KIT | KIT-Bibliothek | Impressum | Datenschutz

Modelling Precipitation Intensities from X-Band Radar Measurements Using Artificial Neural Networks—A Feasibility Study for the Bavarian Oberland Region

Vogl, Stefanie; Laux, Patrick ORCID iD icon; Bialas, Joachim; Reifenberger, Christian

Abstract:

Radar data may potentially provide valuable information for precipitation quantification, especially in regions with a sparse network of in situ observations or in regions with complex topography. Therefore, our aim is to conduct a feasibility study to quantify precipitation intensities based on radar measurements and additional meteorological variables. Beyond the well-established Z–R relationship for the quantification, this study employs Artificial Neural Networks (ANNs) in different settings and analyses their performance. For this purpose, the radar data of a station in Upper Bavaria (Germany) is used and analysed for its performance in quantifying in situ observations. More specifically, the effects of time resolution, time offsets in the input data, and meteorological factors on the performance of the ANNs are investigated. It is found that ANNs that use actual reflectivity as only input are outperforming the standard Z–R relationship in reproducing ground precipitation. This is reflected by an increase in correlation between modelled and observed data from 0.67 (Z–R) to 0.78 (ANN) for hourly and 0.61 to 0.86, respectively, for 10 min time resolution. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000142660
Veröffentlicht am 03.02.2022
Originalveröffentlichung
DOI: 10.3390/w14030276
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Zukunftscampus (CAMPUS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2073-4441
KITopen-ID: 1000142660
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in Water (Switzerland)
Verlag MDPI
Band 14
Heft 3
Seiten Art.-Nr.: 276
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter precipitation; Z–R relationship; X-band radar; feed-forward neural networks; predictor screening; Bavarian Oberland region
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page