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Abstract

We consider semilinear hyperbolic systems with a trilinear nonlinearity. Both the differ-
ential equation and the initial data contain the inverse of a small parameter ε, and typical
solutions oscillate with frequency proportional to 1/ε in time and space. Moreover, solutions
have to be computed on time intervals of length 1/ε in order to study nonlinear and diffrac-
tive effects. As a consequence, direct numerical simulations are extremely costly or even
impossible. We propose an analytical approximation and prove that it approximates the
exact solution up to an error of O

(
ε2
)

on time intervals of length 1/ε. This is a significant
improvement over the classical nonlinear Schrödinger approximation, which only yields an
accuracy of O(ε).

Keywords: High-frequency wave propagation, semilinear wave equation, Maxwell–Lorentz
system, diffractive geometric optics, slowly varying envelope approximation, error bounds

1 Introduction

We consider semilinear hyperbolic systems of the form

∂tu +A(∂)u +
1

ε
Eu = εT (u,u,u), t ∈ (0, tend/ε], x ∈ Rd, (1a)

u(0, x) = p(x)ei(κ·x)/ε + c.c. (1b)

with a small parameter 0 < ε � 1 and vector-valued solutions u : [0, tend/ε] × Rd → Rn for
some tend > 0 and d, n ∈ N. The differential operator

A(∂) =

d∑
`=1

A`∂` (2)

contains constant symmetric matrices A1, . . . , Ad ∈ Rn×n. E ∈ Rn×n is a skew-symmetric
matrix and T : Rn × Rn × Rn → Rn is a trilinear nonlinearity. Its trilinear extension to
Cn × Cn × Cn, which will appear later, is also denoted by T . The initial data (1b) depend
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on a smooth envelope function p : Rd → Rn and a wave vector κ ∈ Rd \ {0}. As usual, “c.c.”
means complex conjugation of the previous term.

A prominent example in this problem class is the Maxwell–Lorentz system

∂tB = − curlE,

∂tE = curlB− 1

ε
Q,

∂tQ =
1

ε
(E−P) + ε|P|22P,

∂tP =
1

ε
Q,

div(E + P) = divB = 0,

which models the propagation of a light beam in a Kerr medium; cf. [6, 8, 10, 11, 13, 17, 18].
As usual, E and B describe the electric and magnetic fields, respectively. P is the polarization
and Q/ε its time derivative. In this model, the Maxwell equations for E and B are coupled
to ordinary differential equations for P and Q. The equations are normalized in such a
way that the speed of light is 1, and the parameter ε corresponds to the ratio between the
wavelength of light and the next characteristic length of the problem; cf. [11]. The abstract
problem setting applies also to the Klein–Gordon system

∂tu +

(
0 ∇
∇T 0

)
u +

1

ε

(
0 −νT
ν 0

)
u = ε|u|22Mu

with ν ∈ Rd \ {0} and with a skew-symmetric matrix M ∈ Rn×n; cf. [6, 18].
Physically relevant solutions of (1) oscillate rapidly in time and space due to the small

parameter ε which occurs both in the PDE (1a) and in the initial data (1b). Moreover, the
problem is scaled in such a way that nonlinear and diffractive effects appear only on a long
time interval [0, tend/ε]. As a consequence, approximating the solution of (1) numerically with
standard methods is prohibitively inefficient or even unfeasible. This problem has motivated
many attempts to devise simpler models which are more suitable for numerical computations
and at the same time provide a reasonable approximation to u. Among these models, the
nonlinear Schrödinger approximation is particularly appealing; cf. [6, 7, 9, 14, 16, 18, 21]. In
this model the exact solution of (1) is approximated by

uNLS(t, x) = ei(κ·x−ωt)/εUNLS(t, x) + c.c.,

where (ω, κ) satisfy the dispersion relation and UNLS evolves according to a nonlinear Schrö-
dinger equation. If a co-moving coordinate system is used, then this PDE does not depend
on ε and has only to be solved on a time interval of length tend instead of tend/ε; cf. Remark
8.v. in [6]. In [6, Corollary 2] the error bound

sup
t∈[0,tend/ε]

‖u(t)− uNLS(t)‖L∞(Rn) ≤ Cε (3)

was shown under a number of assumptions. Hence, the nonlinear Schrödinger approximation
offers a possibility to approximate the solution of (1) up to O(ε) without difficulties caused
by oscillations or a long time interval. In some situations, however, a more accurate approx-
imation to u is required. Our goal is to derive a system of PDEs which is numerically more
favorable than (1) but provides an approximation to the solution u up to an error of O

(
ε2
)
.

In some respects, our ansatz can be considered as a higher-order extension of the classical
slowly varying envelope approximation.

Asymptotic expansions of solutions to systems similar to (1) have been derived, e.g., in
[10, 12, 15, 20] for geometric optics, i.e. for times of length O(1). In contrast to these works,
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we seek approximations on time intervals of length O(1/ε), which is the regime of diffractive
geometric optics. In the diffractive regime approximations with infinitely small residual have
been constructed in [9] for semilinear and quasilinear systems, but with εE instead of E/ε
in (1a). More general nonlinear hyperbolic systems, but with E = 0 have been analyzed in
[14]. Approximate solutions for quasilinear systems with dispersion have been analyzed in
[17], and for dispersive problems with bilinear nonlinearity in [7], but without an explicit
convergence rate. The approximation of PDEs by nonlinear Schrödinger equations and other
modulation equations is extensively discussed in [21] and references therein.

It is well-known that the accuracy of the nonlinear Schrödinger approximation deterio-
rates in the case of short or chirped pulses, and for such situations many improved models
have been proposed and analyzed, e.g., in [1–3, 5, 6, 8, 18]. However, this is not the situation
we consider here. We restrict ourselves to wave trains where the envelope p varies on a
scale which is much larger than the wavelength of the oscillations, but we strive for higher
accuracy.

In the next section an approximation to the solution of (1) is constructed; cf. (6)-(8).
Moreover, we formulate a number of assumptions, prove well-posedness of the approxima-
tion, and we compile the toolbox used in the analysis in later sections. Our main result is
Theorem 4.2, which provides an error bound for the approximation (6). The proof relies on
another important result, namely the fact that certain “parts” of the constructed approxima-
tion are of O(ε), roughly speaking. This statement is made precise in Propositions 3.2 and
3.6, and Section 3 is mostly devoted to the proof of these propositions. A possible extension
to higher accuracy is briefly discussed in the last section.

Notation. The Euclidean scalar product of vectors v, w ∈ Cn is denoted by v · w = v∗w,
and |v|q is the usual q−norm of v. For functions f = f(t, x) depending on t and x we will
often omit the spatial variable and write f(t) instead of f(t, x). In the same spirit, the second

argument of the Fourier transform f̂(t, k) of such a function will most often be omitted. The
imaginary unit is denoted by i, whereas i is used as an index in a few formulas.

2 Analytical setting

2.1 Assumptions, ansatz and main goal

For α ∈ R and β ∈ Rd we define the matrices

A(β) =

d∑
`=1

β`A`, (4)

L(α, β) = −αI +A(β)− iE ∈ Cn×n. (5)

The notation (4) is consistent with the definition of A(∂) in (2). A(β) is symmetric by
definition, and hence L(α, β) is Hermitian.

From now on let κ ∈ Rd \ {0} be a fixed wave vector and let ω = ω(κ) be an eigenvalue
of A(κ)− iE. Hence, the matrix L(ω, κ) has a non-trivial kernel. The following assumptions
are made.

Assumption 2.1

(i) The kernel of L(ω, κ) is one-dimensional.

(ii) The initial data (1b) are polarized, i.e.

p(x) ∈ ker
(
L(ω, κ)

)
for all x ∈ Rd.
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(iii) For j ∈ {3, 5} the matrix L(jω, jκ) is invertible.

Assumption (i) could be dropped at the cost of a more complicated notation. Instead of (ii)
it is actually sufficient to assume that p(x) = p0(x) + εp1(x) with p0(x) ∈ ker

(
L(ω, κ)

)
. This

assumption has also been made, e.g., in [6, 18]. The assumption that p1 = 0 is made in order
to simplify the presentation. For j = 3 Assumption (iii) was also made in [6, Assumption 3].

The matrices (5) will play an important role throughout. The analysis in later sections
requires the following smoothness properties of eigenvalues and eigenvectors.

Assumption 2.2

(i) The matrix L(0, β) = A(β)− iE has a smooth eigendecomposition: if λ(β) is an eigen-
value of L(0, β), then λ ∈ C∞(Rd \ {0},R), and there is a corresponding eigenvector
ψ(β) such that |ψ(β)|2 = 1 for all β and ψ ∈ C∞(Rd \ {0},Cn).

(ii) Every eigenvalue λ(β) of L(0, β) is globally Lipschitz continuous, i.e. there is a constant
C such that

|λ(β̃)− λ(β)| ≤ C|β̃ − β|1 for all β̃, β ∈ Rd.

Assumption (i) corresponds to Assumption 2 in [6]. For the Maxwell–Lorentz system and
the Klein–Gordon system the eigenvalues are stated in [6, Example 3 and 4], and it can be
checked that these eigenvalues do indeed have the properties (i) and (ii).

Note that L(α, β) = −αI + L(0, β) has the same eigenvectors as L(0, β), and that the
eigenvectors are shifted by −α. Hence, if Assumption 2.2 is fulfilled, then for every α ∈ R
the eigenvalues and eigenvectors of L(α, β) have the smoothness specified in (i) and (ii), too.

In [6] the classical nonlinear Schrödinger approximation is derived in two steps. The first
step, known as the slowly varying envelope approximation, is to approximate

u(t, x) ≈ uSVEA(t, x) = ei(κ·x−ωt)/εUSVEA(t, x) + c.c.,

where USVEA : [0, tend/ε] × Rd → Cn is the (complex-valued) solution of a PDE called the
envelope equation. The accuracy of this approximation is O(ε) on [0, tend/ε] in suitable
norms; cf. [6, Theorem 1]. In the second step, it is shown that the envelope equation can
be replaced by the nonlinear Schrödinger equation without spoiling the accuracy. From this
procedure it is clear that in order to achieve a higher accuracy, the slowly varying envelope
approximation has to be replaced by a better one. In fact, substituting uSVEA into the
nonlinearity T yields with U = USVEA(t, x)

T (uSVEA,uSVEA,uSVEA)(t, x) =e3i(κ·x−ωt)/εT (U,U, U)

+ ei(κ·x−ωt)/ε
(
T (U,U, U) + T (U,U, U) + T (U,U,U)

)
+ e−i(κ·x−ωt)/ε

(
T (U,U,U) + T (U,U,U, U) + T (U,U, U)

)
+ e−3i(κ·x−ωt)/εT (U,U,U),

and the terms with prefactor e±3i(κ·x−ωt)/ε (“higher harmonics”) are ignored in the envelope
equation. This is the motivation to make the ansatz

u(t, x) ≈ ũ(t, x) =
∑
j∈J

eij(κ·x−ωt)/εuj(t, x), u−j = uj (6)

for J = {±1,±3}. Terms of the form e2i(κ·x−ωt)/εu2(t, x) are not required because T is
trilinear.
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Substituting the ansatz (6) into (1) and discarding terms with prefactor eij(κ·x−ωt)/ε if
|j| > 3 yields the system

∂tuj +
i

ε
L(jω, jκ)uj +A(∂)uj = ε

∑
j1+j2+j3=j

T (uj1 , uj2 , uj3), (7)

for j ∈ {1, 3}, t ∈ (0, tend/ε], x ∈ Rd.

The sum on the right-hand side is taken over the set{
J = (j1, j2, j3) ∈ J 3 : #J := j1 + j2 + j3 = j

}
.

This set has only finitely many elements, namely 12 for j = 1 and 10 for j = 3. Note that
|J |1 ≥ |#J | = |j1 + j2 + j3| = |j|. Since u−j = uj the PDEs for u−1 and u−3 are redundant
but compatible. The coupled system (7) is endowed with initial data

u±1(0, ·) = u0±1 := p, u±3(0, ·) = u0±3 = 0. (8)

The main advantage of (7) over (1) is that (7) does not oscillate in space, because the
initial data (8) are smooth in contrast to (1b). The price to pay is that the total number
of unknowns in (7) is twice as large than in (1). Typical solutions of (7) still oscillate in
time due to the term i

εL(jω, jκ)uj , but it will turn out later that the situation is now more
favourable; cf. Remark 3.1 below.

Similar approximations have been considered in many other works. A well-known ap-
proach in nonlinear geometric or diffractive optics is to look for an approximation of the form
u(t, x) ≈ U(t, x, (κ · x − ωt)/ε) for a profile U = U(t, x, θ) which is periodic with respect to
θ; cf. [2, 8–10, 12, 14, 17, 20]. In [4] this approach is used for the construction of uniformly
accurate numerical methods for highly oscillatory problems. The price to pay, however, is
that introducing an additional variable increases the number of unknowns of the numerical
discretization by a factor Nθ, where Nθ is the number of grid points in the θ-direction. This
is why we do not use a profile U(t, x, θ) explicitly. However, the ansatz (6) can be interpreted
as a truncated Fourier series of θ 7→ U(t, x, θ), where all Fourier modes with index j 6∈ J are
discarded.

Local well-posedness of the system (7) on long time intervals will be shown in Lemma 2.3
below. Our main goal is to prove that under certain assumptions the approximation (6) has
the accuracy

sup
t∈[0,t?/ε]

‖u(t)− ũ(t)‖L∞(Rn) ≤ Cε2

for ε ∈ (0, 1] with constants t? and C which do not depend on ε (cf. Theorem 4.2). Comparing
with (3) shows that ũ is more accurate than uNLS.

2.2 Evolution equations in Fourier space

Let Ff = f̂ be the Fourier transform of f , i.e.

(Ff)(k) := (2π)−d/2
∫
Rd

f(x)e−ik·xdx

with inverse Fourier transform

f(x) = (2π)−d/2
∫
Rd

f̂(k)eik·xdk.
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As in [6] we will work in the Wiener algebra

W = {f ∈ S ′(Rd) : f̂ ∈ L1(Rd)}, ‖f‖W = ‖f̂‖L1 =

∫
Rd

|f̂(k)|2 dk.

W (Rd) is a Banach algebra and continuously embedded in L∞(Rd). For s ∈ N we set

W s = {f ∈W (Rd) : ∂αf ∈W (Rd) for all α ∈ Nd0, |α|1 ≤ s},

‖f‖W s =
∑
|α|1≤s

‖∂αf‖W .

Local well-posedness of (1) in the Wiener algebra W on time intervals [0, tend/ε] has been
shown in [6, Theorem 1].

For estimates in the Wiener algebra it is convenient to consider the evolution equation
(7) in Fourier space. Applying the Fourier transform to the left-hand side of (7) gives

F
(
∂tuj +

i

ε
L(jω, jκ)uj +A(∂)uj

)
(t, k) = ∂tûj(t, k) +

i

ε
Lj(εk)ûj(t, k)

with the shorthand notation

Lj(θ) := L(jω, jκ+ θ) = −jωI +A(jκ+ θ)− iE, j ∈ {1, 3}. (9)

The Fourier transform of T (uj1 , uj2 , uj3) is given by

F
(
T (uj1 , uj2 , uj3)

)
(k) = (2π)−d

∫
#K=k

T (ûj1(k(1)), ûj2(k(2)), ûj3(k(3))) dK

=: T (ûj1 , ûj2 , ûj3) (k) (10)

with K =
(
k(1), k(2), k(3)

)
∈ Rd × Rd × Rd, #K := k(1) + k(2) + k(3) ∈ Rd, and with the

notation ∫
#K=k

T (ûj1(k(1)), ûj2(k(2)), ûj3(k(3))) dK

=

∫
Rd

∫
Rd

T (ûj1(k(1)), ûj2(k(2)), ûj3(k − k(1) − k(2))) dk(2) dk(1).

Hence, u = (u1, u3) solves the system (7) if and only if û = (û1, û3) solves the system

∂tûj(t, k) +
i

ε
Lj(εk)ûj(t, k) = ε

∑
#J=j

T
(
ûj1 , ûj2 , ûj3

)
(t, k), (11)

j ∈ {1, 3}, t ∈ (0, tend/ε], k ∈ Rd

with initial data

û1(0, ·) = p̂, û3(0, ·) = 0, (12)

where p̂ is the Fourier transform of p from (1b). The convention u−j = uj implies that

û−j(t, k) = ûj(t,−k). For negative indices we set

L−j(θ) = −Lj(−θ), j ∈ {1, 3} (13)
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such that (11) holds also for j ∈ {−1,−3}.
For later use, we note that (10) implies the inequality∥∥T (f̂1, f̂2, f̂3)

∥∥
L1 ≤ CT ‖f̂1‖L1‖f̂2‖L1‖f̂3‖L1 (14)

for all f1, f2, f3 ∈W (Rd), where CT = CT /(2π)d, and where CT is a constant such that

|T (a, b, c)|2 ≤ CT |a|2|b|2|c|2 for all a, b, c ∈ Cn.

2.3 Local well-posedness on long time intervals

For v = (v1, v3) ∈W s ×W s we define the norm

‖v‖W s = 2‖v1‖W s + 2‖v3‖W s .

The factor 2 is introduced in order to account for the terms with negative indices which
appear on the right-hand side of (11). If we set v̂−j(k) = v̂j(−k) for j ∈ {1, 3} as before,
then

‖v‖W s =
∑
j∈J
‖vj‖W s .

For v = (v1, v3) ∈W ×W the inequalities∑
j∈J

∥∥∥ ∑
#J=j

T
(
v̂j1 , v̂j2 , v̂j3

)∥∥∥
L1
≤
∑
J∈J 3

∥∥T (v̂j1 , v̂j2 , v̂j3)∥∥L1

≤ CT
∑
J∈J 3

‖v̂j1‖L1‖v̂j2‖L1‖v̂j3‖L1

≤ CT ‖v‖3W (15)

follow from (14). If u = (u1, u3) is another element in W ×W , then the trilinearity of T and
(14) yield ∑

j∈J

∑
#J=j

∥∥T (ûj1 , ûj2 , ûj3)− T (v̂j1 , v̂j2 , v̂j3)∥∥L1

≤ CT
(
‖v‖2W + ‖u‖W ‖v‖W + ‖u‖2W

)
‖u− v‖W . (16)

After these preparations, local well-posedness of (7) can be shown. The polarization of the
initial data (Assumption 2.1) is not required for the following result.

Lemma 2.3 (Local well-posedness)

(i) If p ∈ W , then there is a t?end > 0 such that for every ε ∈ (0, 1] the system (7) with
initial data (8) has a unique mild solution

u = (u1, u3), uj ∈ C([0, t?end/ε),W ).

(ii) If p ∈ W 1 and tend < t?end, then the mild solution on [0, tend/ε] is a classical solution
u = (u1, u3) with

uj ∈ C1([0, tend/ε],W ) ∩ C([0, tend/ε],W
1).

(iii) If p ∈W 2 and tend < t?end, then

uj ∈ C2([0, tend/ε],W ) ∩ C1([0, tend/ε],W
1) ∩ C([0, tend/ε],W

2).
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By continuity, there are constants Cu,1 and Cu,2 such that

sup
t∈[0,tend/ε]

‖uj(t)‖W 1 ≤ Cu,1, j ∈ {1, 3} (17)

in case (ii), and

sup
t∈[0,tend/ε]

‖uj(t)‖W 2 ≤ Cu,2, j ∈ {1, 3} (18)

in case (iii). In both cases the constant Cu,i depends on tend, CT and on ‖p‖W i , but not on
ε.

The proof is based on classical arguments, but nevertheless we outline the main steps.
Proof. Choose a fixed ε ∈ (0, 1]. The operator

A
(
v1
v3

)
=

(
A1v1
A3v3

)
, Aj =

i

ε
L(jω, jκ) +A(∂)

with domain D(A) = W 1 ×W 1 generates a strongly continuous group (etA)t∈R on W ×W .
For j ∈ {1, 3} and every t ∈ R the group operator etAj is an isometry, because

‖etAjvj‖W =
∥∥F(etAjvj

)∥∥
L1 =

∫
Rd

∣∣eitLj(εk)/εv̂j(k)
∣∣
2
dk

=

∫
Rd

∣∣v̂j(k)
∣∣
2
dk = ‖vj‖W

for all vj ∈W since Lj(εk) is Hermitian. The system (7) can be reformulated as

∂tuj +Ajuj = ε
∑

#J=j

T (uj1 , uj2 , uj3) for j ∈ {1, 3}. (19)

For a number τ > 0 to be determined below, consider the space

X = C([0, τ/ε],W )× C([0, τ/ε],W )

with norm

‖v‖X = sup
t∈[0,τ/ε]

‖v(t)‖W = sup
t∈[0,τ/ε]

∑
j∈J
‖vj(t)‖W

and the mapping

Φ: X −→ X , Φ(v) = vnew =

(
vnew1

vnew3

)
,

vnewj (t) = e−tAju0j + ε
∑

#J=j

t∫
0

e(s−t)AjT (vj1 , vj2 , vj3)(s) ds.

With (10) we obtain

‖vnewj (t)‖W ≤ ‖u0j‖W + ε
∑

#J=j

t∫
0

‖T (vj1 , vj2 , vj3)(s)‖W ds

= ‖u0j‖W + ε
∑

#J=j

t∫
0

‖T (v̂j1 , v̂j2 , v̂j3)(s)‖L1 ds
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and with (15) it follows that

‖Φ(v)‖X = sup
t∈[0,τ/ε]

∑
j∈J
‖vnewj (t)‖W

≤ 2‖p‖W + ε sup
t∈[0,τ/ε]

∑
j∈J

∑
#J=j

t∫
0

‖T (v̂j1 , v̂j2 , v̂j3)(s)‖L1 ds

≤ 2‖p‖W + CT ε sup
t∈[0,τ/ε]

t∫
0

‖v(s)‖3W ds

≤ 2‖p‖W + CT τ sup
s∈[0,τ/ε]

‖v(s)‖3W

= 2‖p‖W + CT τ‖v‖3X .

Now choose ρ > 0 and set r = 1 + ρ. For every p ∈W with ‖p‖W ≤ ρ
2 , Φ maps the ball

B(r) = {v ∈ X : ‖v‖X ≤ r}

onto itself under the condition that τ ≤ 1/(CT r
3). If v, w ∈ B(r), then it follows from (16)

that

‖Φ(v)− Φ(w)‖X = ε sup
t∈[0,τ/ε]

∑
j∈J

∑
#J=j

t∫
0

‖T (vj1 , vj2 , vj3)(s)− T (wj1 , wj2 , wj3)(s)‖W ds

= 3CT r
2ε sup

t∈[0,τ/ε]

t∫
0

‖v(s)− w(s)‖W ds

≤ 3CT r
2τ‖v − w‖X .

If we choose, e.g., τ = min{1/(CT r3), 1/(6CT r
2)}, then Φ : B(r) → B(r) is a contraction,

and by Banach’s fixed point theorem, there is a unique fixed point u ∈ B(r) of Φ. By
construction, u is a mild solution of (7) with initial data (8). With standard arguments, this
solution can be extended to a maximal time interval [0, τ+(ε)/ε), and one can show that

t?end := inf
ε∈(0,1]

τ+(ε) > 0.

This proves part (i).
The nonlinearity T : W ×W ×W → W is continuously differentiable due to (14). If

p ∈ W 1, then (u01, u
0
3) = (p, 0) ∈ D(A), and applying Theorem 1.5 in [19, Chapter 6] yields

that for every tend < t?end the mild solution is in fact a classical solution on [0, tend/ε], which
proves part (ii).

To show part (iii) we set u′ = (u′1, u
′
3) with u′j = ∂tuj and formally differentiate both

sides of (19) to obtain

∂tu
′
j +Aju′j = ε

∑
#J=j

(
T (u′j1 , uj2 , uj3) + T (uj1 , u

′
j2 , uj3) + T (uj1 , uj2 , u

′
j3)
)

(20a)

with initial data

u′j(0) = −Aju0j + ε
∑

#J=j

T (u0j1 , u
0
j2 , u

0
j3). (20b)
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Let u = (u1, u3) be the classical solution constructed in part (ii) and consider the linear
problem

∂tu
′
j +Aju′j = εBj(t, u′), (21a)

Bj(t, u′) =
∑

#J=j

(
T (u′j1(t), uj2(t), uj3(t)) + T (uj1(t), u′j2(t), uj3(t))

+ T (uj1(t), uj2(t), u′j3(t))
)

(21b)

with initial data (20b). Since uj ∈ C1([0, tend/ε],W ) ∩ C([0, tend/ε],W
1) the mapping

(t, u′) 7→ Bj(t, u′), Bj : [0, tend/ε]× (W ×W )→W

is continuously differentiable, and if p ∈W 2, then (u′1(0), u′3(0)) ∈ D(A) due to (14). Hence,
the mild solution u′ = ∂tu of (21), (20b) is in fact a classical solution according to Theorem
1.5 in [19, Chapter 6], which proves part (iii).

2.4 Transformation to smoother variables

In order to analyze the accuracy of the approximation (6), the estimate (17) has to be refined.
In Section 3 we will show that if the system (7) is considered with initial data (8), then u3
stays small on long time intervals, i.e.

sup
t∈[0,tend/ε]

‖u3(t)‖W 1 ≤ Cε.

A similar estimate will be shown for a certain “part” of u1 to be specified later; cf. (34a). In
order to formulate and prove these refined estimates, it is very useful to consider a transfor-
mation of ûj which is introduced now.

For j ∈ {±1,±3} and every θ ∈ Rd the Hermitian matrix Lj(θ) = L(jω, jκ+ θ) defined
in (9) has an eigendecomposition

Lj(θ) = Ψj(θ)Λj(θ)Ψ
∗
j (θ)

with a unitary matrix1 Ψj(θ) ∈ Cn×n and a real diagonal matrix Λj(θ) ∈ Rn×n containing the

eigenvalues of Lj(θ). It follows from (13) that Ψ−j(θ) = −Ψj(−θ) and Λ−j(θ) = −Λj(−θ) =
−Λj(−θ). Let ψj`(θ) ∈ Cn be the `-th column of Ψj(θ), and let λj`(θ) ∈ R be the `-th
eigenvalue, i.e.

Lj(θ)ψj`(θ) = λj`(θ)ψj`(θ), ψjm(θ) · ψj`(θ) =

{
1 if m = `,

0 else
(22)

for m, ` = 1, . . . , n. The matrix L1(0) = L(ω, κ) has a one-dimensional kernel according
to Assumption 2.1(i), and the enumeration of the eigenvalues is chosen in such a way that
λ11(0) = 0. Hence, the kernel of L1(0) is spanned by ψ11(0), which is important in the
context of Assumption 2.1(ii).

For every j ∈ {1, 3}, ε > 0, t ≥ 0, k ∈ Rd we define

Sj,ε(t, k) = exp
(
it
εΛj(εk)

)
Ψ∗j (εk) = Ψ∗j (εk) exp

(
it
εLj(εk)

)
(23)

1In contrast to the traditional notation we do not denote the unitary matrix by Uj(θ) in order to avoid confusion
with u from (1), uj from (7), UNLS, or USVEA.
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and consider the new variables

zj(t, k) = Sj,ε(t, k)ûj(t, k), j ∈ {1, 3}, (24)

where û1(t, k), û3(t, k) is the solution of (11). The matrix (23) is unitary, and hence

|ûj(t, k)|2 = |zj(t, k)|2 and ‖ûj(t)‖L1 = ‖zj(t)‖L1 . (25)

For negative indices we set

S−j,ε(t, k) := Sj,ε(t,−k), z−j(t, k) := zj(t,−k).

Taking the time derivative of (24), substituting (11) and using

∂tSj,ε(t, k) = i
εΛj(εk)Sj,ε(t, k) =

i

ε
Sj,ε(t, k)Lj(εk)

yields

∂tzj(t) = ε
∑

#J=j

F(t, û, J)(t) (26)

with û = (û1, û3) and

F(t, û, J) = Sj,ε(t)T
(
ûj1 , ûj2 , ûj3

)
(t), j = #J. (27)

A closed system of evolution equations for z1 and z3 could be obtained by expressing the
right-hand side of (27) by zj via the inverse transform ûj(t, k) = S∗j,ε(t, k)zj(t, k). Since this
leads to rather complicated formulas, we will avoid this whenever possible.

Comparing (11) with (26) shows that the dominating linear term

i

ε
Lj(εk)ûj(t, k)

in (11) is removed by the transformation. In the linear case (where T (·, ·, ·) = 0) it follows
from (26) and (27) that ∂tzj(t) = 0, and hence that zj(t) = zj(0) is constant in time. The
exact solution of (11) is then simply

ûj(t, k) = S∗j,ε(t, k)Sj,ε(0, k)ûj(0, k) = S∗j,ε(t, k)zj(0, k) for T (·, ·, ·) = 0.

This favourable property does not cure the oscillatory behaviour completely in the general
(nonlinear) case, but the entries of zj oscillate with a much smaller amplitude than the entries
of ûj . The reason is that the right-hand side of (26) is formally O(ε) instead of O(1/ε) in
(11). This is our main motivation for considering transformed variables in the proofs of our
main results.

Initial data for z1 and z3 are obtained from (12) and (24), namely

zj(0, k) = Sj,ε(0, k)ûj(0, k) =

{
Ψ∗1(εk)p̂(k) if j = 1,

0 if j = 3.
(28)

Since ker
(
L(ω, κ)

)
= ker

(
L1(0)

)
= span{ψ11(0)} it follows from Assumption 2.1 that ψ∗1`(0)p̂(k) =

0 for all k and all ` 6= 1, but this is in general not true for ψ∗1`(εk)p̂(k). For initial data p ∈W 1,
however, it has been shown in [6, proof of Lemma 3, page 718] that

‖ψ1`(ε·)ψ∗1`(ε·)p̂‖L1 ≤ Cε‖∇p‖W
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for every ` 6= 1, which yields

‖z1`(0)‖L1 ≤ Cε‖∇p‖W for all ` 6= 1. (29)

The special role of the first entry of z1 can be expressed by means of the projection

P : Cn → Cn, (w1, . . . , wn)T 7→ (w1, 0, . . . , 0)T . (30)

With P⊥ = (I − P ), Assumption 2.1 implies that ‖P⊥z1(0)‖L1 = O(ε), because

‖P⊥z1(0)‖L1 =

∫
Rd

|P⊥z1(0, k)|2 dk ≤
n∑
`=2

‖z1`(0)‖L1

≤ C(n− 1)ε‖∇̂p‖L1 (31)

due to (29). For later use, we also define the projections

ŵ 7→ Pεŵ, Pε(k)ŵ(k) = ψ11(εk)ψ∗11(εk)ŵ(k) (32)

and P⊥ε = I − Pε. Pε projects a vector-valued function ŵ : Rd → Cn pointwise into the first
eigenspace of L1(εk). For û1(t, k) = S∗j,ε(t, k)z1(t, k) it follows that

Pε(k)û1(t, k) = S∗j,ε(t, k)Pz1(t, k), (33)

which means, in particular, that

Pε(0)û1(t, 0) ∈ ker
(
L1(0)

)
= span{ψ11(0)}.

3 Refined bounds for the coefficient functions

3.1 Setting and goal

Let u = (u1, u3) with uj ∈ C1([0, tend/ε],W ) ∩ C([0, tend/ε],W
1) be a classical solution of

(7) with initial data (8) for some p ∈ W 1. Our next goal is to prove that under certain
assumptions there is a t? ∈ (0, tend] independent of ε and a constant C such that

sup
t∈[0,t?/ε]

‖P⊥ε û1(t)‖L1 ≤ Cε, (34a)

sup
t∈[0,t?/ε]

‖û3(t)‖L1 ≤ Cε (34b)

for all ε ∈ (0, 1]. For zj = Sj,εûj these bounds are equivalent to

sup
t∈[0,t?/ε]

‖P⊥z1(t)‖L1 ≤ Cε, (35a)

sup
t∈[0,t?/ε]

‖z3(t)‖L1 ≤ Cε (35b)

for all ε ∈ (0, 1] due to (25) and (33).

Remark 3.1 The bounds (34) and (35) are not only crucial for proving error bounds for
the approximation (6) (cf. Theorem 4.2 below), but also interesting from a numerical point of
view. In fact, (34) means that û1(t) = Pεû1(t)+O(ε) and û3(t) = O(ε), such that the “main
part” of the solution of (11) is Pεû1(t). But this part is essentially non-oscillatory according
to Lemma 3.5 below. This can be exploited in the construction of efficient numerical methods
for (11). We are currently working on the analysis of such methods.
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In order to prove (35) we define the scaled norm

9y9ε = 2‖Py1‖L1 +
2

ε
‖P⊥y1‖L1 +

2

ε
‖y3‖L1 (36)

for all y = (y1, y3) with yj ∈ L1(Rd,Cn). As before, we set y−j = yj . Since

‖y1‖L1 ≤ ‖Py1‖L1 + ‖P⊥y1‖L1 ≤ ‖Py1‖L1 + ε−1‖P⊥y1‖L1 (37)

holds for all ε ∈ (0, 1], it follows that∑
j∈J

ε(1−|j|)/2‖yj‖L1 ≤ 9y9ε, (38)

which will be used frequently. Our goal is to prove that there is a constant C such that

sup
t∈[0,t?/ε]

9z(t)9ε ≤ C,

for all ε ∈ (0, 1], because this implies (35) and hence also (34).

Proposition 3.2 Let u = (u1, u3) be the classical solution of (7) with initial data (8) for
some p ∈ W 1. Let z1 and z3 be the transformed variables defined in (24). For every
sufficiently large r > 0 there is a t? ∈ (0, tend] such that under Assumptions 2.1 and 2.2

sup
t∈[0,t?/ε]

9z(t)9ε ≤ r for all ε ∈ (0, 1].

The constant t? depends on tend, r, Cu,1, CT , on the inverse of the nonzero eigenvalues of
Λ1(0) and Λ3(0), and on the Lipschitz constant in Assumption 2.2(ii), but not on ε.

Remark 3.3 “Sufficiently large” means that r must be larger than the constant C• which
occurs in the proof. This condition is required to ensure that t? defined in (45) is positive.

The following lemmas will be used in the proof of Proposition 3.2.

Lemma 3.4 Let v̂ = (v̂1, v̂3) with v̂j ∈ L1 and v̂−j(k) = v̂j(−k) for j = 1, 3. For every
J = (j1, j2, j3) ∈ J 3 the inequality

∥∥F(t, v̂, J)
∥∥
L1 ≤ CT

3∏
i=1

‖Sji,ε(t)v̂ji‖L1 ,

holds for all t ≥ 0.

Proof. The definition (27), the inequality (14) and the fact that Sj,ε is unitary imply that∥∥F(t, v̂, J)
∥∥
L1 ≤ ‖T (v̂j1 , v̂j2 , v̂j3)‖L1 ≤ CT ‖v̂j1‖L1‖v̂j2‖L1‖v̂j3‖L1 .

Now the assertion follows from ‖v̂ji‖L1 = ‖Sji,ε(t)v̂ji‖L1 .

The PDE system (11) suggests that formally ∂tûj(t) = O(1/ε). The following lemma
shows, however, that ∂tPεû1(t) can be bounded independently of ε on long time intervals.

Lemma 3.5 Under the assumptions of Lemma 2.3 (ii) there is a constant C such that

sup
t∈[0,tend/ε]

‖∂tPεû1(t)‖L1 ≤ C.

C depends on the constant Cu,1 from (17) and thus also on tend, but not on ε.
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This lemma corresponds to Lemma 2 in [6]. The proof is based on the observation that

i

ε
PεL1(εk)û1(t, k) =

i

ε
λ11(εk)Pεû1(t, k)

because of (32) and (22). The Lipschitz continuity of the eigenvalues (cf. Assumption 2.2(ii)))
and the fact that λ11(0) = 0 yield

|λ11(εk)| = |λ11(εk)− λ11(0)| ≤ Cε|k|1,

and thus ∣∣∣ i

ε
PεL1(εk)û1(t, k)

∣∣∣
2
≤ C|k|1|Pεû1(t, k)|2.

Together with (11) this shows that Pε∂tû1(t, k) = ∂tPεû1(t, k) is uniformly bounded.

3.2 Proof of Proposition 3.2

According to (26) and (36) we have

9z(t)9ε ≤ 9z(0)9ε + 9
t∫

0

∂tz(s) ds9ε

≤ 9z(0)9ε + 2
∑

#J=1

ε∥∥∥ t∫
0

PF(s, û, J) ds
∥∥∥
L1

+
∥∥∥ t∫

0

P⊥F(s, û, J) ds
∥∥∥
L1


+ 2

∑
#J=3

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1

(39)

with F defined in (27). The first term

9z(0)9ε = 2‖Pz1(0)‖L1 +
2

ε
‖P⊥z1(0)‖L1 +

2

ε
‖z3(0)‖L1

is uniformly bounded, because z3(0) = 0 according to (28) and ‖P⊥z1(0)‖L1 ≤ Cε‖p‖W 1

due to (31). Now let

aj(t) =

{
‖Pz1(t)‖L1 + ε−1‖P⊥z1(t)‖L1 if j = ±1,

ε−1‖z3(t)‖L1 if j = ±3,
(40)

which according to (36) means that∑
j∈J

aj(t) = 2a1(t) + 2a3(t) = 9z(t)9ε. (41)

We will prove that there are constants C? and Ĉ such that

ε
∥∥∥ t∫

0

PF(s, û, J) ds
∥∥∥
L1

+
∥∥∥ t∫

0

P⊥F(s, û, J) ds
∥∥∥
L1

(42)

≤ C? +
Ĉε

2

t∫
0

3∏
i=1

aji(s) ds
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holds for all t ∈ [0, tend/ε] and for every J = (j1, j2, j3) ∈ J 3 with #J = 1, and that

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1
≤ C? +

Ĉε

2

t∫
0

3∏
i=1

aji(s) ds (43)

holds for all t ∈ [0, tend/ε] and for every J ∈ J 3 with #J = 3. If this is true, then substituting
into (39) yields

9z(t)9ε ≤ C• + Ĉε
∑
j∈J

∑
#J=j

t∫
0

3∏
i=1

aji(s) ds

≤ C• + Ĉε

t∫
0

(∑
j∈J

aj(s)

)3

ds

= C• + Ĉε

t∫
0

9z(s)93
ε ds

by (41) with a constant C• which depends on ‖p‖W 1 , C? and the (finite) number of multi-
indices J with #J = 1 and #J = 3, respectively. Now let

σε(t) = sup
s∈[0,t]

9z(s)9ε

and observe that

σε(t) ≤ C• + Ĉε

t∫
0

9z(s)93
ε ds ≤ C• + Ĉεtσ3

ε(t). (44)

Let r > C•. If we can choose t? in such a way that

C• + Ĉt?σ
3
ε(t?) ≤ r,

then (44) and the fact that σε is monotonically increasing implies that σε(t) ≤ r for all
t ∈ [0, t?/ε]. Hence, we choose

t? =
r − C•
Ĉr3

. (45)

Of course, the choice (45) is in most cases way too pessimistic. What is important is that t?
depends on C•, r, and Ĉ, but not on ε.

Now the inequalities (42) and (43) have to be shown. This is the main part of the proof.

3.2.1 Proof of (43)

Let J ∈ J with #J = 3. Two cases have to be treated separately.

Case 1: |J |1 > 3. In this case we have |J |1 ≥ 5 because |J |1 is odd. As an example,
the reader may consider J = (1, 3,−1). Lemma 3.4 and the fact that

ε(|J|1−3)/2
3∏
i=1

ε(1−|ji|)/2 = ε0 = 1
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yields

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1
≤ CT

t∫
0

3∏
i=1

‖zji(s)‖L1 ds

= CT ε
(|J|1−3)/2

t∫
0

3∏
i=1

(
ε(1−|ji|)/2‖zji(s)‖L1

)
ds

≤ CT ε
t∫

0

3∏
i=1

aji(s) ds,

because ε(|J|1−3)/2 ≤ ε and ε(1−|ji|)/2‖zji(s)‖L1 ≤ aji(s) by definition (40). This yields an

estimate of the form (43) with C? = 0 and Ĉ = 2CT .

Case 2: |J |1 = 3. This case appears only if J = (1, 1, 1). In this situation, the simple
argument from Case 1 is not enough to prove the desired bound, because now ε(|J|1−3)/2 = 1.
One power of ε has to be gained from the oscillatory behavior of F(s, û, J). First, the
nonlinearity in

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1

=
∥∥∥ t∫

0

S3,ε(s)T (û1, û1, û1)(s) ds
∥∥∥
L1

is split into eight parts:

T
(
û1, û1, û1

)
= T

(
Pεû1,Pεû1,Pεû1

)
+ T

(
Pεû1,Pεû1,P⊥ε û1

)
(46)

+ T
(
Pεû1,P⊥ε û1,Pεû1

)
+ T

(
Pεû1,P⊥ε û1,P⊥ε û1

)
+ . . . + T

(
P⊥ε û1,P⊥ε û1,P⊥ε û1

)
.

All terms where P⊥ε û1 appears in at least one of the three arguments are easy to treat. With
(14) and (25) we obtain for example

∥∥∥ t∫
0

S3,ε(s)T
(
P⊥ε û1,Pεû1,Pεû1

)
(s) ds

∥∥∥
L1
≤

t∫
0

∥∥T (P⊥ε û1,Pεû1,Pεû1)(s)∥∥L1 ds

≤ CT ε
t∫

0

(
1
ε‖P

⊥
ε û1(s)‖L1 · ‖Pεû1(s)‖L1 · ‖Pεû1(s)‖L1

)
ds

= CT ε

t∫
0

(
1
ε‖P

⊥z1(s)‖L1 · ‖Pz1(s)‖L1 · ‖Pz1(s)‖L1

)
ds

≤ CT ε
t∫

0

3∏
i=1

aji(s) ds, (47)

because (40) implies that ‖z1(s)‖L1 ≤ a1(s). All other parts of (46) with the exception of
T
(
Pεû1,Pεû1,Pεû1

)
can be treated in the same way, i.e. for each of these terms we obtain

an estimate of the type (43) with C? = 0 and Ĉ = 2CT .
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The main difficulty in Case 2 is to prove that

∥∥∥ t∫
0

S3,ε(s)T
(
Pεû1,Pεû1,Pεû1

)
(s) ds

∥∥∥
L1
≤ C (48)

uniformly in ε in spite of the integration over a possibly long time interval. (48) corresponds

to a bound of the form (43), but this time with Ĉ = 0. By (23) we have

S3,ε(s, k) = exp
(
is
ε Λ3(0)

)
exp

(
is
ε ∆3(εk)

)
Ψ∗3(εk)

with ∆3(εk) = Λ3(εk)− Λ3(0). Hence, (48) can be expressed as

∥∥∥ t∫
0

exp
(
is
ε Λ3(0)

)
fε(s) ds

∥∥∥
L1
,

fε(t, k) = exp
(
it
ε∆3(εk)

)
Ψ∗3(εk)T

(
Pεû1,Pεû1,Pεû1

)
(t, k).

Since the matrix L3(0) = L(3ω, 3κ) is invertible by Assumption 2.1(iii), we can integrate by
parts and obtain

∥∥∥ t∫
0

exp
(
is
ε Λ3(0)

)
fε(s) ds

∥∥∥
L1

≤
∥∥∥[ εi Λ−13 (0) exp

(
is
ε Λ3(0)

)
fε(s)

]t
0

∥∥∥
L1

+
∥∥∥ εi Λ−13 (0)

t∫
0

exp
(
is
ε Λ3(0)

)
∂tfε(s) ds

∥∥∥
L1

≤ Cε
(
‖fε(0)‖L1 + ‖fε(t)‖L1

)
+ Cε

t∫
0

∥∥∥∂tfε(s) ds∥∥∥
L1
.

With |S3,ε(s, k)|2 = 1, (14), and (17) it follows that

‖fε(t)‖L1 =
∥∥T (Pεû1,Pεû1,Pεû1)(t)∥∥L1 ≤ CT ‖Pεû1(t)‖3L1 ≤ C

with a constant which depends on CT and the constant Cu,1 from (17). Λ3 is globally
Lipschitz continuous by Assumption 2.2(ii), i.e.

| iε∆3(εk)|2 = 1
ε |Λ3(εk)− Λ3(0)|2 ≤ C|k|1

with a constant C which does not depend on ε and k. This yields for t ∈ [0, tend/ε] that

ε

t∫
0

∥∥∥∂tfε(s) ds∥∥∥
L1
≤ tend sup

s∈[0,tend/ε]

∥∥∥∂tfε(s)∥∥∥
L1

≤ Ctend sup
s∈[0,tend/ε]

∫
Rd

|k|1 · |T
(
Pεû1,Pεû1,Pεû1

)
(s, k)|2 dk

+ Ctend sup
s∈[0,tend/ε]

∫
Rd

|∂tT
(
Pεû1,Pεû1,Pεû1

)
(s, k)|2 dk

≤ CCT tend
(
C3
u,1 + C2

u,1 sup
s∈[0,tend/ε]

‖∂tPεû1(s)‖L1

)
by (14) and (17). Since sups∈[0,tend/ε] ‖∂tPεû1(s)‖L1 is uniformly bounded according to
Lemma 3.5, it follows that (48) is uniformly bounded. All in all this proves the inequality
(43) in Case 2.
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3.2.2 Proof of (42)

Let J ∈ J 3 with #J = 1. With Lemma 3.4 and the fact that ε(1−|ji|)/2 ≥ 1 for |ji| ≥ 1 it
follows that

ε
∥∥∥ t∫

0

PF(s, û, J) ds
∥∥∥
L1
≤ ε

t∫
0

∥∥F(s, û, J)
∥∥
L1 ds

≤ CT ε
t∫

0

3∏
i=1

‖zji(s)‖L1 ds

≤ CT ε
t∫

0

3∏
i=1

(
ε(1−|ji|)/2‖zji(s)‖L1

)
ds

≤ CT ε
t∫

0

3∏
i=1

aji(s) ds,

because by definition ε(1−|ji|)/2‖zji(s)‖L1 ≤ aji(s). This is a bound of type (43) with C? = 0.
Finally, we have to show a bound for the term

∥∥∥ t∫
0

P⊥F(s, û, J) ds
∥∥∥
L1

for all J ∈ J 3 with #J = 1. For |J |1 ≥ 5 we can simply proceed as in Case 1 in 3.2.1, but if
|J |1 = 3, then one power of ε has to be gained. The only multi-indices J ∈ J 3 with #J = 1
and |J |1 = 3 are (1, 1,−1), (1,−1, 1), and (−1, 1, 1). We consider J = (1, 1,−1), because the
other two permutations can be treated in the same way.

We can use (27) to obtain

∥∥∥ t∫
0

P⊥F(s, û, J) ds
∥∥∥
L1

=
∥∥∥ t∫

0

P⊥S1,ε(s)T (û1, û1, û−1)(s) ds
∥∥∥
L1
.

With û1 = Pεû1 +P⊥ε û1 and û−1 = Pεû−1 +P⊥ε û−1 the nonlinearity is split into eight parts

T
(
û1, û1, û−1

)
= T

(
Pεû1,Pεû1,Pεû−1

)
+ T

(
Pεû1,Pεû1,P⊥ε û−1

)
+ T

(
Pεû1,P⊥ε û1,Pεû−1

)
+ T

(
Pεû1,P⊥ε û1,P⊥ε û−1

)
+ . . . + T

(
P⊥ε û1,P⊥ε û1,P⊥ε û−1

)
similar to (46). All terms containing P⊥ε û1 or P⊥ε û−1 can again be estimated in a straight-
forward way. The only remaining term

∥∥∥ t∫
0

P⊥S1,ε(s)T
(
Pεû1,Pεû1,Pεû−1

)
(s) ds

∥∥∥
L1

(49)

has to be treated in a similar way as (48). We let ∆1(εk) = Λ1(εk)−Λ1(0) and obtain from
(23) that

P⊥S1,ε(s, k) = exp
(
is
ε Λ1(0)

)
P⊥ exp

(
is
ε ∆1(εk)

)
Ψ∗1(εk),
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because P⊥ commutes with every diagonal matrix. Hence, (49) can be expressed as

∥∥∥ t∫
0

exp
(
is
ε Λ1(0)

)
P⊥fε(s) ds

∥∥∥
L1
,

fε(t, k) = exp
(
it
ε∆1(εk)

)
Ψ∗1(εk)T

(
Pεû1,Pεû1,Pεû−1

)
(t, k).

In order to gain the missing factor ε we want to integrate by parts. The diagonal matrix
Λ1(0) = diag

(
λ11(0), . . . , λ1n(0)

)
is not invertible, because λ11(0) = 0 (cf. Section 2.4), but

this is compensated by the projection P⊥ which sets the first entry of a vector to zero.
Hence, we can simply replace λ11(0) by 1 (or any other nonzero number) and consider

Λ̃1(0) = diag
(
1, λ12(0), . . . , λ1n(0)

)
instead of Λ1(0). The modified matrix Λ̃1(0) is invertible

because λ1`(0) 6= 0 for ` > 1 by Assumption 2.1(i). Integrating by parts yields

∥∥∥ t∫
0

exp
(
is
ε Λ̃1(0)

)
P⊥fε(s) ds

∥∥∥
L1

≤
∥∥∥[ εi Λ̃−11 (0) exp

(
is
ε Λ̃1(0)

)
P⊥fε(s)

]t
0

∥∥∥
L1

+
∥∥∥ εi Λ̃−11 (0)

t∫
0

exp
(
is
ε Λ̃1(0)

)
P⊥∂tfε(s) ds

∥∥∥
L1

≤ Cε
(
‖fε(0)‖L1 + ‖fε(t)‖L1

)
+ Cε

t∫
0

∥∥∥∂tfε(s) ds∥∥∥
L1
.

As in Case 2 in Section 3.2.1 one can show that these terms are bounded by a constant which
does not depend on ε. This shows that (49) is uniformly bounded. Together with the other
considerations, this proves the inequality (42) and completes the proof of Proposition 3.2.

3.3 Extension to a stronger norm

For µ ∈ {1, . . . d} let Dµ denote the Fourier multiplicator (Dµŵ)(k) = ikµŵ(k). If u = (u1, u3)
is the classical solution of (7) and (8), then by definition Dµûj = S∗j,εDµzj is the Fourier
transform of ∂µuj . (Note that the scalar multiplicator Dµ commutes with the matrix S∗j,ε.)

In the proof of Theorem 4.2 we will also need the following version of Proposition 3.2
where zj(t) is replaced by Dµzj(t).

Proposition 3.6 Let u = (u1, u3) be the classical solution of (7) with initial data (8) for
some p ∈ W 2. Let z1 and z3 be the transformed variables defined in (24), and let µ ∈
{1, . . . , d}. Under the assumptions of Proposition 3.2 there is a constant C such that

sup
t∈[0,t?/ε]

9Dµz(t)9ε ≤ C for all ε ∈ (0, 1]

with t? from Proposition 3.2. C depends on ‖p‖W 2 , Cu,2 from (18), and on r from Proposi-
tion 3.2, but not on ε.

Proposition 3.6 implies the bounds

sup
t∈[0,t?/ε]

‖DµP⊥ε û1(t)‖L1 ≤ Cε, (50a)

sup
t∈[0,t?/ε]

‖Dµû3(t)‖L1 ≤ Cε (50b)
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for all ε ∈ (0, 1]. For zj = Sj,εûj these bounds are equivalent to

sup
t∈[0,t?/ε]

‖DµP
⊥z1(t)‖L1 ≤ Cε, (51a)

sup
t∈[0,t?/ε]

‖Dµz3(t)‖L1 ≤ Cε (51b)

for all ε ∈ (0, 1] due to (25) and (33).

Proof of Proposition 3.6. Let µ ∈ {1, . . . , d} be fixed. Applying the operator Dµ to
both sides of (26) gives

∂tDµzj(t) = ε
∑

#J=j

DµF(t, û, J)(t), j ∈ {1, 3}. (52)

Integrating (52) from 0 to t and applying the scaled norm (36) leads to

9Dµz(t)9ε ≤ 9Dµz(0)9ε + 9
t∫

0

∂tDµz(s) ds9ε

≤ 9Dµz(0)9ε + 2
∑

#J=1

f1(t, ε, û, J) + 2
∑

#J=3

f3(t, ε, û, J)

with

f1(t, ε, û, J) = ε
∥∥∥ t∫

0

PDµF(s, û, J) ds
∥∥∥
L1

+
∥∥∥ t∫

0

P⊥DµF(s, û, J) ds
∥∥∥
L1
,

f3(t, ε, û, J) =
∥∥∥ t∫

0

DµF(s, û, J) ds
∥∥∥
L1
.

According to (28) and (31) the term 9Dµz(0)9ε is uniformly bounded with a constant which
depends on ‖p‖W 2 . Our goal is to prove that there are constants C1 and C2 such that the
inequality

fj(t, ε, û, J) ≤ C1 + C2 ε

t∫
0

9Dµz(s)9ε ds (53)

holds for j ∈ {1, 3} and for all J ∈ J 3 with #J = j. If (53) is true, then it follows that

9Dµz(t)9ε ≤ c1 + c2 ε

t∫
0

9Dµz(s)9ε ds

(with other constants), and Gronwall’s lemma yields

sup
t∈[0,t?/ε]

9Dµz(t)9ε ≤ c1e
c2t? ,

which proves the assertion.
To prove (53) we analyze the term DµF(t, û, J), which appears in fj(t, ε, û, J). By (27)

we have

DµF(t, û, J) = Sj,ε(t)DµT
(
ûj1 , ûj2 , ûj3

)
(t), j = #J, (54)
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and it follows from (10) that

DµT
(
ûj1 , ûj2 , ûj3

)
= T

(
Dµûj1 , ûj2 , ûj3

)
+ T

(
ûj1 , Dµûj2 , ûj3

)
+ T

(
ûj1 , ûj2 , Dµûj3

)
, (55)

which corresponds to the product rule. If we consider û = (û1, û3) as given, then (55) is
linear with respect to Dµûj = S∗j,εDµzj . This is the reason why Gronwall’s lemma can be
used to prove boundedness of 9Dµz(t)9ε, but not to show boundedness of 9z(t)9ε in the
proof of Proposition 3.2.

Since Sj,ε is unitary it follows from (54) and (55) that∥∥DµF(t, û, J)
∥∥
L1 =

∥∥DµT
(
ûj1 , ûj2 , ûj3

)
(t)
∥∥
L1

≤ ‖T
(
Dµûj1 , ûj2 , ûj3

)
(t)‖L1 + ‖T

(
ûj1 , Dµûj2 , ûj3

)
(t)‖L1 + ‖T

(
ûj1 , ûj2 , Dµûj3

)
(t)‖L1 .

With (14) we obtain for all t ∈ [0, t?/ε] that∥∥DµF(t, û, J)
∥∥
L1 ≤ CT

(
‖Dµûj1(t)‖L1‖ûj2(t)‖L1‖ûj3(t)‖L1

+ ‖ûj1(t)‖L1‖Dµûj2(t)‖L1‖ûj3(t)‖L1

+ ‖ûj1(t)‖L1‖ûj2(t)‖L1‖Dµûj3(t)‖L1

)
≤ CT C

(
ε(|j2|+|j3|−2)/2‖Dµzj1(t)‖L1 + ε(|j1|+|j3|−2)/2‖Dµzj2(t)‖L1

+ ε(|j1|+|j2|−2)/2‖Dµzj3(t)‖L1

)
, (56)

because we already know that

sup
t∈[0,t?/ε]

‖ûj(t)‖L1 = sup
t∈[0,t?/ε]

‖zj(t)‖L1 ≤ Cε(|j|−1)/2 (57)

by Proposition 3.2 and (38).
Let #J = j = 3. If |J |1 ≥ 5 we can proceed in a straightforward way: we estimate

∥∥f3(t, ε, û, J)
∥∥
L1 ≤

t∫
0

∥∥DµF(s, û, J)
∥∥
L1 ds,

substitute (56) and use that for |J |1 ≥ 5 there is at least one index ji = 3. It is enough to con-
sider J = (3, 1, 1), because J = (1, 3, 1), J = (1, 1, 3) and all permutations of J = (3, 3,−3)
can be treated in the same way. Combining (56) with (57) yields for J = (j1, j2, j3) = (3, 1, 1)

∥∥f3(t, ε, z, J)
∥∥
L1 ≤ C

t∫
0

(
‖Dµz3(s)‖L1 + 2ε‖Dµz1(s)‖L1

)
ds

≤ Cε
t∫

0

9Dµz(s)9ε ds,

which corresponds to (53) with C1 = 0. Now let |J |1 = #J = j = 3, i.e. let J = (1, 1, 1).
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Then it follows from (54) and (55) that

∥∥f3(t, ε, û, J)
∥∥
L1 =

∥∥∥ t∫
0

S3,ε(s)T (Dµû1, û1, û1)(s) ds
∥∥∥
L1

+
∥∥∥ t∫

0

S3,ε(s)T (û1, Dµû1, û1)(s) ds
∥∥∥
L1

+
∥∥∥ t∫

0

S3,ε(s)T (û1, û1, Dµû1)(s) ds
∥∥∥
L1
. (58)

Each of the three terms in (58) can be treated by adapting the estimates from Case 2 of the
proof of Proposition 3.2. Instead of Lemma 3.5 one has to use that

sup
s∈[0,t?/ε]

‖∂tDµPεû1(s)‖L1

is uniformly bounded, which can be shown in a similar way. This leads to (53) for j = 3
with constants C1 and C2 which depend on Cu,2. For j = 1 the bound (53) can be shown
by adapting the procedure from Section 3.2.2.

4 Error bound for the approximation

If u1, u3 is the solution of (7) with initial data (8) then ũ defined in (6) provides an approxi-
mation to the exact solution u of the original problem (1). Our goal is now to prove an error
bound for this approximation. This error bound requires an additional assumption.

Assumption 4.1 (Non-resonance condition) The matrices L3(0) = L(3ω, 3κ) and L5(0)
= L(5ω, 5κ) have no common eigenvalues, i.e. λ3`(0) 6= λ5m(0) for all `,m = 1, . . . , n.

Local well-posedness of (1) in the Wiener algebra on long time intervals [0, tend/ε] for some
tend > 0 could be shown by adapting the proof of Lemma 2.3. We may thus assume that a
unique mild solution of (1) exists on [0, t?/ε] (after decreasing the value of t? if necessary).

Theorem 4.2 Let p ∈ W 2 and let u be the solution of (1). Let (u1, u3) be the classical
solution of (7) established in part (iii) of Lemma 2.3, and let ũ be the approximation defined
in (6). Under Assumptions 2.1, 2.2, and 4.1 there is a constant such that

sup
t∈[0,t?/ε]

‖u(t)− ũ(t)‖W ≤ Cε2, (59)

sup
t∈[0,t?/ε]

‖u(t)− ũ(t)‖L∞ ≤ Cε2. (60)

Note that Proposition 3.2 and 3.6 apply under the assumptions of Theorem 4.2, which
yields the bounds (34), (35), (50), (51) in addition to (18). Applying (34) and (50) to

‖u3(t)‖W 1 = ‖u3(t)‖W +

d∑
µ=1

‖∂µu3(t)‖W = ‖û3(t)‖L1 +

d∑
µ=1

‖Dµû3(t)‖L1
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yields in particular that

sup
t∈[0,t?/ε]

‖u3(t)‖W 1 ≤ Cε. (61)

Moreover, (26), (35) and Lemma 3.4 yield

sup
t∈[0,t?/ε]

‖∂tzj(t)‖L1 ≤ ε sup
t∈[0,t?/ε]

∑
#J=j

‖F(t, û, J)(t)‖L1 ≤ C
∑

#J=j

ε1+(|J|1−3)/2 ≤ Cε. (62)

Proof. Since the proof of Theorem 4.2 is rather lengthy, we subdivide it into several steps.

Step 1. Our first goal is to derive an evolution equation for the error δ = u − ũ and its
Fourier transform. The approximation ũ solves (1) up to the residual

R(t, x) = εT (ũ, ũ, ũ)(t, x)−
(
∂tũ(t, x) +A(∂)ũ(t, x) +

1

ε
Eũ(t, x)

)
. (63)

In order to derive a more useful expression for R, we note that (7) yields

∂tũ(t, x) +A(∂)ũ(t, x) +
1

ε
Eũ(t, x)

=
∑
j∈J

eij(κ·x−ωt)/ε
(
∂tuj(t, x) + i

εL(jω, jκ)uj(t, x) +A(∂)uj(t, x)
)

= ε
∑
j∈J

∑
#J=j

eij(κ·x−ωt)/εT (uj1 , uj2 , uj3)(t, x) (64)

in contrast to

εT (ũ, ũ, ũ)(t, x) = ε
∑
J∈J 3

ei#J(κ·x−ωt)/εT (uj1 , uj2 , uj3)(t, x)

= ε
∑
j odd
|j|≤9

∑
#J=j

eij(κ·x−ωt)/εT (uj1 , uj2 , uj3)(t, x). (65)

The difference is that (65) includes summands with |j| ∈ {5, 7, 9}, whereas j ∈ J implies
that |j| ∈ {1, 3} in (64). Inserting (64) and (65) into (63) yields

R(t, x) = ε
∑

|j|∈{5,7,9}

∑
#J=j

eij(κ·x−ωt)/εT (uj1 , uj2 , uj3)(t, x),

and by definition of R the error δ = u− ũ solves the equation

∂tδ = −A(∂)δ − 1

ε
Eδ + ε [T (u,u,u)− T (ũ, ũ, ũ)] +R. (66)

In order to derive a bound in ‖ · ‖W , we apply the Fourier transform to (66) to obtain

∂tδ̂(t, k) = −
(
iA(k) + 1

εE
)
δ̂(t, k) + εG

(
Fu,F ũ

)
(t, k) + R̂(t, k)

with

G
(
Fu,F ũ

)
= T (Fu,Fu,Fu)− T (F ũ,F ũ,F ũ),

R̂(t, k) = ε
∑

|j|∈{5,7,9}

∑
#J=j

F
(
T (uj1 , uj2 , uj3)eijκ·x/ε

)
(t, k)e−ijωt/ε

= ε
∑

|j|∈{5,7,9}

∑
#J=j

T (ûj1 , ûj2 , ûj3)(t, k − jκ
ε )e−ijωt/ε. (67)
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Step 2. With the variation-of-constants formula δ̂(t, k) can be expressed as

δ̂(t, k) = ε

t∫
0

exp
(
(s− t)

(
iA(k) + 1

εE
))
G
(
Fu(s),F ũ(s)

)
(k) ds

(68)

+

t∫
0

exp
(
(s− t)

(
iA(k) + 1

εE
))
R̂(s, k) ds.

We aim for proving supt∈[0,t?/ε] ‖δ̂(t)‖L1 ≤ Cε2 via Gronwall’s lemma. Since the matrix

iA(k) + 1
εE is skew-hermitian for every k, the first term on the right-hand side of (68) can

be bounded in L1 by

ε

t∫
0

∫
Rd

∣∣exp
(
(s− t)

(
iA(k) + 1

εE
))∣∣

2

∣∣G(Fu(s),F ũ(s)
)
(k)
∣∣
2
dk ds

≤ ε
t∫

0

∫
Rd

|G
(
Fu(s),F ũ(s)

)
(k)|2 dk ds

≤ 3CT C
2
u ε

t∫
0

‖δ̂(s)‖L1 ds (69)

due to (16) where Cu is a constant such that

sup
t∈[0,t?/ε]

‖u(t)‖W ≤ Cu, sup
t∈[0,t?/ε]

‖ũ(t)‖W ≤ Cu

uniformly in ε. The laborious part of the proof is to show that

sup
t∈[0,t?/ε]

∥∥∥ t∫
0

exp
(
(s− t)

(
iA(·) + 1

εE
))
R̂(s) ds

∥∥∥
L1
≤ Cε2 (70)

with a constant C which does not depend on ε. If (70) holds, then together with (68) and
(69) it follows that

‖δ̂(t)‖L1 ≤ CC2
u ε

t∫
0

‖δ̂(s)‖L1 ds+ Cε2,

and Gronwall’s lemma yields

sup
t∈[0,t?/ε]

‖u(t)− ũ(t)‖W = sup
t∈[0,t?/ε]

‖δ̂(t)‖L1 ≤ Cε2eγt?

with γ = CC2
u, which proves (59). The second bound (60) is an immediate consequence of

the embedding W (Rd) ↪→ L∞(Rd). The purpose of the following steps is to prove (70).

Step 3. In this step the term on the left-hand side of (70) is reformulated. With the
change of variables k′ = k− jκ

ε , εk = jκ+ εk′, definition (9) and the representation (67), we
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obtain

t∫
0

exp
(
(s− t)

(
iA(k) + 1

εE
))
R̂(s, k) ds

= ε
∑

|j|∈{5,7,9}

∑
#J=j

t∫
0

exp

(
i

ε
(s− t)L(jω, εk)

)
e−ijωt/εT (ûj1 , ûj2 , ûj3)(s, k − jκ

ε ) ds

= εe−ijωt/ε
∑

|j|∈{5,7,9}

∑
#J=j

t∫
0

exp

(
i

ε
(s− t)Lj(εk′)

)
T (ûj1 , ûj2 , ûj3)(s, k′) ds.

From now on, we omit the dash and write k instead of k′. The difference does not matter
because later we integrate over k, anyway. By (23) and (27) we have

exp

(
i

ε
(s− t)Lj(εk)

)
T (ûj1 , ûj2 , ûj3)(s, k) = exp

(
− it

ε
Lj(εk)

)
Ψj(εk)F(s, û, J)(k),

which yields the bound

∥∥∥ t∫
0

exp
(
(s− t)

(
iA(·) + 1

εE
))
R̂(s) ds

∥∥∥
L1
≤ ε

∑
|j|∈{5,7,9}

∑
#J=j

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1

(71)

for the crucial term.

Step 4. Our next goal is to prove that

∑
|j|∈{5,7,9}

∑
#J=j

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1
≤ Cε.

Combining this estimate with (71) yields the desired bound (70). Note that there is an extra
factor ε on the right-hand side of (71).

Let j be an odd number with |j| ∈ {5, 7, 9}, and let J ∈ J 3 with #J = j. We distinguish
the two cases |J |1 = |j| = 5 and |J |1 ∈ {7, 9}. The latter is the easier one, because in this
case Lemma 3.4, (18), (25), and (34) yield

∥∥∥ t∫
0

F(s, û, J) ds
∥∥∥
L1
≤

t∫
0

‖F(s, û, J)‖L1 ds

≤ CT
t?
ε

sup
s∈[0,t?/ε]

‖ûj1(s)‖L1‖ûj2(s)‖L1‖ûj3(s)‖L1

≤ Ct?ε(|J|1−5)/2

≤ Ct?ε

for |J |1 ∈ {7, 9}. Now let |J |1 = |j| = 5. This situation appears only if J is either (3, 1, 1),
(1, 3, 1), or (1, 1, 3). Since all three cases can be treated in the same way, we may henceforth
assume that J = (3, 1, 1), which means that

F(t, û, J) = S5,ε(t)T
(
û3, û1, û1

)
(t)
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by (27). As in Case 2 in Section 3.2.1 we decompose

T
(
û3, û1, û1

)
= T

(
û3,Pεû1,Pεû1

)
+ T

(
û3,Pεû1,P⊥ε û1

)
+ T

(
û3,P⊥ε û1,Pεû1

)
+ T

(
û3,P⊥ε û1,P⊥ε û1

)
,

and as before all terms involving P⊥ε û1 can be treated in a straightforward way because of
(34). Hence, the main difficulty is to prove that

∥∥∥ t∫
0

S5,ε(s)T
(
û3,Pεû1,Pεû1

)
(s) ds

∥∥∥
L1
≤ Cε. (72)

Step 5. To prove (72), we use that (24) and (23) yield the representation

û3(t, k) = S∗3,ε(t, k)z3(t, k)

= Ψ3(εk) exp
(
− it

εΛ3(εk)
)
z3(t, k)

=

n∑
m=1

exp
(
− it

ε λ3m(εk)
)
z3m(t, k)ψ3m(εk). (73)

Recall that ψjm ∈ Cn is the m-th column of the unitary matrix Ψj , and that λjm is the
m-th entry on the diagonal of Λj ∈ Rn×n; cf. Section 2.4. A similar representation of Pεû1
is derived by using (33) and (30) in addition to (24) and (23), namely

Pεû1(t, k) = S∗1,ε(t, k)Pz1(t, k)

= Ψ1(εk) exp
(
− it

εΛ1(εk)
)
Pz1(t, k)

= exp
(
− it

ε λ11(εk)
)
z11(t, k)ψ11(εk). (74)

Combining the representations (73) and (74) with (10) and using Ψ∗5 =
∑n
`=1 e`ψ

∗
5` yields

S5,ε(s)T
(
û3,Pεû1,Pεû1

)
(s) = F (s, z) (75)

with F defined by

F (t, z) =
(
F`(t, z)

)n
`=1

,

F`(t, z)(k) =

n∑
m=1

∫
#K=k

exp
(

it
ε∆λ`m(ε, k,K)

)
Zm(t,K)c`m(ε, k,K) dK

and with the notation

K =
(
k(1), k(2), k(3)

)
∈ Rd × Rd × Rd,

∆λ`m(ε, k,K) = λ5`(εk)− λ3m
(
εk(1)

)
− λ11

(
εk(2)

)
− λ11

(
εk(3)

)
,

Zm(t,K) = z3m
(
t, k(1)

)
z11
(
t, k(2)

)
z11
(
t, k(3)

)
,

c`m(ε, k,K) =
1

(2π)d
ψ∗5`(εk)T

(
ψ3m

(
εk(1)

)
, ψ11

(
εk(2)

)
, ψ11

(
εk(3)

))
.

Since by definition ψj` is the `–th column of the unitary matrix Ψj , it follows that

|c`m(ε, k,K)| ≤ CT for all ε, k,K.
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With (75) the left-hand side of (72) can be bounded by

∥∥∥ t∫
0

S5,ε(s)T
(
û3,Pεû1,Pεû1

)
(s) ds

∥∥∥
L1

=

∫
Rd

∣∣∣ t∫
0

F (s, z)(k) ds
∣∣∣
2
dk

≤
n∑
`=1

∫
Rd

∣∣∣ t∫
0

F`(s, z)(k) ds
∣∣∣ dk

≤
n∑

`,m=1

∫
Rd

∣∣∣ ∫
#K=k

t∫
0

exp
(

is
ε ∆λ`m(ε, k,K)

)
Zm(s,K) ds c`m(ε, k,K) dK

∣∣∣ dk
≤

n∑
`,m=1

∫
Rd

∫
#K=k

∣∣∣ t∫
0

exp
(

is
ε ∆λ`m(ε, k,K)

)
Zm(s,K) ds

∣∣∣ |c`m(ε, k,K)| dK dk

≤ CT
n∑

`,m=1

∫
Rd

∫
#K=k

∣∣∣ t∫
0

exp
(

is
ε ∆λ`m(ε, k,K)

)
Zm(s,K) ds

∣∣∣ dK dk. (76)

Step 6. In this step, we prove that

∣∣∣ t∫
0

exp
(

is
ε ∆λ`m(ε, k,K)

)
Zm(s,K) ds

∣∣∣ (77)

≤ Cε
(
|Zm(t,K)|+

3∑
i=1

|k(i)|1

t∫
0

|Zm(s,K)| ds+

t∫
0

|∂tZm(s,K)| ds
)

for all `,m,K and k = #K. Since `,m, k,K are considered fixed in this step, we can simplify
notation by setting

∆λ(ε) = ∆λ`m(ε, k,K),

Z(s) = Zm(s,K),

Y (s) = exp
(

is
ε

[
∆λ(ε)−∆λ(0)

])
Z(s).

Since λ11(0) = 0, we have

∆λ(0) = λ5`(0)− λ3m(0) 6= 0
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by Assumption 4.1. Hence, we can integrate by parts in order to generate one additional
power of ε. Now we obtain for the left-hand side of (77)

∣∣∣ t∫
0

exp
(

is
ε ∆λ(ε)

)
Z(s) ds

∣∣∣ =
∣∣∣ t∫
0

exp
(

is
ε ∆λ(0)

)
Y (s) ds

∣∣∣
≤ ε

|∆λ(0)|

∣∣∣[ exp
(

is
ε ∆λ(0)

)
Y (s)

]t
s=0

∣∣∣+
ε

|∆λ(0)|

∣∣∣ t∫
0

exp
(

is
ε ∆λ(0)

)
∂tY (s) ds

∣∣∣
≤ Cε

(
|Z(t)|+ |Z(0)|

)
+ Cε

t∫
0

|∂tY (s)| ds.

The initial conditions (12) imply that z3m(0, k) = 0 for all m and hence that Z(0) =
Zm(0,K) = 0. For the last term, we obtain

t∫
0

|∂tY (s)| ds ≤ 1

ε

t∫
0

∣∣∣[∆λ(ε)−∆λ(0)
]∣∣∣ · |Z(s)| ds+

t∫
0

|∂tZ(s)| ds. (78)

For the difference

∆λ(ε)−∆λ(0) = ∆λ`m(ε)−∆λ`m(0)

=
(
λ5`(εk)− λ5`(0)

)
−
(
λ3m

(
εk(1)

)
− λ3m(0)

)
−
(
λ11
(
εk(2)

)
− λ11(0)

)
−
(
λ11
(
εk(3)

)
− λ11(0)

)
the Lipschitz continuity of the eigenvalues (see Assumption 2.2(ii)) and the identity k =
#K = k(1) + k(2) + k(3) yield the inequality

|∆λ(ε)−∆λ(0)| ≤ C|εk|1 + C

3∑
i=1

|εk(i)|1 ≤ 2Cε

3∑
i=1

|k(i)|1,

and the ε on the right-hand side cancels with the factor 1/ε in (78). All in all, this yields
the bound

∣∣∣ t∫
0

exp
(

is
ε ∆λ(ε)

)
Z(s) ds

∣∣∣ ≤ Cε(|Z(t)|+
3∑
i=1

|k(i)|1

t∫
0

|Z(s)| ds+

t∫
0

|∂tZ(s)| ds
)
,

which proves (77).

Step 7. Now we make our way back to (72). Substituting (77) into (76) yields

∥∥∥ t∫
0

S5,ε(s)T
(
û3,Pεû1,Pεû1

)
(s) ds

∥∥∥
L1

≤ CT
n∑

`,m=1

∫
Rd

∫
#K=k

∣∣∣ t∫
0

exp
(

is
ε ∆λ`m(ε, k,K)

)
Zm(s,K) ds

∣∣∣ dK dk

≤ CT nε
(
X1(t) +X2(t) +X3(t)

)
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with the short-hand notation

X1(t) =

n∑
m=1

∫
Rd

∫
#K=k

|Zm(t,K)| dK dk,

X2(t) =

3∑
i=1

n∑
m=1

∫
Rd

∫
#K=k

|k(i)|1

t∫
0

|Zm(s,K)| ds dK dk,

X3(t) =

n∑
m=1

∫
Rd

∫
#K=k

t∫
0

|∂tZm(s,K)| ds dK dk.

To conclude the proof, it has to be shown that Xi(t) ≤ C for i = 1, 2, 3 and for all t ∈ [0, t?/ε]
with a constant c that does not depend on ε. From the definition of Zm it follows that

n∑
m=1

|Zm(t,K)| =
( n∑
m=1

∣∣z3m(t, k(1))∣∣) · ∣∣z11(t, k(2))∣∣ · ∣∣z11(t, k(3))∣∣
=
∣∣z3(t, k(1))∣∣1 · ∣∣z11(t, k(2))∣∣ · ∣∣z11(t, k(3))∣∣

≤
√
n
∣∣z3(t, k(1))∣∣2 · ∣∣Pz1(t, k(2))∣∣2 · ∣∣Pz1(t, k(3))∣∣2

≤
√
n
∣∣û3(t, k(1))∣∣2 · ∣∣û1(t, k(2))∣∣2 · ∣∣û1(t, k(3))∣∣2

due to (25). This yields

X1(t) =

n∑
m=1

∫
Rd

∫
#K=k

|Zm(t,K)| dK dk

≤
√
n

∫
Rd

∫
#K=k

∣∣û3(t, k(1))∣∣2 · ∣∣û1(t, k(2))∣∣2 · ∣∣û1(t, k(3))∣∣2 dK dk

=
√
n‖u3(t)

∥∥
W
· ‖u1(t)‖2W ≤ C.

(In fact, we even have that X1(t) ≤ Cε according to (34b).) To bound X2(t) we use that∫
Rd

|k(i)|1
∣∣ûji(t, k(i))∣∣2 dk(i) ≤ ‖uji(t)∥∥W 1

for i ∈ {1, 2, 3} and J = (j1, j2, j3) = (3, 1, 1) to obtain in a similar way as before that

X2(t) =

3∑
i=1

n∑
m=1

∫
Rd

∫
#K=k

|k(i)|1

t∫
0

|Zm(s,K)| ds dK dk

≤ C
t∫

0

‖u3(s)
∥∥
W 1 · ‖u1(s)‖2W 1 ds

≤ C t?
ε sup
s∈[0,t?/ε]

(
‖u3(s)‖W 1 · ‖u1(s)‖2W 1

)
≤ C
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due to (61) and (18). Finally, it follows from (35) and (62) that

X3(t) =

n∑
m=1

∫
Rd

∫
#K=k

t∫
0

|∂tZm(s,K)| ds dK dk

≤ C
t∫

0

(
‖∂tz3(s)

∥∥
L1 · ‖z1(s)‖2L1

+ 2‖z3(s)
∥∥
L1 · ‖z1(s)‖L1 · ‖∂tz1(s)‖L1

)
ds

≤ C t?
ε (ε+ 2ε2) ≤ C.

This completes the proof of Theorem 4.2.

5 Discussion

In this work the solution u of the semilinear PDE system (1) is approximated by

ũ(t, x) =
∑
j∈J

eij(κ·x−ωt)/εuj(t, x), u−j = uj , J = {±1,±3} (79)

with uj solving (7)–(8). Theorem 4.2 states that the error of the approximation on the long
time interval [0, t?/ε] is O

(
ε2
)
.

A natural question to ask is whether or not the approximation improves if J is replaced
by J = {±1,±3, . . . ,±jmax} for some odd jmax ∈ N in (79) and (7). We conjecture that it is
indeed possible to prove that for jmax = 5 the error is O

(
ε3
)

on [0, t?/ε] if our assumptions are
adapted in an obvious way. The new terms would make the proofs even more complicated,
but the techniques and the strategy would not have to be changed significantly. In addition
to (34) and (50) one has to show that

sup
t∈[0,t?/ε]

‖û5(t)‖L1 ≤ Cε2 and sup
t∈[0,t?/ε]

‖Dµû5(t)‖L1 ≤ Cε2

in the framework of Propositions 3.2 and 3.6. We believe, however, that unfortunately an
extension to jmax = 7 and an error of O

(
ε4
)

is not possible with our techniques. The reason
is, roughly speaking, that for jmax = 7 the difficult case in Step 4 of the proof of Theorem 4.2
is |J |1 = |j| = 9. This case appears, in particular, for J = (3, 3, 3), and in order to handle this
case, we would need a non-resonance condition which is not fulfilled for the Maxwell–Lorentz
system and the Klein–Gordon system.
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[10] P. Donnat and J. Rauch. Dispersive nonlinear geometric optics. J. Math. Phys.,
38(3):1484–1523, 1997.

[11] P. Donnat and J. Rauch. Modeling the dispersion of light. In Singularities and oscilla-
tions (Minneapolis, MN, 1994/1995), volume 91 of IMA Vol. Math. Appl., pages 17–35.
Springer, New York, 1997.

[12] J.-L. Joly, G. Métivier, and J. Rauch. Generic rigorous asymptotic expansions for weakly
nonlinear multidimensional oscillatory waves. Duke Math. J., 70(2):373–404, 1993.

[13] J. L. Joly, G. Metivier, and J. Rauch. Global solvability of the anharmonic oscillator
model from nonlinear optics. SIAM J. Math. Anal., 27(4):905–913, 1996.

[14] J.-L. Joly, G. Metivier, and J. Rauch. Diffractive nonlinear geometric optics with rec-
tification. Indiana Univ. Math. J., 47(4):1167–1241, 1998.

[15] J.-L. Joly, G. Metivier, and J. Rauch. Transparent nonlinear geometric optics and
Maxwell-Bloch equations. J. Differential Equations, 166(1):175–250, 2000.

[16] P. Kirrmann, G. Schneider, and A. Mielke. The validity of modulation equations for
extended systems with cubic nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 122(1-
2):85–91, 1992.

[17] D. Lannes. Dispersive effects for nonlinear geometrical optics with rectification. Asymp-
tot. Anal., 18(1-2):111–146, 1998.

[18] D. Lannes. High-frequency nonlinear optics: from the nonlinear Schrödinger approxima-
tion to ultrashort-pulses equations. Proc. Roy. Soc. Edinburgh Sect. A, 141(2):253–286,
2011.

[19] A. Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[20] J. Rauch. Hyperbolic partial differential equations and geometric optics, volume 133
of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2012.



Version: January 26, 2022 32

[21] G. Schneider and H. Uecker. Nonlinear PDEs, volume 182 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2017. A dynamical
systems approach.


