

1 **AUTONOMOUS RIDE-POOLING IN HAMBURG - RESULTS FROM AN INTEGRATED
2 TRAVEL DEMAND AND FLEET SIMULATION MODEL**

3

4

5 **Gabriel Wilkes, Corresponding Author**

6 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)

7 Kaiserstr. 12, 76131 Karlsruhe, Germany

8 E-mail: gabriel.wilkes@kit.edu

9 ORCiD: 0000-0002-1027-2734

10 **Roman Engelhardt**

11 Chair of Traffic Engineering and Control, Technical University of Munich (TUM)

12 Arcisstrasse 21, 80333 Munich, Germany

13 E-mail: roman.engelhardt@tum.de

14 ORCiD: 0000-0002-0052-2584

15 **Nadine Kostorz**

16 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)

17 Kaiserstr. 12, 76131 Karlsruhe, Germany

18 E-mail: nadine.kostorz@kit.edu

19 ORCiD: 0000-0001-9498-9785

20 **Florian Dandl**

21 Chair of Traffic Engineering and Control, Technical University of Munich (TUM)

22 Arcisstrasse 21, 80333 Munich, Germany

23 E-mail: florian.dandl@tum.de

24 ORCiD: 0000-0003-3706-9725

25 **Peter Vortisch**

26 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)

27 Kaiserstr. 12, 76131 Karlsruhe, Germany

28 E-mail: peter.vortisch@kit.edu

29 ORCiD: 0000-0003-1647-2435

30 **Klaus Bogenberger**

31 Chair of Traffic Engineering and Control, Technical University of Munich (TUM)

32 Arcisstrasse 21, 80333 Munich, Germany

33 E-mail: klaus.bogenberger@tum.de

34 ORCiD: 0000-0003-3868-9571

35 **Martin Kagerbauer**

36 Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)

37 Kaiserstr. 12, 76131 Karlsruhe, Germany

38 E-mail: martin.kagerbauer@kit.edu

39 ORCiD: 0000-0003-4252-7874

40

41

42 Word Count: 6449 words + 4 table(s) \times 250 = 7449 words

43

44

45 Submission Date: August 1, 2021

1 **ABSTRACT**

2 More and more mobility services are appearing on the market that provide customers with a good
3 alternative to private cars through demand-responsive offerings. Since the impact of these services
4 is not always positive, hopes are currently pinned on ride-pooling. Currently, the effects of these
5 bundled trips on the transportation system is limited due to e.g., to small fleets. As drivers account
6 for a large proportion of operating costs, an automated fleet holds great potential for cost reduction
7 and hence a large-scale roll-out. In this study, the traffic effects of an automated ride-pooling
8 service are investigated using the city of Hamburg, Germany as an example. For this purpose,
9 an agent-based travel demand model (mobiTopp) is coupled with a fleet simulation to model the
10 demand and supply sides in detail, respectively. Simulations show that a reduction of fares and a
11 larger service area as well as a larger fleet help to decrease the total vehicle kilometers traveled of
12 private vehicles and mobility services combined. The ride-pooling demand increases by factor 12
13 while fleet performance indicators improve: The empty mileage decreases from 28.7% to 15.9%
14 and the vehicle occupancy increases from 1.3 to 1.7. A larger service area leads to longer trips on
15 average. However, a base fare guarantees that the number of trips for both active modes and public
16 transportation is hardly affected.

17

18 *Keywords:* ride-pooling, mobility-on-demand, autonomous mobility

1 INTRODUCTION

2 The popularity and utilization of mobility-on-demand services have surged in the last decade. A
3 goal of these systems is that the population becomes less dependent on private vehicles. Therefore,
4 these services have a similar goal as public transport and want to be viewed as complements,
5 which can offer comfort and service levels comparable to the private vehicle. However, today's
6 implementations of mobility-on-demand systems still have several shortcomings. The growth of
7 carsharing seems to have stopped (1) and at its current scale, it has minor impacts on the whole
8 transportation system. Ride-hailing systems actually seem to increase the level of congestion on the
9 streets (2), especially due to a large share of deadheading of approximately 40 %. The combination
10 of ride-hailing and ride-pooling with users having the option to choose between both also seems
11 to have overall negative impacts (3). For this reason, pure ride-pooling services have emerged,
12 where all users implicitly agree to share a ride by using this service. However, even the largest
13 ride-pooling fleet in Europe, namely MOIA, with its fleet of a few hundred vehicles operating in
14 Hamburg, Germany, has currently minor impacts on the transportation system. The cost structure
15 with drivers prohibits offering the service at a cheaper price point, which will be necessary to
16 attract more demand and upscale the ride-pooling system. Recently, it was announced that the
17 service will be operated with autonomous vehicles starting 2025 (4).

18 The goal of this study is to estimate impacts of such ride-pooling system at a much cheaper
19 price point. This study benefits from having real-world data of the current ride-pooling service,
20 which serves as a starting point for further scenarios. Nevertheless, the effect of a cheaper fare
21 can only be investigated with the help of models for supply, demand and their interaction. In order
22 to estimate future demand, it is necessary to reproduce the operational details of a ride-pooling
23 service as major trip characteristics such as waiting or in-vehicle time strongly depend on the state
24 of the fleet and routing strategies.

25 LITERATURE REVIEW

26 The operational aspects of vehicle fleets have been studied in so-called vehicle routing problems
27 and research intensified with the introduction of mobility services utilizing mobile-internet (5).
28 This type of studies typically assume exogenous demand to compare different solution strategies.
29 Among other strategies, recent studies include heuristic insertions of new requests (6), global op-
30 timization of currently known vehicle-request assignments (7, 8) and repositioning of vehicles to
31 prepare for expected future demand (9, 10). Studies showed that ride-pooling could decrease con-
32 gestion in general (11), but that door-to-door service might still increase traffic in minor roads (12).
33 To avoid this, methods for travelers to meet at designated pick-up and drop-off locations were de-
34 veloped (13, 14).

35 In general, the traveler perspective is modeled with demand models. Macroscopic four-
36 step models help to estimate the number of trips between given origin-destination pairs. However,
37 agent-based demand models are beneficial in the ride-pooling context as the trips of individuals
38 are combined into one itinerary, which cannot be depicted properly in aggregated models. Agent-
39 and activity-based models use a much higher resolution to better cope with the heterogeneity in
40 the population (15). To this end, the travel behavior – including important aspects such as destina-
41 tion choice and mode choice – of an area's population is modeled by the attributes of the agents.
42 Discrete choice models require both characteristics (specific for e.g. a destination or trip with a
43 certain mode) and coefficients representing the agents' attitude towards these characteristics.

44 Several studies, mostly as stated preference and sometimes as revealed preference, have

1 evaluated these characteristics, also with respect to ride-hailing and sometimes ride-pooling (16,
2 Alonso-González et al. (18) found that respondents had a higher willingness to pay for pooled
3 on-demand services compared to conventional public transport. Further, they found reliability to
4 be more important than travel time for waiting and in-vehicle stage. Morsche et al. (19) investi-
5 gated demand-responsive transport (DRT) preferences in the Netherlands. They concluded that
6 more flexible demand-responsive transport systems are more attractive for the respondents and that
7 current travel behavior is a good predictor for future mode choice. Further, there are different in-
8 vestigations on users in pilot projects (20, 21). Due to the different framework conditions (e.g.,
9 smaller service areas, smaller fleets, lower prices), it is, however, questionable how well the results
10 correspond to urban transportation systems and large-scale applications that are conceivable in the
11 future. For example, König and Grippenkoven (22) found that respondents, who have experienced
12 ride-pooling, value service attributes differently than people without former experience. Hence,
13 it can be assumed that surveying real users provides more realistic results when modeling future
14 behavior. Therefore, within the MOIA accompanying research, Kostorz et al. (23) surveyed a
15 large-scale user basis of a well-established ride-pooling service for the first time to deepen knowl-
16 edge on users and usage patterns. The information obtained in this investigation serves as a data
17 source for the model in this study.

18 The effects that autonomous vehicles will cause are still uncertain and range from “no
19 substantial effects on travel behavior” (24–26) to “disruption in car ownership and usage” (27).
20 There is greater agreement that automation holds potential for a simplified shared use of vehicles.
21 However, most studies so far focus either on privately-owned autonomous vehicles or autonomous
22 carsharing (e.g., (28–32)). Pooled autonomous services are rather rarely investigated. Stoiber et al.
23 (33) found that pooled shared cars are more attractive as they are more efficient than regular cars.
24 Lavieri and Bhat (34) confirm the willingness to use shared autonomous vehicles with strangers on
25 commuting trips, as long as waiting, pick-up and drop-off times are reasonable. Thomas states that
26 many customers of driverless mass transit are not aware of the fact that the systems run without an
27 operator (35). Further, he claims that customers believe in the proof of concept before implement-
28 ing such systems. Hence, this study – as many others – does not consider uncertain effects on the
29 attitude towards autonomous vehicles. Furthermore, it is possible that automated driving becomes
30 the new normal and the absence of a driver does not affect the decision-making of travelers.

31 Autonomous vehicles provide a new cost structure to mobility systems (36, 37). Thereby,
32 much lower fares can be offered to users, which in turn can attract more demand (38–40). Liu et al.
33 (38) investigated the impact of an autonomous hailing system in Austin, Texas. They found a sharp
34 increase in demand for fares between 0.75 \$ and 0.5 \$ per mile, for which the modal share reached
35 up to 43.3%, and made a sensitivity analysis for the required fleet sizes. Oke et al. (39) studied the
36 effects of automated mobility-on-demand systems for auto-dependent cities (based on a Boston,
37 Massachusetts model), for which the mode share of private vehicle is above 75%. They reduced
38 the fares for both ride-hailing and ride-pooling by 50% and assumed that the share between ride-
39 hailing and ride-pooling remains similar to today. In their study, the modal share for autonomous
40 mobility-on-demand (AMOD) was twice to three times as high as in the current scenario with
41 manually driven vehicles. Due to the extensive use of hailing, they observed increased levels of
42 congestion, especially if AMOD was introduced as a replacement of mass transit, which previously
43 had a modal share of approximately 11% in so-called auto innovative cities. Wilkes et al. (40)
44 introduced a new framework, in which the mode-choice of an agent-based model is based on real-
45 time fleet control and information, thereby reaching balance between supply and demand in single

1 simulations. They studied the fleet behavior and price-sensitivity towards a ride-pooling service in
2 a small German town with approximately 20,000 inhabitants.

3 We extended the framework of Wilkes et al. (40) by intermodal trips, a rebalancing mod-
4 ule for idle vehicles and some heuristics to apply their methodology to a large-scale case study in
5 Hamburg, Germany, with millions of people. In contrast to the before-mentioned studies, the status
6 quo contains a high share of public transport users and focuses on a pure ride-pooling system to
7 mitigate the negative impacts of ride-hailing. Moreover, we included data from a large-scale survey
8 with more than 10,000 participants into the mode-choice model (23). As the majority of respon-
9 dents had already experienced the ride-pooling service in Hamburg, they knew the research object
10 very well and could easily relate to their everyday behavior when answering questions concern-
11 ing mode choice (including ride-pooling use). Moreover, fleet data from the ride-pooling provider
12 could be used to calibrate the model.

13 MODEL OVERVIEW

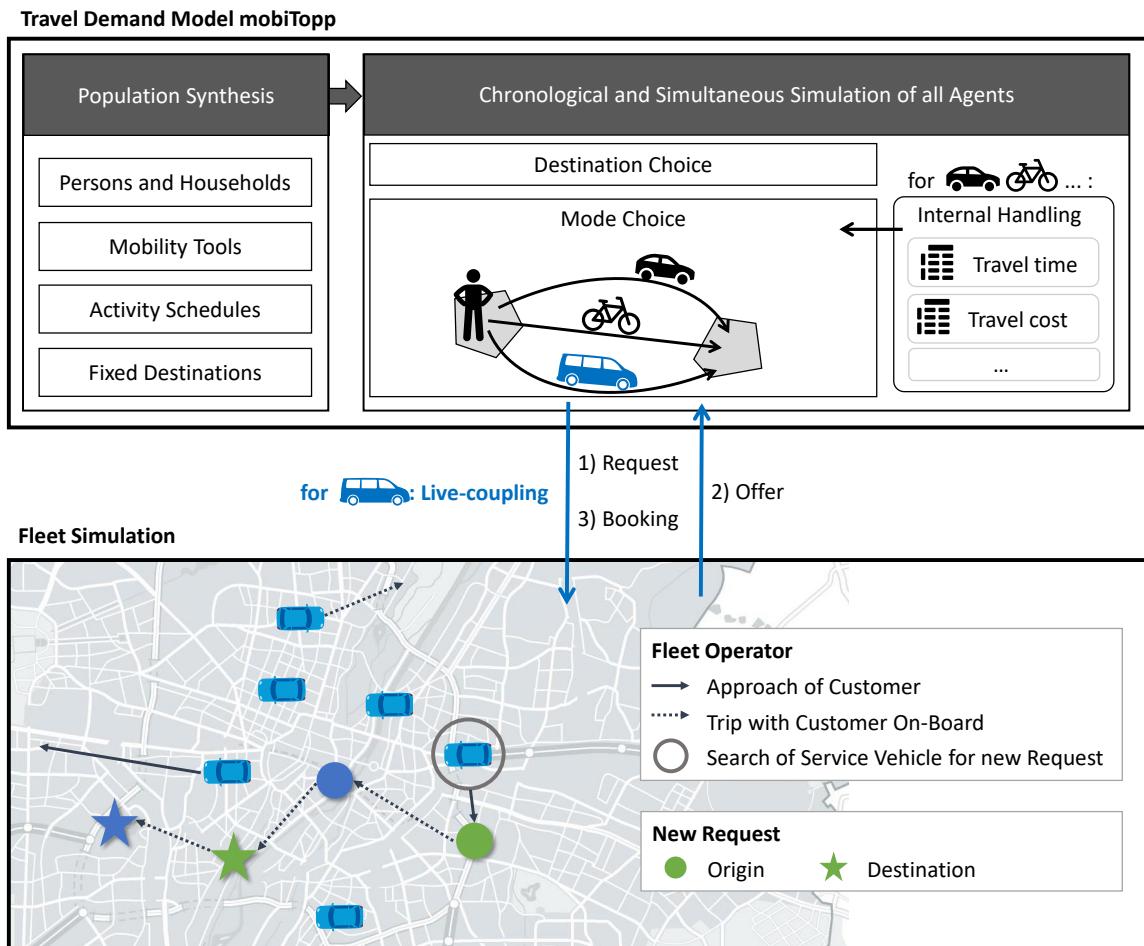


FIGURE 1: Overview of the entire simulation framework

1 **mobiTopp**

2 mobiTopp (41, 42) is an agent-based travel demand modeling framework. Agents, as defined by
3 Bonabeau (43), represent the whole population of a designated planning area. Hence, it allows
4 to model and to analyze travel behavior on an individual level. Travel demand emerges due to
5 the agents' need to change locations to be able to perform activities according to their activity
6 schedules.

7 mobiTopp consists of two sub-modules. A synthetic population is generated in the long-
8 term module based on data from population statistics and mobility surveys. All agents are modeled
9 with different sociodemographic characteristics such as age and sex, and belong to a certain house-
10 hold. Furthermore, specific mobility-related attributes are assigned like car or public transport pass
11 ownership or the membership for mobility services. Besides an activity schedule, every agent re-
12 ceives a fixed place of residence and if necessary a fixed destination for working or educational
13 activities to ensure consistency during the simulation.

14 The short-term module consists of the simulation of all agents' travel behavior for the
15 whole week. Two main decisions have to be made for every trip: destination and mode choice.
16 Destination choice is skipped, if an activity is related to a predefined destination (e.g., work, home
17 or education) whereas mode choice is conducted on every trip. For every decision, both the agent's
18 characteristics and the model's current state, for instance the agent's current location, the distances
19 to potential destinations for the next activity and the availability of different travel modes are
20 considered. In the model specification presented in this paper, a multinomial logit (MNL) is used
21 for destination and a cross-nested logit (CNL) for mode choice. However, mobiTopp's modular
22 structure allows to replace the models for every assignment or decision step, depending on the
23 available data.

24 mobiTopp allows modeling intermodal trips, i.e., trips that consist of multiple legs per-
25 formed with different modes (44). In mobiTopp, this is performed by a differentiation between
26 main modes and access and egress modes. In the study at hand intermodal legs are allowed for
27 public transport. This is modeled with a two-step process: (i) The accessibility to public transport
28 with different access and egress modes is included in the mode choice of the main mode. (ii) When
29 public transport is chosen as main mode, the explicit modes for access to and departure from pub-
30 lic transport stations are chosen subsequently. For further details of the intermodal extension, the
31 reader is referred to (45). For the present study, the intermodal extension was enhanced to allow
32 for live coupling with the fleet simulation.

33 **Coupling of mobiTopp and Fleet Simulation**

34 To give mobiTopp's agents access to a realistic ride-pooling service, the mobiTopp framework
35 is coupled with a separate ride-pooling fleet simulation framework. mobiTopp is the simulation
36 master communicating with the fleet simulation at several occasions as depicted in Figure 2. There
37 are three main communication blocks:

38 (1) mobiTopp communicates initialization and termination at the start and end of the simulation,
39 respectively.

40 (2) Most of the messages between mobiTopp and the fleet simulation are sent in the offer phase.
41 mobiTopp agents with a ride-pooling membership request trips from the fleet simulation. We
42 distinguish between monomodal and intermodal requests. In case of a monomodal request, origin,
43 destination, earliest pick-up time and group size are communicated to the fleet simulation. The fleet
44 simulation evaluates the current fleet state and replies, if possible, with an offer consisting of access

1 and egress time to the closest pick-up and drop-off location, respectively, the expected waiting and
2 driving time and the corresponding fare. These attributes are used by mobiTopp to perform the
3 mode choice and communicate to the fleet simulation whether the trip is booked or declined. An
4 additional feature of the framework is that agents can request intermodal trips. In this case, not
5 only a single option for the ride-pooling leg of the trip is communicated to the fleet simulation but
6 a set of 10 possible transfer options to or from a public transport transfer location for first or last
7 mile trips, respectively. For each of these transfer options, the travel time of the public transport
8 leg is additionally communicated. The fleet simulation internally computes suitable offers for each
9 of these transfer options and communicates the previously mentioned attributes of the ride-pooling
10 leg for the option that minimizes the total travel time, i.e. the sum of public transport and ride-
11 pooling legs. Again, mobiTopp uses these attributes to perform the agent’s mode choice and sends
12 the decision to the fleet simulation.

13 (3) At the end of a time step, after all agents performed their mode choice decision, mobiTopp
14 synchronizes the simulation time and triggers fleet state updates and optimization processes. In
15 this synchronization step, the fleet simulation reports back those agents that finished their ride-
16 pooling trip at the end of the time step.

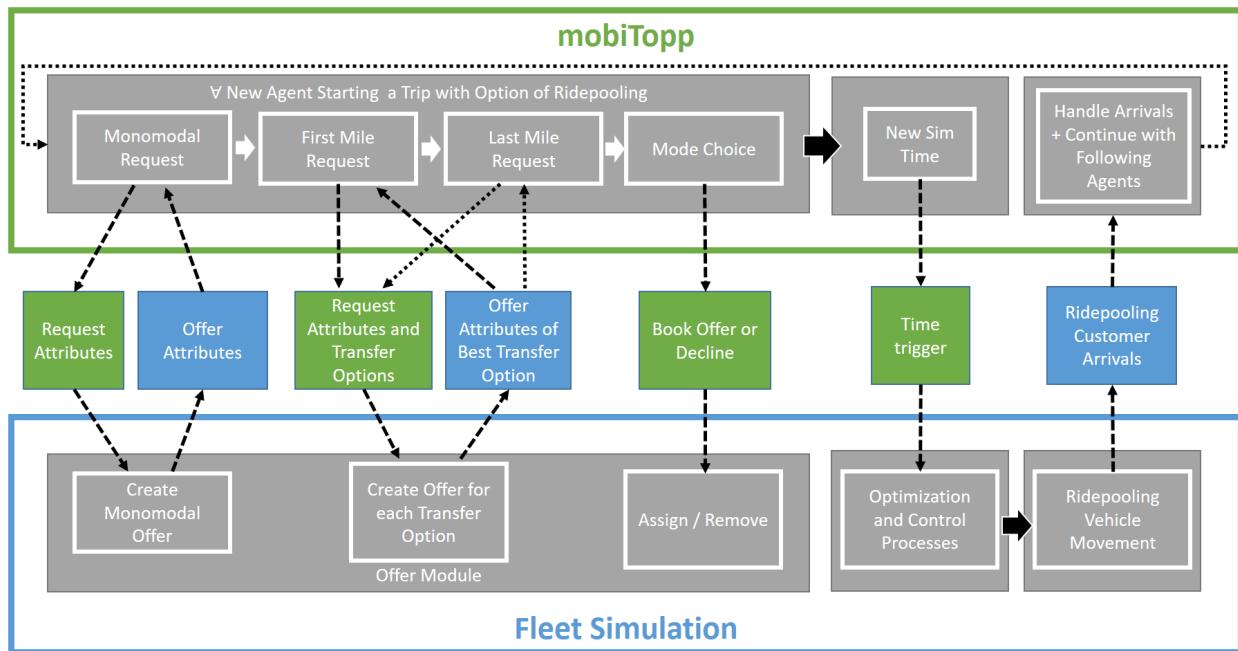


FIGURE 2: Flowchart of the main communication steps between mobiTopp and the fleet simulation

17 Fleet Simulation

18 The goal of the fleet simulation is to model the control of the ride-pooling fleet vehicles as well
 19 as the interaction of the operator with possible customers (agents) in high detail. Therefore, the
 20 fleet simulation is subdivided into four main modules: First, in the user-interaction module, the
 21 operator generates monomodal and intermodal offers as a response to agent requests which are
 22 triggered by mobiTopp. Additionally, the handling of accepted and declined offers are defined

1 here. Second, once all customer requests are processed and mobiTopp triggers a new time step,
 2 the re-optimisation module is called to recalculate vehicle-customer assignments based on a global
 3 optimization. Third, after time intervals of 12min vehicles are redistributed within the network
 4 according to expected future demand in the repositioning module. Fourth, a maintenance module
 5 is implemented, which manages the charging of fleet vehicles and activates or deactivates vehicles
 6 according to certain shift schedules. These modules are described on a high level in the following.
 7 Fleet vehicles move on the street network according to assigned schedules. These schedules con-
 8 tain a sequence of tasks to pick up and drop off customers at specified locations in the network
 9 and their respective timings. Schedules are regarded as feasible, if for each customer the pick-up
 10 is scheduled before the drop-off, the number of on-board passengers does not exceed vehicle ca-
 11 pacities, pick-ups take place within an earliest and a latest pick-up time, and finally the in-vehicle
 12 time for each customer does not exceed a certain maximum detour time.

13 To create offers for mobiTopp's agents, an insertion heuristic is applied in the user-interaction
 14 module. In this heuristic requests are inserted into all currently assigned schedules of vehicles that
 15 can reach the request origin before the latest pick-up time elapsed. The schedule which minimizes
 16 the increase in system time is selected as the schedule, from which the offer is derived. Hereby, we
 17 define system time as the duration to finish all tasks in the schedule. In case the customer accepts
 18 the offer and books the ride, this schedule is assigned to the vehicle; otherwise the schedule is
 19 discarded.

20 A special case is the creation of offers to intermodal requests. In this case the mobiTopp queries
 21 a response to a set of 10 possible transfer stations with the corresponding public transport travel
 22 times to the destination or from the origin for first- or last-mile trips, respectively. An offer is
 23 created for each possible transfer option and the option that minimizes the overall customer travel
 24 time (with public transport leg) is selected as the ride-pooling offer by the fleet simulation. Because
 25 the start time of the ride-pooling trips can be far in the future for last-mile requests, an additional
 26 heuristic to find feasible vehicle schedules has to be applied to create the offer and maintain suit-
 27 able computational time. Instead of all feasible vehicles, the search for feasible schedules is only
 28 applied for the N_v^{LM} vehicles closest to the pick-up location at the earliest pick-up time according
 29 to their currently assigned schedule.

30 Once all customer requests have been processed, a re-optimization of fleet assignments is triggered.
 31 The applied global optimization algorithm is based on the work of (8). Details on the implementa-
 32 tion can be found in (46). On a high level, the idea of the algorithm is to, firstly, create all feasible
 33 schedules for all vehicle and customer set combinations. Secondly, these schedules are rated by the
 34 objective function of system time defined above. Finally, an integer linear optimization problem
 35 (ILP) is solved to assign schedules that primarily maximize the number of customers served and
 36 secondarily minimizes the total system time of all vehicles. In scenarios with high demand for
 37 ride-pooling, we prune the search for schedules by restricting the number of possible vehicles per
 38 customer by N_v^{heu} . The selection of vehicles only keeps those with the smallest schedule objec-
 39 tive function value after inserting a customer into the initially assigned schedule. Additionally, a
 40 rolling horizon approach is applied to further constrain computational time. In this approach, only
 41 customers are included in the global optimization with an earliest pick up time within the next
 42 12 min. Finally, an optimization time out of 30 s is applied for solving the ILP (as implemented in
 43 the Gurobi software package (47)).

44 In the repositioning module, triggered every 12 min, idle vehicles are redistributed within the oper-
 45 ating area to prevent local supply shortages. The operating area is divided into zones. Because the

1 demand is endogenous, no forecasts are available to base the repositioning algorithm on. Therefore
2 an approach is implemented that tries to stabilize local vehicle densities. For each zone the number
3 of available vehicles and incoming vehicles is counted and normalized to create the initial vehicle
4 distribution. The temporal constant target vehicle distribution is based on the number of inhabitants
5 and trip attraction factors per zone extracted from the mobiTopp model. Vehicle repositioning trips
6 are then computed by applying the algorithm of (48). Lastly, in the maintenance module charging
7 as well as activation and deactivation of fleet vehicles is managed. If a shift schedule is applied,
8 vehicles are getting activated or deactivated at specific points in time according to this schedule.
9 Vehicles that are deactivated are sent back to the closest not fully occupied depot and cannot be
10 used to serve customers anymore. In case a vehicle schedule to serve customers is assigned at the
11 time of deactivation, these customers have to be served before returning to the depot. If additional
12 vehicles should be activated, those inactive vehicles with the highest charging states become avail-
13 able for customer transport. Each time vehicles are activated, the repositioning module is called to
14 redistribute activated vehicles in the operating area. If the current vehicle range drops below 10%,
15 vehicles are sent to the next unoccupied charging station. They are not available for service until
16 they reach full range according to battery size and charging power of the station. For a simulation
17 of an autonomous fleet, the charging logic remains the same. Besides that, autonomous vehicles
18 are assumed to be available 24/7 and therefore are never deactivated.

19 CASE STUDY

20 An agent- and activity-based travel demand model of Hamburg, Germany was created using mo-
21 biTopp. In the model, the population of the city of Hamburg and its vicinity, tourists and business
22 travelers are integrated. In total, around 4.9 million agents are modeled. Out of these, 4.1 mil-
23 lion are inhabitants which are grouped in 2.1 million households. The inhabitants are based on a
24 population synthesis, which integrates population data concerning age, gender and household sizes
25 with a high level of spatial detail (see Figure 4 for the zone structure). Furthermore, car ownership,
26 transit pass ownership, and the membership for various mobility services (incl. ride-pooling) are
27 modeled using multiple data sources and discrete choice methods. Tourists and business travelers
28 are added to the population using the touriTopp module (49). Activity plans are assigned to inhab-
29 itants and tourists using synthesized data from actiTopp (50) and activity schedules from surveys,
30 respectively.

31 The model contains all relevant travel modes that are currently available in Hamburg: be-
32 sides the standard modes walking, bicycle, public transport, car as driver, car as passenger and taxi,
33 also the shared mobility options bikesharing, e-scooter-sharing and carsharing are represented. All
34 modes are modeled at high resolution, e.g. car and public transport use time-of-day- and day-of-
35 week-dependent travel times, bicycle travel times are based on current bicycle infrastructure, and
36 shared mobility services are offered in the actual business areas and with current prices. Moreover,
37 the agent-based approach allows to consider mode availability restrictions, for example, only peo-
38 ple with carsharing membership and driver license can use that mode. The applied mode choice
39 model is estimated from joint revealed and stated preference data, mainly from a nation-wide
40 household survey "Mobilität in Deutschland" (MiD, Eng: "Mobility in Germany") and a specific
41 MOIA user and non-user survey in Hamburg including a stated choice experiment (23). The model
42 is calibrated with real-world travel behaviour, using mainly the survey MiD data from 2017 (51),
43 which includes a large sample of travel patterns from residents of the city of Hamburg. We es-
44 timated and use a cross nested logit model as illustrated in Fig. 3, in which ride-pooling is part

1 of several nests. Thereby, the interactions between ride-pooling and other modes can be modeled
 2 especially well.

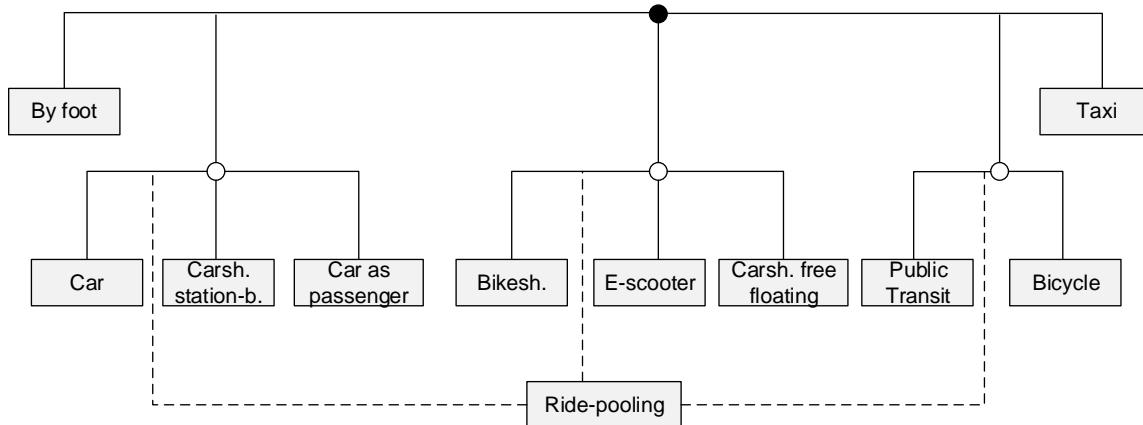


FIGURE 3: Nest structure of the cross nested logit model used for mode choice.

3 A special focus of the model is on ride-pooling. Real-world ride-pooling user and booking
 4 data were used to calibrate the demand and supply (fleet control) model in order to reproduce the
 5 actual MOIA ride-pooling service in Hamburg (see (52)). Best results to match data and simulation
 6 have been obtained by using the described fleet control model with request time constraints of
 7 12 min for the maximum waiting time, 40% maximum relative detour compared to a direct trip
 8 and additionally 5 min absolute detour time. A boarding time of 2 min is assumed, which is longer
 9 compared to the actual service, but is used to accommodate breaking and acceleration processes
 10 and imperfect driver behaviour. The objective function “system time” is used with the goal to serve
 11 all customers as fast as possible, but it is worth mentioning that a more complex objective function
 12 is used in reality. Reproducing the real service, electric vehicles with a passenger capacity of 6
 13 are simulated with a maximum range of 300 km. Depots with local charging stations are placed
 14 in the Hamburg network as operated today. In the case of large ride-pooling fleets, depot parking
 15 capacities as well as charging capacities are scaled up according to the scale factor of the increased
 16 fleet.

17 In the present case study, two different scenarios are studied. The **base scenario** repre-
 18 sents a situation in the near future, in which the current developments are extrapolated. These
 19 developments include measures that are not present today, such as expanded freeways, new bicy-
 20 cle facilities, and improvements in the public transport system. Furthermore, the inhabitants are
 21 extrapolated towards the year 2028 based on a current prognosis. However, the ride-pooling ser-
 22 vice area illustrated in Fig. 4 remains in a scale comparable to today’s MOIA service area covering
 23 mainly the inner parts of the city ($192 m^2$). Using a fleet size of maximally 500 vehicles over the
 24 course the whole day and a potential user base of around 300,000 people, the service is scaled up
 25 by a factor of two compared to today’s size. Because not all vehicles are active during the whole
 26 day in the real service and the time dependent number of active vehicles is recreated from real
 27 data, at most 220 vehicles are available during the morning peak. Furthermore, the costs for using
 28 ride-pooling are the same as they are today for the MOIA service: Each customer has to pay a base

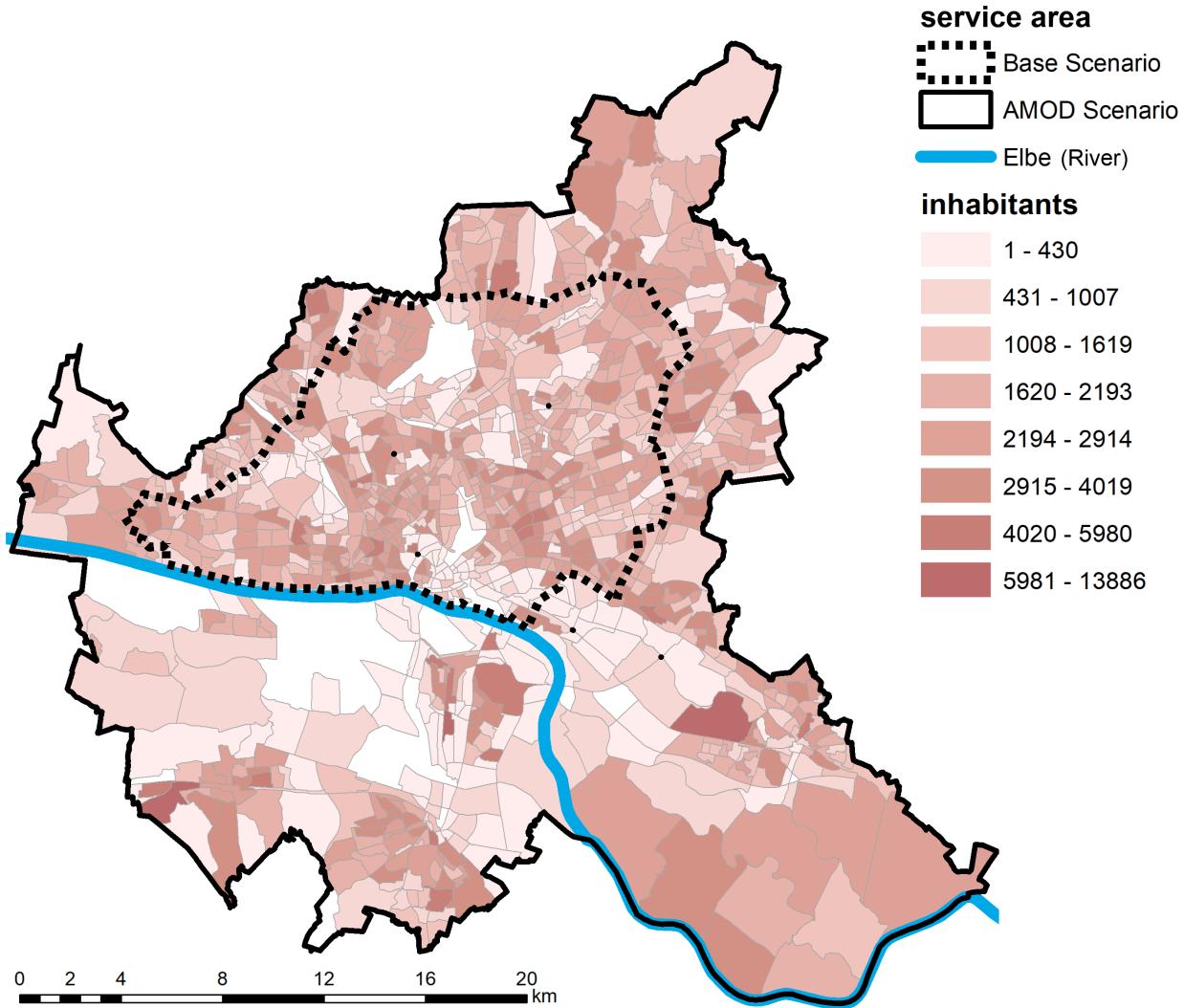


FIGURE 4: Model planning area with the zone structure, number of inhabitants per zone, and the ride-pooling service areas of both scenarios. The service area in the AMOD scenario is equal to the city boundaries of Hamburg. For the sake of simplicity, only the city of Hamburg is shown, however, also the inhabitants from the surrounding area are modeled.

1 fare of 4.30€, which includes the first 2km of the trip. Each additional km costs 0.5€. Fares for
 2 groups and time dependent pricing is implemented.

3 In the **AMOD scenario**, the general setting is the same as in the base scenario. However, it
 4 is assumed that ride-pooling is operated with an autonomous fleet, which is modeled by the costs
 5 for the users being only one quarter of the current prices. As a consequence of the cheaper service,
 6 the service area has expanded to the entire city of Hamburg and the user base has grown to 1 million
 7 people. Additional depots for the larger service area are added in the outskirts of Hamburg for a
 8 spatially balanced distribution. The fleet size is calculated based on the potential demand (see next
 9 section). It is important to mention that the crucial parameters for decision-making remained the
 10 same in all scenarios, corresponding to the manifestations obtained during the calibration. Only the
 11 before-mentioned framework conditions were changed to design the simulation study as realistic

mode	trips		modal split	
	Base Scenario	AMOD Scenario	Base Scenario	AMOD Scenario
By foot	325,393	324,942	23.69%	23.67%
Bicycle	185,461	181,539	13.50%	13.23%
Car	271,938	265,296	19.80%	19.33%
Car as passenger	66,493	63,221	4.84%	4.61%
Public transit	512,814	511,964	37.34%	37.30%
Taxi	4,206	3,140	0.31%	0.23%
Sharing services	5,644	5,005	0.41%	0.36%
Ride-pooling	1,455	17,413	0.11%	1.27%

TABLE 1: Number of main trips per mode and trip-based modal split in both scenarios. This is filtered to trips that take place completely in the city of Hamburg (start and destination in Hamburg). Intermodal access and egress legs are not included.

1 as possible.

2 To retrieve suitable fleet size, we first performed a simulation run where the ride-pooling
 3 supply was considered unlimited. This was undertaken through simulating the ride-pooling mode
 4 statically inside of mobiTopp. The resulting demand for ride-pooling was afterwards used in a fleet
 5 simulation run to estimate the number of vehicles needed during the highest peak times.

6 RESULTS

7 Having an integrated model, we are able to analyze the impact of the ride-pooling service on the
 8 rest of the transport system. The current results are based on modeling the morning commuting
 9 peak during a week-day, starting from 6 AM to 9.30 AM. The number of main trips (i.e., access and
 10 egress legs are not included) for all modes is depicted in Table 1. Compared to the base scenario,
 11 in the AMOD scenario the share of trips using the ride-pooling service among all trips that take
 12 place in Hamburg increases from 0.11% to 1.27%. People use all other modes less, but the modes
 13 are impacted to different degrees. With a relative change of roughly -0.47 percentage points,
 14 the mode car loses most trips. Public transport, despite having the highest share among all trips,
 15 only loses 0.04 percentage points in the modal split. The autonomous ride-pooling service has a
 16 multitude of effects on public transport usage. On the one hand, the new service competes with
 17 the line-based public transport. On the other hand, this service can also be used as a first/last mile
 18 service to high-capacity public transport lines which results in better accessibility and hence a more
 19 attractive public transport. Additionally, a tour effect could become observable when evaluating
 20 longer time periods: travelers, who previously used the private vehicle to get to an activity and
 21 back, can use the ride-pooling service to get to the activity, and might use public transport on the
 22 way back as the private vehicle is no alternative for the return trip (consistency of vehicle location).
 23 All in all, Table 1 shows that the ride-pooling system can be viewed as one more alternative to the
 24 private vehicle complementing public transport. It is also noteworthy that there are hardly changes
 25 to the active modes, which shows that a base fare is still effective, even if it is just approximately
 26 one euro. Together with some waiting time and a possible detour, ride-pooling is not attractive for
 27 very short trips, which is good from a system point of view.

28 The operating area was also enlarged for the AMOD scenario, creating the possibility of

mode	Base Scenario	AMOD Scenario	relative change
By foot	0.96	0.95	-0.7%
Bicycle	3.39	3.34	-1.3%
Car	8.51	8.37	-1.6%
Car as passenger	6.42	6.25	-2.6%
Public transport	8.03	8.06	0.4%
Taxi	4.28	3.90	-8.8%
Sharing services	3.87	3.57	-7.7 %
Ride-pooling	6.43	8.24	28.2%

TABLE 2: Mean trip lengths by mode in both scenarios in km and the relative change. This is filtered to trips that take place completely within the city of Hamburg. Intermodal access and egress legs are not included.

	Base Scenario	AMOD Scenario	Difference
Person km	32,776,838	32,618,109	-158,729
Private vehicle km	14,361,220	14,227,264	-133,956
Ride-pooling fleet km	10,464	129,078	118,614

TABLE 3: Aggregated figures of person and vehicle mileage.

1 longer ride-pooling trips. Indeed, the mean trip length for ride-pooling increases by 26.8%. As
 2 shown in Table 2, the mean distances by most other modes decreases, thus the ride-pooling service
 3 attracts relatively long trips from these modes in the AMOD scenario. The largest change can be
 4 observed with the modes taxi and the other sharing services. Interestingly, the mean trip distance
 5 of public transport does not decrease, but even increases slightly. This is partially due to the
 6 phenomenon that the average trip length of intermodal public transport trips in combination with
 7 ride-pooling are longer in the AMOD scenario compared to the base scenario.

8 In Table 3 the main aggregated figures concerning total mileage are depicted. With in-
 9 creased availability of ride-pooling by the larger service combined with decreased fares, it is ob-
 10 servable that the accumulated person distances decreases by roughly 0.5%. Looking at the private
 11 vehicle trips a decline of 134 thousand km can be observed. Combined with an increase in fleet km
 12 of 119 thousand km by the enlarged ride-pooling service, the total driven distance by passenger
 13 cars is reduced by 15 thousand km (0.1% compared to the overall driven distance of passenger cars
 14 in the base scenario).

15 Table 4 illustrates the ride-pooling fleet's key performance indicators for the two different
 16 simulation scenarios. While 2000 travelers chose the ride-pooling service in the base scenario, 10
 17 times more customers booked the offer in the AMOD scenario, as a consequence of the extended
 18 user base due to the cheap fares. The base scenario was simulated with 500 vehicles (with man-
 19 ual drivers) and 3500 (autonomous) vehicles were utilized in the AMOD scenario. Even though
 20 the fleet size was increased only by factor of 7, the number of ride-pooling travelers increased
 21 by a factor of 10. In both scenarios, over 98% of agents that requested a trip also received an
 22 offer, showing that vehicle supply is still sufficient. Another indicator for the scaling property of

	Base Scenario	AMOD Scenario
Number Travelers	2,000	20,704
Created Offers [%]	98.8	98.5
Avg. Rel. Detour [%]	31.9	35.2
Avg. Wait Time [min]	5.9	5.0
Avg. Travel Time [min]	22.1	27.1
Avg. Occupancy [per/km]	1.3	1.7
Empty Vkm [%]	28.7	15.9

TABLE 4: Key performance indicators of the ride-pooling operator for the different scenarios. The number of travelers is distinct to Table 1 as here intermodal legs and possible companion riders are included.

1 ride-pooling can be observed when evaluating average vehicle occupancy and empty mileage that
 2 increase from 1.3 to 1.7 and decrease from 28.7% to 15.9%, respectively. These positive scaling
 3 properties can be explained by an increase of pooling possibilities with a higher number of cus-
 4 tomers and by a higher density of vehicles, which implicates less empty pick-up trips as well as
 5 a reduced need for spatial rebalancing. For the same reasons, the effects for customers are on the
 6 one hand a reduced waiting time by statistical closer positioning of fleet vehicles, while on the
 7 other hand the detour times increase because of the higher number of pooled trips. The average
 8 travel time of ride-pooling customers increases from 22.1 min in the base scenario to 27.1 min in
 9 the AMOD scenario due to the increased detour time and, additionally, longer trip distances in the
 10 larger operating area.

11 The effect of increased occupancy and decreased empty mileage can also be observed in
 12 Figure 5 where the different occupancy states of the ride-pooling vehicles are depicted over the
 13 time of the morning peak. Because of more pooling options and higher vehicle density, the fraction
 14 of emptily driving vehicles decreases and the fraction of vehicles with higher occupancy states
 15 increases when comparing the AMOD with the base scenario. The white areas in the plots reflect
 16 idle vehicles which is smaller in the AMOD scenario indicating a higher utilization of the fleet.
 17 This can be traced back to (i) the fleet size being scaled by only a factor of 7 compared to a demand
 18 factor of roughly 12 and (ii) longer vehicle trips induced by the larger operating area. On the other
 19 hand, the black curve in in Figure 5(a) illustrates the number of active vehicles in the base scenario
 20 reflecting driver shift schedules of the real service. It can be seen, that most of the idle vehicles are
 21 not available for service and that especially between 7 and 8 AM nearly full utilization of active
 22 vehicle is reached, which indicates a ride-pooling supply shortage. Nevertheless, since still most
 23 agents receive offers from the ride-pooling service this supply shortage is not very distinctive.

24 The length of the ride-pooling customer trips is shown in Figure 6. While in the base
 25 scenario an average trip length of 6.43 km is measured, it is increased to 8.24 km in the AMOD
 26 scenario (also see Table 2). Especially the fraction of trips longer than 15 km is enlarged due to
 27 the larger operating area. Nevertheless, in both scenarios the lion's share of trips is shorter than
 28 10 km. Intermodal trips are shorter than 5km in nearly all cases. This is reasonable since the
 29 total fare is cheaper in most cases if the whole trip is composed of a long succeeding or preceding
 30 public transport leg. Nevertheless, only a fraction of 8.5% in the base scenario and 3.5% in the
 31 AMOD scenario of the ride-pooling trips is used as an access or egress trip to public transport. The

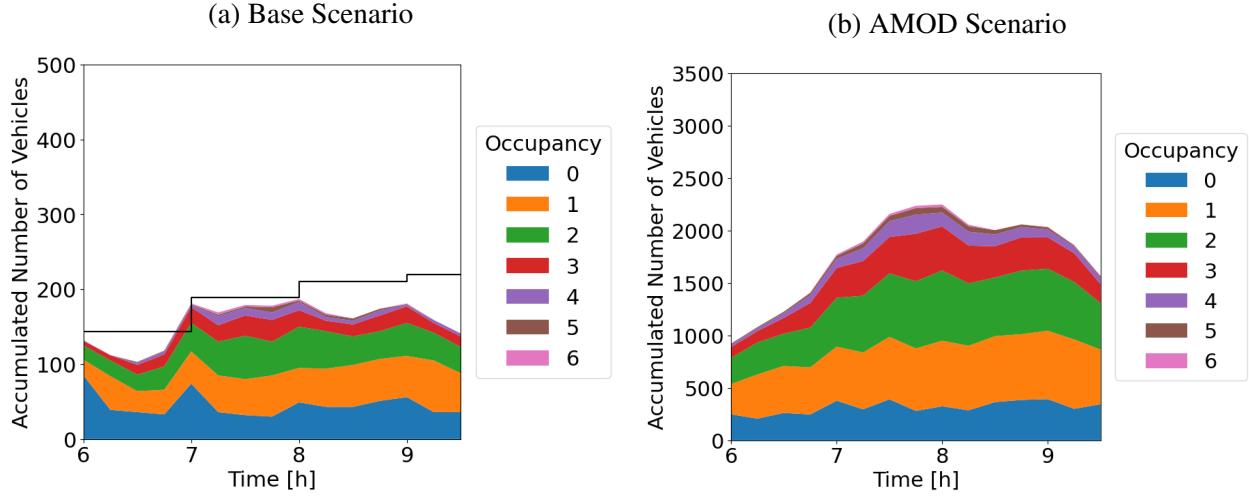


FIGURE 5: Ride-pooling fleet occupancy states for the different scenarios. The black curve in the base scenario illustrates the number of active ride-pooling vehicles. The slight overstepping of the active vehicle curve can be traced back to smoothing of the occupancy curves.

1 reasons are twofold: on the one hand, thousands of long trips previously made by private vehicle
 2 are replaced in the AMOD scenario; on the other hand, due to small fares many of these trips
 3 become monomodal ride-pooling trips rather than intermodal trips. Evaluating the composition
 4 of intermodal trips in first and last mile trips, a higher share is observed for last mile trips. One
 5 reason is the evaluation of the morning peaks and agents tend to travel from outside Hamburg
 6 into the ride-pooling service area to finish their trip with a ride-pooling leg. Another reason is a
 7 bias of the model towards last mile trips: because of scheduling the customer far in the future, the
 8 ride-pooling optimization can often find seamless connections for the last-mile trip, whereas an
 9 on-demand first-mile trip typically contains a waiting period.

10 CONCLUSION

11 The case study at hand investigates the possible impacts of an autonomous ride-pooling service
 12 by advancing a currently operating ride-pooling service in an European city, namely Hamburg,
 13 Germany. The automation was modeled by a reduction of ride-pooling prices to 1/4, an increased
 14 operating area and user base and continuous vehicle availability. However, all crucial mode choice
 15 parameters remained the same in both scenarios. This study differs mainly in three aspects from
 16 existing studies: Firstly, and in contrast to studies from North American cities, the public trans-
 17 port system is widely used (mode share of approximately 35%). Hence, different modal shifts and
 18 in particular a different effect on public transport usage could be expected. Secondly, we used a
 19 comprehensive approach with detailed modeling of both, demand and supply side by combining
 20 an agent-based travel demand model coupled with a fleet simulation. These interdependencies are
 21 crucial when investigating on-demand mobility, as people react sensitively to delays in waiting
 22 and travel time. This aspect is often disregarded when assuming a given travel demand. Thirdly,
 23 the travel behavior for ride-pooling is based on data from a large customer-base from an existing
 24 service. Current users can assess the usage much better than people who have never experienced
 25 such a service and respond in a hypothetical mode choice experiment. Consequently, the behav-

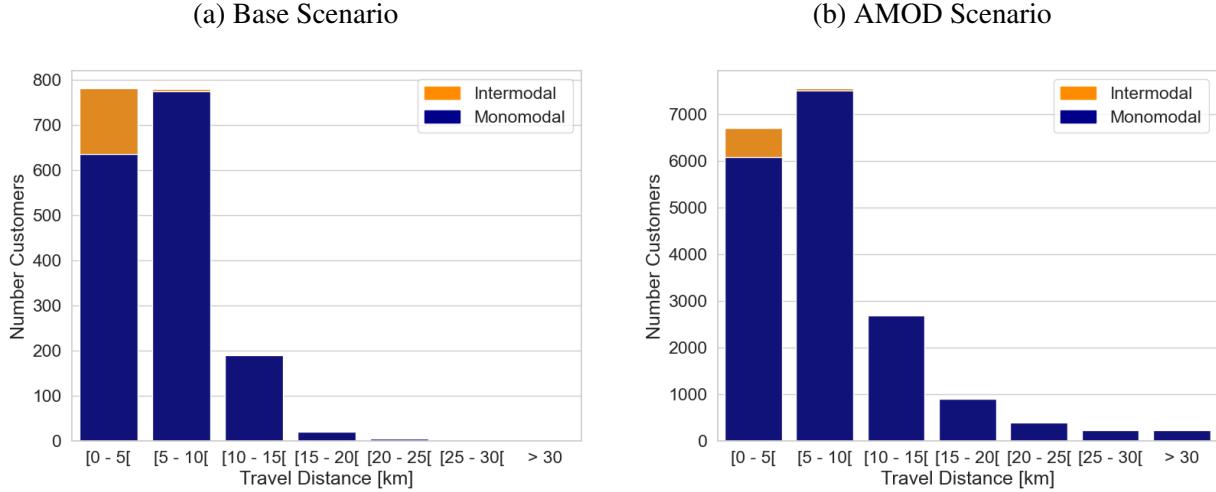


FIGURE 6: Travel distances of ride-pooling customers.

1 1 or predicted is more profound as responses are less biased due to misunderstanding or wrong
 2 2 appraisals.

3 In the scenario with an autonomous fleet, ride-pooling demand increases by a factor of 10.
 4 As a consequence, positive scaling effects like a higher average occupancy and less deadheading
 5 can be observed. A key result is that the effects of decreasing and increasing public transport
 6 demand approximately equalize. Moreover, the modal share of the active modes is practically
 7 unchanged, which indicates that a base fare, a waiting and possible detour time are sufficiently
 8 repulsive for short trips. Finally, the number of private vehicle trips are reduced thereby showing
 9 the potential of ride-pooling to actually complement public transport and decrease negative exter-
 10 nalities of private vehicles. However, even though demand scaled by a factor of 10, the overall
 11 effects are still comparatively small.

12 In future work, regulatory measures will be studied to push the equilibrium further away
 13 from the private vehicle mode. For example, increased parking costs or a road toll have the po-
 14 tential to affect user decision towards more sustainable transportation modes (53). Additionally,
 15 a more pronounced integration of the ride-pooling system with the public transport system, e.g.
 16 with different pricing schemes within the city and the outer regions, will be evaluated. Finally, the
 17 simulation period will be expanded to one week to gain a better understanding of the dynamics for
 18 different times of day and days of the week.

1 ACKNOWLEDGEMENTS

2 The framework and data collection were part of the project "Accompanying Research of MOIA"
3 and thus funded by MOIA. The authors remain responsible for all findings and opinions presented
4 in the paper.

5 AUTHOR CONTRIBUTIONS

6 The authors confirm contribution to the paper as follows: study conception and design: Gabriel
7 Wilkes, Roman Engelhardt, Nadine Kostorz, Florian Dandl, Peter Vortisch, Klaus Bogenberger,
8 Martin Kagerbauer; data collection: Gabriel Wilkes, Roman Engelhardt, Nadine Kostorz, Florian
9 Dandl; analysis and interpretation of results: Gabriel Wilkes, Roman Engelhardt, Nadine Kostorz,
10 Florian Dandl; draft manuscript preparation: Gabriel Wilkes, Roman Engelhardt, Nadine Kostorz,
11 Florian Dandl. All authors reviewed the results and approved the final version of the manuscript.

1 REFERENCES

2 1. Shaheen, S. and A. Cohen, *Innovative Mobility: Carsharing Outlook Carsharing Market Overview, Analysis, And Trends. Winter 2020*. <https://dx.doi.org/10.7922/G2BK19MF>, 2020.

3 2. Henao, A. and W. E. Marshall, The impact of ride-hailing on vehicle miles traveled. *Transportation*, Vol. 46, No. 6, 2019, pp. 2173–2194.

4 3. Schaller, B., Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities. *Transport Policy*, Vol. 102, No. 3, 2021, pp. 1–10.

5 4. MOIA, *Your MOIA, autonomous as of 2025*. <https://www.moia.io/en/blog/moia-autonomous-as-of-2025>, 2021.

6 5. Psaraftis, H. N., M. Wen, and C. A. Kontovas, Dynamic vehicle routing problems: Three decades and counting. *Networks*, Vol. 67, No. 1, 2016, pp. 3–31.

7 6. Erdmann, M., F. Dandl, and K. Bogenberger, Combining immediate customer responses and car-passenger reassessments in on-demand mobility services. *The International Journal of Robotics Research*, Vol. 126, No. 10, 2021, p. 103104.

8 7. Hyland, M. and H. S. Mahmassani, Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. *Transportation Research Part C: Emerging Technologies*, Vol. 92, 2018, pp. 278–297.

9 8. Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. *Proceedings of the National Academy of Sciences*, Vol. 114, 2017, pp. 462–467.

10 9. Dandl, F., M. Hyland, K. Bogenberger, and H. S. Mahmassani, Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets. *Transportation*, Vol. 46, No. 6, 2019, pp. 1975–1996.

11 10. Syed, A. A., F. Dandl, B. Kaltenhäuser, and K. Bogenberger, Density Based Distribution Model for Repositioning Strategies of Ride Hailing Services. *Frontiers in Future Transportation*, Vol. 2, 2021, p. 295.

12 11. Fiedler, D., M. Certicky, J. Alonso-Mora, and M. Cap, The Impact of Ridesharing in Mobility-on-Demand Systems: Simulation Case Study in Prague. In *2018 21st International Conference on Intelligent Transportation Systems (ITSC)*, IEEE, 04.11.2018 - 07.11.2018, pp. 1173–1178.

13 12. Engelhardt, R., F. Dandl, A. Bilali, and K. Bogenberger, Quantifying the Benefits of Autonomous On-Demand Ride-Pooling: A Simulation Study for Munich, Germany. In *2019 22nd IEEE Intelligent Transportation Systems Conference (ITSC)*, IEEE, 2019, pp. 2992–2997.

14 13. Fielbaum, A., X. Bai, and J. Alonso-Mora, On-demand ridesharing with optimized pick-up and drop-off walking locations. *Transportation Research Part C: Emerging Technologies*, Vol. 126, No. 3, 2021, p. 103061.

15 14. Zwick, F., N. Kuehnel, R. Moeckel, and K. W. Axhausen, Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. *Transportation Research Part D: Transport and Environment*, Vol. 90, 2021, p. 102673.

16 15. Hörl, S. and M. Balac, Synthetic population and travel demand for Paris and Île-de-France based on open and publicly available data. *Transportation Research Part C: Emerging Technologies*, Vol. 130, 2021, p. 103291.

1 16. Danaf, M., B. Atasoy, C. L. de Azevedo, J. Ding-Mastera, M. Abou-Zeid, N. Cox, F. Zhao,
2 and M. Ben-Akiva, Context-aware stated preferences with smartphone-based travel sur-
3 veys. *Journal of Choice Modelling*, Vol. 31, 2019, pp. 35–50.

4 17. Liu, Y., P. Bansal, R. Daziano, and S. Samaranayake, A Framework to Integrate Mode
5 Choice in the Design of Mobility-on-Demand Systems. *Transportation Research Part C:*
6 *Emerging Technologies*, , No. 105, 2019, pp. 648–665.

7 18. Alonso-González, M. J., N. van Oort, O. Cats, S. Hoogendoorn-Lanser, and S. Hoogen-
8 doorn, Value of time and reliability for urban pooled on-demand services. *Transportation*
9 *Research Part C: Emerging Technologies*, Vol. 115, 2020, p. 102621.

10 19. Morsche, W., L. La Paix Puello, and K. Geurs, Potential uptake of adaptive transport
11 services: An exploration of service attributes and attitudes. *Transport policy*, Vol. 84, 2019,
12 pp. 1–11.

13 20. Jokinen, J.-P., T. Sihvola, and M. N. Mladenovic, Policy lessons from the flexible transport
14 service pilot Kutsuplus in the Helsinki Capital Region. *Transport Policy*, Vol. 76, 2019, pp.
15 123–133.

16 21. Jittrapirom, P., W. van Neerven, K. Martens, D. Trampe, and H. Meurs, The Dutch elderly's
17 preferences toward a smart demand-responsive transport service. *Research in Transporta-
18 tion Business & Management*, Vol. 30, 2019, p. 100383.

19 22. König, A. and J. Grippenkoven, Modelling travelers' appraisal of ridepooling service
20 characteristics with a discrete choice experiment. *European Transport Research Review*,
21 Vol. 12, No. 1, 2020, p. 462.

22 23. Kostorz, N., E. Fraedrich, and M. Kagerbauer, Usage and User Characteristics—Insights
23 from MOIA, Europe's Largest Ridepooling Service. *Sustainability*, Vol. 13, No. 2, 2021,
24 p. 958.

25 24. Zmud, J., I. N. Sener, and J. Wagner, *Consumer acceptance and travel behavior : impacts
26 of automated vehicles : final report*. Texas A&M Transportation Institute, 2016.

27 25. Zmud, J. P. and I. N. Sener, Towards an Understanding of the Travel Behavior Impact of
28 Autonomous Vehicles. *Transportation Research Procedia*, Vol. 25, 2017, pp. 2500–2519.

29 26. Dannemiller, K. A., A. Mondal, K. E. Asmussen, and C. R. Bhat, Investigating au-
30 tonomous vehicle impacts on individual activity-travel behavior. *Transportation Research*
31 *Part A: Policy and Practice*, Vol. 148, 2021, pp. 402–422.

32 27. Skeete, J.-P., Level 5 autonomy: The new face of disruption in road transport. *Technologi-
33 cal Forecasting and Social Change*, Vol. 134, 2018, pp. 22–34.

34 28. Haboucha, C. J., R. Ishaq, and Y. Shiftan, User preferences regarding autonomous vehi-
35 cles. *Transportation Research Part C: Emerging Technologies*, Vol. 78, 2017, pp. 37–49.

36 29. Hamadneh, J. and D. Esztergár-Kiss, Modeling travel behavior onboard of privately au-
37 tonomous vehicle and shared autonomous vehicle. *Trans Motauto World*, Vol. 6, No. 2,
38 2021, pp. 57–61.

39 30. Krueger, R., T. H. Rashidi, and J. M. Rose, Preferences for shared autonomous vehicles.
40 *Transportation Research Part C: Emerging Technologies*, Vol. 69, 2016, pp. 343–355.

41 31. Burghout, W., P.-J. Rigole, and I. Andreasson, Impacts of Shared Autonomous Taxis in a
42 Metropolitan Area. In *Transportation Research Board 94th Annual Meeting*, 2015.

43 32. Bansal, P., K. M. Kockelman, and A. Singh, Assessing public opinions of and interest in
44 new vehicle technologies: An Austin perspective. *Transportation Research Part C: Emerg-
45 ing Technologies*, Vol. 67, 2016, pp. 1–14.

1 33. Stoiber, T., I. Schubert, R. Hoerler, and P. Burger, Will consumers prefer shared and
2 pooled-use autonomous vehicles? A stated choice experiment with Swiss households.
3 *Transportation Research Part D: Transport and Environment*, Vol. 71, 2019, pp. 265–282.

4 34. Lavieri, P. S. and C. R. Bhat, Modeling individuals' willingness to share trips with
5 strangers in an autonomous vehicle future. *Transportation Research Part A: Policy and*
6 *Practice*, Vol. 124, 2019, pp. 242–261.

7 35. Thomas, P., The feasibility case for converting existing heavy metro systems to driverless
8 operation. In *Computers in Railways X*, WIT Press, 2006.

9 36. Bösch, P. M., F. Becker, H. Becker, and K. W. Axhausen, Cost-based analysis of au-
10 tonomous mobility services. *Transport Policy*, Vol. 64, No. 11, 2018, pp. 76–91.

11 37. Dandl, F. and K. Bogenberger, Comparing Future Autonomous Electric Taxis with an Ex-
12 isting Free-Floating Carsharing System. *IEEE Transactions on Intelligent Transportation*
13 *Systems*, Vol. 20, No. 6, 2019, pp. 2037–2047.

14 38. Liu, J., K. M. Kockelman, P. M. Boesch, and F. Ciari, Tracking a system of shared au-
15 tonomous vehicles across the Austin, Texas network using agent-based simulation. *Trans-
16 portation*, Vol. 44, No. 6, 2017, pp. 1261–1278.

17 39. Oke, J. B., A. P. Akkinepally, S. Chen, Y. Xie, Y. M. Aboutaleb, C. L. Azevedo, P. C. Ze-
18 gras, J. Ferreira, and M. Ben-Akiva, Evaluating the systemic effects of automated mobility-
19 on-demand services via large-scale agent-based simulation of auto-dependent prototype
20 cities. *Transportation Research Part A: Policy and Practice*, Vol. 140, 2020, pp. 98–126.

21 40. Wilkes, G., R. Engelhardt, L. Briem, F. Dandl, P. Vortisch, K. Bogenberger, and M. Kager-
22 bauer, Self-Regulating Demand and Supply Equilibrium in Joint Simulation of Travel De-
23 mand and a Ride-Pooling Service. *Transportation Research Record: Journal of the Trans-
24 portation Research Board*, 2021, p. 036119812199714.

25 41. Mallig, N., M. Kagerbauer, and P. Vortisch, mobiTopp – A Modular Agent-based Travel
26 Demand Modelling Framework. *Procedia Computer Science*, Vol. 19, 2013, pp. 854–859.

27 42. Mallig, N. and P. Vortisch, *Modeling travel demand over a period of one week: The mobi-
28 topp model*. <https://arxiv.org/abs/1707.05050>, 2017.

29 43. Bonabeau, E., Agent-based modeling: Methods and techniques for simulating human sys-
30 tems. *Proceedings of the National Academy of Sciences*, Vol. 99, No. suppl 3, 2002, pp.
31 7280–7287.

32 44. Jones, W., R. Cassady, and R. Bowden, Developing a Standard Definition of Intermodal
33 Transportation. *Transportation Law Journal*, Vol. 27, 2000.

34 45. Wörle, T., L. Briem, M. Heilig, M. Kagerbauer, and P. Vortisch, Modeling intermodal
35 travel behavior in an agent-based travel demand model. *Procedia Computer Science*, Vol.
36 184, 2021, pp. 202–209, the 12th International Conference on Ambient Systems, Net-
37 works and Technologies (ANT) / The 4th International Conference on Emerging Data and
38 Industry 4.0 (EDI40) / Affiliated Workshops.

39 46. Engelhardt, R., F. Dandl, and K. Bogenberger, *Speed-up Heuristic for an On-Demand
40 Ride-Pooling Algorithm*. [http://arxiv.org/pdf/2007.14877v1](http://arxiv.org/pdf/2007.14877v1.pdf), 2019.

41 47. Gurobi Optimization, LLC, *Gurobi Optimizer Reference Manual*.
42 "<https://www.gurobi.com>", 2021.

43 48. Zhang, R. and M. Pavone, Control of robotic mobility-on-demand systems: A queueing-
44 theoretical perspective. *The International Journal of Robotics Research*, Vol. 35, No. 1-3,
45 2016, pp. 186–203.

1 49. Ulrich, J., G. Wilkes, N. Kostorz, L. Briem, M. Kagerbauer, and P. Vortisch, Modeling
2 Tourists and Business Travelers in an Agent-Based Travel Demand Model. *Submitted for*
3 *TRB Annual Meeting 2022*, 2022.

4 50. Hilgert, T., *Erstellung von Wochenaktivitätenplänen für Verkehrsnachfragemodelle*. Ph.D.
5 thesis, Karlsruher Institut für Technologie (KIT), 2019.

6 51. Nobis, C. and T. Kuhnimhof, *Mobilität in Deutschland (MiD 2017) (English: Mobility in*
7 *Germany)*. infas, DLR, IVT and infas 360, 2018.

8 52. Wilkes, G., R. Engelhardt, N. Kostorz, F. Dandl, F. Zwick, E. Fraedrich, and M. Kager-
9 bauer, Assessing the effects of ridepooling – a case study of MOIA in Hamburg. In *27th*
10 *ITS World Congress*, Hamburg, Germany, 2021.

11 53. Dandl, F., R. Engelhardt, M. Hyland, G. Tilg, K. Bogenberger, and H. S. Mahmassani,
12 Regulating mobility-on-demand services: Tri-level model and Bayesian optimization so-
13 lution approach. *Transportation Research Part C: Emerging Technologies*, Vol. 125, No. 1,
14 2021, p. 103075.