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We present efficient algorithms for time-sensitive control dependencies (CDs). If statement y is time-

sensitively control dependent on statement x , then x decides not only whether y is executed but also how

many timesteps after x . If y is not standard control dependent on x , but time-sensitively control dependent,

then y will always be executed after x , but the execution time between x and y varies. This allows us to

discover, e.g., timing leaks in security-critical software.

We systematically develop properties and algorithms for time-sensitive CDs, as well as for nontermina-

tion-sensitive CDs. These work not only for standard control flow graphs (CFGs) but also for CFGs lacking a

unique exit node (e.g., reactive systems). We show that Cytron’s efficient algorithm for dominance frontiers

[10] can be generalized to allow efficient computation not just of classical CDs but also of time-sensitive and

nontermination-sensitive CDs. We then use time-sensitive CDs and time-sensitive slicing to discover cache

timing leaks in an AES implementation. Performance measurements demonstrate scalability of the approach.
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1 INTRODUCTION AND OVERVIEW

Timing Leaks are a major source of software security problems today. Attacks based on timing leaks
such as Spectre [22] have become known to the general public. Yet there are not many program
analysis tools that detect timing leaks in software.

In this article, we describe a new kind of dependency between program statements, the time-

sensitive control dependency. It is able to discover timing leaks and can be implemented as an auto-
matic program analysis. We will explain time-sensitive dependencies, provide efficient algorithms,
provide a soundness proof and apply it to discover timing leaks in an implementation of the AES
cryptographic standard.

The construction of time-sensitive control dependencies starts with classical control dependen-
cies. We will thus begin by sketching the research path from control dependencies (CDs) to
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timing dependencies, and provide introductory examples. Later in the article, we will provide for-
mal definitions, proofs, and algorithms.

CDs, originally introduced in References [11, 33], are a fundamental building block in program
analysis. CDs have many applications: They can, for example, be used for program optimizations
such as code scheduling, loop fusion, or code motion (see, e.g., Reference [25]) or for program
transformations such as partial evaluation (e.g., Reference [20]) or refactoring (e.g., Reference [5]).
CDs are in particular fundamental for program dependence graphs (PDGs) and program slicing
[11, 19, 23]. Intuitively, a program statement y is control dependent on another statement x , writ-
ten x →cd y, if x—typically an if or while statement—decides whether y will be executed or not.
Classical CDs are defined via postdominators; in fact classical CDs are essentially the postdomi-
nance frontiers in the control flow graph (CFG) [10]. Postdominance frontiers can be computed
by an efficient algorithm due to Cytron [10].

Unfortunately, the classic CD definition is limited to CFGs with unique exit node, and thus
assumes that all programs can terminate. In 2007, Ranganath et al. [29] generalized control depen-
dence to CFGs without unique exits and nonterminating programs (e.g., reactive systems); provid-
ing the first algorithm for nontermination-sensitive CDs. Later, Amtoft [3] provided definitions
and algorithms for nontermination-insensitive CDs, which allow for sound analysis and slicing of
nonterminating programs. But these algorithms could no longer be based on the efficient Cytron
algorithm for postdominance frontiers.

In this contribution, we not only present new efficient algorithms for the Ranganath-Amtoft
CD definitions. We will also provide definitions and algorithms for time-sensitive CDs and time-
sensitive slicing. Time-sensitive CD, written x →tscd y, holds if x decides whether y is executed
or if x decides when y is executed (even if y is always executed after x )—that is, how many time
units after execution of x . Intuitively, x →tscd y while not x →cd y means that y will always be
executed after x , but the execution time between x and y varies. The latter property is important
to discover timing leaks in security-critical software.

We systematically develop theoretical properties and efficient algorithms for→tscd and evalu-
ate their performance. It turns out that Cytron’s efficient algorithm for dominance frontiers can
be generalized to an abstract notion of dominance, which then can be used for the efficient com-
putation of both the Ranganath/Amtoft CD, as well as our new time-sensitive CD. We then apply
→tscd to (models of) hardware microarchitectures, and use it to find cache timing leaks in an AES
implementation.

Many of the theorems in this article have been formalized and machine-checked using the ma-
chine prover Isabelle. Such theorems are marked with a sign. The Isabelle proofs can be found
in the electronic appendix of this article. For some theorems in Section 5, such an Isabelle proof
has not yet been completed. Manual proofs are available but are not presented in this article. Con-
sequently, such theorems are called “observations.”

1.1 Overview

The main part of this article will present time-sensitive CDs and algorithms in a rather technical
manner. Before we embark on this, we present an informal overview of our research path and
results. We begin with a discussion of classical control dependencies and compare these to our
new notion of time-sensitive control dependencies.

1.1.1 Control Dependence. Informally, a control dependence in a CFG, written x →cd y, means
that x decides whether y is executed or not. In structured programs, x is typically an if or while
statement. Figure 1 presents two examples: In the first example (left), node (5) is control dependent
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Fig. 1. Two simple control flow graphs illustrating control dependence.

on node (1); node (3) is not control dependent on (1) but on (2). In the second example (right),1

nodes (2), (3), and (4) are control dependent on node (1). Technically, CD is based on the notion
of postdomination in CFGs. y postdominates x (written y �POST x ) if any path from x to the exit

node must pass through y. Several formal CD definitions exist; as this may be confusing we will
relate the most popular definitions to the examples in Figure 1. The original definition of CD in
Reference [11] is as follows:

x →cd y ⇐⇒ ¬
(
y �POST x

)
∧ ∃ path π : x →∗ y such that ∀z ∈ π \ {x ,y} : y �POST z.

The condition that y is not a postdominator for x means that from x there is a second path
(not containing y) to the exit node. That is, there is a conditional branch at x . The next condition
demands that there is a path from x to y, and that y is a postdominator for all nodes z between
x and y. Thus there is no side branch from any z to the exit node; hence x is directly controlling
whether y is executed.

In Figure 1 (left), node (5) postdominates all nodes on paths between (1) and (5), but (5) does
not postdominate (1); hence (1) →cd (5). But (3) does not postdominate (2) (this node being
the only one between (1) and (3)), hence ¬

(
(1) →cd (3)

)
. In Figure 1 (right), node (4) is control

dependent on node (1). Since we have (1) → (5), node (4) does not postdominate (1). The path
(1) → (3) → (4) only contains the additional z = (3), and (4) postdominates (3), so the second
condition is satisfied. But what about the path (1) → (2) → (3) → (4)? It is irrelevant, as the CD
definition only demands there exists a path where for all z, and so on; it does not demand the z
condition for all paths. Likewise, (2) as well as (3) are control dependent on (1).

An alternate, more compact CD definition was provided in Reference [33], and is used in this
article. Here x is a branch node with direct successors n and m, where the control-dependent y
postdominates one but not the other:

x →cd y ⇐⇒ ∃n,m : x → n,x →m,y �POST n,¬
(
y �POST m

)
.

Lemma 1.1. The above definitions for x →cd y are equivalent whenever x � y.

Applied to Figure 1 (right), again we conclude that (4) is CD on (1). Choose n = (2) (n = (3) also
works),m = (5), then (4) postdominates (2) (and (3)), but (4) does not postdominate (5). Note that
both n and m in the definition are existentially quantified. Thus the definition neither demands
nor inhibits that (4) postdominates (3).

Lemma 1.2. In Figure 1 (right), we have (4) �POST (2), (4) �POST (3), ¬
(
(4) �POST (5)

)
, and thus

(1) →cd (4).

1We thank one reviewer for suggesting this example.
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Fig. 2. A CFG G.

1.1.2 CFGs without Unique Exit. CFGs without unique exit, in particular with no exit or un-
reachable exits, are important for modern language constructs, for example, event handlers or
loops in reactive systems. Ranganath and Amtoft had generalized postdominance and CD for such
CFGs. The resulting postdominance relations are called max- and sink-postdominance and will
be explained in Section 2.2. If these are used in CD definitions, then one obtains non-termination-

sensitive control dependence, written→ntscd; and non-termination-insensitive control dependence,
written→nticd.→nticd is identical to→cd but also works for graphs without unique exit.→ntscd is
identical to→wcd (weak control dependence, see Section 2.1) but also works for graphs without
unique exit.
→nticd and→ntscd are important building blocks for→tscd. A comparison between→nticd,→ntscd,

and→tscd is given in the next section.

1.1.3 Time-sensitive Control Dependence. Time-sensitive CD, written x →tscd y, holds if x de-
cides when or whether y is executed. This dependence is more relaxed than standard CD. Intuitively,
x →tscd y while not x →cd y means that y will always be executed after x , but the execution time

between x and y varies.
The latter property is important to discover timing leaks in security-critical software. A typical

situation is as follows: y is not control dependent on x , but there are at least two paths from x to
y. Then the runtime between x and y varies: x →tscd y. If this variation depends on secret data,
and can be measured by an attacker, then a timing leak has been born. x →tscd y will uncover this
leak.

In our work time is discrete; a unit of time coincides with a transition in the CFG. Since steps
of an abstraction of real programs and hardware are timed, this is therefore a “weakly timing-
sensitive” model in the sense of Reference [21].

Now, let us illustrate the differences between the different kinds of control dependencies. A node
y is non-termination sensitively control dependent on node x , written x →ntscd y, if x decides
whether y will be executed. In Figure 2, we have (1) →ntscd (2), because we will execute (2) when
choosing (2) as the successor of (1) but not if we choose (10). Also, due to the loop at (3), we have
(3) →ntscd (10): By choosing (9) as the successor of (3) we are guaranteed to reach (10). But if we
choose (4) as the successor, then we might avoid reaching (10) by staying in the loop forever, so
(3) decides if (10) will be executed.
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y is non-termination insensitively control dependent on x , written x →nticd y, if x decides
whether y will be executed, assuming we eventually exit all loops that can be exited. In Figure 2, we
still have (1) →nticd (2), with the same reasoning as above. But now we have ¬ ((3) →ntscd (10)):
Since we assume that we always exit the loop at (3), we are guaranteed to reach (10), no matter
which successor we choose at (3).
y is timing sensitively control dependent on x , written x →tscd y, if x decides when y will be

executed. In Figure 2, we have (7) →tscd (8), because we will execute (8) after one step when
choosing (8) as the successor of (7) but not if we choose (11), when it takes two or three steps.
Therefore, the choice taken at (7) influences the timing of (8). On the contrary, ¬ ((4) →tscd (5)),
because no matter how we choose, we will always reach (5) in two steps. An interesting case is
(1) →tscd (2): If we choose (2) as successor of (1), then we will reach (2) in exactly one step, but
we will not if we choose (10), because we then will not reach (2).

1.1.4 Applications for Software Security. As indicated,→tscd may help to discover timing leaks.
More generally,→tscd is useful for Information Flow Control (IFC). IFC uses program analysis
techniques to discover leaks in software. Technically, noninterference is a property that guarantees
that a program does not leak secret data. Probabilistic noninterference guarantees that there are no
internal timing leaks, which arise if secret data influence scheduling or other measurable timing
properties. For an introduction to IFC, see, e.g., Reference [31].

Indeed→tscd was developed as an instrument to improve the precision of probabilistic nonin-
terference analysis. We will report on applications of →tscd for IFC in a separate article. In the
current article, we focus on algorithms for→tscd and use a different security example: In Section 4,
we will analyse an implementation of the AES cryptographic standard and discover cache leaks in
this implementation. These infamous cache leaks have been known for some time [4], but so far
no program analysis tool was able to discover such leaks.

1.1.5 Algorithms. The major part of this contribution is concerned with efficient algorithms for
→tscd. For the classical→cd , Cytron’s efficient algorithm for dominance frontiers can be used; but
this algorithm was not employed by Ranganath/Amtoft.

We discovered that a generalized version of Cytron’s algorithm can not only be used for both
→nticd and→ntscd but also for→tscd. Thus we have been able to obtain efficient implementations for
all these dependence notions. The algorithms are described in Section 5. Performance evaluations
are described in Section 6.

2 CONTROL DEPENDENCE IN GRAPHS WITHOUT UNIQUE EXIT

Our work was strongly motivated by earlier results of Ranganath et al. [29] and Amtoft [3]. These
authors extended the classical notion of CD and slicing to CFGs that do not contain a unique
exit node. As multiple exit nodes can trivially be handled by adding a new “global” exit node,
Ranganath’s and Amtoft’s work is in fact concerned with CFGs that do not have a single, unique
exit node. A typical example is a CFG with an infinite loop from which an exit node cannot
be reached. Such CFGs are relevant, because modern programs need not necessarily terminate
through exit nodes. One paramount example are reactive systems, which are assumed to run for-
ever; and thus have no exit node at all. Another example are event handlers, which may shutdown
a thread while the thread has no explicit exit. Thus Ranganath and Amtoft opened the door to
apply CD and slicing to modern program structures.

Time-sensitive CD will also work on graphs without unique exit. It is therefore necessary to
recall Ranganath’s and Amtoft’s work. We begin with fundamental definitions of CDs and post-
domination for CFGs with no unique exit.
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2.1 Classical Control Dependence and Weak Control Dependence

CFGs are a standard representation of programs, e.g., in compilers, and many tools are available
that extract CFGs from source code.2 Thus let G = (N ,→G ) be the CFG of a program. In this
article, we once and for all assume a fixed CFG G and therefore omit the sub- or superscript G
whenever possible; e.g., we write n →m instead of n →G m. In the classical case of a unique exit
node, there is exit ∈ N such that n →∗ exit for all n ∈ N , and exit → n for no node n ∈ N .

Node m postdominates n (m �POST n) iff m ∈ π for every path π from n to exit. Node m strongly

postdominates n (m �SPOST n) iff m �POST n, and there exists some k ≥ 1 such that m ∈ π for every
path π starting in n with length ≥ k [27]. In contrast to m �POST n, m �SPOST n does not hold if
there is an infinite loop between m and n: Assume such a loop exists, then there will be paths π
starting at n of arbitrary length k that never pass through m: ∀k∃π : len(π ) = k ∧m � π . If this
happens, then �SPOST is not supposed to hold; hence the negation of the latter condition must hold
for �SPOST .

Classical (nontermination-insensitive) CD, denoted→cd , is defined in terms of postdominance.
Formally (as already explained above),

x →cd y ⇐⇒ ∃n,m ∈ N : x → n,x →m,y �POST n,¬
(
y �POST m

)
.

This CD definition can be modified to react sensitively to infinite loops. This nontermination-

sensitive form of CD, called “weak control dependence” and written x →wcd y, was introduced in
Reference [27] and is defined in terms of strong postdominance. The formal definition is identical
to the above CD definition; with �SPOST instead of �POST . Even if x →cd y does not hold, x →wcd y
might still hold if there is an infinite loop between x and y. Note that weak control dependence
does not imply that this infinite loop is in fact executed.

2.2 Postdominance in Graphs without Unique Exit

To understand how the above definitions are generalized to arbitrary graphs with no unique exit
node, consider the example in Figure 2. It has no unique exit node, since the only candidate node
10 is unreachable from, e.g., node 6. Thus the classical definitions for �POST and �SPOST cannot be
applied. Instead, Ranganath et al. [29] proposed control dependence for arbitrary graphs based on
the notions of maximal and sink paths.

A maximal path is a path that cannot be extended (i.e., is infinite, or ends in some noden without
successor). However, a (control-) sink is a strongly connected component S such that no edge leaves
S .3 Specifically, all nodes n without successor (in particular n = exit) form a (trivial) sink. A sink
path then is a path π such that s ∈ S for some node s ∈ π and some sink S , and if S is nontrivial (i.e.,
not a singleton), then all nodes in S appear in π infinitely often. In programming terms, S would
be an infinite loop in the CFG, and a sink path corresponds to an execution that infinitely loops
in S .

Definition 2.1 (Implicit in Reference [29]). A node m ∈ N nontermination-sensitively postdomi-
nates a node n ∈ N (writtenm �MAX n) iffm ∈ π for all maximal paths π starting in n. Similarly, a
node m nontermination-insensitively postdominates a node n (written m �SINK n) iff m ∈ π for all
sink paths π starting in n.

Since every sink path is a maximal path, m �MAX n implies m �SINK n . m �SINK n while
¬ (m �MAX n) means that on reaching n,m will later be executed unless an infinite loop is entered.

2All examples and measurements in this article are based on CFGs that were produced using the JOANA system. JOANA

is a system for IFC and can in particular check probabilistic noninterference for full Java with arbitrary threads [6, 13, 14].
3In a strongly connected component (SCC) S , there is a path between all x, y ∈ S . Every cycle is an SCC.
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Fig. 3. Nontermination-(in)sensitive CDs for CFG from Figure 2.

The following definition is equivalent to those in Reference [29] whenever n �m.

Definition 2.2. A node y ∈ N is non-termination sensitively (respectively, insensitively) control-

dependent on x ∈ N , written x →ntscd y (respectively, x →nticd y), if there exist edges x → n,
x →m such that y �MAX n (respectively, y �SINK n), but ¬

(
y �MAX m

)
(respectively, ¬

(
y �SINK m

)
).

Note that this definition is identical to the original CD definition, with �MAX , respectively,
�SINK instead of �POST . In fact, for graphs with unique exit node, we have →ntscd = →wcd and
→nticd =→cd [29]. Figure 3 shows→ntscd and→nticd for the CFG from Figure 2.

Like many program analysis problems, postdominance and CD can be characterized as a fixpoint
computation. Our first new insight is that both �MAX and �SINK can be characterized as a greatest,
respectively, least fix point of one rule set D. This surprising fact is the basis for our generalization
of Cytron’s algorithm. Note that the rule set can be interpreted as a functional that transforms a set
of dominance relationships {x � y} into a new set D ({(x � y}). If such a functional is monotone,
then it has a least as well as a greatest fixpoint.

Theorem 2.1. 4 Let D be the following rule system, and let D also denote its implicit functional;

write μ for the least fixpoint, and ν the greatest fixpoint. Then D is a monotone functional in the (finite)

lattice
(
2N×N , ⊆

)
, and μD = �MAX, and νD = �SINK.

Rule systemD :
n � n

Dself
∀n → x : m � x n→∗ m

m � n
Dsucc.

The reachability side-condition n →∗ m is in most cases redundant for the least fixed point μD,
but essential for the greatest fixed point νD.5

Of course, algorithms for→ntscd and→nticd are needed, and indeed Ranganath et al. proposed
such algorithms. The algorithm for→ntscd from Reference [29] can in principle be thought of as a
simple least fixed point computation of the set of nodes m such that m �MAX n but only for nodes
n that are successors of branching nodes.

We, however, discovered a more general and systematic algorithmic approach, which exploits
the above fix-point theorem. It is based on the insight that Cytron’s efficient algorithm for dom-
inance frontiers can be generalized to an abstract notion of “dominance” and thus can be used

4Lemmas and Theorems marked with have been formalized and proved in the machine prover Isabelle. The proof

explanations and scripts can be found in the electronic appendix of this article.
5We mention in passing that for graphs with unique exit node, replacing this condition with n � exit results in a similar

rule system P on which the algorithm from Reference [8] is based. We will not describe P in detail but note that �POST = ν P

[15].
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Fig. 4. The canonical irreducible graph, where neither n→ntscd m1 nor n →ntscd m2.

for �POST , �SPOST , �MAX , �SINK , →ntscd, →nticd, and in particular for →tscd. We will present all
algorithms in a separate section (Section 5), as they demand a rather heavy technical machinery.

In conclusion of this section, we recall another notion from Ranganath et al., which will also be
helpful to characterise→tscd.

Definition 2.3 ([29]). Decisive order dependence, written n→dod (m1,m2) is a ternary relation,
which means that n controls the order in whichm1,m2 are executed.

We omit the formal definition, but provide an intuition: In Reference [29], the necessity of→dod

was motivated by an irreducible6 graph, such as the graph shown in Figure 4. Here, neitherm1 nor
m2 is nontermination sensitively control dependent onn: ¬(n →ntscd m1)∧¬(n →ntscd m2). But the
decision at n determines which node is executed next: Leaving n via the left branch will executem1

beforem2 but leaving n via the right branch will executem2 beforem1. Thus, n→dod (m1,m2) holds.
Ranganath and Amtoft used→ntscd and →dod to define a sound notion of nontermination-sensitive

backward slicing. This is consistent with the fact that CDs are fundamental for slicing and PDGs.

3 TIMING-SENSITIVE CONTROL DEPENDENCE

3.1 Why Time Sensitivity Matters

Before we formally develop timing-sensitive CDs, let us motivate the usefulness of this concept
for software security analysis. Known attacks exploiting timing side channels include Spectre [22]
and cache attacks on implementations of the cryptographic standard AES [4]. In this kind of attack,
the attacker is able to observe the timing behaviour of certain instructions; from this observation
determine whether some specific data are in the cache or not; and from this knowledge infer
values of secret variables (e.g., by using the secret value as an array index) or draw conclusions
about control flow.

Timing-sensitive CDs can reveal such potential attacks or prove that such attacks are impossible.
For example, in a specific AES implementation7 we find the code lines

(1) for r1: [0,1,...,15]
(2) r2 := state[r1];// state depends on key and plain text
(3) r3 := sbox[r2]; // sbox is a constant array
(4) state[r1] := r3
(5) end

6A CFG is reducible if the forward edges form a directed acyclic graph, and in any backedge m → n, n dominates m.

Structured programs have reducible CFGs; wild gotos typically lead to irreducible CFGs.
7This implementation was presented in Reference [4]. It assumes that all accesses to the sbox array need constant time.

But in fact access time is cache dependent.
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Fig. 5. Control Flow Graphs for AES Sbox substitution.

sbox is a constant array that typically spans multiple memory blocks, while r1, r2, r3 are regis-
ters. Thus the value of r2 in one iteration may influence whether the read of r3 in a later iteration
is served from cache (namely if, earlier, the corresponding memory block was already loaded into
the cache), or from main memory. This makes a difference in execution time and can be observed
by an attacker; who may thus be able to infer the value of r2. Such leaks can be discovered by
timing-sensitive CDs; provided the CFG not just describes the code, but additionally models rele-
vant hardware features such as cache behaviour.

Figure 5 shows the standard CFG for the AES code fragment, as well as the micro-architectural

CFG, which models timing differences due to cache hits and misses. The latter CFG indicates
that array access r3 := sbox[r2] in line (3) may either result in a cache hit or cache miss. In
the control flow, this is modeled via two paths leaving node (3) that are joined after following a
different number of edges, and take a different amount of time to execute. Specifically, the time
at which execution reaches the exit node (5) depends on which paths are taken at (3): Node (5)
is time sensitively control dependent on node (3). The edge annotations use r2 indicate that
the value register r2 determines which array index, and hence which cache line is accessed at
(3). Furthermore, due to the previous assignment r2 := state[r1], node (3) is data dependent
on the initialization of the state array from the plain text message and the key, as indicated in
node (0).8 Thus we obtain the following dependency chain (where→dd denotes data dependency):

8Besides CDs, data dependencies are important for security analysis. This is described in Section 3.4. For the current AES

example, the reader may assume all data dependencies are available as necessary.
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Fig. 6. Dependence of execution time ofmx on n.

(secret input) →dd state→dd r2→dd (3) →tscd (5). This means that the time until (5) is reached
depends on secret input. Thus time-sensitive CDs reveal that sbox access is not constant time (in
contrast to the AES specification); opening a door to cache-leak based attacks.

If a→tscd dependency is not (indirectly) data dependent on secret data, then it does not generate
a timing leak. For example, in the AES CFG, (2) →tscd (5) also holds. But the value of r1 (and thus
(2)) is not data dependent on any secret value, so no timing leak arises via (2). We will discuss this
in more depth in Section 3.4; and come back to AES and micro-architectural CFGs in Section 4.

3.2 Timing-sensitive Control Dependence

Consider Figure 6(a): mx is guaranteed to be executed, no matter which branch is taken at n, so
we have ¬ (n→ntscd mx ). But let us assume that we could measure execution times. Now, n can
control at which timemx will be executed, namely 4 or 2 steps after executing n. We will say that
mx is timing sensitively control dependent on n, or n →tscd mx . In Figure 6(b), however, mx will
always be executed 4 steps after n, so there we have ¬ (n →tscd mx ).

We will now formally define→tscd. Specifically, we will

(1) Propose a notion �TIME of timing-sensitive postdominance.
(2) Give a least fixed point characterization of �TIME.
(3) Propose a notion→tscd of timing-sensitive control dependence. It will be based on �TIME the

same way that →ntscd is based on �MAX.
(4) Prove soundness and minimality of→tscd.

To start with, remember that �MAX was defined via

m �MAX n ⇐⇒ ∀π ∈ nΠMAX. m ∈ π ,

where nΠMAX is the set of maximal paths starting in n. For example, in Figure 6(a) it holds that
mx �MAX n, because any maximal path starting in any successor of n must contain mx (i.e., both
mx �MAX n

′ andmx �MAX n
′′), and so must any maximal path starting in n.

Now for time-sensitive postdominance we additionally want to express that in Figure 6(a) mx

can be reached via two different paths, with varying execution time. To account for the different tim-

ing of the (first) occurrence ofmx in maximal paths starting in n, the following auxiliary definition
is needed.

Definition 3.1. Given any path π = m0,m1,m2, . . ., we say that m appears in π at position k iff
m =mk and writem ∈k π . If additionally,mi �m for all i < k , then we say thatm first appears in
π at position k and writem ∈k

FIRST π .
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Using this notation, we can define time-sensitive postdominance as follows.

Definition 3.2. (a)m timing-sensitively postdominates n at position k ∈ N, writtenm �k
TIME n, iff

on all maximal paths starting in n,m first appears at position k . Formally,

m �k
TIME n ⇐⇒ ∀π ∈ nΠMAX. m ∈

k
FIRST π .

(b) m timing-sensitively postdominates n, written m �TIME n, if there exists k such that m �k
TIME n.

Thus

m �TIME n ⇐⇒ ∃k ∈ N ∀π ∈ nΠMAX. m ∈
k
FIRST π .

If we compare m �k
TIME n to m �MAX n, then the difference is that in the latter, m must occur

somewhere in all maximal paths fromn, while in the formerm must first occur at a specific position
k in all maximal paths from n. Thus, if m �TIME n, then m must appear in all maximal paths from
n at the same position. Therefore in Figure 6(a), mx �TIME n does not hold, while in Figure 6(b),
mx �TIME n does hold.

Lemma 3.1. Givenm and n, the k such thatm �k
TIME n (if it exists) is unique.

Following the definitions for nontermination sensitive and insensitive control dependence
→ntscd and →nticd, we define the following timing-sensitive notion of control dependence:

Definition 3.3. y is said to be timing sensitively control-dependent on x , written x →tscd y, if there
exist edges x → n and x →m as well as some k ∈ N such that

y �k
TIME n and ¬

(
y �k

TIME m
)
.

Note that this definition is identical to the definition of →ntscd, respectively, →cd ; with �k
TIME

instead of �MAX , respectively, �POST . Thus→tscd has the same formal structure as classical CD
and its later extensions.

In Figure 6(a), we have mx �
3
TIME n

′ but ¬(mx �
3
TIME n

′′), and thus we have n →tscd mx ; while
in Figure 6(b) we have mx �

3
TIME n′ and mx �

3
TIME n′′ and thus not n →tscd mx . For more com-

plex examples, consider again the CFG in Figure 2. The timing-sensitive postdominance for this
CFG is shown in Figure 7(b). Figure 7(c) and Figure 7(d) show the corresponding non-termination-
sensitive and timing-sensitive control dependencies. Note, for example, that 7 →tscd 8, because a
choice 7→G 11 can delay node 8, but in contrast: ¬(7→∗

ntscd
8), because no choice at node 7 can

prevent node 8 from being executed. It is not the case that, in general,n →ntscd m impliesn →tscd m.
For example: 2→ntscd 8, but ¬(2→tscd 8). What does hold here is 2→∗

tscd
8 via 2→tscd 7→tscd 8.

We will now provide a fixpoint characterization ofm �k
TIME n. Remember from Theorem 2.1 that

�MAX is the least fixed point of the rule system D,

n � n
Dself

∀n→ x .m � x n →∗ m

m � n
Dsucc,

in the lattice
(
2N×N , ⊆

)
. Similarly, the ternary relationm �k

TIME n is the least fixed point of the rule

system TFIRST in the underlying lattice
(
2N×N×N , ⊆

)
,

Theorem 3.1. Let TFIRST be the rule-system

n �0 n
Tself

FIRST

∀n→ x .m �k x m � n n →∗ m

m �k+1 n
Tsucc

FIRST.

Then �TIME = μTFIRST.
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Note that the condition n →∗ m is redundant for nodes n that have some successor x , since we
consider only the least, but not the greatest, fixed point of TFIRST. The condition m � n ensures
that we only consider the first occurrence of m in each path.

We will now demonstrate that→tscd is transitively a stricter requirement than non-termination-
sensitive control independence. To this end, we use the following notation.

Definition 3.4. For M ⊆ N and→ a relation on N , the backward slice of M is(
→

)∗
(M) = {y | ∃x ∈ M : y →∗ x}.

This definition can be generalized to the ternary relation →dod: If y→dod (x1,x2), y ∈
(
→dod

)∗
(M)

only if x1 and x2 ∈
(
→dod

)∗
(M) [29].

Theorem 3.2. Let M ⊆ N . Then

(→tscd)
∗ (M) ⊇ (→ntscd ·∪ →dod)∗ (M).

That is, there are more transitive time-sensitive CDs than the transitive closure of even the
union of→ntscd and→dod. Now remember that Ranganath and Amtoft introduced→ntscd and→dod

to provide a sound notion of nontermination-sensitive backward slicing. Thus in the language of
PDGs,

(
→

)∗
(M) is just the backward slice of M , and the theorem states that the timing-sensitive

backward slice of M contains the nontermination-sensitive backward slice of M .
It is worth noting that the→tscd slice in Theorem 3.2 does not require a timing-sensitive ana-

logue of the relation →dod. As seen above, the necessity of →dod was motivated by an irreducible
graph, such as the graph in Figure 4. But while in Figure 4 neither m1 nor m2 is nontermination
sensitively control dependent on n, bothm1 andm2 are timing-sensitively control dependent on n
(e.g., n→tscd m1, becausem1 �

1
TIME n

′, but ¬(m1 �
1
TIME n

′′), and also:m1 �
2
TIME n

′′, but ¬(m1 �
2
TIME n

′).
Thism1/m2 symmetry makes a ternary “→ tsdod” unnecessary.

3.3 Soundness and Minimality of→tscd

It is our ultimate goal to discover timing leaks. We thus need a soundness proof for→tscd, which
guarantees that →tscd will indeed discover all potential timing leaks. We will further show that
→tscd is minimal, which means there are no spurious time-sensitive dependencies.

Any soundness proof makes assumptions about the possibilities of attackers; this is called the
attacker model. To prove soundness of→tscd under an attacker model, we use a technique called
trace equivalence. Let us thus describe our attacker model, and then define trace equivalence. We
imagine an attacker who tries to infer secret values (such as r2 in the AES example) measuring
execution times for certain execution paths. But the attacker cannot observe all nodes, he can
only observe certain “observable” nodes.9 The goal of security analysis is then to guarantee that
secret information cannot flow to observable nodes, respectively, that execution times measured
at observable nodes will not allow the attacker to infer secret values at unobservable nodes.10

Technically, for→tscd this guarantee is based on trace equivalence of clocked traces.

Definition 3.5. An (unclocked) trace t is a sequence of edges (n,n′) ∈ (→G )∪ (Nx × {⊥}) that is
either finite with t = (ne ,n1), (n1,n2), . . . , (nk ,nx ), (nx ,⊥) for some exit node nx ∈ Nx , or infinite
with t = (ne ,n1), (n1,n2), . . . . Partial edges (n,⊥) occur only at exit nodes.

9These observable nodes are called “low” nodes in the literature on software security analysis (see, e.g., Reference [31]).
10This kind of security analysis is called IFC, and is based on the technical notion of noninterference. We will describe

technical details on the application of→tscd for IFC in a separate article; here we present only the AES example and do not

discuss technical details of noninterference.
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Fig. 7. Timing-sensitive postdomination. Edges n
k
−→m indicatem �k

TIME n.

Definition 3.6. A clocked trace is a trace where every step is additionally annotated with a time
stamp. We write t [i] if a trace step t has time stamp i . Given a trace t = (ne ,n1), (n1,n2), . . . ,
its clocked version is thus

t = (ne ,n1) [0], (n1,n2) [1], . . . .

Next, we assume there is a fixed set S ⊆ N of observable nodes.11

Definition 3.7. Let S ⊆ N ; let a trace t be given. We define the S-observation t |S of t to be the
sub-sequence of t containing only edges (n,n′) with n ∈ S . Traces t1, t2 are called S-equivalent if
t1 |S = t2 |S .

These definitions work for unclocked and clocked traces. S-observability means that we assume
an attacker to observe exactly those choices made at nodes n ∈ S . Specifically, we assume that an
attacker can observe neither the nodes in a subtrace between observable nodes, nor—for unclocked
traces—the time spent between two observable nodes (i.e., the length of the subtrace between two
observable nodes).

Now we consider traces caused by specific inputs. We write ti for the (possibly infinite) trace
caused by input i . As we want to abstract away from particular input formats or data objects, we
use a nonstandard formalization of input: i is a map from CFG nodes to a (perhaps infinite) list of

11The assumption of a fixed, static S , and batchlike execution is standard in IFC and noninterference. It can be gener-

alised and made more realistic in various ways; which, however, is not a topic of this article. Likewise, technical details of

noninterference will not be discussed in this article.
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CFG successor nodes: i : N → N ∗. An input i causes ti as follows: If, e.g., an if node n ∈ N is
visited for the kth time during the execution with input i , then the execution will continue with
the kth element of i (n), which is a successor node (i.e., true or false path) of n. If n is only visited
finitely often, then superfluous entries in i(n) are ignored.

This encoding has the effect that our CFGs are state-free: They contain CDs and nothing else. In
particular the CFG does not contain program variables or program state—these are hidden in the
i encoding. From a practical viewpoint this is, however, no restriction, and no weakening of the
soundness property: We do not constrain possible i , and the soundness theorem below holds for all
i, i ′. Note, however, that for practical discovery of timing leaks, data dependencies are additionally
needed; this is described in Section 3.4.

Next, we need the notion of S-equivalent inputs. For S ⊆ N ,i |S : S → N ∗ is the restriction of the
map i to nodes n ∈ S , thereby only determining the successor nodes chosen at condition nodes ∈ S .
Two inputs i, i ′ are called S-equivalent, written i ∼S i ′, ifi |S = i

′|S . An attacker cannot distinguish
S-equivalent inputs.

We will now explain why—in the absence of timing leaks—S-equivalent inputs demand S-
equivalent traces. It is essential to consider clocked traces: Even if two unclocked traces are S-
equivalent, their clocked versions may be different. This is the essence of time-sensitivity. For
illustration consider Figure 6(a), with observable nodes S = {m,mx }. Regardless of the choice
made at n, all inputs i, i ′ starting inm have the same observable trace

ti |S = (m,n) , (mx ,⊥) = ti′ |S .

Hence, ti and ti′ are always trace equivalent. Thus an attacker without clock cannot extract any
secret information from observing traces. However, if equipped with a suitably precise clock, then
an attacker will observe mx after 5 steps for the input i that chooses n′ at n, but already after 3
steps for i ′ that chooses n′′ at n, exposing a timing difference. This becomes obvious if we use the
clocked versions of ti , ti′ , and then compare their S-observation:

ti

���
S
= (m,n) [0] , (mx ,⊥) [5]

� (m,n) [0] , (mx ,⊥) [3] = ti′

���
S
.

Since the attacker cannot distinguish i and i ′ (they only differ in the choices for the unobservable
node n), this timing difference allows the attacker to gain additional information, leading to a
timing leak. However, the program in Figure 6(b) has no timing leak: Even if we annotate each
edge in the observable trace with its execution time, all inputs i, i ′ starting in m have the same
observable clocked trace

ti

���
S
= (m,n) [0] , (mx ,⊥) [5] = ti′

���
S
.

This discussion motivates the following definition of timing leaks:

Definition 3.8. Let S ⊆ N be a set of observable (“low”) nodes. A program is free of timing leaks
if for all inputs i, i ′

i ∼S i ′ =⇒ ti

���
S
= ti′

���
S
.

This definition is formally identical to classical noninterference definitions (cmp., e.g., Refer-
ence [31]) but is based on clocked traces.

To prevent a timing leak, it is necessary that all nodes that influence the timing of observable nodes

∈ S are observable itself. Otherwise, a secret node might influence the timing of an observable node.
For example, Figure 6(a) contains—as described above—a timing leak if we assume S = {m,mx }.
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Fig. 8. In the CFG on the left, let M = {6} be the slicing criterion. Then B = BS ({6}) = {1, 6} is the time-

sensitive backward slice of M , because 1→tscd 6. B′ = {6} is a slice that is too small. Right: 3 different inputs

with their traces and observable behaviour regarding B and B′.

Indeed n →tscd mx , but not n ∈ S . With S ′ = S ∪ {n} = {m,n,mx }, the timing leak disappears:
While the timing ofmx still differs, i and i ′ are now distinguishable for the attacker, so this timing
difference does not give additional information.

We will now show how→tscd can be used to check for timing leaks. In particular we demonstrate
that for any observable M ⊆ S , the time-sensitive backward slice B = (→tscd)

∗(M) fulfills the
condition of Definition 3.8. This implies that B is not too small, i.e.,→tscd is sound.

Before we state the theorem, consider what happens if B is too small. In that case, the →tscd

dependency would have “missing edges.” Then there could exist two inputs that agree on B, but
lead to different traces: i ∼B i ′ but ti |B � ti′ |B . Figure 8 presents one such example. For B =

BS({6}) = {1, 6}, we have i1 ∼B i2 and indeed ti1
|B = ti2

|B . In contrast, the unsound “slice”

B′ = {6} leads to i1 ∼B′ i3 butti1
|B′ � ti3

|B′ . (Note that the only difference between the two slices

is the timing of (6,⊥), so we have ti |B′ = ti′ |B′ for the unclocked traces. In fact, {6} is a sound slice

when ignoring timing and using →ntscd.) If, however, i ∼B i ′ always implies ti |B = ti′ |B , then
soundness is guaranteed.

Theorem 3.3 (Soundness of→tscd). Let M ⊆ S . Let B = (→tscd)
∗ (M) be the timing-sensitive

backward slice w.r.t M . Then, for any inputs i, i ′ such that i ∼B i ′, we have

ti

���
B
= ti′

���
B
.

Corollary 3.1. If BS(S) ⊆ S , then Definition 3.8 holds, i.e., there is no timing leak.

As S ⊆ BS(S) always holds, the corollary’s premise is in fact S = BS(S). If the premise is not
satisfied, i.e., for some x ∈ BS(S): x � S , then x—as explained above—is a timing leak.

Minimality of slicing now shows that B = BS (M) is as small as possible: Any set of nodes B′

that includes the slicing criterion M can only be secure if it is a superset of B.

Theorem 3.4 (Minimality of→tscd). Under the assumptions of Theorem 3.3, for any B′ ⊇ M
with B′ � B there exist inputs i, i ′ such that i ∼B′ i

′, but

ti

���
B′
� ti′

���
B′
.

It should be noted that the proof for both theorems relies on the non-standard, state-free input
encoding of i, i ′, which was described above.
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3.4 The Full Time-sensitive Backward Slice

Our nonstandard input encoding (which “factors away” all state information) is not practical for
“real” programs. In such programs, time-sensitive influences through variables must be considered
too. For this reason, discovery of timing leaks needs data dependencies in addition to control depen-
dencies. Data dependencies have in fact already been used in the AES example. For completeness
and better understanding, we will thus describe the full algorithm for discovering timing leaks.
Note that in this article, we do not provide a modified soundness proof for the full algorithm, as it
does not contribute to→tscd “as such.”

We denote data dependencies by →dd . x →dd y means that a variable v , which is defined
(assigned) at x is used at y; provided there is a CFG path x →∗ y, and v is not redefined on this
path [11]. We will not describe the construction of→dd in detail, but note that for full languages
with functions, objects, multithreading, and so on, the computation of precise data dependencies is
nontrivial and requires context-sensitive summary dependencies, precise points-to analysis, may-
happen-in-parallel analysis, and much more (see, e.g., References [14, 23, 30]).

The full algorithm for discovering timing leaks then assumes→dd , and proceeds as follows:

(1) Compute→tscd. If x →tscd y, but not x →cd y, then there may be a timing leak at y, but only
if it can be influenced by secret data.

(2) Using→dd , the full time-sensitive backward slice is defined as

BSts (M) = (→tscd ∪ →dd )
∗ (M) .

This slice contains all CFG nodes that may influence M ; other nodes that influence M cannot
exist [6, 14, 18].

(3) Now if x →tscd y, and BSts ({x}) contains any secret input or variables, then there is a timing
leak at y: The execution time between x and y varies, depending on secret data.

This procedure is fully analogous to the slicing-based noninterference check used in JOANA (see
[6, 14]; these papers include soundness proofs and other details about slicing-based IFC), but with
→tscd instead of→cd . Note that in the current article, we consider only context-insensitive timing-
dependencies (while JOANA uses context-sensitive, object-sensitive dependencies). A context-
sensitive→tscd is future work.

4 TIMING SENSITIVITY FOR MICROARCHITECTURAL CFGS

In the abstract, we mentioned the infamous AES cache timing leaks that were discovered by
Bernstein [4]. Some details of this attack were described in Section 3.1. We will now describe in
more detail how such cache leaks can be discovered, respectively, prevented via time-sensitive CDs
in microarchitectural CFGs. Basically, the algorithm from Section 3.4 is used, but the underlying
CFG must be extended to model cache behaviour.

In the following, we describe this cache-modelling CFG extension in detail. The CFG edges are
labeled with assignments and guards that refer to (cacheable) variables a, b, . . ., and uncacheable
registers r1, r2, . . ..

We assume a simple data cache of size four, with a least recently used eviction strategy. The
(micro-architectural) cache-state hence consists of a list [x1,x2,x3,x4] of variables, with x1 being
the most recently used, and x4 the next to be evicted. In Figure 9(b), we show—under an abstraction
that considers cache state only—all possible executions of the control flow graph, assuming an
empty initial cache. For example, the abstract node (9, [x, d, c, b]) represents all those concrete
configurations at control node 9 in which the concrete micro-architectural cache contains cached
values for the variables [x, d, c, b], in this order (with arbitrary concrete macro-architectural state).
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Fig. 9. A CFG and its possible cache-aware abstract executions.
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In the example, executions can reach the control node m = 15 at cache states represented by
either [b, y, c, x], or by [b, y, d, x]. Which of these (abstract) cache states is reached is determined
by the macro-architectural choice made at n = 9. But it is easy to see that the execution time of
the read of y at node m = 15 does not depend on the choice made at n = 9, since in both (classes
of) executions that reach node m = 15, the cache does contain the variable y, which is the only

cacheable variable accessed by the edge 15
r2:=y
−−−−→ 16 atm.

For the read of variable b at node m = 14, however, one class of executions reaches m in
(14, [y, c, b, x]) (containing b), while another class of executions reaches m in (14, [y, d, x, c]) (not

containing b). Whether the relevant variable b is in the cache atm = 14 (and hence: The execution
time of the read of b atm = 14) or not depends here on the choice made at n = 9.

Now consider the read of c at node m = 21. Does its cache state depend on the choice made
right before at n′ = 16? There are four (abstract) cache states at m = 21. Two contain the vari-
able c: (21, [b, y, c, x]) and (21, [a, y, b, c]). The other two do not contain c: (21, [a, y, b, d]) and
(21, [b, y, d, x]). The cache states containing c are reachable from configurations at control node
n′ = 16. At the same time, cache states not containing c are also reachable from configurations
at control node n′ = 16. But in fact, whether c is in cache at m does not depend on the choice
made at n′. To see this, note that node n′ = 16 can be reached at two different cache states. The
first abstract configuration is (16, [y, b, c, x]). But whenever m = 21 is reached from this abstract
configuration, c is in the cache (either (21, [b, y, c, x]) or (21, [a, y, b, c])). The second abstract con-
figuration at which n′ = 16 can be reached is (16, [y, b, d, x]). But whenever m = 21 is reached
from that configuration, c is not in the cache ((21, [a, y, b, d]) or (21, [b, y, d, x])).

However, the cache status of c at nodem = 21 does depend on the choice made earlier at n = 9.
In this example, this is necessarily so, since the node n = 9 is the only other macro-architectural
conditional node in the control flow graph. But this is also directly evident by the structure of the
graph in Figure 9(b).

Note that through a a small modification of the program, the cache status of c at m = 21 could
have been independent from the choice made earlier at n = 9. For example, had there been reads
to two additional variables (e.g., e, f) right before m = 21, then all cache states at m would not

have contained c. This is because these two reads would have evicted c even from [b, y, c, x] (and
[a, y, b, c]).

In summary, the choice made at n = 9 does influence the relevant (micro-architectural) cache
state at m ∈ {21, 14}. In fact, for this micro-architecture, these are the only micro-architectural
dependencies in this CFG. The example indicates how a CFG G can be transformed into a cache-
aware version. We will not present the formal definitions here (see Reference [16]) but just present
the transformed CFG for the above example.

Figure 10 shows the micro-architectural-aware CFG G ′ for Figure 9; together with an explicit
timing cost model C ′. A cache-miss is assumed to take 10 units of time, while a cache-hit takes 2
units.12 At node 14, the read from b takes either 2 or 10 units of time, since b there might either
be in the cache, or not.13 Hence in G ′, node 14 has two artificial successors: The read from b takes
either 2 or 10 units of time, since b there might either be in the cache, or not. However, node 15
still has only one successor, reached with timing cost 3 = 2 + 1 (cache access plus register access),
since we found that there the variable y is always in cache.

12memory writes are assumed to always take 2 units of times, and register accesses take 1 unit of time.
13In the timing cost model C , the cost 11 = 10+ 1 that stems from one uncached variable access plus one register access is

split into two edges. We need to do this, because in our notion of graphs, there can be no multi-edges, and we require cost

models C to be strictly positive.
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Fig. 10. Micro-Architecture Aware CFG G ′ for Figure 9.
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InG ′, we now have (as desired) that node 21 is in the backward slice of the exit node 3. Formally,

21 ∈
(
→

G′[C ′]

tscd

)∗
({3}).

Together with the microarchitectural dependence from node 9 to node 21, we conclude that the
decision at node 9 may influence the execution time of node 3.

Note that even ifG is deterministic,G ′ usually is not. This is no problem, because we can still use
the micro-architectural dependencies→G

μd
(and data dependencies→dd ) from the original graph

G, and only use G ′ for timing-sensitive control dependence→
G′[C ′]

tscd
.

For the AES code, the cache-sensitive graph G ′ has been shown in Section 3.1, and we already
described how cache leaks in AES have been discovered through time-sensitive backward slicing.
More details can be found in Reference [16].

5 ALGORITHMS

Our algorithms are based on the fundamental insight that Cytron’s original algorithm for domi-
nance frontiers can be generalized to CFGs with loops and multiple exit nodes and even to the
computation of time-sensitive CD. We consider this “generic” algorithm our major contribution:
Without it, the new →tscd definition would be worthless in practice; and even Ranganath’s and
Amtoft’s→ntscd/→nticd are more efficient to compute using the new algorithms.

5.1 New Algorithms for �MAX and �SINK

Let us begin with new algorithms for→ntscd and→nticd. These will—in generalization of Cytron’s
approach—be constructed as postdominance frontiers of �MAX and �SINK. The efficient implementa-
tion of �MAX and �SINK needs some technical machinery, namely transitive reductions and pseudo-
forests.

Both �MAX and �SINK will always be represented by their transitive reductions; allowing efficient
construction algorithms. A transitive reduction < of a transitive relation � is a minimal subset <
of � such that (<)∗ = �. Thus < has a minimal number of edges but the same transitive closure
as �. Efficient algorithms for transitive reductions have long been known [2]. But remember that
�MAX and �SINK may contain cycles (i.e., are not antisymmetric), in contrast to the classical �POST.
Hence their transitive reductions may also contain cycles. Therefore the transitive reductions of
�MAX and �SINK are not forests (i.e., sets of trees) as for �POST, but so-called pseudo-forests.

Definition 5.1. A pseudo-forest is a relation < such that for every node n ∈ N ,m < n for at most

one nodem.

Thus, in a pseudo-forest every node has at most one parent node, but in contrast to ordinary
forests, pseudo-forests may contain cycles. Summarizing this discussion, we obtain

Observation 5.1. 1. Both �MAX and �SINK are reflexive and transitive but not necessarily anti-

symmetric.

2. Any transitive, reflexive reduction <MAX of �MAX is a pseudo-forest.

3. Any transitive, reflexive reduction <SINK of �SINK is a pseudo-forest.

Figure 11(b) shows a reduction <MAX of �MAX for the CFG in Figure 11(a). This pseudo-forest has
five trees, with roots 1, 2, 3, {6, 7, 8} and 10.14 Node 9 does not �MAX-postdominate node 3, because
the loop at 3 may not terminate. However, node 9 does �SINK-postdominate node 3: a path looping
forever at 3 is not a sink path, and any sink path starting at 3 must eventually reach the trivial sink
at node 10.

14In the figure, downarrows n →m mean that m < n.
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ALGORITHM 1: A least common ancestor algorithm for pseudo-forests. N ↪→ N denotes a partial map

from N to N .

Input :A pseudo-forest <, represented as a map IMDOM : N ↪→ N s.t. IMDOM [n] =m iff

m < n.

Input :Nodes m0, n 0

Output :A least common ancestor of n 0,m0, or ⊥ if there is none.

begin
return lca ( n 0, m0)

end

Function lca (π n, πm)
Input :A <-path π n = n 0, . . . , n ending in n

Input :A <-path πm = m0, . . . ,m ending in m

if m ∈ π n then return m

switch IMDOM[ n ] do

case ⊥ do return lin[π n ] (πm)

case n′ do

if n′ ∈ π n then
return lin[π n ] (πm)

end

return lca (πm , π n n′)
end

end

end

Function lin[π n ] (πm)
Input :A <-path πm = m0, . . . ,m ending in m

Implicit :A <-path π n = n 0, . . . , n ending in n

switch IMDOM[m] do

case ⊥ do return ⊥

casem′do

if m′ ∈ π n then returnm′

if m′ ∈ πm then return ⊥

return lin[π n ](πmm′)
end

end

end

We will now present new algorithms to compute �MAX and �SINK. The representation of both
�MAX and �SINK by pseudo-forests is crucial, as pseudo-forests admit efficient algorithms for their
computation. Based on pseudo-forests, our algorithm for �MAX is a standard fixpoint iteration. Be-
ginning with the empty pseudo-forest, new edges are added to <MAX according to Theorem 2.1 until
a fixpoint is reached. Since �MAX is efficiently represented by a pseudo-forest <MAX, it is straightfor-
ward to derive an efficient algorithm for the computation of �MAX, see Algorithm 2. In addition, we
need an efficient implementation of set-intersection in the representation <, i.e., a least common

ancestor algorithm lca< for pseudo-forests; see Algorithm 1.
Algorithm 1 calculates the least common ancestor of n0 and m0 by alternately extending <-

paths from n0 and m0 one by one. If the newly added node is already contained in the other path,
then it is returned as the result of lca(n0,m0): Since this is the first time the two paths overlap,
this node is not only a common ancestor but also the least one. If one path cannot be extended
(because its IMDOM is⊥ or starts to contain a cycle), then only the other path is extended (procedure
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Fig. 11. Nontermination-sensitive Postdominance.

lin). When the other path cannot be extended anymore either, we do not have an lca, so we
return ⊥.

Algorithm 2 works in two phases: First, we establish trivial IMDOM relations for nodes with only
one successor. For the graph in Figure 12 (left), these would be IMDOM[5] = 7, IMDOM[7] = 8,
IMDOM[8] = 9, and IMDOM[9] = 8.

Next, we calculate IMDOM for conditional nodes (nodes with more than one successor). We keep
a queue of such nodes for which IMDOM has not been calculated. For each conditional node x, we
try to calculate the lca of their successors. If this returns a node a � ⊥, then we set IMDOM[x] = a
and remove x from the worklist; otherwise, it is put back at the end. The algorithm terminates
once the worklist is empty or we have completed a full iteration through the worklist without a
change to IMDOM. The variable oldest tracks the first node after the last change; once we visit it
again, we are done.

In the case of the graph in Figure 12 (left), assume we iterate in order CONDG = [1, 2, 3, 4],
which becomes our first workqueue. For x = 1, we calculate lca({2, 3, 4}). Let us sup-
pose we try to calculate lca(2, 3) = lca([2], [3]) first. Since IMDOM[2] = ⊥, we immedi-
ately call lin[[2]]([3]), but since IMDOM[3] = ⊥ as well, we return ⊥ as lca(2, 3). But
then lca({2, 3, 4}) = ⊥ as well. 1 is therefore put back into the queue, so we now have
workqueue = [2, 3, 4, 1] and oldest = 1. For x = 2, when calculating lca(6, 7), we have
IMDOM[6] = ⊥, so we immediately call lin[[6]]([7]). During the recursion in lin, we extend
[7] to [7, 8] and [7, 8, 9] (since no new node is in [6]). The next step would be IMDOM[9] = 8.
Since 8 ∈ [7, 8, 9] (which would lead to a loop), we return ⊥. 2 is therefore put back into the
queue, so we now have workqueue = [3, 4, 1, 2] and oldest = 1. For x = 3, when calculat-
ing lca(5, 7), we have IMDOM[5] = 7 and 7 ∈ [7], so we return 7 as our lca. Since we have an
lca, we update IMDOM[3] = 7, keep 3 out of the workqueue (so workqueue = [4, 1, 2]) and
set oldest = ⊥. For x = 4, when calculating lca(9, 5), we extend both paths alternately until
the path starting in 9 would enter a loop, then only the path starting in 5 is extended. Then we
will find that 8 is our lca, since it is in both paths. In detail, lca([9], [5]) = lca([5], [9, 8])
= lca([9, 8], [5, 7]) = lin[[9, 8]]([5, 7]) = lin[[9, 8]]([5, 7, 8]) = 8. We update
IMDOM[4] = 8, keep 4 out of the workqueue (so workqueue = [1, 2]) and keep oldest = ⊥.
Now we are back to x = 1. When calculating lca(2, 3), we now have IMDOM[3] = 7, so
we can extend [3] until we get [3, 7, 8, 9]. But still, no node is contained in [2], so we
still have ⊥ as our lca. We put 1 back into the workqueue (so workqueue = [2, 1]) and set
oldest = 1. After finding for x = 2 that lca(6, 7)= ⊥, we put 2 back into the workqueue
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ALGORITHM 2: An efficient algorithm for the computation of <MAX. CONDG denotes the set of condi-

tional nodes, i.e., nodes with more than one successor. workqueue is ordered by any fixed ordering on

nodes N .
Input :A CFG G
Data: A pseudo-forest < represented as a map IMDOM : N ↪→ N s.t. IMDOM [n] =m iffm < n
Output :A transitive reduction <MAX of �MAX

begin

for x ∈ N , {z | x → z} = {z} , z � x do
IMDOM [x] ← z

end

MAXIMALup

return IMDOM

end

Procedure MAXIMALup

workqueue← CONDG

oldest← ⊥

while workqueue � ∅ do

x ← removeFront(workqueue)

assert IMDOM[x] = ⊥

if oldest = x then
return

end

if oldest = ⊥ then
oldest← x

end

a ← lca ({y | x → y })

z ←

{
⊥ if a = ⊥ ∨ a = x

a otherwise

if z � ⊥ then

IMDOM [x] ← z

oldest← ⊥

else

pushBack (workqueue,x)

end

end

end

(so workqueue = [1, 2]) and keep oldest = 1. But now our next element in the queue is our
oldest, so we are done.

The computation of �SINK is slightly more complicated. As it is a greatest fixpoint, in principle
we must start with N ×N and reduce it according to the rules; until the greatest fixpoint is reached.
But N × N cannot be represented by a pseudo-forest. Hence we need to initialize the fixed point
iteration with an approximation �0 of �SINK (i.e., �0 ⊇ �SINK) that is representable by a pseudo-
forest <0. We can build <0 by interleaving a traversal of a preliminary pseudo forest < with lca<
computations. Consider the preliminary < in Figure 13(b). We need to establish 3 < 1, but find
that lca< ({2, 3}) = ⊥ for the successors of 1. We would like to assume both 3 < 1 and 2 < 1, the
latter of which would then be invalidated in the (downward) fixed point iteration. But then < no
longer would be a pseudo forest. If we assumed just 2 < 1, then we would obtain a <0 such that not:
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Fig. 12. Two example CFGs.

Fig. 13. Computing an initial approximation <0.

<∗0 ⊇ �SINK, so we need to make the assumption 3 < 1. This example illustrates how the fixpoint
iteration must proceed. It is based on the following:

Observation 5.2. Let <SINK be a transitive reduction of �SINK. Then whenever x<SINKy and any path

starting in x is bound for a sink S (such S is necessarily unique), then any path starting in y is bound

for S as well.

Here, “bound for S” means that the path cannot escape sink S . To illustrate the iteration for �SINK,
consider Figure 13(b). For node 3 we have already established 4 <∗ 3 for the sink node 4 ∈ S , but we
have not yet established 4 <∗ 2. This suggests that we must—whenever lca< ({y | x → y }) = ⊥—
choose some successor nodey ofx such that already s <∗ y for some sink node s . We call such nodes
y processed, and maintain a set PROCD of all such nodes. Algorithm 3 presents the computation
of <SINK, the additional procedures performing the iteration are given in Figure 14.

Algorithm 3 first initializes ISDOM for sink nodes and nodes with one successor. Remember that
any nontrivial sink Si contains a <SINK -cycle. For each sink Si , we therefore initialize ISDOM to be
such a cycle in arbitrary order. We also choose a representative si for each sink Si and mark all
nodes in Si as processed. For all nodes outside sinks with one successor, the initialization of ISDOM
is identical to the one in Algorithm 2. Once a successor is processed, we mark all nodes that reach
this node through ISDOM-chains as processed.

Next, we construct in SINKup a preliminary ISDOM that fulfills ISDOM∗ ⊇ �SINK but might be
too optimistic: For nodes x, ISDOM[x] might exist even though it should be ⊥; or it might be a
node that is too small to be a common ancestor of the successors of x (but the correct lca is an
ancestor of ISDOM[x]). We choose such an ISDOM of x as soon as one of its successors is processed.
When calculating the lca, we only consider the successors that have already been processed. If the
resulting lca is ⊥, then we choose an arbitrary successor as lca. Now, we set ISDOM[x] to be this
lca. We also set x and all nodes that reach x through ISDOM-chains as processed. This succeeds for
any x with distance k to a sink at attempt k at the latest (this can be shown by induction on k), so
this algorithm terminates.
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ALGORITHM 3: Computation of transitive reduction <SINK of �SINK. Not shown is the procedure

processed (x), which updates PROCD given a node x s.t. s <∗ x for some sink node s , by following

linear segments ending in x upwards.

Input :A CFG G
Data: A pseudo-forest < represented as a map ISDOM : N ↪→ N s.t. ISDOM [n] =m iffm < n
Output :A transitive reduction <SINK of �SINK

begin

{S1, . . . , Sn } ← {Si | Si ∈ sccs (G) ,¬ ∃s → n. s ∈ Si ∧ n � Si }

S ←
⋃
Si

for 1 ≤ i ≤ n do

si ← any node in Si

for nj ∈ Si in any fixed ordering n1, . . . ,nki
of Si do

ISDOM
[
nj

]
← nj+1 mod ki

unless ki = 1

processed
(
nj
)

end

end

for x ∈ N , x � S, {z | x → z} = {z} , z � x do

ISDOM [x] ← z

if z ∈ PROCD then processed (x)

end

SINKup

SINKdown

return ISDOM

end

Then, these spurious postdominances are eliminated during SINKdown . For each conditional
node x outside sinks the lca of its successors is calculated. If it is part of a sink Si , then its dis-
tinguished representative si is chosen instead. If it is different from the current ISDOM (either a
different node or ⊥), then ISDOM is updated and all nodes possibly affected by this change are put
back in the worklist: These are all conditional nodes n having a successor y that reaches x through
ISDOM-chains. This is done until the worklist is empty.

As an example, consider Figure 12 (left). In the initial phase, we set ISDOM[8] = 9 and
ISDOM[9] = 8 for the non-trivial sink. For its representative, let us assume we choose 8. We mark
all sink nodes 6, 8, and 9 as processed. Then, we handle non-condition nodes. We set ISDOM[4] = 9
and mark 4 as processed. After that, we set ISDOM[5] = 7 (but cannot mark it as processed, since
7 is not). Finally, we set ISDOM[7] = 8 and mark both 7 and 5 as processed.

In SINKup , 1 has a single processed successor, namely 4. Thus ISDOM[1] = 4, and 1 is pro-
cessed. For 2, we have two processed successors, but lca(6,7) = ⊥. Let us suppose we choose
ISDOM[2] = 7; 2 is also marked as processed. Finally, 3 has two processed successors and
lca(5,7) = 7, so we set ISDOM[3] = 7 and mark 3 as processed. This finishes SINKup .

In SINKdown , we first check x = 1. Since we still have ISDOM[2] = 7, lca({2,3,4}) = 8. This
is also the representative of this sink, so we set ISDOM[1] = 8. For x = 2, we now find that
ISDOM[2] = ⊥. This change puts 1 back into the worklist. For x = 3, no change occurs, since
lca(5,7) = ISDOM[3] = 7. For x = 4, we have lca(9) = 9. The representative of this sink is
8, so we set ISDOM[4] = 8. We would also have to put 1 back into the worklist if it was not
there already. For x = 1, the updated ISDOM[2] now means we find lca({2,3,4}) = ⊥, so we
set ISDOM[2] = ⊥. This finishes the calculation of ISDOM.
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Fig. 14. Upward and downward iteration for Algorithm 3.

5.2 Postdominance Frontiers in Graphs without Unique Exit

We will now derive algorithms for→ntscd and→nticd, based on �MAX and �SINK. In particular, we
generalize Cytron’s idea to split up the postdominance frontier into an “up” and a “local” part, and
to follow the tree structure (parent links) while iterating. The latter also works for pseudo-forests.

To describe this idea in detail, first remember that in graphs with unique exit node nx , stan-
dard postdominance �POST is always a partial order, while in arbitrary graphs, �MAX and �SINK

may lack anti-symmetry, and may thus contain cycles of nodes postdominating each other. In the
following we therefore reconstruct Cytron’s algorithm with our generalized definition for post-
dominance frontiers. In particular, the following definitions replace Cytron’s definitions from Ref-
erence [10]: Instead of Cytron’s original �POST, we use our new 1-� , and instead of Cytron’s
original ipdom�POST

, we use ipdom�. We will thus be able to define the generalized algorithm in
a self-contained way.

Definition 5.2 (Immediate �-Postdominance). Given a binary relation � on nodes, a node x is said
to 1-�-postdominate z if there exists some node y � x such that x � y � z. The set ipdom� (n) is
defined by

ipdom� (n) =

{
m

���� m 1-� n
∀m′ ∈ N .m′ 1-� n =⇒ m′ �m

}
.

In contrast to strict postdominance, x 1-� x might hold, namely if there is a cycle x � y � x for
x � y. ipdom� (x) is the set of immediate postdominators: It contains the postdominators of x that
all (other) postdominators of x postdominate.

As an example, consider the CFG in Figure 12 (left) with �MAX-postdominance. We have
ipdom� (5) = {7}, since 7 1-� 5 and each 1-� -postdominator of 5 also postdominates 7.
8 � ipdom� (5), because 7 1-� 5 but not 7 � 8. For the cycle of 8 and 9, each of those 1-� -
postdominates itself and the other one, so we have ipdom� (8) = ipdom� (9) = {8, 9}.
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ALGORITHM 4: Computation of pdf�.

Input :A transitive reduction < of �

Input :A map SCC from nodes x to the strongly connected component c of < s.t x ∈ c
Input :A topological sorting sccs of all strongly connected components of <.

Output :pdf�
for scc ∈ sccs do

local← {y | x ∈ scc, y → x , ¬∃x ′ ∈ scc. x ′ < y︸����������������︷︷����������������︸
y ∈ scc<

}

up ← {y | x ∈ scc, x < z︸������������︷︷������������︸
z ∈ scc<

, y ∈ PDF[z], ¬∃x ′ ∈ scc. x ′ < y︸����������������︷︷����������������︸
y ∈ scc<

}

for x ∈ scc do PDF[x] ← local ∪ up

end

Next we need a generalized notion of Cytron’s postdominance frontiers. Intuitively, the post-
dominance frontier contains all nodes that are one step away from having x as a postdominator.

Definition 5.3 (�-Postdominance Frontiers).

pdf � (x) =

{
y

���� ¬ x 1-� y
for some s s.t. y → s : x � s

}
.

Consider again Figure 12 (left) with �MAX-postdominance. We have pdf� (5) = {3, 4}, since
5 neither postdominates 3 or 4, but postdominates a successor of those nodes (namely 5 itself).
1 � pdf � (5), since 5 postdominates no successor of 1. For the node 7 we have pdf � (7) = {1, 2, 4}.
Note that 3 � pdf � (7), since 7 postdominates 3.

The following lemma generalizes Cytron’s insight that CD is essentially the same as postdomi-
nance frontiers:

Lemma 5.1. For n �m, we have

n →ntscd m ⇐⇒ n ∈ pdf�MAX
(m)

and

n →nticd m ⇐⇒ n ∈ pdf�SINK
(m).

Due to this lemma, we easily obtain→ntscd and→nticd once we have an algorithm for pdf �. For
the latter, we—following Cytron—partition pdf� (x) into two parts: thosey contributed locally, and
those y contributed by nodes z, which are immediately �-postdominated by x (implying x � z).

Informally, the local part pdflocal
� (x) of pdf � (x) comprises all nodes from which one can get to x in

one step, but which do not have x as a postdominator. However, if y ∈ pdf� (z) and ipdom� (z) is

not the join point of all of y’s branching, then y is in the “upper” part pdf
up
� (z). This is formalized

in

Definition 5.4 (�-Postdominance Frontiers: local and up part).

pdflocal
� (x) = {y |¬ x 1-� y, y → x}

pdf
up
� (z) =

{
y ∈ pdf � (z)

�� ∀x ∈ ipdom� (z) . ¬ x 1-� y
}
.

Under suitable conditions, pdf
up
� and pdflocal

� indeed partition pdf �. This is made precise in the
following
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Observation 5.3. Let � be transitive and reflexive. Also, identify ipdom� with the relation{
(x , z)

�� x ∈ ipdom� (z)
}
, and assume ipdom∗� = �. Then

pdf � (x) = pdflocal
� (x) ∪

⋃
{z | x ∈ipdom�(z)}

pdf
up
� (z) .

Fortunately, �MAX and �SINK are reflexive and transitive (but, as explained, not antisymmetric);
thus the partitioning can be applied. For an example, consider again Figure 12 (left) with �MAX-

postdominance. We have pdflocal
� (5) = {3, 4}. Since 5 only postdominates itself trivially, we have

5 ∈ ipdom� (z) for no node z, and Observation 5.3 indeed gives pdf � (5) = {3, 4}. We have

pdflocal
� (7) = {2}. Since we have

{
z
�� 7 ∈ ipdom� (z)

}
= {3, 5}, we need to calculate pdf

up
� (3) and

pdf
up
� (5). For 5, we have already seen pdf� (5) = {3, 4}. But pdf

up
� (5) contains only node 4, since 7

actually postdominates 3! Since pdf
up
� (3) = {1}, Observation 5.3 results in pdf � (7) = {1, 2, 4}, as

expected.

The next definition provides properties that will enable a fixpoint computation of pdflocal
� (x)

and pdf
up
� (z).

Definition 5.5. � is closed under→ , if it admits the rules

y → x x ′ � y x ′ � y

x ′ � x
CL→

� lacks joins if it admits the rules

x ∈ ipdom� (v)
x ∈ ipdom� (z)

v � s
z � s

z � v

v ∈ ipdom� (z) ∨ z ∈ ipdom� (v)
NoJoin .

Informally, the premise of the last rule is “split” at s (intov and z), and joined at x . The conclusion
demands that this cannot happen unless v and z are immediate neighbours.

Lemma 5.2. Both �MAX and �SINK are closed under→, and lack joins.

As promised, the following theorems provide, under the “lacks join” assumption for�, simplified

formulae for pdflocal
� (x) and pdf

up
� (z).

Observation 5.4. Let � be transitive, and closed under→ . Then

pdflocal
� (x) =

{
y
��¬ x ∈ ipdom� (y) , y → x

}
.

Observation 5.5. Let � be transitive, reflexive, lacking joins, and closed under→ . Also assume

ipdom∗� =�. Then, given some z with x ∈ ipdom� (z)

pdf
up
� (z) =

{
y ∈ pdf � (z)

�� ¬ x ∈ ipdom� (y)
}
.

As both �MAX and �SINK satisfy the assumptions of the last theorems, these theorems immediately
lead to an efficient rule system for computing pdf � (x). The first rule initializes pdf� (x) to its “local”
part; the second rule applies the formula for the “upper” part, until a fixpoint is reached. Of course,
ipdom� must be computed beforehand.

Definition 5.6. The monotone rule system for computing pdf � (x) is given by

x � ipdom� (y) y → x

y ∈ pdf � (x)

x � ipdom� (y) x ∈ ipdom� (z) y ∈ pdf� (z)

y ∈ pdf � (x)
.

The smallest fixpoint of this rule system can be computed by a standard worklist algorithm.
Additionally, we can exploit transitive reductions. Given any transitive reduction < of �,
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Fig. 15. An irreducible graph with intransitive �TIME .

(1) compute the strongly connected components sccs of the graph (N , <), in a corresponding
topological order. These can either be provided by the algorithm computing <, or by Tarjan’s
algorithm [32].

(2) compute pdf � by traversing the condensed graph in that order once.

This concludes the algorithm for generalized postdominance frontiers pdf� (x); and thus for→ntscd

and→nticd. For the actual computation, we propose the following optimization: By precomputing

the set scc< = {y | ∃x ′ ∈ scc. x ′ < y } for each scc, we can use this for both the tests on y, and for
enumerating z.

To illustrate the fixpoint iteration for pdf� (x), consider once more the CFG in Figure 12 (left).
The “local” rule gives us, e.g., 1 ∈ pdf � (3), 3 ∈ pdf � (5), 4 ∈ pdf � (5) and 2 ∈ pdf � (7). With
the “up” rule we can now get 4 ∈ pdf � (7) by instantiating the rule with x = 7, y = 4 and z = 5.
Note that we indeed have shown 4 ∈ pdf� (5) earlier and we have 7 � ipdom� (4) as well as
7 ∈ ipdom� (5). In contrast, if we try to use 3 ∈ pdf � (5) to show 3 ∈ pdf� (7) (which is false), then
7 � ipdom� (3) would have to hold. But 7 ∈ ipdom� (3), so the right rule is not applicable, and we
are prevented from showing 3 ∈ pdf � (7).

5.3 Timing-sensitive Postdominance Frontiers

To develop efficient algorithms for the computation of timing-sensitive postdominance �TIME and
timing-sensitive control-dependence →tscd, let us first recall that our algorithms for �MAX and
→ntscd rely on the fact that �MAX is transitive:

(1) Transitivity of �MAX allows us to efficiently compute and represent �MAX in form of its tran-
sitive reduction <MAX. Here, <MAX turned out to be a pseudo-forest.

(2) Transitivity of �MAX, and the fact that

ipdom∗�MAX
= �MAX

allows us to use Algorithm 4 to efficiently compute→ntscd via pdf�MAX
.

Disregarding for now that→tscd is defined in terms of the ternary relation n �k
TIME m, and not

in terms of its binary “∃k . -closure” n �TIME m, let us investigate first if n �TIME m is—in general—
transitive. Consider the (irreducible) CFG in Figure 15(a). Here, every maximal path starting in n
first reaches m1 after two steps, hence m1 �TIME n. Also, every maximal path starting in m1 first
reaches m2 after one step, hence m2 �TIME m1. But it is for no number k of steps the case that
m2 �

k
TIME n; hence, ¬m1 �TIME n. In summary, �TIME is not transitive.

Fortunately, situations as in Figure 15 are the only ones in which �TIME is not transitive:

Theorem 5.1. Let G be any reducible CFG. Then �TIME is transitive.
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Theorem 5.2. Let G be any CFG with unique exit node nx . Then �TIME is transitive.

In practice, many programs have reducible CFGs or a unique exit; then �TIME is transitive by
the above two theorems. Whenever �TIME is transitive, we can use Algorithm 4 to compute→tscd.
And if not, then in Reference [16] we present an algorithm for→tscd that works even if �TIME is
not transitive. But it is much more complex and thus not described in this article. Note that even
our transitive “restriction” is more general than the restriction to structured CFGs that is often
required in literature on timing leaks, such as in, e.g., References [1, 17, 28].

Still, even under the �TIME transitivity assumption, we are not done. Compared to the above
�MAX algorithm, we must deal with the ternary n �k

TIME m instead of the binary �MAX. To this end,
remember that form � n,

n ∈ pdf�MAX
(m) ⇔ n →ntscd m.

To obtain the analogous result for→tscd, we first need to “conservatively” redefine the notion
pdf� of �-postdominance to obtain a notion appropriate for non-transitive relations �. Remember
that in Definition 5.3, we defined for any binary relation �:

pdf� (m) =

{
n

���� ¬m 1-� n
for some n′ s.t. n →G n′ : m � n′

}
.

Syntactically, we will stick with this definition, but will modify the notion of 1-�-postdominance.
The new definition is

Definition 5.7 (1-�-Postdominance, redefinition). Given a relation � ⊆ N ×N , a node x ∈ N is
said to 1-�-postdominate z if x � z and there exists some node y � x such that

x � y � z.

The only change is the new requirement x � z , which of course was redundant up to this
section, since any relation � we considered (i.e., �POST, �MAX, and �SINK) was transitive. Implicitly,
this change also affects immediate �-postdominance ipdom�—see Definition 5.2.

Theorem 5.3. Let n �m ∈ N . Then

n ∈ pdf�TIME
(m) ⇔ n →tscd m.

Theorem 5.3 holds for arbitrary graphs, and establishes that indeed, timing-sensitive postdomi-
nance frontiers are essentially timing-sensitive control dependence.

But to use the generalized postdominance frontiers algorithm from Section 5.2 at least for tran-
sitive �TIME, we also need the two other two requirements of that algorithm. These two do, indeed,
hold even for arbitrary graphs:

Observation 5.6. Let � = �TIME. Then � is closed under→G , and

pdflocal
� (x) =

{
y

���� ¬ x ∈ ipdom� (y)
y → x

}
.

Observation 5.7. Let � = �TIME. Then � lacks joins and is closed under→G , and given some z
with x ∈ ipdom� (z):

pdf
up
� (z,x) =

{
y ∈ pdf � (z)

�� ¬ x ∈ ipdom� (y)
}
.

All that is required now is an algorithm to compute �TIME. For graphs that are reducible, or have a
unique exit node, this can be done by modifying Algorithm 3 to work onN-labeled pseudo-forests,
i.e., pseudo forests < with edges n <k m indicating thatm must first be reached from n after k ∈ N
steps. The result is a N-labeled pseudo-forest < with

m �TIME n ⇐⇒ ∃k1, . . . ,kc .m <
kc · · · <k1 n
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ALGORITHM 5: A timing-sensitive least common ancestor algorithm for graphs with transitive �TIME.

Input: A N labeled pseudo-forest <, represented as a map IDOM : N ↪→ N × N s.t. IDOM [n] = (m,k)

iffm <k n
Input: Numbers kn

0 , km
0 ∈ N and nodes n0, m0

Output: lca<
( (

n0, k
n
0

)
,
(
m0, k

m
0

) )
if it exists, or ⊥ otherwise.

return lca
( (

n0, k
n
0 ,
[
n0 �→ kn

0

] )
,
(
m0, k

m
0 ,

[
m0 �→ km

0

] ) )
Function lca (πn, πm )

Input: A cycle free <-path πn = n0, . . . , n ending in n, represented by a tuple (n, kn,KSn) where

KSn is a map on the nodes n appearing in πn s.t. kn = KSn [n] and for any such

n: KSn [n] = kn
0 +

∑
i ki where n <kc · · · <k1 n0 in πn

Input: A <-path πm = m0, . . . ,m likewise

if kn > km then return lca (πm , πn)

if n ∈ πm ∧ kn = KSm [n] then return (n, kn)

if n ∈ πm ∧ kn � KSm [n] then return ⊥

switch IDOM[n] do

case ⊥ do return ⊥

case (n′, kn′ ) do

if n′ ∈ πn then return ⊥

KSn[n
′] ← kn + kn′

return lca((n′, kn + kn′ ,KSn), πm )

end

end

end

for some number c ≥ 0 of edges in <. One possible implementation of the required least common
ancestor computation in N-labeled pseudo-forests is shown in Algorithm 5.

For an example, consider Figure 12 (right). Before the first call to lca, IDOM contains only trivial
relations for nodes with exactly one successor, e.g., IDOM[4] = (8, 1). To calculate IDOM[2], we need
to call lca with its successors, namely lca((3, 1), (6, 1)). But there, we find that IDOM[3] is still
empty, so the call returns ⊥.

When calculating IDOM[3], we call lca((4, 1), (5, 1)). We find that IDOM[4] = (8, 1), so we extend
this <-path and call lca([(4, 1), (8, 2)], (5, 1)). There, since the left path is now longer, we swap the
arguments and call lca((5, 1), [(4, 1), (8, 2)]). Now, we find that IDOM[5] = (8, 1), so we extend this
path and call lca([(5, 1), (8, 2)], [(4, 1), (8, 2)]). Now, since the final element of the left path, namely
8, is also contained in the right one with the same distance of 2, we finally can return (8, 2) as the
lca and update IDOM[3] = (8, 2).

Now we can analyse IDOM[2] again. Since IDOM[3] has now an entry, we can extend the path
(3, 1) to [(3, 1), (8, 3)]. After extending (6, 1) to [(6, 1), (7, 2)] and then [(6, 1), (7, 2), (8, 3)], both paths
contain 8 with the same distance 3, so we update IDOM[3] to (8, 3).

On the contrary, if we try to calculate IDOM[1] and call lca((2, 1), (9, 1)), then the left path get
extended to [(2, 1), (8, 4)] and the right path to [(9, 1), (10, 2), (2, 3)]. Now, both paths contain the
same node 2, but with different distances 1 and 3. Therefore, the lca is ⊥.

6 MEASUREMENTS

We evaluated the performance of our algorithms on (a) control flow graphs of Java methods, as gen-
erated by the JOANA system for various third party Java programs; (b) randomly generated graphs
G = (N ,E) usually with |E | = 2 |N |, as generated by the standard generator from the JGraphT [26]
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Fig. 16. Computation of <MAX. The orange line shows chaotic iteration performance, the blue line shows

Algorithm 2.

library. In some cases, we additionally use ladder graphs,15 which are used to represent bad case
behaviour.

All benchmarks in this section were made on a desktop computer with an Intel i7-6700 CPU at
3.40 GHz, and 64 GB RAM. We implemented the algorithms in Java, using OpenJDK Java 9 VM.
All benchmarks were run using the Java Microbenchmark Harness JMH [9].

Unless explicitly stated otherwise, all data points represent the average over n + 1 runs of the
benchmark, where n is at least the number of runs that can be finished within 1 s. For example,
the data point at |N | = 21,076, time = 18 ms in Figure 16(a) stands for the average of at least ≈50
runs of the benchmark that finished within 1 s. However, the data point in at |N | = 65,000, time
= 88s in Figure 16(c) results from only one run of the benchmark.

The purpose of these benchmarks is to give a general idea of the scalability of the algorithms.
For example, the benchmarks in the upper left and upper right of Figure 17 suggest that our new
algorithm for the computation of nontermination-sensitive control dependence→ntscd appears to
scale almost linearly for “average” CFGs, while Ranganath’s original algorithm [29] clearly grows
super-linearly for such graphs. The benchmarks can be summarized as follows:

(1) For “average” CFGs, our algorithms for→ntscd,→nticd, and→tscd offer performance “almost
linear” in the size of the graph.

15Ladder graphs consist of two rising chains, one-to-one connected at every node. Just like a ladder.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 2. Publication date: December 2021.



On Time-sensitive Control Dependencies 2:33

Fig. 17. Computation of →ntscd.

(2) But for “bad case” CFGs, some algorithms perform decidedly super-linear, and become im-
practical for very large such graphs.

6.1 Nontermination Sensitive Postdominance

Algorithm 2 computes maximal path postdominance �MAX, represented as a pseudo-forest <MAX.
This algorithm requires the computation of least common ancestors lca< in pseudo-forests <, for
which we use Algorithm 1.

Algorithm 2 repeatedly iterates in a fixed node order. Alternatively, one can implement a chaotic
iteration, by reinserting into a workset those nodes affected by modification to the pseudo-forest.
Both these variants do not specify an iteration order (e.g., Algorithm 2 does not specify the initial
order of nodes in the workqueue). By default, the implementation orders the nodes reversed-
topologically (as computed by an implementation of Kosaraju’s Algorithm for strongly connected
components, with nodes in the same strongly connected component ordered arbitrarily).

For Java CFG and randomly generated graphs (neither necessarily with unique exit node), the
chaotic iteration ( ) and Algorithm 2 (�) behave similarly (Figure 16(a) and Figure 16(b)). Ladder
graphs expose non-linear bad-case behavior (Figure 16(c)). This is even more pronounced when
we deliberately choose a bad iteration order (Figure 16(d)).

6.2 Nontermination Insensitive Postdominance

Algorithm 3 computes sink path postdominance �SINK, represented as a pseudo-forest <SINK. Just as
before, it uses Algorithm 1 for the computation of least common ancestors lca< .

Algorithm 3 implements chaotic iteration. We also implemented a variant of Algorithm 3 in
which the downward fixed point phase repeatedly iterates a workqueue of nodes in a fixed node
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Fig. 18. Computation of <SINK.

order. The implementations order the nodes reversed-topologically. Unlike before, this ordering
does not require an additional step, since the strongly connected component computation it can
be obtained from is necessary anyway, in order to find control sinks.

Instead of computing least common ancestors lca< by chasing (pseudo-tree) pointers, it can also
be computed by comparison of postorder numbers, as in Reference [8].

For Java CFGs (Figure 18(a)) the fixed-iteration order variant of Algorithm 3 (�) performs on
par with the Algorithm 3 as stated ( ). For randomly generated graphs (Figure 18(b)) the variant
(�) appears to perform a bit better than the original ( ) for very large graphs, roughly on-par with
the implementation based on postorder numbers (�).

Using reversed-topological iteration order, ladder graphs (Figure 18(c)) expose non-linear bad-

case behavior only for Algorithm 3 ( ) and its variant (�). Even with a bad iteration order, perfor-
mance for these two algorithm is not much worse (Figure 18(d)). However, the postorder number
based implementation (�) is affected heavily by iteration order.

The ladder graphs we use are unique-exit-node ladder graphs. This also allows us to directly
compare with an implementation of the algorithm by Lengauer and Tarjan [24] ( ).

6.3 Generalized Postdominance Frontiers

When Algorithm 4 is instantiated with <MAX, this yields an algorithm for→ntscd. The benchmarks
for→ntscd include the computation time of both Algorithm 4 and <MAX (�). We compare with an
implementation of Ranganath’s algorithm [29] ( ). For Java CFG and randomly generated graphs,
the latter becomes impractical for moderately sized graphs, while Algorithm 4 performs well even
for very large graphs (Figure 17, upper left and right). Ladder graphs expose non-linear bad-case
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Fig. 19. Computation of→nticd via Algorithm 4 based on Algorithm 3.

Fig. 20. Computation of →tscd.

behavior even for Algorithm 4 (Figure 17(c)). This cannot be circumvented, since in these ladder
graphs, the size of the relation→ntscd is quadratic in the number of nodes. Likewise, Algorithm 4
can be instantiated with <SI N K . Performance of the resulting→nticd is shown in Figure 19.

6.4 Timing-sensitive CD

Whenever �TIME is transitive, we can use Algorithm 4 to compute timing-sensitive control de-
pendence→tscd. We thus measure the computation time for→tscd on graphs for which �TIME is
transitive. These are control flow graphs from Java programs in subfigures 20(a), randomly gen-
erated graphs 20(b), and ladder graphs (c). We use Algorithm 4, and obtain a transitive reduction
<TIME of �TIME via the modification of Algorithm 3 that uses the upwards iteration of Algorithm 5.
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The benchmarks for →tscd in Figure 20 include the computation time of all sub-algorithms ( ).
Ladder graphs expose non-linear bad-case behavior.

7 FUTURE WORK

This article concentrated on the definition of →tscd and on efficient algorithms. Ongoing work
includes

• provide Isabelle proofs for the last 7 “observations” in Section 5.
• provide formal correctness proofs for the algorithms in Section 5.
• implement and evaluate the→tscd algorithm that can handle nontransitive �TIME, which was

mentioned in Section 5.3.
• provide a theoretical complexity analysis of the algorithms, and more measurements.
• transform out timing leaks as in [1], but for arbitrary CFGs (based on→tscd).
• apply→tscd to improve IFC and probabilistic noninterference; in particular improve preci-

sion of the so-called “RLSOD” algorithm [6, 7, 12] that is used in JOANA.

Initial work on some of these topics can be found in the first author’s dissertation [16]. A long-time
goal is an interprocedural, context-sensitive extension of→tscd.

8 CONCLUSION

Ranganath and Amtoft opened the door to control dependencies in nonterminating programs. In-
spired by this work, we presented (1) new, efficient algorithms for Ranganath’s nontermination-
(in)sensitive control dependencies; (2) definitions and algorithms for time-sensitive control de-
pendencies; and (3) application of the latter to timing leaks in software security. Our algorithms
are based on systematic generalizations of Cytron’s postdominance frontier algorithm. Important
properties of the new algorithms have been proven using the Isabelle machine prover; and their
performance has been studied. We believe that time-sensitive control dependencies will prove useful
for many applications in program analysis, code optimization, and software security.
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