two directions. Anisotropic 

axis i.e. gzz =17.06, 18.03 and 17.38 for center 1, center 2 and center 3, respectively, taken from the 

lowest doublet and plotted to find out the directions of the local magnetic moment and as it can be seen 

in Figure 6.1.20 below that local magnetic moment of each center resulted in toroidal magnetic moment. 

The g factor calculated first for all the 17 non degenerate states which belong to the ground state 
5
I8 is 

isotropic. Calculated zero field splitting parameter for center 1 and center 2 are bit large while for center 

3 it is a different case. The calculated magnetic susceptibility (χ) for B = 0.1 T is 13.49, 13.55 and 13.49 

cm
3
K/mol at 300K for center 1, center 2 and center 3 respectively. At lower temperature around 5 K, 

there is a rapid increase in the population of the mj states which can be explained as temperature 

dependence of χT. Also, the magnetic susceptibility calculated for B = 5.0 T have shown no change (as 

can be seen in Figure 6.1.21). The Zeeman diagram (as seen in Figure 6.1.22) is plotted for lowest four 

states or lowest two non-Kramer’s doublets with magnetic field B = 2.0, 4.0. 6.0,8.0 and 10.0 T in x, y 

and z direction and it can be observed that center 1 and center 2 have easy axis in magnetic field applied 

62.24 33.27 144.16 74.30 93.90 49.45 

110.57 60.31 168.70 96.09 133.26 61.81 

170.59 77.49 256.90 126.14 174.87 75.77 

175.28 90.42 278.75 133.88 176.73 87.80 

229.276 102.22 303.33 143.25 226.00 105.00 

302.37 130.74 374.25 166.51 277.78 121.62 

416.76 167.84 392.79 176.15 386.39 158.29 

426.74 170.64 456.51 203.18 439.89 179.90 

464.21 183.05 466.41 207.91 481.14 190.45 

493.73 195.54 488.99 215.59 501.31 197.67 

523.49 206.74 513.09 224.37 541.50 217.80 

542.30 213.61 547.34 241.02 559.09 222.47 

585.78 240.47 565.86 253.50 619.05 245.06 

591.36 240.68 585.90 256.57 624.06 246.91 
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in y direction whereas center 3 has easy axis when magnetic field applied in x direction, however, 

magnetic field applied in z direction do not witness much change in energy 

 

 

 

 

 Lowest pseudo doublet 1
st
 pseudo doublet g-tensor  

ZFS parmater 
 E (cm

-1
) g-fac E (cm

-1
) g-fac 

Center 1 x 

y 

z 

0.000 

5.12 

 

0.00 

0.00 

17.06 

54.85 

62.24 

 

0.00 

0.00 

14.77 

1.24 

1.24 

1.24 

D = 2.63 

E = 0.71 

E/D = 0.26 

Center 2 x 

y 

z 

0.000 

0.97 

0.00 

0.00 

18.03 

125.95 

144.16 

 

0.00 

0.00 

10.69 

1.24 

1.24 

1.24 

D = -3.60 

E = 0.78 

E/D = -0.21 

Center 3 x 

y 

z 

0.00 

13.47 

 

0.00 

0.00 

17.38 

80.18 

93.90 

 

0.00 

0.00 

14.46 

1.24 

1.24 

1.24 

D = -2.81 

E = 0.28 

E/D = -0.09 

 

Figure 6.1 20: Direction of gz-tensors of the ground pseudo doublet state of three Ho(III) centers for structure 1: 

(color scheme purple, Ho; red, O; yellow, Cl; all hydrogen and carbon and bridge O atom is removed for clarity 

Table 6.1 15 g tensors of the pseudo doublets and the ZFS parameters 



 

97 
 

 

 

 

 

0 2 4 6 8 10

-40

-20

0

20

40

60

80

100

120

140

E
n

e
rg

y
 (

c
m

-1
)

B (T)(Magnetic field in x direction)

 center 1

 center 2

 center 3

Figure 6.1 22: Zeeman plot of structure 1 including three lowest four states (a) magnetic field in x-

direction (b) magnetic field in y-direction and (c) magnetic field in z-direction 

Figure 6.1 21: (a) Magnetic susceptibility of three Ho centers in Magnetic field B =0.1 T(b) Magnetic Susceptibility of 

three centers in Magnetic field B = 5.0 T in case of structure 1 



 

98 
 

6.1.4.2 Complex 2 

In case of complex 2, active space is taken same as complex 1 ten electrons in 7 orbitals. After CASSCF 

calculations, next excited quintet state is 5 cm
-1

, 41 cm
-1

, 37 cm
-1

 higher in energy for center 1, center 2 

and center 3, respectively. SOCI calculations gave 17 lowest states in the range of 260 cm
-1

 including  

few pseudo doublets and singlets for each center which belongs to ground multiplet and next excited 

multiplet is lying around 5100 cm
-1

 higher in energy for center 1 and center 2 whereas 5500 cm
-1

 for 

center 3. Results from ROHF calculations are in agreement with the SOCI calculations from CASSCF as 

can be seen in Table 6.1.16. In case of ROHF calculations also, next excited multiplet lies around 5100 

cm
-1

 which is in agreement with the previously reported values.
142

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure 2 

center 1 center 2 center 3 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

0.000 0.00 0.000 0.00 0.00 0.00 

0.70 0.70 4.94 5.04 4.91 4.38 

32.61 31.67 40.74 38.97 31.37 45.45 

35.73 34.80 50.77 48.42 39.56 55.86 

59.60 58.66 55.00 53.12 44.41 58.15 

62.41 61.41 73.86 71.66 73.10 86.99 

82.48 80.91 81.21 78.88 80.39 93.03 

104.91 103.38 96.85 94.21 95.67 114.23 

125.50 123.92 118.19 115.79 108.92 123.08 

162.20 160.44 153.62 151.21 134.71 160.35 

182.90 181.15 169.62 167.30 157.49 177.83 

190.68 188.92 183.92 181.10 165.17 195.81 

205.72 203.77 208.79 205.47 177.14 205.43 

214.47 212.09 229.05 225.61 190.92 222.54 

219.91 217.47 246.72 242.81 197.26 228.80 

234.28 231.74 256.199 251.99 211.44 247.75 

235.51 233.11 261.84 257.64 216.00 249.91 

Table 6.1.16 Energies (cm
-1

) of the 17 states of Ho(III) complexes obtained after Spin-Orbit coupling for 

structure 2 
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The g-tensors were calculated for ground pseudo doublet for each center and it is found that gz = 17.32, 

17.07 and 17.26 which is typical for non-Kramer’s ion to exhibit pure Ising nature. For each center, the 

magnetic main axes for the highest g-value, the gz orientation for ground state, is plotted (as shown in 

Figure 6.1.23) and it is observed that the gz-axes form a triangle giving toroidal moment which helps in 

maximal magnetization as discussed in the sections above. For center 1 and center 2, the E/D ratio is in a 

good range whereas for center 3 contribution of E is substantial. The calculated magnetic susceptibility 

(χT) at B = 0.1 T remains almost constant 13.80 cm
3
K/mol at room temperature but decreases very fast 

at low temperature shown in Figure 6.1.24. Even at high magnetic field B= 5.0 T, χT remains 13.80 

cm
3
K/mol at room temperature and there is a sharp decrease at low temperature. The energies of the 

lowest four states are plotted with respect to the magnetic field and it is observed that center 1 shows a 

large energy difference when the magnetic field is applied in x direction and center 3 shows a large 

energy difference when applied in y direction ( as shown in Figure 6.1.25). Also mixing of states is 

observed in center 1 and center 3. 

 

 

 

 

 

Figure 6.1 23: Direction of gz-tensors of the ground pseudo doublet state of three Ho(III) centers for structure 

2: (color scheme purple, Ho; red, O; yellow, Cl; all hydrogen and carbon and bridge O atom is removed for 

clarity 
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 Lowest pseudo doublet 1
st
 pseudo doublet g-tensor  

ZFS parameter 
 E (cm

-1
) g-fac E (cm

-1
) g-fac 

Center 1 x 

y 

z 

0.00 

0.70 

 

0.00 

0.00 

17.32 

32.61 

35.73 

 

0.00 

0.00 

16.91 

1.24 

1.24 

1.24 

D = -1.018 

E = 0.06 

E/D = -0.05 

Center 2 x 

y 

z 

0.00 

4.94 

0.00 

0.00 

17.07 

40.74 

50.77 

 

0.00 

0.00 

12.24 

1.24 

1.24 

1.24 

D = -1.32 

E = 0.10 

E/D = -0.08 

Center 3 x 

y 

z 

0.00 

4.91 

 

0.00 

0.00 

17.26 

31.37 

39.56 

 

0.00 

0.00 

11.66 

1.24 

1.24 

1.24 

D = -0.85 

E = 0.19 

E/D = -0.23 

 

 

Figure 6.1 24: (a) Magnetic susceptibility of three Ho centers in Magnetic field B =0.1 T(b) Magnetic Susceptibility of 

three centers in Magnetic field B = 5.0 T in case of structure 2 

(a) 
(b) 

(a) 
(b) 

Table 6.1.17 g tensors of the pseudo doublets and the ZFS parameters for structure 2 
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6.1.5  Tb(III) 

Tb (III) is the ion which occurs naturally as one stable isotope which makes it a desirable choice for 

qubits.
143

 Tb(III) ions also possess high anisotropic oblate electronic charge distribution and that’s why 

it is expected to give higher anisotropy.
143

 Tb(III) has a 4f
8
 valence configuration  which results in 7 

septets, 140 quintets and 195 triplets.
144

 The ground state for the Tb(III) ion is 
7
F6. 

6.1.5.1  Complex 1 

In complex 1, for CASSCF calculations, next excited state lies at 102 cm
-1

, 86 cm
-1

 and 18cm
-1

 for 

center 1, center 2 and center 3, respectively. After CASSCF calculations, SOCI calculations were 

observed and as expected from Tb(III) ion 
7
F6 is ground multiplet term which resulted in thirteen lowest 

energy states including pseudo-doublets and singlets in the range of 800 cm
-1

. The next excited multiplet 

which belongs to 
7
F5 is 2065 cm

-1
, 2370 cm

-1
 and 2100 cm

-1
 higher in energy for center 1, center 2 and 

center 3 respectively which agree well with the reported values.
142,145

  The energy spectrum of the 

lowest thirteen states obtained by ROHF calculation however is lower in energy than CASSCF method 

as can be seen in Table 6.1.18. While, the next excited state is around 2100 cm
-1

 higher in energy just 

like CASSCF results. 

 

 

 

(c) 

Figure 6.1 25: Zeeman plot of structure 2 including lowest four states (a) magnetic field in x-direction (b) 

magnetic field in y-direction and (c) magnetic field in z-direction 
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Structure 1 

center 1 center 2 center 3 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

0.00 0.00 0.000 0.00 0.00 0.00 

1.38 0.56 0.26 0.06 1.69 0.40 

92.15 44.86 132.73 81.67 117.25 83.56 

101.42 48.47 133.69 82.21 128.76 87.47 

197.13 104.27 213.12 131.45 233.85 145.89 

227.53 121.63 216.40 134.69 267.66 155.54 

280.83 147.56 319.06 184.31 363.19 216.14 

331.03 189.12 332.51 204.89 413.07 235.77 

354.73 195.37 408.09 233.57 444.27 257.30 

458.30 260.33 514.53 315.08 499.49 292.64 

466.14 262.37 541.49 322.45 522.79 298.22 

676.89 390.72 784.42 466.55 694.73 390.90 

677.79 390.779 788.19 467.31 698.73 391.72 

Figure 6.1 26: Direction of gz-tensors of the ground pseudo doublet state of three Tb(III) 

centers for structure 1 

Table 6.1 18 Energies (cm
-1

) of the 13 states of Tb(III) complexes obtained after Spin-Orbit coupling for 

structure 1 
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The g-tensors were analyzed for ground non-Kramer’s doublets and it exhibits pure Ising nature by 

giving gz value of 17.07, 17.53 and 17.28 for center 1, center 2 and center 3 which is expected from 

Tb(III) ions. Then, calculated gz tensors were used to determine the orientation of main magnetic axis 

which looks like toroidal manner which is expected from Tb(III) ion being oblate in nature. The 

calculated magnetic susceptibility (χT) for B = 0.1 T is 11.47 cm
3
K/mol at 300 K which gradually 

decreases at low temperature as shown in Figure 6.1.27. The energies of the lowest four states with 

magnetic field as a function shows that that center 2 in y direction and center 3 in x direction has easy 

axis while center 1 has same response in each direction as shown in Figure 6.1.28  

 

 Lowest pseudo 

doublet 

1
st
 pseudo doublet g-tensor  

ZFS parmater 

 E (cm
-1

) g-fac E (cm
-1

) g-fac 

Center 

1 

x 

y 

z 

0.00 

1.38 

 

0.00 

0.00 

17.07 

92.15 

101.42 

 

0.00 

0.00 

16.91 

1.48 

1.48 

1.49 

D = 11.77 

E = 3.60 

E/D = 0.30 

Center 

2 

x 

y 

z 

0.00 

0.26 

0.00 

0.00 

17.53 

132.73 

133.69 

 

0.00 

0.00 

16.30 

1.48 

1.49 

1.47 

D = -16.14 

E = 2.45 

E/D = -0.15 

Center 

3 

x 

y 

z 

0.00 

1.69 

 

0.00 

0.00 

17.28 

117.25 

128.76 

 

0.00 

0.00 

14.96 

1.48 

1.49 

1.47 

D = -13.75 

E = 0.71 

E/D = -0.05 

 

  

 

(a) (b) 

Figure 6.1 27: (a) Magnetic susceptibility of three Ho centers in Magnetic field B =0.1 T (b) Magnetic 

Susceptibility of three centers in Magnetic field B = 5.0 T in case of structure 1 

Table 6.1.19 g tensors of the pseudo doublets and the ZFS parameters for structure 1 
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6.1.5.2 Complex 2  

In case of complex 2, For CASSCF calculations, next excited  state lies at 72 cm
-1

, 83 cm
-1

 and 67 cm
-1

 

for center 1, center 2 and center 3, respectively. After CASSCF calculations, SOCI calculations were 

performed and ground multiplet resulted in thirteen lowest energy states including pseudo-doublets and 

singlets in the range of 500 cm
-1

 which is lower than complex 1. The next excited multiplet is over 2000 

cm
-1

 higher in energy for each center which agrees well with the reported values.
144,145

  Energy spectrum 

of lowest thirteen states obtained by ROHF calculation however is lower in energy than CASSCF 

method as can be seen in Table 6.1.20. The next excited state is around 2100 cm
-1

 higher in energy for 

center 1 and 3 but for center energy difference increases 4000 cm
-1

. The g-tensors were analyzed for 

ground non-Kramer’s doublets just like complex 1 and gz values are 16.33, 16.35 and 17.02 for center 1, 

(a) (b) 

(c) 

Figure 6.1 28: Zeeman plot of structure 1 including lowest four states (a) magnetic field in x-direction (b) 

magnetic field in y-direction and (c) magnetic field in z-direction 
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center 2 and center 3, respectively. Then, calculated gz tensors were used to determine the orientation of 

main magnetic axis as shown in 

 

 

Figure 6.1.29 for each center is in toroidal manner. The calculated magnetic susceptibility (χT) for B = 

0.1 T is 11.50, 11.69, 11.72 cm
3
K/mol at 300 K for center 1, center 2 and center 3 respectively, which 

gradually decreases at low temperature as shown in Figure 6.1.30. The energies of the lowest four states 

with respect to the magnetic field shows that that center 1 exhibits large energy difference in x direction 

while center 2 in both x, y direction and center in 3 in y and z direction shown in Figure 6.1.31. Mixing 

of excited states is also observed at high magnetic field for center 2 and center 3. 

 

Structure 2 

center 1 center 2 center 3 

CASSCF ROHF CASSCF ROHF CASSCF ROHF 

0.00 0.00 0.00 0.00 0.00 0.00 

0.66 1.54 1.22 1.20 0.26 0.28 

50.91 33.26 30.71 31.03 65.19 64.88 

55.90 41.58 34.22 34.52 73.81 73.63 

93.68 56.15 101.01 101.38 96.97 96.52 

120.31 64.96 108.68 109.05 117.47 117.20 

Figure 6.1 29: Direction of gz-tensors of the ground pseudo doublet state of three Tb(III) centers for 

structure 2 

Table 6.1. 20 Energies (cm
-1

) of the 13 states of Tb(III) complexes obtained after Spin-Orbit coupling for 

structure 2 
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 Lowest pseudo 

doublet 

1
st
 pseudo doublet g-tensor  

ZFS parameter 

 E (cm
-1

) g-fac E (cm
-1

) g-fac 

Center 

1 

x 

y 

z 

0.00 

0.66 

 

0.00 

0.00 

16.33 

50.91 

55.90 

 

0.00 

0.00 

15.55 

1.48 

1.48 

1.48 

D = 4.74 

E = 1.56 

E/D = 0.32 

Center 

2 

x 

y 

z 

0.00 

1.22 

0.00 

0.00 

16.35 

30.71 

34.22 

 

0.00 

0.00 

13.63 

1.49 

1.49 

1.48 

D = -5.97 

E = 0.48 

E/D = -0.08 

Center 

3 

x 

y 

z 

0.00 

0.26 

 

0.00 

0.00 

17.02 

65.19 

73.81 

 

0.00 

0.00 

11.73 

1.48 

1.49 

1.49 

D = 6.07 

E = 1.48 

E/D = 0.24 

 

145.45 92.39 151.44 152.11 120.76 120.42 

272.27 140.38 178.49 179.08 161.89 161.53 

297.52 156.38 200.37 201.01 168.42 168.07 

390.18 216.28 215.05 215.90 226.74 226.40 

402.07 222.75 227.26 228.00 228.88 228.52 

507.09 245.17 299.01 300.02 345.45 345.19 

507.66 247.26 300.28 301.29 345.51 345.25 

Table 6.1.21 g tensors of the pseudo doublets and the ZFS parameters for structure 2 
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(a)

) 

(b) 

(a) (b) 

(c) 

Figure 6.1 31: Zeeman plot of structure 2 including lowest four states (a) magnetic field in x-direction (b) magnetic 

field in y-direction and (c) magnetic field in z-direction 

Figure 6.1 30: (a) Magnetic susceptibility of three Ho centers in Magnetic field B = 0.1 T(b) Magnetic 

Susceptibility of three centers in Magnetic field B = 5.0 T in case of structure 2 
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 6.2 Poly-nuclear- Ln(III)-Ln(III) 

6.2.1 Gd(III)-Gd(III) 

In this case study, two lanthanides are studied together. 

For the calculation purposes, one Ln(III) ion is replaced 

with an Y(III) ion to make a given complex binuclear and 

each as seen in Figure 6.2.1. Computational details are the 

same as mentioned in the section above. For Gd(III)-

Gd(III) complex, the ground state spin this case is derived 

from SGd1 = 7/2 and SGd2 = 7/2 which results in total spin S 

= 7. 

Ground multiplet state for each Gd(III) center gives four Kramer’s doublets i.e 8 states states resulted in 

64 states, SOCI calculations were performed to calculate lowest four state or pseudo quartet state shown 

in Table 6.2.1. Energies of the obtained four states shows that two Gd(III) centers  are in the range of 

1.50 cm
-1

. g-tensors were calculated for first including all four states and it exhibits transverse 

anisotropic behavior with gx = 3.42, gy = 0.26 and gz = 7.31. The calculated magnetic susceptibility (χT) 

for the system is 10.19 cm
3
K/mol at room temperature which is lower to the theoretically expected 

values based on two non-interacting Gd(III) centers
146,147

 and as it gradually reaches to the low 

temperature, 30 K , χT value sharply decreases to 5.31 cm
3
K/mol as can be seen in Figure 6.2.2.  

 

 

Energy 

(cm
-1

) 

ZFS 

Parameter 

Main magnetic 

axes 

0.00 D =0.59 

 

E = 0.06 

 

E/D = 0.11 

x 

 

y 

 

z 

3.42 

 

0.26 

 

7.31 

0.06 

1.30 

1.45 

 

Figure 6.2 1: Ln(III)-Ln(III) complex 

Table 6.2 1: Energies (cm
-1

) of the four states obtained after Spin-Orbit coupling of Gd(III)-Gd(III) and main 

magnetic axes (g-tensor) and ZFS parameter 
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6.2.2 Dy(III)-Dy(III) 

In this case study, two lanthanides are studied together. As in the above case we found that ROHF 

method is in agreement with the CASSCF method and previously reported values. With Dy(III)-Dy(III) 

calculations, main issue with CASSCF is large number of state. So ROHF approach is used instead. For 

the calculation purposes, one Ln(III) ion are replaced with Y(III) ions to make a given complex 

binuclear and each as seen in Figure 5.2.1. Ground state spin in this case is derived from SDy1 = 5/2 and 

SDy2 = 5/2 which results in total spin S = 10. 

Ground multiplet state for each Dy(III) center gives eight Kramer’s doublets i.e. 16 states resulted in 256 

states (16 x16) which is a large number of states and unfortunately, it’s not possible to calculate these 

much states and hence Subciexpert program is used in SOCI calculations to calculate only lowest KD 

doublet from each Dy center which resulted in lowest four state or two non-Kramer’s doublets shown in 

Table 6.2.2. Energies of the obtained four states shows that two Dy(III) centers are non-interacting as 

energy spectrum is less than 0.3 cm
-1

. The g-tensors were calculated for first including all four states and 

it exhibits transverse anisotropic behavior with gx = 5.22, gy = 0.71 and gz = 10.44. Gz –tensors were also 

calculated for pseudo doublets and it is observed that first pseudo doublet has highly axial gz value of 

30.80. The calculated magnetic susceptibility (χT) for the system is 21.40 cm
3
K/mol at room 

temperature which is near to the theoretically expected values based on two non-interacting Dy(III) 

centers 
146,148

 but as the at low temperature, 30 K , χT value increases to 22.2 cm
3
K/mol as can be seen 

in Figure 6.2.3.  

Figure 6.2 2 : Magnetic susceptibility of Gd(III)-Gd(III) with B = 0.1 T 
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6.2.3 Er(III)-Er(III) 

In the dinuclear Er(III)-Er(III) complex, Ground state spin in this case is derived from SEr1 = 3/2 and SEr2 

= 3/2 which results in total spin S = 7. The ground state multiplet for each Er(III) center gives eight 

Kramer’s doublets i.e 16 states resulted in 256 states (16 x 16) which is large number of states. As in the 

case of Dy, it is not possible to calculate so many states at the same time, hence only the lowest states 

obtained in the SUBCI were used in the SOCI calculations. Only the lowest KD doublet from each Er 

center was included which resulted in the lowest four states shown in Table 6.2.3. Energies of the 

obtained four states shows that the two Er(III) centers are non-interacting as the energy spectrum is in 

the range of 0.02 cm
-1

. The g-tensors were calculated for first including all four states and it exhibits 

transverse anisotropic behavior with gx = 2.07, gy = 1.73 and gz = 9.00. The calculated magnetic 

susceptibility (χT) for the system is 13.86 cm
3
K/mol at room temperature which is lower than the 

Table 6.2 2: Energies (cm
-1

) of the four states obtained after Spin-Orbit coupling of Dy(III)-Dy(III) and main 

magnetic axes (g-tensor) and ZFS parameter 

Figure 6.2 3 : Magnetic susceptibility of Dy(III)-Dy(III) with B = 0.1 T 
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theoretically expected values based on two non-interacting Er(III) centers
146

 and at low temperature, χT 

value decreases to 12.99 cm
3
K/mol as can be seen in Figure 6.2.4 
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axes 

0.00 D =0.004 

 

E = 0.0007 

 

E/D = 0.18 
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2.07 

 

1.73 

 

9.00 

0.005 

0.018 

0.021 

 

 

6.2.4 Dy(III)-Tb(III) 

In this case, we studied a hetero-nuclear complex with Dy(III) at one center and Tb(III) at second center. 

This combination is preferred because of the low number of states. Here, CASSCF calculations were 

employed with 11 states of Dy(III) that belonged to ground state 
6
H and 7 states of Tb(III) that belonged 

to 
7
F resulted in 77 state which manageable by the CASSCF approach. With a total spin of Dy(III) S= 

5/2 and Tb(III) S=3 the total spin of the complex is S = 11/2. After the CASSCF calculation, the next 

 

Table 6.2 3 : Energies (cm
-1

) of the four states obtained after Spin-Orbit coupling of Er(III)-Er(III) and main 

magnetic axes (g-tensor) and ZFS parameter 

Figure 6.2 4 : Magnetic susceptibility of Er(III)-Er(III) with B = 0.1 T 
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excited state is 28 cm
-1

 higher in energy compared to the ground state. SOCI calculations resulted in 

pseudo-quartet states. The magnetic susceptibility (χT) for the system is 21.40 cm
3
K/mol at room 

temperature which is lower than the theoretically expected values based on two non-interacting Dy(III) 

centers
146

 and at low temperature, χT value decreases to 17.67 cm
3
K/mol as can be seen in Figure 6.2.5 
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0.04 
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Table 6.2 4 : Energies (cm

-1
) of the four states obtained after Spin-Orbit coupling of Dy(III)-Tb(III) and 

main magnetic axes (g-tensor) and ZFS parameter 

Figure 6.2 5: Magnetic susceptibility of Dy(III)-Tb(III) with B = 0.1 T 
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 6.3 GdBr3-Complex 

 

 

The complex shown above in Figure 6.3.1 has a Gd(III) ion in the center. The Gd(III) ion is coordinated 

by six oxygen atoms of the ligands and one water molecule. All the bond distances of Gd-O are the 

range of 2.18 – 2.36Å. For all calculations, density functional theory (DFT) is used using 

TURBOMOLE
94

 package. BP86 functional and the x2c-TZVPall basis set
118

 for Gd, and def-SV(P) 

basis set for rest of the atoms were applied. Bond distances of Gd-O were calculated which agrees with 

the reported literature.
117,119,147

 The optimized structures were used for the (CASSCF) calculations and 

spin orbit coupling calculations. The fourth order Douglas-Kroll-Hess hamiltonian was included, where 

scalar relativistic contributions were taken into account. Furthermore, spin orbit coupling is calculated 

based on ROHF orbitals and all the calculations are compared. 

As discussed in sections 6.1.1, the Gd(III) ion is f
7
 i.e. it has exactly half filled f orbitals. In CASSCF 

calculations, active space is considered to be CAS(7,7) i.e. 7 electrons in 7 orbitals which resulted in 

spin S= 7 2⁄ . The f
7
 system has 

8
S as a ground state same as explained in above sections. The orbitals 

were obtained for the octet ground state.The lowest 4 Kramers doublets obtained in the SOCI are shown 

in table 1. The g-tensors were calculated (as shown in Table 6.3.1). For the ground state, g is rather 

isotropic in the order of 1.99 and the magnetic susceptibilities χT increases to 7.48 cm
3
K mol

-1
 

 

 

 

 

 

 

Figure 6.3 1: Structure of Gd(III) complex (purple– Gd(III) ion; red – Oxygen, yellow - Bromide) 
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 Spin-orbit states (cm-1) 

CASSCF ROHF 

KD1 0.00 

 

0.00 

KD2 0.32 

 

0.30 

KD3 

 

0.58 0.56 

KD4 0.96 

 

0.97 

 

 

 

 

 

 

KD 1 2 3 4 Main magnetic 

axes(g-tensors) 

 

 
Energy 0.00 0.87 1.45 2.07 

x 

y 

z 

0.07 

0.05 

13.88 

1.84 

1.50 

9.37 

5.20 

3.98 

6.88 

0.07 

0.05 

13.88 

1.99 

1.99 

1.99 

D = -0.15 

E = 0.03 

E/D = -0.22 

 

  

 

Table 6.3 1 : Energies (cm
-1

) of the lowest four Kramer’s doublets of Gd(III) complexes obtained after Spin-Orbit 

coupling 

Figure 6.3 2 : (a) Magnetic susceptibilities calculated for lowest quartet state with B = 0.1; (b) 5.0 T and Energies of 

the Kramer’s doublet in a magnetic field 

(a) (b) 
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6.4   Gd(III) Complex 2 

 

In this case study, we have a complex with two Gd(III)-Gd(III) centers, each center is coordinated with 

eight oxygen atoms. The bond distance of Gd-O in the complex is in the range of 2.30-2.40 Å.
146

 As 

before, one center is replaced with a diamagnetic Y(III) to make the other a mononuclear center and 

each center is calculated one at a time. Computational details are the same as mentioned for the Gd -

complex in section 6.3. As mentioned above the ground state for Gd(III) is 
8
S . Four Kramer’s doublets 

are in the range of 1 cm
-1

 for both CASSCF calculations and ROHF calculation as shown in Table 6.4.1. 

g-tensors including all eight states are calculated and it is found highly isotropic in order of 1.99 which 

agrees well with the expected value. The g-tensor including all eight states is calculated and it is found 

to be highly isotropic in order of 1.99. The simulated Magnetic susceptibility (χT) at B= 0.1 T is 7.84 

cm
3
K/mol (as seen in Figure 6.4.2) for both centers which remains constant at room temperature but 

suddenly decreases at low temperature. The energies of 4 KD s with respect to the magnetic field B =10 

T shows that at high magnetic field, splitting of four KDs is around 30 cm
-1

. 

 

 

 

 

 

 

 Figure 6.4 1: (a) Structure of Gd(III) complex ( green – Gd(III) ions; red – Oxygen) 
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Spin orbit states 

 center a center b 

CASSCF ROHF CASSCF ROHF 

KD1 0.00 

 

0.00 0.00 0.00 

KD2 0.32 

 

0.31 0.30 0.23 

KD3 

 

0.58 0.51 0.55 0.42 

KD4 0.96 

 

0.78 0.91 0.72 

 

 KD1 KD2 KD3 KD4 ZFS parameter 

Center 1 x 

y 

z 

 0.55 

 0.35 

13.60 

4.74 

3.53 

7.54 

2.55 

2.01 

9.03 

 1.21 

 0.09 

13.83 

D = 0.06 

E  = 0.01 

Center 2 x 

y 

z 

0.55 

0.35 

13.60 

4.70 

3.53 

7.55 

2.56 

2.02 

9.03 

0.12 

0.09 

13.83 

D = 0.06 

E  = 0.07 

 

 

 

 Figure 6.4 2: Magnetic susceptibility of Gd centers in a magnetic field B =0.1 T 

Table 6.4 1: Energies (cm
-1

) of the lowest four Kramer’s doublets of Gd(III) complex obtained after Spin-

Orbit coupling. 
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6.5 Conclusions 

In summary, ab initio calculations were performed on a series of lanthanide complexes with different 

ligands for a better understanding of the underlying physics responsible for magnetic properties and to 

shed light on the SMM behavior. For all the systems, along with the spin orbit configuration interaction 

calculations (SOCI) based on orbitals from complete active space self-consistent field calculations, new 

ROHF method developed in Kaiserslautern was also tested and the results were compared for all the 

centers. In the SOCI Slater determinants belonging only to the lowest ground state in an active space of 

the 4f-orbitals are considered to obtain the low lying electronic states, their zero-field splittings, g-

tensors and magnetic susceptibilities. 

Among the complexes studied, the ground state Kramers Doublet of, Ho(III) and Tb(III) is Ising in 

nature. For Dy(III) and Er(III), the ground state KD is axially anisotropic but excited state KDs shows a 

transverse anisotropy. In case of complexes with Dy(III) and Er(III), mirror symmetry in the g tensors 

implies that direction of the anisotropy axes rotate when moving to higher doublets. Dy(III), Ho(III) and 

Tb(III) possess toroidal moment. The second order spin orbit coupling is observed in Gd(III) complexes 

as L= 0. Presence of ligand results in slight distortion in  spherical symmetry of Gd(III) which give rise 

to very small D (axial parameter) The E/D ratio is in the range of 1/3 for each Ln(III) centers which is 

considered as a condition for SMM. Results obtained from two Ln(III) ions calculation show that there 

is negligible interaction between them. Magnetic susceptibilities obtained in the polynuclear cases are 

lower than the reported data.  

SOCI-calculations based on ROHF and CASSCF orbitals, respectively, show differences in the relative 

energies of the lowest states. The origin of the differences should be further analyzed in the future. 
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7 Summary  

The goal of the present thesis is to theoretically investigate the magnetic properties of 3d
n
 and 4f

n
 

elements with different surrounding and geometries. Because of the complex electronic structures of the 

partly filled d- and f-shells and the importance of spin orbit coupling for the magnetic properties, 

CASSCF and CAS-SO-CI calculations were performed. In the Chapter 5, the results for Ni(II) and 

Co(II) based 3d compounds are shown. First, a Ni(II) with azopyridine ligand was studied not only as 

mononuclear complex but as well as directly related radical complex by hosting a radical electron on the 

azopyridine ligand and the parameter calculated with our calculation is in the agreement with the 

previously reported values. In this case, a positive axial zero field parameter D was found for the triplet 

ground state of [Ni(II)L]2+ which is in agreement with the magnetostructural correlation seen for similar 

Ni complexes. The Zeeman plots and magnetic susceptibilities (χT) are comparable with the 

experimentally obtained values and the anisotropy axis is found to be along the axial ligands. In case of 

[Ni(II)L−]1+, the additional unpaired electron is coupled ferromagnetically to the Ni(II) spin. The 

calculated magnetic susceptibility shows a decrease at higher temperature because of the influence of the 

higher electronic states. Most of the calculated parameters are in agreement with the experimental values 

except for the sign of the D which is positive in case of the quantum chemical calculations while the 

experimental results obtained from EPR suggest a negative sign. In the related complex with three spin 

center, two Ni(II) centers with S=1 and one unpaired ligand electron  both Ni(II) centers are coupled 

ferromagnetically to the ligand spin. D in this case is positive which suggest anisotropy axis lying axial. 

The magnetic susceptibility shows a dip at high temperature after higher states start to contribute. 

Furthermore a series of Co(II) complexes with different ligands and geometries was investigated to see 

how the ligand field effects the magnetic properties of Co(II). All three complexes exhibit strong easy 

axial anisotropy with significant transversal contibution
149

 One of the complexes has a distorted 

tetrahedral symmetry. For this complex, it is observed that the ground state quartet is well separated 

from the higher states. Therefore, second order spin –orbit coupling is observed and ground quartet state 

contributed with 94 % and 98 % to the lowest two Kramer’ doublet in the CAS-SO-CI. D obtained in 

this case is negative which confirms the easy axis magnetic anisotropy and this also matches well with 

the experimental values. The other two Co(II) complexes have distorted octahedral geometry and both 
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complexes show that the axial bonds are shorter than the equatorial bonds (compressed octahedron). In 

this case, first order spin-orbit effects are observed and hence the first three quartet states exhibit 

contribution to the lowest KDs. In this case, the g values point towards an  easy axis type of magnetic 

anisotropy. These calculations show that the above mentioned complexes have the potential to behave as 

SMMs. 

In chapter 6, I investigated different complexes of 4f elements. First, the anisotropy axes of the 4f ions 

in two complexes with three Ln(III) ions in one plane but slightly different ligands were investigated. 

Structure 1 (as shown in Figure 2a) is Ln3(L)3(µ3-OH)2(H2O)4Cl2  and structure 2 (as shown in Figure 

(2b) is Ln3(L3)(µ3-OH)2(CH3OH)(H2O)2Cl3 where L is 3-ethoxysalicylaldehyde. In the calculations, one 

center is Ln(III)- Gd, Dy, Er, Ho and Tb and the other two centers were replaced by Y(III) to  analyze 

the properties of the individual centers in a mononuclear complex. In all these calculations, the orbitals 

were obtained by restricted open shell Hartree-Fock and compared to CASSCF calculations from 

literature
64,121,129,131,134

. The energies obtained from the less time consuming ROHF method are in the 

good agreement with the previously reported values. As expected, Dy(III) and Ho(III) exhibit toroidal 

moments which is caused by the oblate electron density. For Er(III), the toroidal magnetic moment was 

absent. The reason for this could be the prolate nature of the electron density in Er(III) with a different 

orientation of the gzz axis with respect to the triangle compared to the Dy(III) ion. However, in case of 

the non-Kramer’s ions Ho(III) and Tb(III), a few pseudo doublets and singlets were obtained and the 

ground pseudo-doublet shows pure Ising nature and gave axial gz values. 

After calculation for mononuclear case, only one Ln center is replaced with the diamagnetic Y(III) to 

make the complex dinuclear. Here, structure 1 is studied with two Ln(III)-Ln(III) (Ln= Dy, Er, Gd,) 

together. ROHF was used to study Dy(III)-Dy(III) and Er(III)-Er(III).  CASSCF is used to calculate 

Gd(III)-Gd(III) and Dy(III)-Tb(III) because here the number of states is manageable. The magnetic 

susceptibilities obtained here are a bit smaller than the expected values.  

In summary, spin orbit CI calculations can contribute to the understanding of the magnetic properties of 

3d and 4f complexes. The calculations allow for a systematic variation of the 3d or 4f elements, the 

combination of different spin centers, and the influence of ligand variations. 
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