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ABSTRACT

In cyber-physical systems, software is not only embedded into a physical context, but also
used to control the communication between systems in the cyberspace. Due to the high degree
of software-controlled communication, the security of the information handled by systems is
at risk of being compromised. Hence, to secure the handling of information from the ground
up, sound engineering principles must be applied during software development.

The theory of information flow security provides formal methods for security analyses of
software systems, enabling engineers to detect unauthorized information flows in the design
phase. However, due to specific characteristics of cyber-physical systems, these theoretical
foundations are not directly applicable to the engineering in practice. For example, while
cyber-physical systems involve multiple engineering disciplines, foundational works do not
address such a discipline-spanning design. In addition, cyber-physical systems communicate
asynchronously by message passing, whereas foundational works are based on a synchronous
communication model. Furthermore, while the communication must conform to severe
time restrictions imposed by the physical system context, fundamental works do not provide
tool-supported techniques to analyze this real-time behavior for information flows.

In this thesis, we extend the scope of applicability by integrating formal methods for infor-
mation flow security into a model-driven engineering approach for cyber-physical systems.
Initially, we enhance a discipline-spanning specification technique for systems engineering
by introducing a notion of security policies, which enable systems engineers to document and
validate security requirements at an early stage of development. Next, we propose a body of
rules for the refinement of security policies in the context of component-based software archi-
tectures, whose constituent components communicate asynchronously by message passing.
Our rules enable software architects to draw conclusions about the security of a composite
system from the security policies of its constituent components. On this basis, we provide
software engineers with an automated technique to verify that the real-time communication
behavior of individual components adheres to their refined security policies. By conducting a
time-sensitive analysis, our verification technique even allows for the detection of subtle flows
in which information is deducible from the timing of messages. Finally, since several of our
contributions are based on transformations of models, we present an approach for reducing
the verbosity of such transformations and the associated development effort. In particular, we
enable developers to infer parts of a declarative transformation definition automatically and
to refine the execution of the declared transformation by means of imperative instructions.

We assessed our discipline-spanning specification technique for security policies on the
basis of a quality framework for security methodologies. Furthermore, we provided formal
evidence for the soundness of our refinement rules applied to component-based security
policies. In addition, we conducted case studies to evaluate the accuracy of the verification
results and the inferred model transformations.
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Z USAMMENFASSUNG

In cyber-physischen Systemen ist Software nicht nur in einen physischen Kontext eingebet-
tet, sondern steuert auch die Kommunikation zwischen den Systemen in der Cyberwelt. Die
von den Systemen verarbeiteten Informationen sind durch das grole Ausmal} an softwarege-
steuerter Kommunikation einem hohen Sicherheitsrisiko ausgesetzt. Wihrend der Software-
entwicklung miissen daher fundierte ingenieurwissenschaftliche Prinzipien zur Anwendung
gebracht werden, um den Umgang mit Informationen von Grund auf abzusichern.

Formale Methoden zur Analyse der Informationssicherheit von Softwaresystemen werden
durch die Theorie der Information Flow Security zur Verfiigung gestellt, mit deren Hilfe
sich unautorisierte Informationsfliisse bereits in der Entwurfsphase auffinden lassen. Auf-
grund spezifischer Eigenschaften von cyber-physischen Systemen sind diese theoretischen
Grundlagen auf die Entwicklung in der Praxis jedoch nicht direkt anwendbar. Wahrend
cyber-physische Systeme verschiedene Ingenieursdisziplinen einbeziehen, setzen die Grund-
lagenarbeiten nicht auf der diszipliniibergreifenden Ebene des Systementwurfs an. Zudem
kommunizieren cyber-physische Systeme asynchron durch den Austausch von Nachrichten,
wohingegen die Grundlagenarbeiten auf einem synchronen Kommunikationsmodell basie-
ren. Wihrend der physische Systemkontext der Kommunikation auflerdem strenge zeitliche
Beschrinkungen auferlegt, stellen Grundlagenarbeiten keine werkzeuggestiitzten Techniken
zur Verfiigung, um dieses Echtzeitverhalten auf Informationsfliisse hin zu analysieren.

Um den Umfang der Anwendbarkeit zu erhdhen, werden in dieser Arbeit formale Me-
thoden der Information Flow Security in einen modellgetriebenen Entwicklungsansatz fiir
cyber-physische Systeme integriert. Zunédchst wird eine Spezifikationstechnik fiir das dis-
ziplinilibergreifende Systems Engineering um Sicherheitsrichtlinien erweitert, durch die sich
Sicherheitsanforderungen bereits in einer frithen Entwicklungsphase dokumentieren und vali-
dieren lassen. Weiterhin wird ein Regelwerk fiir die Verfeinerung der Sicherheitsrichtlinien im
Kontext komponentenbasierter Softwarearchitekturen vorgestellt, deren Komponenten durch
asynchronen Nachrichtenaustausch miteinander kommunizieren. Die aufgestellten Regeln
befdhigen Softwarearchitekten dazu, aus den verfeinerten Sicherheitsrichtlinien einzelner
Systemkomponenten Schliisse iiber die Sicherheit des Gesamtsystems zu ziehen. Auf dieser
Grundlage wird eine Verifikationstechnik vorgestellt, mit deren Hilfe sich die Einhaltung von
Sicherheitsrichtlinien durch das Echtzeitkommunikationsverhalten einzelner Komponenten
automatisch priifen ldsst. Durch diese zeitsensitive Analyse lassen sich selbst subtile Fliis-
se auffinden, bei denen Informationen aus den Zeitpunkten der ausgetauschten Nachrichten
abgeleitet werden konnten. Da mehrere der genannten Beitridge auf der Transformation von
Modellen basieren, wird abschlieBend ein Ansatz zur Reduzierung des Entwicklungsaufwan-
des solcher Transformationen vorgestellt. Dadurch werden Entwickler befahigt, Teile einer
deklarativen Transformationsdefinition automatisch zu inferieren sowie die Ausfiihrung der
deklarierten Transformation durch imperative Anweisungen zu verfeinern.



Im Zuge der Arbeit wurde die diszipliniibergreifende Spezifikationstechnik fiir Sicherheits-
richtlinien auf Grundlage eines Rahmenwerks fiir die Qualitidtsbewertung von Sicherheitsme-
thodiken untersucht. Zudem wurde die Korrektheit der Verfeinerungsregeln fiir komponen-
tenbasierte Sicherheitsrichtlinien formal nachgewiesen. Es wurden dariiber hinaus Fallstudien
durchgefiihrt, um die Genauigkeit der Verifikationsergebnisse sowie der inferierten Modell-
transformationen zu evaluieren.
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INTRODUCTION

Software engineers are currently faced with a shift from traditional embedded systems to
a new generation of so-called cyber-physical systems (CPSs) [FLV14; Leel0]. Previously,
embedded software was characterized by an interplay between discrete computation on the one
hand, and continuous control of a physical context on the other hand. On this basis, embedded
systems have been applied to problem domains such as automotive engineering, industrial
production, or health care. In contrast, next-generation CPSs introduce a new dimension
besides computation and control, as they involve communication over networks [ZFR13].
This advanced degree of interconnection enables systems to exchange relevant information
with each other [SWO07]. Thereby, CPSs form a collective intelligence that represents the
driving force behind technical innovations such as autonomous driving, smart grids, or smart
manufacturing in the Industry 4.0.

The advanced interconnection of a CPS causes not only an increased communication with
external actors, but also comes at a price of a larger attack surface [The+18] that may be
exploited by malicious actors. Therefore, the security of CPSs is a quality property that has
recently gained an increasing attention by the scientific literature [Lun+19; GK16; Gir+17;
CPS17; AM17; AIS18; HLLL17]. Whereas engineering secure software is a traditional and
ever-present challenge [DS00], this task is particularly challenging in the problem domain
of CPSs [APN17]. The overall goal of this thesis is therefore to enable secure software
engineering for CPSs.

Along with the rising complexity of technical innovations, it also becomes more chal-
lenging for software engineers to ensure that CPSs meet crucial quality requirements like
security. Model-driven engineering (MDE) [Sch06; Sil15; BCW17] is a prominent approach
to overcome the inherent complexity of CPSs [DLS12; Gra+18]. In case of MDE, models are
the primary artifacts [Mén+19] created during development. The key feature of models is
their abstraction [Kra07] from implementation details, enabling engineers to analyze security
or other quality properties at the early development stage, prior to the deployment of a ready-
to-use prototype. MDE advocates the use of domain-specific languages (DSLs) [DKVO00;
KBM16], which enable engineers to develop models by means of specially tailored notations
that are commonly used in their problem domains. Studies suggest that software maintenance
with DSLs is less error-prone than using general-purpose programming languages [Mel+16].
Accordingly, MDE was shown to have a beneficial effect on quality [VBT15], especially in
the embedded systems domain [Lie+18; AGD18; ASSS13].
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One benefit of MDE is formal verification [Gab+19; DKWO08], analyzing models for
quality characteristics with the help of formal methods [Pel19; WLBF(09]. Formal verification
techniques are frequently applied to the development of CPSs [DZGL18; ZJKK17]. On the
basis of rigorously defined syntax and semantics of models, such techniques enable engineers
to prove quality properties like security in an exhaustive way. As long as the verified properties
of a model correspond to the real-world properties of the modeled system, the underlying
formal rigor assures engineers that the system is correct with respect to security or other
characteristics. This principle is known as correctness by construction [KW12]. In this
thesis, we use formal verification as a means to underpin the secure construction of CPSs.

1.1 Information Flow Security

Formal methods for security must enable engineers to verify that no secret information is
leaked to a malicious actor, which would be a violation of confidentiality. Furthermore,
the verification must also rule out integrity violations, preventing malicious actors from
manipulating any significant information. To verify the achievement of protection goals
like confidentiality or integrity, this thesis is based on the theory of information flow secu-
rity [Manl11; HS12; Smi07], which helps detect unauthorized flows of information between
specific actors. The most prominent security property in this field is noninterference as
introduced by Goguen and Meseguer [GMS82]. According to this property, security-critical
information (e.g., secrets) must not interfere with other information considered observable
by certain actors. Otherwise, the observations could enable these actors to draw conclusions
about critical information. To prevent such information flows, the observable information
processed by a system must not depend on critical information. Therefore, information flow is
a matter of dependence [Man03, p. 5], and verification techniques must analyze the behavior
of systems for unauthorized dependencies in the information processing.

In recent years, numerous information flow properties besides noninterference have been
proposed [cf. Man00Oa; McL96; FG95]. These properties vary in their underlying security
policy [ASL02; GMS82; Jaul2], which indicates what information is considered critical or
observable. Thereby, a security policy defines the sources and sinks of information flows
that must be prevented. Furthermore, properties differ widely in the definition of security,
thereby varying the conditions under which an observation is regarded as an information flow
or not. This degree of freedom leads to properties of different strength, enforcing different
levels of security. Finally, properties also differ in their underlying model of computation
that describes how information is processed during execution [MZ10; FRS05]. Trace-based
approaches [Man0QOa; McL96] describe systems in terms of their possible execution traces.
Similarly, state-based approaches [GMS82] use stateful models such as automata to describe a
system. In contrast, process-algebraic approaches [FG95; RS01] represent systems in terms
of algebraic operations over concurrent processes. All of these models describe reactive
systems [HP85], such as the CPSs addressed in this thesis. In contrast, we do not take into
account language-based approaches [SMO03], which analyze transformational systems using
programming languages as the underlying model of computation.



1.2. RunNING ExAMPLE
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Figure 1.1: Confidentiality and integrity requirements of a self-driving car.

1.2 Running Example

To illustrate the application of information flow security to CPSs, we use a running example
from the domain of autonomous driving. At present, modern cars already collect enor-
mous amounts of data, including personally identifiable information about their occupants or
owners [FPN20]. Thus, it is crucial to adopt protective measures against data theft or corrup-
tion. Consequently, the adoption of such measures is about to be regulated by the upcoming
international standard for cybersecurity engineering of road vehicles [ISO20; SGM18].

As a concrete example, Fig. 1.1 shows a self-driving car that provides a user interface for
the communication with occupants, enabling them to define the destination, to customize
comfort functions, or to receive status information. Second, the car is equipped with an
interface to a cloud storage on the Internet, which is used to store vehicle data collected while
driving. Third, the car also operates an interface to a back-end for predictive maintenance,
which enables the manufacturer to monitor the car’s condition, diagnose faults, or tweak
configuration settings using over-the-air programming.

The car’s communication over these interfaces gives rise to the following security require-
ments. On the one hand, since the cloud provider is not deemed trustworty, data entered by
occupants through the user interface must not be leaked to the cloud. Otherwise, malicious
users of the same cloud storage could potentially draw conclusions about personally identifi-
able information. This requirement ensures confidentiality from the perspective of occupants
(cf. Fig. 1.1). Thus, no information must flow from an occupant to the cloud storage. On
the other hand, information displayed to occupants through the user interface must not be
manipulated by the back-end for predictive maintenance. This requirement is a preventive
measure, assuming that the maintenance interface might be accessed by malicious actors, who
must not tamper with the information given to occupants. Thereby, the requirement ensures
integrity of the information received by an occupant (cf. Fig. 1.1). Hence, information is
not allowed to flow between predictive maintenance and occupants. During development, the
challenge for engineers of the car is to specify such information flow requirements as part of
a security policy and verify that the constructed software adheres to that policy.
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1.3 Problem Statement

The paradigm of using MDE to engineer secure software systems is commonly referred to
as model-driven security [NKKT15; MB19; Lic+14; JJ11; KHN11; BCE11; BDL06]. On
the basis of specific design notations [BSYJ17], this approach enables security properties
to be analyzed and improved at an early design stage, and thereby helps engineers apply
the principle of “security by design” [Bod18; WBM14]. Hence, model-driven security is a
well-established practice in the security-critical field of CPSs [GB20; NAY 17].

However, in contrast to other countermeasures adopted in the scope of model-driven
security, information flow has failed to fully grow out of theory into practice. This problem
of acceptance is also indicated by Mantel, who points out that “software engineering does
not respect information flow security” [Man11]. The goal of this thesis is therefore to make
information flow security applicable to the model-driven engineering of CPSs. To that end,
we address the following subproblems created by the problem domain [*Ger16]:

Underspecification of Discipline-Spanning Security Policies. As an integration of cyber-
space and physical world, CPSs combine software with artifacts from other disciplines
like mechanical, electrical, or control engineering. Therefore, CPSs emerge from
a multi-disciplinary engineering, which requires a close collaboration of software
engineers with other specialists. Addressing this challenge by means of discipline-
spanning models is known as model-based systems engineering (MBSE) [RFB12;
MS18]. According to this approach, engineers agree on a dedicated modeling language
that spans the involved disciplines. In the role of systems engineers, they use such
a language to coordinate the disciplines at the beginning of the development. The
resulting models serve as a starting point for the downstream engineering within the
individual disciplines.

Information flow is an integral construct supported by modeling languages for MBSE
like the standardized Systems Modeling Language (SysML) [Wol+20; OMG19]. In
such languages, information flows represent data communication between systems or
subsystems. However, the existing modeling languages for MBSE provide no means
to restrict how the communicated data is to be processed and whether certain data is
allowed to depend on other data. Thus, an open problem is that information flows
are not clearly distinguished between authorized and unauthorized ones. The existing
languages thereby prevent the early specification of a security policy. As a conse-
quence, the security requirements [Tiir17; TIMOS] of a system remain underspecified
at the discipline-spanning level of MBSE. Instead, the security requirements engi-
neering [HLMNOS; CILNO02; Fab+10; MBSF10; EYLL11; SK12; KI16] is implicitly
deferred to the downstream, discipline-specific phases of development. This under-
specification reduces security to an afterthought [Ste+12] and therefore conflicts with
the aforementioned principle of security by design. Accordingly, the first problem
addressed in this thesis is that existing works do not provide systems engineers with
sufficient means to specify information flow security policies at the early, discipline-
spanning stage of development.
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Composability of Component-Based Security Policies. After the initial, discipline-span-
ning phase of MBSE, software engineering is the discipline in which the discrete
information processing of a system is designed and eventually implemented. Hence, it
is the responsibility of software engineers to ensure that the predefined security policies
are adhered to. Initially, engineers represent their coarse-grained design decisions in
terms of a software architecture [Garl4]. In the role of software architects, they
use dedicated architecture description languages [MTOO0] to describe “how the system
is composed of interacting parts” [Garl4]. Component-based software engineering
(CBSE) is a prominent principle for the decomposition of software systems during the
architectural design [Val+16; Szy02]. Accordingly, systems are composed of individual
software components, which interact over well-defined interfaces.

CBSE is frequently applied in the problem domain of CPSs [CMMS16]. Hence, the
software of a CPS is decomposed into a set of interacting components, whereas the
behavior of the overall system emerges from the component interaction. It is therefore
desirable for software architects to reason about the global security of a composite
system in a compositional way by analyzing local properties of the constituent com-
ponents. To this end, architects must break down the coarse-grained security policy
of a composite system into a set of finer-grained policies, one for each component.
However, this refinement of security policies is a challenging task because information
flow security is not generally preserved under composition [Man02]. Therefore, the
security of a composite system might be violated, even if all constituent components
adhere to their refined policies. To ensure security of composite systems, policies must
be composable such that the composition of fine-grained policies restricts the infor-
mation flow exactly as intended by a coarse-grained policy. However, as the second
problem addressed in this thesis, existing works do not provide software architects of
CPSs with guidelines for the refinement. As a consequence, the refined policies are not
guaranteed to be composable and do not ensure the security of composite systems.

Verification of Security Policies in the Presence of Real Time. After the architectural de-
composition, software engineers design the system behavior, which emerges from the
interaction of its constituent components. To interact with each other, we expect
components to communicate asynchronously by message passing [CHQ16]. The com-
munication behavior is driven by a stateful model, which describes how a component
switches from one state to another when messages are sent or received. On the basis
of formal semantics, such a model defines how information is processed. Accordingly,
to formally verify that a component adheres to its security policy, software engineers
require techniques to analyze this model for unauthorized information flows.

Since CPSs must react to events within restricted time frames imposed by the physical
context, they are real-time systems [Leel8]. Thus, the communication between compo-
nents must satisfy hard real-time requirements. To impose such time restrictions, DSLs
for CPSs consider timing as a first-class citizen [BDE13]. For example, behavioral
models are frequently based on the theory of timed automata [WDR13; AD94].
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In the context of information flow security, verification techniques must be sensitive
to the imposed real-time restrictions because timing might be exploited as an implicit
communication channel. By observing the point in time at which a message is passed,
certain actors might draw unauthorized conclusions about critical information. To
identify the presence of such timing channels [BGN17], verification techniques for
timed automata must detect cases in which the timing of observable messages depends
on critical messages. Dedicated techniques for the verification of real-time behavior
exist [Wan04] and are implemented by off-the-shelf verification tools for timed automata
like UppaaL [LLN18; Ben+96]. However, whereas such tools enable software engineers
to verify properties like safety or liveness [AS85], they do not support the off-the-shelf
verification of information flow security properties. Therefore, as the third problem
addressed in this thesis, engineers are currently required to implement verification
techniques for the security of timed automata from scratch, which is tedious and error-
prone due to the infinite, real-valued state space that must be analyzed.

Verbosity of Model Transformation Definitions. In the scope of MDE, model transforma-
tion [Menl13; MG06; CHO6; Met05; SKO03] is of vital importance to translate models
from one development stage to the next, or to convert models into a form that enables
them to be analyzed for quality properties like security. The execution of model trans-
formations is carried out by means of dedicated tools [Kah+19], which are based on
various model transformation languages [Heb+18; KG17]. Developers of model trans-
formations use these languages to establish a set of transformation rules. Thereby, they
give a transformation definition [KWBO03], which is executed by the tool in use. Such
languages are typically distinguished between declarative and imperative [MGO6].
Using a declarative language, developers declare relations between source and tar-
get patterns of model elements, however, without having to define precisely how the
relations between the actual elements are established during execution. In contrast, im-
perative languages are based on the procedural programming paradigm and therefore
require developers to give a precise, algorithmic definition of the execution.

An open problem is that declarative and imperative languages are equally ineffective
when it comes to the concise definition of model transformations. The reason is that the
underlying logic [CHO6] of real-world transformations often involves simple relations
between source and target elements on the one hand, and more complex parts on the
other hand. Hence, whereas declarative transformations enable a concise definition of
the simple relations, they imply a verbose blowup of the set of transformation rules in
order to encode more complex parts of the transformation logic. Conversely, imperative
transformations enable a direct definition of these complex parts, but require a verbose
encoding of recurrent instructions that are needed to establish the simple relations
between elements. Such recurrent instructions are also referred to as boilerplate code.
Thus, the fourth unresolved problem addressed in this thesis is that current approaches
for the definition of model transformations require developers to cope with verbosity
either way, regardless of whether they use declarative or imperative languages.
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Figure 1.2: Overview of the contributions made in this thesis.

1.4 Scientific Contribution

This thesis proposes a model-driven approach for the information flow security engineering
of CPSs. To this end, our approach provides engineers with model-driven techniques for the
specification, refinement, and verification of information flow security policies. In particular,
as depicted in Fig. 1.2, this thesis comprises the following contributions:

@ At the level of MBSE, we provide systems engineers with a discipline-spanning
specification technique for security policies [*Ger18]. To avoid an underspecification
of security requirements, we integrate the concept of flow policies [Man03] from the
theory of information flow into structural models used in systems engineering practice.
This integration enables authorized flows to be distinguished from unauthorized flows
and thereby facilitates the early security requirements engineering. We also address the
decomposition of structural models, which requires engineers to refine the specified
security policies from the system level to the subsystem level. We conceptualize
an automatable validity check for these refinements, which ensures that the security
restrictions of a system-level policy are enforced by the subsystem-level policy.

@ We guide software architects during the architectural design by establishing well-
formedness rules for the refinement of security policies [*GS19; *GS18]. To enable
the specification of security policies in the context of CBSE, we classify the interfaces
of a component according to the sensitivity of the information they exchange. The clas-
sification separates security-critical from observable information and thereby restricts
the information flow between certain interfaces. We enable architects to partially derive
such component-based policies from the flow policies used in MBSE. Furthermore,
when architects decompose a component, our rules help refine its security policy into
a well-formed set of finer-grained policies, one for each resulting subcomponent. A
well-formed refinement ensures that the fine-grained policies are composable, i.e., they
restrict the information flow as requested by the coarse-grained policy being refined.
Hence, following the established rules ensures security of composite systems.
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@ Building upon a well-formed refinement of component-based security policies, we
enhance the behavioral design of components with a verification technique for real-
time information flow security [*GSB18]. After software engineers have designed the
communication behavior of components using timed automata, the proposed technique
checks the information processing of the automata against unauthorized information
flows violating the component’s security policy. In particular, our contribution is
sensitive to the real-time behavior of timed automata. Thereby, it enables software
engineers to detect timing channels, which are exploitable by observing the instant of
time at which messages are passed. Our contribution reduces the verification to an
automated refinement check [HBDS15], which is based on existing model-checking
techniques for real-time systems. Thereby, we enable software engineers to reuse the
off-the-shelf model checker UppaaL for the verification of the information flow security.

@ At the base level of MDE, an auxiliary contribution of this thesis is a reduced verbosity
of model transformations [*GB19; *GSB17]. For example, such transformations
are used by our prior contributions to translate flow policies into component-based
security policies, or to convert timed automata into a form that enables off-the-shelf
verification of security properties. To reduce the verbosity of transformation definitions,
we apply the principle of MDE to the transformation development itself. In particular,
we enable developers to declare simple relations between source and target elements
using a transformation model [Béz+06], which abstracts from the detailed execution
of a transformation. On this basis, our contribution includes an automated engine to
infer recurrent declarations from a given set of non-recurrent declarations. Hence,
large parts of the transformation logic do not have to be declared manually, saving
developers from the verbose definition of boilerplate instructions. Furthermore, we
contribute a framework for the automated execution of transformation models. To
define complex parts of the transformation logic that cannot be declared, our framework
enables developers to refine the execution of a transformation model using imperative
instructions. As a benefit, neither simple relations between source and target elements,
nor complex parts of the transformation logic need to be encoded verbosely.

1.5 Outline

The remainder of this thesis is structured as follows. In Chapter 2, we lay the foundations
by giving background information on MDE, the engineering of CPSs, and the theory of
information flow security. Subsequently, we address the level of MBSE and describe the
discipline-spanning specification of security policies in Chapter 3. Next, in the context of
CBSE, we explain the architectural refinement of well-formed security policies in Chapter 4.
On this basis, Chapter 5 introduces our verification technique for the information flow security
of real-time systems. In Chapter 6, we focus on the level of MDE and present our approach
for reducing the verbosity of model transformations. Finally, Chapter 7 concludes this thesis
and also takes possible future extensions into account.
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In this chapter, we lay the foundations for the remainder of the thesis. To this end, Section 2.1
first elaborates on MDE in general. Subsequently, we focus more specifically on the use of
models for systems engineering in Section 2.2, and for software engineering in Section 2.3.
Finally, in Section 2.4, we address the research field of information flow security.

2.1 Model-Driven Engineering

MDE [Sch06; Sil15; BCW17] is the central development paradigm underlying this thesis,
emphasizing models as the primary artifact [Mén+19] used to engineer software-intensive
systems such as CPSs. As stated by Stachowiak [Sta73], a crucial feature of a model is that
it describes a corresponding original. Thus, the concept of models is intrinsically linked to
a modeling language in which this description is given. Accordingly, we define models as
follows:

Definition 2.1 (Model). “A model is a description of (part of) a system written in a well-
defined language” [KWBO03].

Note that the original system described by a model must not necessarily pre-exist, but can
also be a system that is still under development. Whereas the purpose of a descriptive model
is to document existing systems, a model that is used to develop new systems is referred
to as prescriptive [Hel+16]. According to the constructive focus of this thesis, models are
used for prescriptive purposes, thereby adopting the approach of Model-Driven Software
Development (MDSD) [SV06].

Another core feature of models is abstraction from their corresponding originals [Sta73].
Thus, a model does not describe all aspects of the original system in full detail, but reduces
the description to a certain extent. In the scope of MDSD, this abstraction applies to the
computing platform [AKO5] on which the final implementation of a system is eventually
based. A platform represents the solution space for the problem of developing a software
system [SV06]. In this context, models act as the corresponding problem description because
they abstract from the platform-specific implementation of a system under development. Such
a model is termed platform-independent, ensuring portability to different target platforms. In
the remainder of this thesis, we will focus on platform-independent models.
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Despite the abstraction, another feature of models is their pragmatics [Sta73]. For example,
the development of executable software still requires a proper implementation on the basis of
a specific platform. Thus, a platform-independent model must be pragmatic by enabling the
derivation of platform-specific artifacts. A basic principle of approaches called model-driven
is to automate this derivation [SV06], generating platform-specific artifacts such as code from
platform-independent models automatically. This approach is also referred to as generative
software development [RSVW10]. In contrast, approaches termed model-based reduce this
degree of automation because they require a higher manual effort to develop a system, using
models only as a preliminary draft. As a prerequisite for the automation in model-driven
approaches, models must be based on a formal scheme that defines precisely how they are
processed by a generator. Accordingly, as described in Definition 2.1, the underlying modeling
languages must be well-defined using appropriate specification techniques [cf. BKP20]. In
Section 2.1.1, we therefore focus on the use of metamodels to define modeling languages
formally. Subsequently, in Section 2.1.2 we address model transformation as an enabling
technology for the automated generation of artifacts from models.

2.1.1 Metamodeling

Unlike traditional modeling languages for MDSD like the standardized Unified Modeling
Language (UML) [OMG17], current languages used in MDE tend to focus on a specific
application domain [Sch06], which we define as follows:

Definition 2.2 (Domain). A domain is “a bounded field of interest or knowledge” [SV06].

A modeling language for a specific domain is known as a DSL [DKV00; KBM16]. The
domain that we address in this thesis is the field of CPSs. Thus, the modeling languages intro-
duced in Section 2.2 and Section 2.3 are DSLs focusing on specific characteristics of CPSs.
In general, a model given in a DSL must therefore be well-formed (cf. Definition 2.1) with
respect to the constraints and rules of the underlying domain. Accordingly, such constraints
and rules must be accounted for by the definition of a DSL. Whenever the definition of a
modeling language is itself given as a model, one refers to metamodeling [Kiih06; SRVK11].
We define such metamodels as follows:

Definition 2.3 (Metamodel). “A metamodel is a model used to specify a language” [KleO8].

A model given in a modeling language is therefore an instance of its associated metamodel.
In this context, a metamodel defines the abstract syntax of the language [SV06], thereby
imposing structural restrictions on models. By contrast, a metamodel is not concerned with
the notation in which models are given, which is determined by the concrete syntax of a
language. In particular, a metamodel leaves open whether a language is textual or visual.

Throughout this thesis, we rely on the Eclipse Modeling Framework (EMF)! as our un-
derlying environment for metamodeling. To enable the creation of metamodels for specific
target domains, EMF provides a dedicated meta-metamodel named Ecore. In Fig. 2.1, we
show a simplified excerpt from this metamodel in the form of a class diagram.

]https ://www.eclipse.org/modeling/emf
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Figure 2.1: Simplified excerpt from the Ecore metamodel as part of the EMF.
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Please note that Ecore is self-explanatory in the sense that it serves as its own metamodel.
Accordingly, it enables a form of bootstrapping because the metamodel shown in Fig. 2.1
is based on the syntax defined by itself. In the following, we will therefore use the Ecore
metamodel itself to exemplify its own constituent elements.

As can be seen, an Ecore-based metamodel comprises a number of classifiers represented
by the class EClassifier, each one using a name to denote a relevant type from the target domain.
Ecore supports two basic kinds of classifiers. One kind is a data type, which is represented by
the class EDataType. Whereas primitive data types like EInt, EString, or EBoolean are already
built-in by EMF, it is also possible to define additional domain-specific types. For example,
an enumeration is a special kind of data type that is represented by the class EEnum and
comprises a fixed, enumerable set of liferals. Each of these eLiterals is represented by an
EEnumLiteral, which has a name and may refer back to its comprising eEnum.

Another kind of classifier is a class, which is represented by the class EClass and acts as the
type of one or more constituent elements of a model. Thus, each model element is an instance
of a specific class from the underlying metamodel. For example, each of the constituent
classes of Ecore depicted in Fig. 2.1 is actually an EClass itself. Classes can be equipped with
features to represent characteristics of individual model elements, enabling them to feature
specific values. To that end, each EClass comprises a number of eStructuralFeatures. Each
EStructuralFeature is typed by a classifier, thereby defining the type of the featured values. In
addition to a name, each feature is also associated with a lowerBound and an upperBound. The
integer interval represented by these two bounds is the multiplicity of a feature, defining the
minimum and maximum number of values that can be featured. If the maximum number
restricts the feature to at most one value, we refer to it as a single feature. Otherwise, if the
maximum number allows a feature to indicate more than one value, it is known as a many
feature. For example, in Fig. 2.1, both eLiterals and eStructuralFeatures are many features. In
contrast, the type is a single feature limited to one. There are two basic kinds of features,
differing in the kind of EClassifier that acts as the type of an EStructuralFeature.

11
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First, a reference is a feature that is represented by the class EReference, using another EClass
as its type. Thus, a reference represents a relationship between classes, thereby enabling a
model element to refer to other elements. A reference can be a containment such that referred
elements are treated as contained by the referring element. As a result, a contained element
may not exist without its container element. For example, in Fig. 2.1, the eLiterals of an
EEnum and the eStructuralFeatures of an EClass are both containments. In contrast, a reference
that is not a containment is called cross-reference and enables a referred element to exist
independently of the referring element. As an example, the type of an EClassifier corresponds
to a cross-reference. References are generally unidirectional, such that a referred element is
navigable from the referring element only. However, a reference may use another reference
as its eOpposite, which inverts the relationship between both classes. Thereby, it enables
navigation in the opposite direction as well, merging both opposite references into a single,
bidirectional reference. For example, the reference between EEnum and EEnumLiteral is the
only bidirectional one in Fig. 2.1. Second, another kind of feature is an attribute represented
by the class EAttribute. In this case, the type of the feature is an EDataType. In Fig. 2.1, each
depicted attribute of a class corresponds to an EAttribute.

Finally, metamodels also support subtyping [LW94] in the form of multiple inheritance
between classes. If an EClass refers to one or more eSuperTypes, it acts as a subclass that
implicitly inherits all features from these superclasses. For example, inheritance is used by
the subclasses of EClassifier and EStructuralFeature. In Fig. 2.1, both are italicized to indicate
that they are abstract, i.e., elements can only be created by instantiating their subclasses.

Besides the abstract syntax, a metamodel can also impose additional conditions on the
syntactical context of model elements [SV06], thereby restricting an element’s features to
specific, context-dependent values. Such context conditions® define the circumstances under
which the syntax of a model is well-formed. In the remainder of this thesis, we assume that
context conditions are given in the Object Constraint Language (OCL) [OMG14].

2.1.2 Model Transformation

The transformation of models is an essential part of MDE, generating development artifacts
from models automatically [Men13; MGO06; CH06; Met05; SKO03]. In this thesis, we restrict
ourselves to model-to-model transformations, in which the generated artifacts are again models
given in terms of their abstract syntax [CHO6, p. 634]. Thereby, we exclude model-to-text
transformations [RMKP12], in which platform-specific artifacts such as code are synthesized
in the form of a concrete, textual syntax. We define model transformations as follows:

Definition 2.4 (Transformation). “A transformation is the automatic generation of a target
model from a source model, according to a transformation definition” [KWBO03].

According to Definition 2.4, we use the terms source model and target model to describe
the input and output of a transformation. As described below, transformations are defined at
the meta level of the respective languages in which source and target models are given:

“We avoid the common term static semantics to account for the fact that context conditions do not assign any
semantics to models at all [HR04, p. 65].

12
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Definition 2.5 (Transformation Definition). “A transformation definition is a set of transfor-
mation rules that together describe how a model in the source language can be transformed
into a model in the target language” [KWBO03].

A transformation definition is usually given in a model transformation language [Heb+18;
KG17], which is “a language that provides a set of constructs for explicitly expressing, com-
posing, and applying transformations” [SK03]. Definitions given in a particular language
are executed with the help of a transformation engine [CH06], as provided by dedicated
transformation tools [Kah+19]. We refer to the set of transformation rules from Defini-
tion 2.5 as rule set. Depending on whether a transformation language provides a modularity
mechanism [CHO6], the rule set can be split across multiple transformation modules. Trans-
formation rules encode the logic of a transformation, which “expresses computations and
constraints on model elements” [CH06]. We define transformation rules as follows:

Definition 2.6 (Transformation Rule). “A transformation rule is a description of how one or
more constructs in the source language can be transformed into one or more constructs in the
target language” [KWBO3].

Transformation languages can be fundamentally distinguished according to whether the
encoded rules are declarative or imperative [IMG06]. In the imperative case, transformation
rules define precisely how the source constructs are transformed into target constructs. By
contrast, declarative rules only declare what the source and target constructs are. Thus, a
description of how the transformation is carried out, as demanded by Definition 2.6, requires
the underlying transformation engine to apply the transformation rules automatically. For
example, Query/View/Transformation (QVT) refers to a standardized family of transformation
languages comprising both declarative and imperative approaches [OMG16].

Model transformations can have various intents, which are cataloged in [Lic+16]. This
variety implies a fundamental distinction between two types of transformations, differing with
respect to the uniformity of source and target metamodels. On the one hand, a transformation
is called endogenous if the source and target metamodel are the same [MGO06], such that
the respective models are given in one uniform language. For example, in the scope of this
thesis, we use such endogenous transformations with an analysis intent [Lic+16] to analyze
the source models for security properties.> In the endogenous case, another distinction is
made between in-place transformations (manipulating a single model that acts as both source
and target) and out-place transformations (separating source and target into multiple distinct
models) [MGO6]. In this thesis, we generally focus on out-place transformations.

On the other hand, a transformation from one metamodel to a second, distinct metamodel
is called exogenous [MGO6], involving non-uniform languages for the description of source
and target models. As an example from this thesis, we use exogenous transformations
with a translation intent [Lic+16] to translate the meaning of source models into a target
language. Note that, due to the non-uniformity of source and target metamodels, exogenous
transformations are out-place by definition.

3According to Lucio et al., the analysis intent is restricted to exogenous transformations [Lic+16, p. 667].
However, endogenous transformation can be regarded as a special case of exogenous transformation. In
general, transformations with an analysis intent can therefore be endogenous as well.

13



CHAPTER 2. FOUNDATIONS

Analyze (5 Identify Define & Define
Application
Environment Requirements Functions
Scenanos
Environmental ] Application ] Function ]
Modelﬁ Scenarios m Requ|rements|?:j Hierarchy B

: . Decomposition -
(€ Decompose DA @ (@ Allocate (5 Define
System Engineering System Behavior
Y yes L Disciplines

Active | & : Relevance System
Structure Annotations Behavior

Systems Engineer

CONSENS®

Figure 2.2: High-level overview of the Consgns process for MBSE [cf. Hol+16a].

2.2 Model-Based Systems Engineering with CONSENS

This thesis uses ConNsens [Ana+14a; GFDKO09] as a specification technique for MBSE.
Consens provides systems engineers with a DSL for the design of intelligent technical
systems, which manage and optimize their own operations autonomously depending on their
situational context. The software underlying such systems is therefore referred to as self-
adaptive [Wey19; Lem+13; Che+09]. Although this thesis does not focus on self-adaptation,
we use the DSL provided by Consens as an enabler for MBSE of CPSs. Furthermore, we also
build upon an associated process that stipulates how engineers apply this DSL systematically.
The outcome of the process is a number of partial models, each one giving a particular
view [BBCW19; CCP19] on the system under development. In combination, the partial
models constitute the discipline-spanning design model, which is used as a starting point
for the discipline-specific engineering. In Fig. 2.2, we give a high-level overview of the
Consens process [cf. Hol+16a; Gau+14; GFDKO09]. To describe this and other processes in
this thesis, we use the Business Process Model and Notation (BPMN) [OMG13]. By focusing
on the role of a systems engineer, Fig. 2.2 abstracts from the diversity of systems engineering
roles [She96]. We refer the reader to [Hol+16a] for a more diverse reflection of the roles
involved in the ConseNs process. In the following Sections 2.2.1 and 2.2.2, we introduce the
process by addressing two partial models in detail.

2.2.1 Environment

Initially, in the activity Analyze Environment, systems engineers identify relevant interfaces
between the system and physical or virtual elements in its environment. These environmental
elements, including the corresponding interfaces, are represented in a logical environmental
model. By focusing on the environment only, this model provides a black-box view of the
system under development. In CoNsENs, various types of interfaces can be defined by means
of the following relations:
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Figure 2.3: Environmental model of a self-driving car.

Material flow describes the exchange of tangible physical substance like “gases, fluids, solids,
dust and also raw products, objects being tested or objects being treated” [Del+14].

Energy flow applies to intangible physical values like “mechanical, thermal, electrical, op-
tical energy, or force and electric current” [Del+14].

Information flow refers to the exchange of knowledge about “measured variables, control
pulses, or data” [Del+14] over virtual channels of communication.

Mechanical connection comprises undirected connection types that are used in connection
technology [KBD16], including form-fit, force-fit, and firmly bonded connections.

As an example, Fig. 2.3 shows an environmental model of the Self-Driving Car introduced in
Section 1.2. The car represents the system under development, whereas the aforementioned
types of relations reflect the interfaces between the system and its environment. First, the car
is exposed to weather effects, which give rise to a material flow induced by the Atmosphere.
Second, the car is assumed to be an electric vehicle. To charge its battery, it may be plugged
into a Charging Station, thereby giving rise to a mechanical connection that represents the
plug. As depicted, unlike the aforementioned flow relations, mechanical connections are not
directed to any of the connected elements. The connection with the Charging Station represents
the car’s power supply, which corresponds to an energy flow. Furthermore, since the car is
equipped with a rangefinder, it also uses energy flows to illuminate an Obstacle with laser light
and measure the light reflection. Another energy flow corresponds to the acceleration of an
Occupant when carried by the car. Third, the communication paths of the car introduced in
Section 1.2 correspond to information flows. In particular, traffic information is exchanged
with a Traffic Reporting system, whereas the Cloud Storage is used to store and retrieve vehicle
data. Another information flow represents the exchange of information with an Occupant.
Moreover, the car has access to a back-end for Predictive Maintenance, which is used by
maintenance engineers to request diagnostic data. In addition, by transmitting its current
position and time, a Navigation Satellite enables the car to determine its geographic location.
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In general, the above types of flows represent intended interfaces between the system and
its environment. However, a flow may also correspond to an unintended interface that causes
disturbance, but must nevertheless be handled by the system. In Fig. 2.3, this is the case for the
weather effects induced by the Atmosphere. In order to distinguish intended from unintended
interfaces, a flow may be marked as a disturbance relation [Ana+14a]. As shown in Fig. 2.3,
such a disturbing flow is depicted in red inside the environmental model.

In Fig. 2.2, the subsequent activity Identify Application Scenarios leads to the informal,
scenario-based specification of the system’s behavior. Each scenario indicates a designated
trigger and describes informally how the system behaves whenever the triggering situation
occurs. In the following activity Define Requirements, the identified scenarios are further
refined by specifying informal, textual requirements in tabular form. In particular, whereas
the application scenarios are of purely functional nature, the specified requirements may
involve non-functional aspects as well. Afterwards, engineers specify the function range
of the system. In this context, a function is defined as a “relationship between input and
output parameters, with the aim to fulfill a task” [Ana+14a]. As a result of the activity Define
Functions, such tasks are represented in terms of a function hierarchy, which recursively
subdivides functions into subfunctions.

2.2.2 Active Structure

The function hierarchy provides an initial indication of how a system must be modularized
to fulfill particular functions. On the basis of this modularization, engineers use the activity
Decompose System to describe the decomposition of the overall, coarse-grained system into
fine-grained subsystems. The environmental model serves as an input to the decomposition,
which results in a logical model referred to as active structure. Unlike the environmental
model, the active structure describes not only the interfaces between system and environment,
but also interfaces between subsystems. Thereby, it provides a white-box view on the system
under development. As depicted in Fig. 2.2, the activity may be executed recursively to
provide for the case that the resulting subsystems require a further decomposition. This
recursion enables the active structure to be decomposed up to a desired level of granularity.

We depict an excerpt from of the active structure of the self-driving car in Fig. 2.4. In
this case, only one level of subsystems has been established. Due to the focus on software
engineering of this thesis, we restrict ourselves to nested elements that are developed with the
involvement of software engineers. One of these elements is a User Interface, which handles
the input and output of information from or to occupants. The Body Control Module monitors
and operates multiple electronic devices inside the car and also provides the diagnostic
data analyzed during predictive maintenance. Among other functions, the Infotainment System
enables the car to navigate autonomously. To that end, it uses a Positioning System to determine
its own location. Furthermore, to enable crowdsourcing of traffic information, the Infotainment
System does not only receive such information from the traffic reporting, but also reports the
car’s own position. Another nested element represents the Electric Engine of the car. Finally, a
Storage Gateway enables other elements of the system to store and retrieve vehicle data, acting
as an interface to the cloud.
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Figure 2.4: Active structure of a self-driving car.

According to the focus of this thesis, we omit material and energy flows, which are
irrelevant from the perspective of a software engineer. Since such physical flows might still
carry information, they are vulnerable to security breaches as well. Nevertheless, we focus on
the communication between software systems or subsystems by means of information flows.
For example, in Fig. 2.4, the User Interface exchanges information with both Infotainment
System and Body Control Module, thereby enabling occupants to enter the destination or issue
control instructions for electronic devices. Since the car drives autonomously, the Infotainment
System provides the Electric Engine with the necessary driving instructions. To this end, it also
retrieves location data from the Positioning System. The Storage Gateway receives engine data
to be stored in the cloud from the Electric Engine. Furthermore, it is also used by the Body
Control Module to store and retrieve operating data. Finally, the Infotainment System uses the
Storage Gateway to retrieve status information extracted from the stored vehicle data.

In the following activity Allocate Engineering Discipline, systems engineers prepare the down-
stream development of the system within the individual disciplines. To that end, they annotate
system elements inside the active structure with the relevant engineering disciplines that need
to be involved in their development. Accordingly, the result of this activity are relevance
annotations [Riel5] for the individual system elements. As mentioned before, all nested
system elements depicted in Fig. 2.4 are relevant to the discipline of software engineering.
In addition, all elements except the Infotainment System and the Storage Gateway involve elec-
trical engineers. Finally, the Electric Engine also requires substantial contributions from the
disciplines of mechanical and control engineering.

In the final activity Define System Behavior, systems engineers use various types of behavioral
descriptions to specify how the system behaves in order to realize the predefined application
scenarios. For example, the behavior can be described by sequences of interactions between
system or environmental elements, or by means of a stateful model defining transitions
between different states of the system. In this thesis, we abstract from the detailed specification
of system behavior at the level of MBSE. Accordingly, in Fig. 2.2, the activity is depicted as a
collapsed subprocess [OMG13], hiding the detailed specification of behavioral descriptions.
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2.3 Model-Driven Software Engineering with MECHATRONICUML

MEecHATRONICUML [*Bec+14; *Dzi+16; *Dzi+14; GS13; GTBFO03] is a method for MDSD
of CPSs, providing engineers with a design process and an accompanying DSL. It em-
phasizes the interplay between software and control engineering because both disciplines
develop software in a broader sense. As a difference, software engineers are responsible for
the discrete, stateful coordination behavior of a system that uses message passing communi-
cation [CHQ16] to coordinate different systems or subsystems with each other. Hence, this
coordination software is located at the cyber level of a CPS. In contrast, control engineers
develop the continuous feedback controllers that define the control behavior of a system,
e.g., in terms of differential equations. By controlling the signal exchange over sensors and
actuators, this control software represents the interface to the physical layer comprising the
mechanical and electrical elements of a CPS. Whereas the provided DSL is dedicated to the
development of the coordination software, it also addresses the integration of the control
software, which is developed outside the scope of MeEcHaTRONICUML. After introducing the
design process in Section 2.3.1, we elaborate on the architectural design of the coordination
software in Section 2.3.2 and on its behavioral design in Section 2.3.3.

2.3.1 Design Process

In Fig. 2.5, we give an overview on the MEcHATRONICUML process, restricted to the design
of the coordination software by software engineers. We refer the reader to [HSST13] for a
detailed consideration of the interaction between software and control engineers, which is
beyond the scope of this thesis. We also abstract from the requirements engineering as a
subdiscipline of software engineering. In this phase, requirements engineers use the initial
subprocess Specify Formal Scenarios to formally specify the intended coordination behavior
in terms of scenarios, which are derived from the system behavior specified at the level of
MBSE (cf. Section 2.2.2). In this thesis, we omit the details of this subprocess. Instead,
we refer the reader to [Hol+16b] for the software requirements engineering in the scope of
MEecnHAaTRONICUML and to [Hol+16a; Hol19, Chapter 3] for its integration with MBSE.

In this thesis, we focus on the platform-independent design phases of the MECHATRON-
1IcUML process. Initially, during the architectural design phase, engineers operate as soft-
ware architects and design a software architecture [Gar14] of the system under development.
Since MEcHATRONICUML is based on the paradigm of CBSE [Val+16; Szy02], it reflects the
view of architects by providing them with a component model [CSVC11; LW07; Laul4] for
the design of component-based architectures. On the basis of the MEcHATRONICUML com-
ponent model [Heil5, Chapter 3], the outcome of the activity Derive Component Architecture is
a composition of components, which is derived from the active structure developed in MBSE
(cf. Section 2.2.2). We refer to [Hol19; Riel5; Ana+14b; Gau+09] for details on this deriva-
tion. To separate different concerns into distinct and reusable components, every component
might be decomposed into subcomponents during the Decompose Component activity. This
decomposition is a recursive process that terminates when none of the components need to
be decomposed further. We describe the component model in Section 2.3.2.
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Figure 2.5: High-level overview of the MEcHAaTRONICUML design process [cf. HSST13].

The subsequent phase is the behavioral design of the predefined software components, us-
ing a behavior-oriented view that we introduce in Section 2.3.3. Designing the coordination
behavior is a two-stage process that decouples the external communication between compo-
nents from their internal behavior, thereby enabling compositional verification [GTBF03].
As part of the first stage, software engineers define the application-level communication
between components in the activity Specify Inter-Component Communication, thereby realizing
the formal scenarios specified during the requirements engineering phase. The result is a
set of coordination protocols [Dzil7, Chapter 3], acting as behavioral contracts [Mey92]
for components passing messages to each other. The subsequent activity Specify Verification
Properties leads to a set of properties like safety or liveness [AS85; Lam77], given in terms
of temporal logic formulas [Pnu77]. These properties act as functional requirements for the
coordination protocols [Dzil7, Chapter 4] and are formally verified during the subsequent
Model Checking activity [*GSDH15; Dzil7, Chapter 5]. If this first step of the compositional
verification fails because any of the properties is violated, software engineers need to adjust
the protocols accordingly until all properties are satisfied.
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The second stage of the compositional verification is initiated by the Specify Intra-Component
Behavior activity. Software engineers use this activity to specify the stateful behavior that
drives the message passing of each component, thereby implementing the predefined co-
ordination protocols. However, whether these protocols have been implemented correctly
depends on the result of the subsequent Refinement Check [HBDS15; Heil5, Chapter 5]. This
second step of the verification indicates whether the component behavior might violate any
of the predefined properties and therefore represents an incorrect refinement of the protocol
behavior. In this case, software engineers need to adjust the component behavior and recheck
the refinement. In case of a correct refinement, the compositionality of the verification ensures
that the coordination behavior of the system satisfies the given properties [GTBFO03].

2.3.2 Component Model

In general, a software component model defines “what components are, how they can be
constructed, how they can be composed or assembled, and how they can be deployed”
[LWO7]. To support these operations, MEcHATRONICUML provides software architects with a
component model for the architectural design of CPSs [Heil5, Chapter 3]. This model enables
software architectures to be hierarchically structured since components may be composed of
nested subcomponents. Thereby, MEcHaTRONICUML stipulates a top-down decomposition of
high-level components into subcomponents at the next lower level. In the scope of this thesis,
a component is referred to as a composite component if it is decomposed into subcomponents,
each forming a component part. The bottom-level components of an architecture, which are
not further decomposed, implement the coordination behavior of the system. To this end,
they encapsulate behavioral specifications introduced in the upcoming Section 2.3.3. In
contrast, the behavior of composite components emerges from the recursive composition of
subcomponents, enabling their behaviors to interact with each other.

To enable this interaction, components are equipped with a communication interface com-
prising a set of dedicated interaction points, called ports. For two components to communi-
cate, their ports must be bound by means of a connector. MEcHaTRONICUML supports two
crucial binding mechanisms. First, a connector between a port of a composite component and
another port of a subcomponent is known as a delegation connector, enabling the composite
component to delegate the interaction over its port to a specific subcomponent. The underlying
binding mechanism is known as vertical binding [CSVC11]. Second, a connector is referred
to as assembly connector if it connects two ports of components at the same hierarchical level,
and thereby enables interaction between their behaviors. This binding mechanism is referred
to as horizontal binding [CSVCI11].

Figure 2.6 shows an example architecture for the self-driving car. The top-level composite
component named Car is composed of six component parts. These parts refer to subcompo-
nents that reflect the software-relevant elements of the active structure from Fig. 2.4. The
Car uses delegation connectors to delegate the interaction with the environment to specific
subcomponents. Furthermore, assembly connectors enable the interaction between subcom-
ponents. Accordingly, the depicted connectors reflect the information flows from Fig. 2.4. In
the following, we introduce the various types of ports and components separately.
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Figure 2.6: MEcHaTRONICUML component architecture of the self-driving Car.

Port Types

By providing specific types of ports, MEcHaATRONICUML supports different interaction
styles [CSVC11] between components. First, a discrete port enables a component to interact
by message passing, thereby implementing the coordination behavior of a CPS on the basis
of the request-response interaction style [CSVC11]. Second, a continuous port represents a
signal exchange between components, which realizes the control behavior of a CPS. Third,
a hybrid port uses a sampling interval to turn such a continuous signal into a discrete value
or vice versa, thereby representing the interface between control and coordination behavior.
Both continuous and hybrid ports rely on the pipe & filter interaction style [CSVCI11].

In Fig. 2.6, the communication over assembly connectors is realized by means of discrete
ports, enabling subcomponents to coordinate each other by message passing. In contrast,
three of the depicted delegation connectors correspond to a signal exchange. For example,
the continuous signals received from a navigation satellite are sampled by a hybrid port of
the Positioning System. Similarly, the User Interface is equipped with hybrid ports to sample
the continuous I/O signals exchanged with an occupant through input or output devices.

As depicted in Fig. 2.6, the interaction over ports in MEcHATRONICUML is directed. Since
signal exchange is unidirectional, both continuous and hybrid ports correspond to in or out
ports, supporting either the receiving or sending of signals. Similarly, message passing can
be used to realize a one-way communication as well. In this case, the respective discrete
ports are unidirectional in or out ports, which are either used to receive or send messages.
This is illustrated by the connector between Electric Engine and Storage Gateway in Fig. 2.6,
which transmits engine values to be stored in the cloud. However, a discrete port may also be
declared as a bidirectional in/out port, which enables messages to be both received and sent.
This is the case for all other discrete ports in Fig. 2.6.
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Component Types

Similar to ports, also components can be distinguished between discrete, continuous, and
hybrid. A component is discrete if all of its recursively contained ports are either discrete
or hybrid. Thereby, a discrete component implements coordination behavior of a system. In
contrast, a component that contains exclusively continuous ports is a continuous component.
This type of component implements control behavior of a system and thereby represents an
interface to the discipline of control engineering. Finally, a hybrid component may recursively
contain all kinds of ports. However, in MEcHATRONICUML, the bottom-level components
inside an architecture need to be clearly defined as either discrete or continuous, thereby
forcing a precise distinction between coordination and control software at the lowermost
hierarchical level. Accordingly, only composite components can be hybrid.

For example, Fig. 2.7a shows a further decomposition of the Electric Engine into nested
subcomponents. On the one hand, both Cruise Control and Rangefinder are continuous sub-
components, which are implemented by control engineers outside of MEcHATRONICUML,
therefore using continuous ports only. On the other hand, the Engine Control Unit is a discrete
subcomponent, combining discrete and hybrid ports in order to control the speed of the car.
Hence, by recursively containing all kinds of ports, the Electric Engine corresponds to a hy-
brid composite component. In contrast, Fig. 2.7b introduces a Navigation System and a Data
Handling subcomponent. Both are discrete components implemented by software engineers,
thereby turning the Infotainment System into a discrete composite component.

2.3.3 Real-Time Behavior

Due to their physical environment, embedded systems like CPSs operate under hard real-
time constraints, which also impact their software [Lee09]. The communication between
software components is therefore restricted to specific time frames, whereas untimely com-
munication represents a serious safety hazard. Hence, MEcHaTRONICUML uses real-time
statecharts [*Dzi+16; GB03; Bur02] to impose time restrictions on the coordination behavior
of components and thereby restrict the timing of the communication with other components.

22



2.3. MoDEL-DRIVEN SOFTWARE ENGINEERING WITH MECHATRONICUML

Legend
Location Initial Edge Invariant Guard Symbol Resets
Locaton ~—» 1 ( l ) o V] A

Figure 2.8: Schematic representation of the visual notation used for timed automata.

Whereas real-time statecharts combine UML statemachines [OMG17] and timed au-
tomata [AD94], their semantics is also expressible using the core syntax of timed au-
tomata [Hir04; *Ger13]. For simplicity, we therefore assume that the real-time coordination
behavior of MEcHATRONICUML is given in the form of timed automata. In the following, we
will first introduce the theory of timed automata. Thereafter, we will illustrate its practical
application to the coordination protocols that describe the inter-component communication,
and to the intra-component behavior that implements the predefined protocols.

Timed Automata

Essentially, a timed automaton is a labeled, directed graph of locations L representing discrete
states of a system, and edges E describing state transitions between locations. We introduce
our visual notation of timed automata in Fig. 2.8. A dedicated initial location [y € L represents
the starting state, whereas an edge that switches the system from one location to another is
said to fire. To measure the progression of time, the state space of a timed automaton also
comprises a set C of real-valued clocks. In [y, all clocks start to run at zero. From then on,
they will increase continuously at the same rate while the automaton delays in some location.

Clocks can be referred to by the labels of locations and edges (cf. Fig. 2.8), thereby enabling
the specification of time-dependent behavior. First, edges can be labeled with clock resets as
a set \ from the power set 2€. Thereby, the time measurement of a set of clocks is restarted
from zero when the edge fires. Second, both edges and locations may be labeled with a
clock constraint from the set B(C), restricting their activity to fixed time intervals. A clock
constraint is a Boolean expression that compares the current time values of specific clocks
against time limits defined by constant natural numbers. Constraints may use the comparison
operators <, <, =, >, and > [BY04]. When assigned to an edge, a clock constraint p acts as
a guard that defines a time interval in which the state transition is enabled. When assigned
to a location [, a clock constraint I (1) is referred to as an invariant that forces the automaton
to not delay in / any longer than the specified time limit. A location is urgent if its invariant
allows no time delay at all and therefore must be left immediately upon entry.

Furthermore, an edge may be labeled with a symbol p from an alphabet >, denoting the
occurrence of an event associated with the state transition. Whereas events are generally
considered external to an automaton, internal events are denoted by the symbol 7 € 3. An
automaton that fires an edge labeled with 7 is said to make a 7 transition. An automaton is
total with respect to S ¢ X if, for each p € S, it can always fire some edge labeled with p,
regardless of its current state. Referring to [BY04], we define timed automata as follows:
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Definition 2.7. A timed automaton A is a tuple (L, [y, E, I) where

e [ is a finite set of locations,
e [ € L is the initial location,

« Ec LxB(C)xXx2°x Lis the set of edges where p € B(C) is the guard, ;1 € ¥ is the
action, and \ € 2 is the set of clock resets,

» [: L — B(C) assigns invariants to locations.

Auxiliary Operations. We will make frequent use of two auxiliary operations over timed
automata. First, the restriction operator \ is used to disable all edges associated with specific
events. Thus, for S ¢ ¥, the automaton A\S will only keep those edges labeled with i ¢ S.
This is equivalent to relabeling the respective edges with a guard of false such that they can
never fire. Second, using the hiding operator /, edges will be disassociated from specific
events. Thus, in A/S, all edges labeled with i € S will be relabeled with 7. The respective
edges will be allowed to fire even without the occurrence of specific external events.

Parallel Composition. A composite system can be composed of multiple timed automata us-
ing a parallel composition operator that we denote by || [JLS00]. The result of the composition
is a network of timed automata, which communicate with each other by handshake synchro-
nization [BY04]. Thus, an edge labeled with p # 7 may only fire when synchronizing with a
counterpart edge that carries a complementary symbol zi. In the following, we will therefore
regard all symbols except 7 as synchronizations over dedicated synchronization channels. In
order to fire two edges from different automata synchronously, they must be labeled with a
complementary pair of symbols consisting of a provided synchronization (denoted by /) and
a required synchronization (denoted by ?) over the same channel. Whenever two automata
synchronize, the network will merge the synchronizing edges into a 7 transition. We will also
consider required synchronizations as inputs from a set I, whereas provided synchronizations
correspond to outputs from a set O. We generally assume that the alphabet is a disjoint union
¥ =TwOu{r}. An automaton that is total with respect to [ is said to be input-total. Thus,
for each possible input, the automaton can always fire an edge labeled with a corresponding
required synchronization. Note that, since handshake is mandatory, the || operator differs
from the standard parallel composition operator | from process algebras like CCS [Mil80]. In
our case, edges may only fire in isolation if they are labeled with 7. Accordingly, the network
Ajp || Ag is equivalent to a parallel composition Ay | Ay \ I; U O7 U I3 U O, which uses
the restriction operator to disable all unsynchronized edges labeled with p # 7 [Ben+96]. In
contrast, synchronized edges are not affected by the above restriction because they are merged
into a 7 transition by the composition A | As.

Automata may declare urgent locations as committed to take precedence over other au-
tomata. The entering and leaving of a committed location can neither be interrupted by time
delays, nor by firing an edge inside another automaton (unless being in a committed location
itself). Such locations are therefore useful to encode atomic sequences of state transitions.
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Simulation & Bisimulation. To address the question whether two timed automata behave
similarly from the perspective of an observer, we refer to the notion of simulation, which is
a binary relation between the state spaces of two systems [Mil71]. For each pair of related
states, a simulation requires any observable state transition that is possible in the first state to
be possible in the second state as well, and that the pair of states reached by these transitions
is again included in the relation. In our case, observable state transitions comprise both inputs
and outputs of firing edges, as well as time delays. Thus, two timed automata are similar
if their start states are included in a simulation. If so, whenever the first automaton can fire
an edge with an input or output, or can delay by some real-valued amount of time, then the
second automaton can do the same. Hence, any observations exhibited by the first automaton
are also exhibited by the second one. We denote the timed similarity of two automata by <.
Moreover, to consider the question whether two timed automata behave equivalently, we
may further restrict the aforementioned relation such that its converse relation is also a
simulation. If so, the relation is a bisimulation [Sti98]. If two timed automata are bisimilar,
then each observable state transition of an automaton is also possible for the other, and
vice versa. Thus, both automata will execute in lockstep and thereby exhibit equivalent
observations. We refer to this observational equivalence as timed bisimilarity, denoted by =.
Unlike inputs and outputs, edges labeled with 7 are nor considered observable in the
above definitions. Thereby, we restrict ourselves to weak variants of timed simulation and
bisimulation [Yi91]. Observable state transitions may thus be prepended, appended, or (in
case of time delays) even interrupted by an arbitrary number of 7 transitions. Hence, automata
can be weakly similar or bisimilar, even if they differ in the occurrence of internal events.

Coordination Protocols

Coordination protocols impose real-time restrictions on the asynchronous message passing
between two components over assembly connectors (cf. Section 2.3.2). In this context, two
communicating components each fill a role of the protocol, whereas we assume each role to
be described by means of a timed automaton. In Fig. 2.9, we illustrate an example protocol
named Speed Adjustment with roles filled by the Navigation System and the Engine Control Unit.
The coordination behavior implemented by the automata of both roles is based on a recurring
pattern named failsafe delegation [DBHT12; Dzil7, Chapter 6]. Here, the pattern is used to
delegate the task of adjusting the car’s speed depending on its geographic position.

Since the asynchronous communication in MEcHATRONICUML can be encoded by means
of synchronous communication [Hir04; *Ger13], we denote the sending of messages by out-
puts (1) and the receiving of messages by inputs (?). However, according to the asynchronous
communication, both automata will never synchronize with each other directly when passing
amessage. Instead, as shown in Fig. 2.9, the protocol assumes that sent messages are delayed
up to 5 units of time before they can be received. For this assumption to hold, a certain qual-
ity of service (QoS) must be guaranteed by the assembly connector over which messages are
conveyed. In Fig. 2.9, further QoS assumptions indicate that the connector may be unreliable,
which gives rise to messages getting lost in transit, and that messages will nevertheless be
received in the same chronological order in which they were sent.
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Figure 2.9: Communication behavior of the Speed Adjustment protocol.

In its initial location, the Navigation System initiates the coordination by sending an adjust
message to the Engine Control Unit, thereby indicating a speed limit that must not be exceeded
at the car’s current position. At the same time, the Navigation System will reset a clock t, which
acts as a timeout in its follow-up location with the invariant t < 50. Similarly, when receiving
adjust, the Engine Control Unit resets a clock w and switches to a new location with an invariant
of w <40. Accordingly, the speed adjustment should be confirmed by means of a done message
within 40 units of time. Alternatively, a fail message may be sent to decline the adjustment,
e.g., because the car’s pathway is blocked by a nearby obstacle detected through rangefinding.
If done is delivered, both automata switch back to their initial locations. However, to deal with
the case that any of the prior messages got lost in transit, the Navigation System will also switch
back to its initial location when a timeout occurs because neither fail nor done was received
until t = 50. If fail is delivered, both automata enter a failsafe location such that the Navigation
System may react to the failure, e.g., by taking an alternative route. However, if fail gets lost
in transit, the Navigation System may retry to adjust the speed from its initial location. In this
case, a new adjust message might be received by the Engine Control Unit in its failsafe location,
which it will immediately decline by sending another fail message. A committed location is
used to combine adjust and fail into an atomic sequence. Finally, the failsafe locations of both
automata are left when a continue message is sent from the Navigation System to the Engine
Control Unit, thereby setting the protocol back to its original state.

According to the MEcaaTRONICUML design process from Fig. 2.5, coordination protocols
are equipped with a number of temporal logic formulas, which are used to express functional
requirements that must be satisfied by a protocol [Dzil7, Chapter 4]. For example, the Speed
Adjustment protocol depicted in Fig. 2.9 must avoid a deadlock, which is defined as a state
in which no future edges may ever fire, regardless of how long the underlying automata will
delay [BDL04]. Under consideration of the specified real-time restrictions, such properties
of protocols can be formally verified by means of model-checking techniques [*GSDHI15;
Dzil7, Chapter 5]. Checking the coordination protocols against these properties is the first
step of MEcHATRONICUML’s compositional verification approach (cf. Section 2.3.1).
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Component Behavior

On the basis of the formally verified coordination protocols, software engineers specify the
real-time behavior of discrete or hybrid components, thereby filling the predefined roles of
each protocol. In contrast to the behavior of a role, the component behavior may refer to
continuous signals, which are sampled by the component’s hybrid ports. Moreover, if a
component comprises multiple discrete ports with different coordination protocols, the com-
ponent behavior may also interrelate these protocols and thereby introduce intra-component
dependencies between the individual role behaviors [DGB14; EH10]. In both cases, by intro-
ducing dependencies between the interaction behaviors of distinct ports, software engineers
may resolve potential nondeterminism inside the predefined coordination protocols.

As an example, Fig. 2.10 shows the component behavior of the Engine Control Unit. The
component comprises two discrete ports and therefore fills two distinct roles of different
coordination protocols. First, the depicted timed automaton implements the Speed Adjustment
protocol known from Fig. 2.9. Thus, the adjust, done, fail, and continue messages will be
passed over the infotain port. As an addition to the role behavior from Fig. 2.9, the signal
received over the hybrid distance port is used to resolve the nondeterminism between done
and fail. Therefore, the signal sent over the hybrid speed port is only adjusted successfully
when distance > 10.

Second, the automaton implements another protocol referred to as Engine Data Transmission,
which is based on a recurring pattern for real-time coordination named periodic transmis-
sion [DBHT12; Dzil7, Chapter 6]. The task accomplished by this protocol is to periodically
store engine data in the cloud. To this end, the store message is sent over the storage port
every five time units. This period is measured by a clock p, whereas the invariants of all
non-committed locations of the automaton shown in Fig. 2.10 are restricted by p < 5. Thereby,
independent of the current location, one of the looping edges of the automaton is triggered at
p = 5 to send the store message and reset the clock p. We assume that the engine data to be
stored is received by the Engine Control Unit as a signal over the hybrid diagnosis port. However,
whereas the sampled signal value needs to be attached to the store message as a parameter,
we abstract from this parametrization in Fig. 2.10.

Subsequent to the design of the component behavior, the MEcHaTRONICUML process
includes a refinement check [HBDS15; Heil5, Chapter 5] to verify that the predefined coordi-
nation protocols are implemented correctly by a component. To this end, different refinement
definitions including timed simulation and timed bisimulation may be used to verify that
the protocol behavior preserves the verification properties guaranteed by the implemented
protocols. Among other criteria, the nature of these properties will also determine which re-
finement definition must be selected. For example, in order to preserve the deadlock freedom
of the Speed Adjustment protocol, it is sufficient to check for the existence of a timed simulation
between protocol and component behavior [HBDS15]. The refinement check represents the
second step of MEcHATRONICUML’s compositional verification approach (cf. Section 2.3.1).
Thus, a correct refinement guarantees that the coordination behavior implemented by the
components will satisfy all specified verification properties.
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Figure 2.10: Component behavior of the Engine Control Unit.

2.4 Information Flow Security

The theory of information flow security [Man11; HS12; Smi07] serves as the general basis of
this thesis as it provides our underlying security model [MSBO02]. As such, it is used to define
the security needs of software systems precisely. Information flow security assumes that a
system exchanges information with multiple actors (which can also be other subsystems). On
this basis, it restricts the information processing inside a system such that security-critical in-
formation provided by certain actors must not flow to other actors, which are only authorized
to obtain noncritical information. Thus, such noncritical information must not depend on
critical information, otherwise enabling unauthorized actors to draw security-critical conclu-
sions. Information flow security addresses the protection goals of confidentiality and integrity.
In the first case, confidential information such as a secret is security-critical because it must
not be disclosed to malicious actors. In the second case, information is security-critical if ma-
nipulating that information must not enable malicious actors to tamper with other information
whose integrity needs to be preserved. As an example, information provided by occupants
is confidential and must not be leaked to the cloud (cf. Section 1.2). Thus, in Fig. 2.10, the
store message is noncritical and must not depend on the critical adjust or continue messages.
A security breach is possible through both explicit and implicit information flows [DD77].
In case of explicit flows, information is made accessible to certain actors directly. In con-
trast, implicit flows enable actors to draw indirect conclusions about information from other,
directly accessible information [KHHJOS8]. Both forms of information flow establish commu-
nication channels between actors through a software system. In this context, implicit flows
are strongly linked to the notion of a covert channel [JK11; JKZ12]. Originally introduced
by Lampson [Lam73], we use this term to denote any unauthorized channel that is parasitic
because it exploits communication over other, authorized channels referred to as overt chan-
nels. By abusing explicit flows as overt channels, an implicit flow is a means to establish a
covert channel [SMO3, p. 6]. We distinguish covert channels from side channels [Cadl1].
This term is frequently used in the area of cryptography to describe information leakage over
physical channels, which are unauthorized as well but not intended for communication at all.
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Another kind of covert channel is a timing channel [BGN17], enabling unauthorized actors
to draw critical conclusions from the response times of a system. Such channels exploit the
fact that the timing of noncritical information might depend on critical information, even if
the information content does not. Hence, since MEcuaATRONICUML involves time-dependent
behavior (cf. Section 2.3.3), we must take the respective time restrictions into account when
reasoning about the presence or absence of information flows. In the example of Fig. 2.10,
the timing of the noncritical store message must not depend on the critical adjust or continue
messages. Otherwise, it gives rise to a timing channel from the infotain to the storage port.

To avoid information flows like timing channels, critical information must not interfere with
noncritical information, thereby justifying the notion of noninterference as the most prominent
information flow property [GM82].* To overcome the restriction of noninterference to
deterministic systems, multiple alternative properties have been proposed in literature [cf.
Man00a; McL96; FG95]. These properties are referred to as possibilistic because they leave
probabilistic system behavior and the probabilities of information flows out of consideration.
According to Mantel, “a security property is defined by a security policy together with a
definition of security” [Man00a, p. 186]. Whereas the former specifies which information is
critical or noncritical, the latter defines to what degree critical and noncritical information
must be independent. In the following, we first elaborate on security policies in Section 2.4.1,
before addressing definitions of security in Section 2.4.2.

2.4.1 Security Policies

In general, a security policy [ASL02; GMS82; Jaul2] is a means to specify the security
requirements of a particular system. Thus, in the scope of this thesis, such policies are
used to impose restrictions on the information flow through systems, thereby specifying
concrete confidentiality or integrity requirements. In accordance with Mantel [Man03], the
policies used in this thesis are based on three different levels of information sensitivity.> In
particular, these levels separate security-critical from noncritical information. We describe
the underlying sensitivity levels in the following:

Critical information must not be communicated to certain actors. Thus, such actors must
neither access the information directly, nor draw any indirect conclusions about that
information from other accessible information.

Neutral information may be communicated to certain actors indirectly. Thus, such actors
cannot access neutral information directly, but may still draw indirect conclusions about
that information from other accessible information.

Observable information is communicated to certain actors directly. Thus, such actors can
access the information, but must not be able to draw any indirect conclusions from that
information about other, critical information.

*Noninterference is predated by Cohen’s strong dependency [Coh77] as the seminal information flow property.
Deviating from Mantel [Man03], we identify the three levels using alternative terms. In particular, we use the
term critical instead of confidential to emphasize that integrity requirements can be specified as well.
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In the example from Fig. 2.10, the store message must not depend on the critical adjust
and continue messages, and therefore represents observable information. Finally, the done
and fail messages, which are neither critical nor observable, represent neutral information.
Note that the neutral level implies a form of carelessness with respect to the sensitivity of
information [Man03, p. 31]. Accordingly, in literature, neutral information is also labeled as
“don’t care” [HMSSO07]. Unlike critical information, neutral information allows conclusions
about itself to be drawn from other information. In addition, unlike observable information,
neutral information also allows conclusions to be drawn from itself about other, critical
information. Thus, neutral information enables a security policy to authorize certain indirect
information flows explicitly. Adopting the notation of Mantel [Man03], we use C, N, and V'
to abbreviate the crictical, neutral, and observable levels of sensitivity.

Compared to the above sensitivity levels, a flow policy [Man03] is a form of security policy
that is used to specify information flow requirements in a more abstract fashion. A flow policy
is based on a number of security domains, which are used to categorize the set of actors and
the information handled by these actors, respectively. Thus, a security domain encapsulates
specific information that must be handled with equivalent permissions by different actors.
Our example from Fig. 2.10 involves the following three security domains: (i) the observable
outputs sent over the storage port, (ii) the critical inputs received over the infotain port, and
(iii) the neutral outputs sent over the infotain port. On this basis, a flow policy interrelates
each pair of security domains by one of three relations:

— is an interference relation, representing authorized communication that makes infor-
mation from one domain directly accessible to another domain.

~r is a neutral relation, representing authorized communication that does not make infor-
mation from one domain accessible to another domain directly, but authorizes another
domain to draw conclusions about that information indirectly.

+ is a noninterference relation, representing unauthorized communication that neither
makes information from one domain accessible to another domain directly, nor autho-
rizes another domain to draw conclusions about that information indirectly.

Regarding the security domains as nodes and the above relations as edges, a flow pol-
icy forms a complete graph connecting every two security domains exactly once. Thereby,
the disjoint union of the three relations is the Cartesian product of the set of security do-
mains [Man03]. The confidentiality requirement of our example can be specified using a
single noninterference between the inputs of the infotain port and the outputs of the storage
port, whereas the residual domains are all related neutrally. As a natural restriction, flow
policies require the interference relation — to be reflexive, such that each domain interferes
with itself. Accordingly, information from one domain is always directly accessible by the
same domain. We define flow policies formally as follows:

Definition 2.8 (Flow Policy). “A flow policy [...] is a tuple (D, —, ~, ) with a set D of
security domains and relations —, ~, » € D x D [...]. The relation — is reflexive, i.e.,d - d
holds for all d € D [*Gerl18].
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2.4.2 Definitions of Security

In terms of information flow security, a system is deemed secure if the observations made by
certain actors during an arbitrary execution do not depend on the amount of critical information
processed during that execution. However, this definition still lacks a deep understanding of
the term dependence. In the following, we provide such an understanding by building upon
the concept of perturbations and corrections [Man03]. Thereafter, we consider information
flow as a so-called hyperproperty [CS10].

Perturbation & Correction

We consider a perturbation as a scenario in which the execution of a system is modified by
reducing or extending the amount of critical information processed during that execution.
Typical modifications are the situational insertion or deletion of single pieces of critical
information, or the complete removal of all critical information from an execution. For
example, consider an execution in which the automaton from Fig. 2.10 resides in its initial
location, repeatedly sending the store message every five time units. A possible perturbation
of this execution is the insertion of an adjust message at some time, enabling the automaton
to reset the clock w and switch to another location. Obviously, perturbations like this
must have no effect on the observable information processed during an execution, otherwise
constituting an unauthorized information flow. Thus, from the viewpoint of an observer, a
perturbed execution must be indistinguishable from the corresponding unperturbed execution.
In the given example, the observable store messages that are sent subsequent to the above
perturbation must be indistinguishable from those messages sent without this perturbation.
To ensure indistinguishability, a perturbation may be compensated by a correction. A
correction is a follow-up scenario in which the information processed during a perturbed
execution is readjusted, thereby restoring the same observations that can be made during the
unperturbed execution. Corrections are insertions or deletions of information, differing in
the point of time at which they are allowed to be made (e.g., only after the perturbation).
Obviously, observable information cannot be used for corrections because this would enable
an observer to distinguish the perturbed from the unperturbed execution. Critical information
can neither be used for corrections because it might undergo perturbation itself. Hence,
only neutral information can be used for corrections. For example, in Fig. 2.10, a possible
correction is the insertion of a neutral done message into the perturbed execution, switching the
automaton back to its initial location. As described in Section 2.4.1, such a correction does not
constitute an unauthorized information flow because neutral information allows conclusions
about critical information to be drawn. Thus, the perturbed and unperturbed executions are
allowed to be distinguishable with respect to neutral messages. However, note that the above
correction is not even required in order to compensate for the prior perturbation. As can be
seen from Fig. 2.10, the automaton ensures indistinguishability of observable messages even
without switching back to its initial location. In summary, the degree of dependence imposed
by concrete information flow properties is defined (i) by the specific perturbations that are
required and (ii) by the specific corrections that are allowed to be made [Man03, p. 36].
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Hyperproperties

As described above, information flow security demands that for every perturbed execution of a
system, there must be another corrected execution of the same system that is indistinguishable
for an observer. Thus, an inherent feature of information flow properties is that they interrelate
multiple executions of a system, thereby referring to a set of execution traces. Thus, properties
like information flow are also known as hyperproperties [CS10] because they are properties of
sets of traces. Hyperproperties generalize standard properties like safety or liveness [Lam77],
which are properties of traces. As such, they consider individual executions in isolation
without interrelating them.

Consequently, as pointed out by McLean [McL96], hyperproperties like information flow
security fall outside the classification of safety and liveness properties by Alpern and Schnei-
der [AS85]. This poses several challenges, two of which we face in the remainder of this
thesis. First, standard techniques for the verification of safety and liveness properties are not
directly applicable to information flow properties. Thus, alternative techniques are needed to
verify that a system is secure. Second, principles for the preservation of safety and liveness
properties under composition of multiple systems, as proposed by Abadi and Lamport [AL93],
are not applicable to information flow properties. Instead, information flow properties do not
generally ensure composability [Man02]. The reason is that a composite system gives rise to
communication between the subsystems it is composed of. However, a constituent subsystem
might not be communicative. For example, it might not send the information that is expected
by another subsystem, or might even refuse to receive information from another subsystem.
As investigated by Sabelfeld [Sab01], subsystems may thereby block the communication be-
havior of other subsystems, such that certain executions of the individual subsystems might
get disabled. Accordingly, “composition reduces the set of possible behaviors of a system”
[CM15], restricting its executions to a subset. In particular, the composition might disable a
specific execution that is needed to correct a perturbation. If a perturbation is not correctable,
observers can distinguish the perturbed execution from the unperturbed execution. Thus, in-
formation flow properties of individual subsystems might no longer hold inside a composite
system because they are not preserved by subsets of traces [McL96]. Composing multiple
secure systems might therefore lead to an overall system that is insecure.
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MODEL-BASED SYSTEMS ENGINEERING

As described in Section 2.2, information flow is one of the integral forms of interaction con-
sidered in MBSE. In general, an information flow represents intended, authorized communi-
cation between systems or subsystems. Accordingly, information flow is of vital importance
to satisfy the advanced communication needs of CPSs and thereby meet the associated func-
tional requirements. However, this communication might also enable systems or subsystems
to circulate information in an unintended, unauthorized way, thereby compromising security
as a non-functional requirement. Hence, systems engineers frequently need to balance the
functional requirements of a system with its non-functional security requirements.

MBSE with Consens enables engineers not only to represent information flows between
systems or subsystems, but also supports the specification of the associated functional re-
quirements in terms of the designated system behavior (cf. Section 2.2). However, at present,
there is no solution for the specification of non-functional security requirements that would
enable systems engineers to restrict the information flow with respect to confidentiality or
integrity. As a result, security requirements are frequently underspecified at the early stage of
MBSE, implicitly deferring their specification to the downstream, discipline-specific software
engineering. Thereby, security is put at risk of degenerating into an afterthought [Ste+12].
Handling security requirements late is likely to create the following problems:

» Without an explicit indication of security requirements, software engineers may easily
disregard their implicit responsibility for taking the required security measures. In the
worst case, vulnerabilities may go unrecognized until after the deployment, leading to
so-called zero-day exploits that take place during operation without being recognized.

* Even if software engineers accept their responsibility for confidentiality or integrity
requirements, they still lack an explicit indication of the security needs that the system
under development must actually meet. As a consequence, software engineers might
take inappropriate security measures that do not satisfy the actual requirements.

* A late consideration of security issues may have repercussions on the upstream phases
of MBSE, forcing systems engineers to revoke earlier decisions that were made without
having taken security into account.
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State of Research. In the past, numerous MDE approaches for security have been proposed
and surveyed in [NKKT15; OD15; UFF12]. At the same time, studies suggest that security
requirements engineering is still inadequately represented because the majority of approaches
address the integration of security into other, downstream development phases [MNAM17].
Nevertheless, approaches like UMLsec [Jiir05] or IFlow [KSBR15] do support a model-driven
security requirements engineering, enabling the specification of unauthorized information
flows. However, these works are based on the UML [OMG17] and thereby tailored to
the discipline of software engineering. Accordingly, they do not offer a solution to the
underspecification of security requirements at the early, discipline-spanning level of MBSE.
In contrast, the field of MBSE has recently put emphasis on security as well. In particular,
approaches like SysML-Sec [AR16] address a systematic derivation of secure systems from
predefined security requirements. However, the existing works for secure MBSE do not
explicitly enable the specification of confidentiality or integrity requirements in terms of
unauthorized information flows. Hence, in summary, current approaches enable information
flow to be considered only at the level of software engineering, whereas an early specification
of unauthorized flows during the upstream MBSE is an unresolved problem.

Contributions. In response to the aforementioned shortcomings, the contribution of this
chapter is a novel integration of MBSE and information flow security. In particular, we
turn the environmental models provided by Consens (cf. Section 2.2.1) into flow policies
(cf. Section 2.4.1). Thereby, we enable the specification of unauthorized information flows
between the environmental elements of a system under development. The resulting specifi-
cation clearly defines whether information is allowed to flow through the system from one
environmental element to another. Accordingly, the integrated model represents a security
policy for the system itself. To enforce this policy in the downstream phases of development,
engineers need to ensure that the information processing inside the system prevents all of the
specified unauthorized flows. Thus, along with the stepwise decomposition of the system into
the active structure, we enable systems engineers to refine a coarse-grained security policy
into a finer-grained policy. Thereby, we facilitate the definition of unauthorized information
flows at the level of the constituent system elements resulting from the decomposition. To
ensure validity of these refinements, we provide systems engineers with means to check for-
mally that the security requirements documented by the coarse-grained policy are properly
enforced by the finer-grained policy. Thereby, the proposed validity check enables engineers
to systematically preserve the initial security requirements during the stepwise decomposition
of the active structure. We evaluate the contributions made in this chapter on the basis of a
quality assessment framework for security methodologies [UFF18].

Novelty. The novelty of our solution is the integration of formal, rigorously founded
concepts from the theory of information flow into the Consgns technique used in systems
engineering practice. As a benefit, we enable systems engineers to front-load the specifica-
tion of information flow policies to the early, discipline-spanning stage of MBSE, thereby
resolving the aforementioned problems associated with an underspecification of confidential-
ity or integrity requirements. Furthermore, by taking the specified requirements into account
during the stepwise decomposition of models, we facilitate a systematic, security-preserving
refinement of the information flow policies along the CoNSENs process.

34



3.1. ScientiFic CONTRIBUTIONS

Publication. The challenges addressed in this chapter were initially outlined in [*Ger16].
Among other security measures, the proposed concept has been embedded into the CoNsENs
process in a conference paper [*GGB18]. The main technical contributions described in this
chapter have been elaborated and published in a workshop paper [*Ger18].

Outline. The remainder of this chapter is structured as follows. We introduce our scientific
contributions in Section 3.1 and consider relevant quality factors in Section 3.2. Next, we
give an overview on our solution in Section 3.3, before we elaborate on the documentation of
security policies at the level of environmental models in Section 3.4. Subsequently, Section 3.5
describes the validation of refined security policies at the level of active structures. We assess
the considered quality factors in Section 3.6 and discuss limitations in Section 3.7. Finally,
we survey related work in Section 3.8, before summarizing this chapter in Section 3.9.

3.1 Scientific Contributions

In this chapter, we make the following contributions:

* We integrate flow policies into the DSL for environmental models provided by CONSENs.
Thereby, we establish a visual specification technique for confidentiality and integrity
requirements in MBSE, enabling engineers to front-load the security requirements
engineering to the discipline-spanning stage.

* We adopt the proposed specification technique at the level of active structures, enabling
systems engineers to refine the specified requirements during the decomposition of
systems into subsystems.

* We propose a validity check for refinements. Thereby, we provide systems engineers
with means to ensure that the system-level security policy is properly enforced by the
refined policy at the subsystem level.

* We evaluate the above contributions with the help of a dedicated framework for quality
assessments of security methodologies [UFF18].

3.2 Quality Factors

As a benchmark for our contributions, we refer to a dedicated framework for the quality as-
sessment of security methodologies proposed by Uzunov et al. [UFF18]. By taking CoNSENS
as a basis, we regard our contribution as a security methodology because it provides engineers
both with a process and the accompanying artifacts involved in that process. The assessment
framework is based on different factors that make up the overall quality of security method-
ologies. Due to our restricted research focus on the early requirements engineering and the
application domain of CPSs, we do not address the quality factors of comprehensiveness,
effectiveness, and adaptability. Furthermore, we also leave a consideration of the usability
factor to future works. Instead, we take the following quality factors (QF1-QF3) into account:
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Figure 3.1: Proposed extensions to the CONSENS process.

(QF1) Correctness of Construction: This basic factor refers to the plausibility of the pro-
cess that systems engineers undergo when adopting our approach. In particular, the
documentation of security requirements, the refinement of the documented require-
ments, and the validation of these refinements must be well-ordered. Thereby, this
factor seeks to answer the question whether the constructed methodology “is free from
any obvious contradictions” [UFF18].

(QF2) Completeness: The question addressed by this factor is “whether a methodology
possesses certain essential features” [UFF18]. In particular, systems engineers require
features enabling them to document relevant security requirements early and to assure
the validity of the documentation whenever the security requirements are refined.

(QF3) Assurance: This factor takes into account whether a methodology is able to give
security guarantees. In our context, the decomposition of a system must “provide
appropriate protection” [UFF18] with respect to the documented security requirements.
Thus, it must be possible for systems engineers to assure that security restrictions at a
certain level of decomposition are properly enforced at the next lower level.

3.3 Overview

We take into account the quality factors from Section 3.2 by extending the CONSENS process
conceptually. Focusing on the role of a systems engineer, Fig. 3.1 illustrates our proposed
extensions in green. Compared to the original process from Fig. 2.2 on page 14, we omit
activities and artifacts that are irrelevant to the information flow. Instead, we focus on the
environmental model and the active structure, which are partial models that inherently deal
with information flow (cf. Section 2.2). To use these models for the specification of security
needs, we integrate them with formal concepts from the theory of information flow.
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Figure 3.2: Environmental model of the self-driving car extended to a flow policy.

In particular, after the activity Analyze Environment, we propose to turn the resulting envi-
ronmental model into a flow policy during the activity Document Information Flow Requirements.
The documentation of these requirements is a manual step taken by the systems engineer as
described in the upcoming Section 3.4. Similarly, after the activity Decompose System, we
propose to turn the resulting active structure into a flow policy as well. This flow policy,
which is created manually by the systems engineer during the activity Refine Information Flow
Requirements, is a refined version of the prior policy documented at the level of the environ-
mental model. We address these refinements in the upcoming Section 3.5. In response to the
refinement, we propose an automatable activity named Validate Refinement, in which we check
whether the refined policy is valid by enforcing the prior policy. If the refinement is invalid,
the systems engineer must refine the documented requirements again. Once the refinement
is valid, a recursive decomposition of the active structure gives rise to further refinements
including validity checks. The final outcome is a refined flow policy that refers to the active
structure and is a valid refinement of the initial policy at the level of the environmental model.

3.4 Documentation of Policies

In this section, we describe our integration of environmental models and flow policies. We
treat the environmental elements, as well as the system under development, as individual
security domains (cf. Section 2.4.1). Thereby, we enable systems engineers to relate the
elements by means of the different flow relations (—, ~», %) known from flow policies.

Interference. We treat each authorized information flow as an interference. Accordingly,
the interference relation (—) includes the full set of information flows from an environmental
model. In addition, since interference relations need to be reflexive in the scope of flow
policies (cf. Section 2.4.1), every element is implicitly said to interfere with itself. As an
example, we turn the environmental model of the self-driving car from Fig. 2.3 on page 15 into
a flow policy. In Fig. 3.2, we restrict ourselves to information flows and those environmental
elements that participate in such flows. Each of the depicted flows constitutes one tuple that is
part of the interference relation —. We abstract from the aforementioned interference between
an element and itself, and therefore omit the corresponding self-loops from Fig. 3.2.
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Noninterference. On the basis of the interference relation, we extend the environmental
model with additional relations needed to represent a full-fledged flow policy. In particular,
we add a dedicated noninterference relation (), which enables the documentation of unau-
thorized information flows. Systems engineers may use this relation to restrict the flow of
information from particular environmental elements to others. For example, in Fig. 3.2, we
make use of the noninterference relation to document the security requirements introduced
in Section 1.2. First, to satisfy the confidentiality requirement, a noninterference between the
Occupant and the Cloud Storage stipulates that no personal information is allowed to be stored.
In particular, the user input received from an occupant must not influence the storage and
retrieval of vehicle data to or from the cloud. Second, the integrity requirement described
in Section 1.2 corresponds to a noninterference between Predictive Maintenance and Occupant.
Hence, requesting diagnostic data must not enable maintenance engineers to influence the
user output given to an occupant. In summary, the documented noninterference relation
restricts the flow of information through the car and thereby act as a security policy for its
internal information processing.

Neutrality. In general, the absence of an interference from one element to another states
that no data is communicated between them directly. Nevertheless, they are still allowed to
exchange information by communicating indirectly over other, intermediary elements. Such
indirect information flows correspond to the neutral relation (~) described in Section 2.4.1.
We therefore assume that, whenever two elements are not explicitly related by an interference
or noninterference, they are implicitly related by the neutral relation. According to this
implicit role, we omit the neutral relation from the visual representation. As an example in
the context of Fig. 3.2, vehicle data stored by the Cloud Storage may be used for analytics. It
is therefore authorized to flow to the Predictive Maintenance back-end, whereas the Self-Driving
Car acts as an intermediary element. Similarly, to enable crowdsourcing of traffic conditions,
the car’s location is authorized to flow from the Navigation Satellite to the Traffic Reporting.

In Table 3.1, we tabularize the flow policy from Fig. 3.2. Vertically, we show each of the
elements as sources of a flow, whereas the elements shown horizontally represent the targets.
As can be seen, the table relates each pair of source and target elements by exactly one of the
flow relations —, «, or ~. According to the reflexivity of —, each element relates to itself by
means of an interference. In Table 3.1, we denote these self-relations by O.

Table 3.1: Flow policy of the self-driving car.

Target
Self-Driving | Navigation Cloud Predictive Traffic
Car Satellite Storage | Occupant | Maintenance | Reporting
Self-Driving Car O ~ — N N N
Navigation Satellite - O ~ ~ ~ ~
8 Cloud Storage — ~ O ~r ~ ~
§ Occupant - ~ b O ~ ~
Predictive Maintenance - ~ ~ +r O ~
Traffic Reporting - ~ ~ ~ ~ O
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Please note that a noninterference typically relates two environmental elements, thereby
restricting the flow of information through the system under development. However, a non-
interference may also be used to document explicitly that there is no exchange of information
from an environmental element to the system or vice versa. For example, in Fig. 3.2, it would
be possible to add a noninterference from the Self-Driving Car to the Navigation Satellite, which
documents explicitly that no data is communicated from the car to the satellite. However, this
fact is already known implicitly because there is no information flow between these elements
in the environmental model (cf. Fig. 2.3). Besides the explicit documentation of this known
fact, no further restrictions are imposed on the internal information processing of the car itself.
Hence, in the scope of this thesis, such a noninterference is of minor importance because it
does not restrict the information flow through the system under development.

In contrast, an interference is typically used to describe communication between the system
and an environmental element. However, environmental elements might also communicate
externally beyond the bounds of the system under development. Although this external
communication is uncontrollable because the information is flowing around the system,
it might still impose additional restrictions on the information flow through the system.
Therefore, external communication may be a crucial factor that decides about the validity
of a policy refinement. Hence, to detect invalid refinements in the presence of external
communication, we allow an interference to connect two environmental elements as well.

Well-Formedness. In our approach, an environmental model is interpreted as a flow policy
and must therefore follow the syntactic well-formedness rules described in Section 2.4.1.
These rules affect the environmental model as follows:

1. Conceptually, the environmental model must represent a complete graph, which con-
nects any two security domains exactly once. However, since the neutral relation is
implicitly assumed whenever two elements are not explicitly related, we only need
to handle conflicts between the interference and noninterference relations. Thus, two
elements must not be related both by an interference and a noninterference.

2. In order to enable the implicit reflexivity of the interference relation, a noninterference
must not be a self-loop. Accordingly, source and target elements of a noninterference
must not be the same.

3.5 Validation of Refined Policies

When decomposing the system under development into subsystems, systems engineers need
to transfer their documented confidentiality and integrity requirements to the active structure
that results from the decomposition (cf. Section 2.2.2). Thereby, engineers refine the system-
level security policy into a subsystem-level policy, restricting the information flow between
nested system elements. In Section 3.5.1, we describe the refinement of policies, before
addressing the validity of such refinements in Section 3.5.2.
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3.5.1 Refinement

To enable the refinement of security policies, we adopt the specification technique introduced
in Section 3.4 and apply it to the active structure as well. As described in Section 2.2.2, the
active structure arises from the recursive decomposition of the system under development into
nested system elements. At each step of the decomposition process, a coarse-grained flow
policy must be refined by a finer-grained policy. To describe the refinement of flow policies,
we make use of the following terminology: we consider a refined policy at a certain, higher
level of decomposition, which is refined by a refining policy at the next lower level. Below,
we address the refinement of authorized and unauthorized information flows separately.

Refining Authorized Information Flow

In general, when decomposing a higher-level element in the scope of the CoNSENS process
(cf. Section 2.2.2), systems engineers add new relations between the nested elements, thereby
describing their interfaces at the lower level of decomposition. In particular, if the decomposed
element is of relevance to software engineering, new information flows are added in order to
describe the internal communication between its nested elements. In this context, a refining
flow policy must not contradict the assumptions made by the refined flow policy. Hence,
every lower-level information flow being added must necessarily correspond to a pre-existing
flow at the higher level. Thus, from the higher-level perspective of the refined policy, a
refining policy must not give rise to any new information flows, which were not included
prior to the decomposition. Instead, only low-level flows corresponding to pre-existing flows
at the higher level are allowed to be added. In order to define the above condition technically,
we formalize a refinement by means of a graph homomorphism [HT97] between two flow
policies with respect to their interference relations —:

Definition 3.1 (Refinement). “A flow policy Pol, = (Dgy, >4, ~q, %) is refined by a flow
policy Poly = (Dy, —p, ~rp, #p), if and only if there is a graph homomorphism f from the
graph (Dy, —) to the graph (D,, —,), i.e., there is a function f : Dy - D, where d; — da
implies that f(dy) —4 f(d2)” [*Gerl8].

This definition is based on a function f describing the decomposition of elements into
nested elements. In particular, the function f maps every nested element to its ancestor that
is being decomposed. According to Definition 3.1, every information flow d; — ds inside
the refining flow policy Polj, must correspond to an information flow f(d;) —, f(d2) inside
the refined policy Pol,.

Please note that, when an element is being decomposed, the internal communication
between its nested elements is never effectively restricted by the above condition. Since
every element is assumed to be self-related with respect to interference (cf. Section 3.4), an
information flow between two of its nested elements will always correspond to the pre-existing
flow between the decomposed element and itself. Hence, on decomposition of an element,
systems engineers may freely add new internal information flows between its nested elements,
without ever causing an ill-formed refinement.
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Figure 3.3: Active structure of the self-driving car extended to a flow policy.

Unauthorized
Information Flow

As an example, Fig. 3.3 turns the active structure from Fig. 2.4 on page 17 into a flow
policy. In the light of Definition 3.1, the policy is based on a function f mapping each nested
system element to the Self-Driving Car being decomposed. Since the environmental elements
are not affected by the decomposition, each of them is mapped to itself. The depicted policy
is a proper refinement because only internal information flows between the nested elements
are added. Each of these flows corresponds to the implicit interference of the car with
itself (cf. Table 3.1). Thus, f is a graph homomorphism as required by Definition 3.1.
In contrast, adding an external flow, e.g., between Traffic Reporting and Cloud Storage, would
violate Definition 3.1 because no corresponding flow exists in the environmental model.

Refining Unauthorized Information Flow

In our approach, we enable systems engineers to use the noninterference relation () to doc-
ument unauthorized information flow between the nested system elements inside the active
structure. For example, in Fig. 3.3, we give a refined documentation of the car’s security
requirements. On the one hand, a noninterference specifies that the User Interface must not
interfere with the Storage Gateway. This restriction refines the confidentiality requirement
that prevents the car from leaking personal data to the cloud. On the other hand, a second
noninterference states that an information flow between Predictive Maintenance and User In-
terface must be avoided as well. Thereby, we refine the integrity requirement that forbids
maintenance engineers to interfere with the user output when requesting diagnostic data.

In general, to pinpoint the security requirements to the highest possible extent, a refined
security policy should refer to elements at the bottom level of decomposition whenever possi-
ble. However, it can be seen from the above examples that this is not a mandatory restriction.
In some cases, referring to a higher-level element is even necessary to ensure well-formedness
of a policy (cf. Section 3.4). For example, in Fig. 3.3, introducing a noninterference be-
tween Body Control Module and User Interface would cause an ill-formed policy because both
elements are already related by an interference. Therefore, the documented noninterference
must necessarily refer to the Predictive Maintenance as a higher-level environmental element.

41



CHAPTER 3. SPECIFICATION OF SECURITY POLICIES IN MODEL-BASED SYSTEMS ENGINEERING

Note that even if a noninterference refers to nested system elements, it still represents a plain
security requirement because it does not determine how or where the documented restriction
is to be enforced. For example, although the User Interface must not leak information to the
Storage Gateway, it is open which of the system elements from Fig. 3.3 are actually affected
by this restriction and therefore responsible for its enforcement. Hence, in general, a flow
policy at the level of the active structure does not yet impose any concrete security restrictions
on particular elements. In our approach, such restrictions are derived from the documented
requirements during the downstream CBSE, which we address in the upcoming Chapter 4.

3.5.2 Validity

In general, decomposing a system element introduces additional ways of communication
between the nested elements. In the previous Section 3.5.1, a refinement has been defined
such that none of these ways must contradict the information flows that were documented at
the higher level of decomposition. However, the definition does not yet take unauthorized
flows into account. Thus, to provide evidence that a refining flow policy actually enforces
the information flow restrictions of the refined policy, we enable systems engineers to reason
about the validity of refinements. To represent a valid refinement, the refining policy must
enforce each noninterference documented by the refined policy, thereby blocking any ways
of communication that would otherwise enable an unauthorized flow of information.

For example, the refining flow policy depicted in Fig. 3.3 must ensure that the internal
communication between the nested system elements does not give rise to an information
flow from the Occupant to the Cloud Storage, which is unauthorized according to the refined
flow policy from Fig. 3.2. One possible way of communication that would enable such a
flow crosses the User Interface, the Body Control Module, and the Storage Gateway. Hence, it is
essential for the refining policy to block the flow of information across this way.

In the following, we introduce the notion of illegalization to ensure that critical ways
of communication are properly blocked. For example, the noninterference between User
Interface and Storage Gateway acts as an illegalization that rules out a critical information flow
from the Occupant to the Cloud Storage. In general, to represent a proper illegalization, a
noninterference must connect two arbitrary elements on a particular way that needs to be
illegalized. Accordingly, we define an illegalization as follows:

Definition 3.2 (Illegalization). “A flow policy (D, —, ~, +) illegalizes a flow from d; € D
to d,, € D, if and only if for every path (d; - ... — d,) € —-* there is a noninterference
d; + d; where 1 <i < j <n” [*Gerl8].

We rely on the notion of illegalization to define the validity of refinements. A valid
refinement requires the refining policy to enforce every noninterference documented by the
refined policy. To enforce a noninterference, any possible way of communication between
the respective elements must be blocked. In Fig. 3.3, this is the case for the information flow
between Occupant and Cloud Storage. All the possible ways of communication between these
elements cross the User Interface and the Storage Gateway, which are restricted by means of a
noninterference. Accordingly, the information flow is properly illegalized.
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In general, a decomposition may also affect an element that acts as source or target of a
noninterference inside the refined policy. In this case, the resulting nested elements give rise
to numerous start and end points for information flows, which all require an illegalization
by the refining policy. To account for such cases, we define the validity of a refinement in
a general sense. To that end, we refer to the graph homomorphism f from Definition 3.1,
which describes the correspondence between a decomposed element and its nested elements:

Definition 3.3 (Validity). A refinement of a flow policy Pol, = (Dgy, >4, ~7q, #4) by a flow
policy Poly, = (Dy, —p, ~p, #p) is valid with respect to the graph homomorphism f, “if and
only if for every noninterference ds +, dy, a flow fromeach d, € f~1(d;) toeachd} € f~1(d;)
is illegalized by Pol,” [*Ger18].

In the above Definition 3.3, the refined policy Pol, requires that any information flow
between two noninterfering elements ds € D, and d; € D, is illegalized by the refining
policy Poly. Hence, we take into account the set of nested elements of dg and d;, which are
given by f~(ds) € Dy and f71(d;) € Dy. Since the environmental elements have not been
decomposed in our example, it holds that f ™! (deny ) = {dens } for each environmental element
deny depicted in Fig. 3.3. In contrast, the set f -1 (dsyq) of the system under development d g, g
includes each of the nested system elements. In general, according to the above definition,
the refined policy must illegalize a flow of information from each d. € f~!(d) to each
d} € f~1(dy) in order to represent a valid refinement.

3.6 Quality Assessment

In this section, we refer to the framework by Uzunov et al. [UFF18] in order to assess the
quality of our approach as a security methodology. To this end, we discuss relevant quality
criteria by constructing a situational criteria profile in Section 3.6.1. Next, in Section 3.6.2, we
describe both our process and the involved artifacts by creating a methodology model. Finally,
in Section 3.6.3, we present the assessment results obtained by matching the methodology
model against the situational criteria profile.

3.6.1 Situational Criteria Profile

For the purpose of evaluation, we refer back to the quality factors QF1-QF3 from Section 3.2
and asses the quality of our approach with respect to these factors. To this end, the quality
framework provides a base profile of dedicated criteria, which are associated with the indi-
vidual quality factors. From this base profile, we select those criteria that are associated with
our three quality factors. However, the framework allows the set of criteria to be adapted to
the specific situation of the assessed methodology, leading to a situational profile. We make
use of this adaptation because certain criteria do not apply to the context of our approach. The
reason is that, due to the discipline-spanning nature of systems engineering, certain develop-
ment activities are deliberately deferred to the downstream, discipline-specific engineering.
Therefore, such activities are irrelevant to the quality of our approach. Accordingly, any
criteria that refer explicitly to these activities are omitted from our situational profile.
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In particular, with respect to assurance (QF3), we omit the quality criterion Software support
(verified implementations), which aims to answer the question whether the implementation
and deployment of a system are supported by dedicated, verified software solutions. In
our scope, both implementation and deployment are discipline-specific activities that are no
essential parts of our approach at the level of systems engineering. Furthermore, in terms of
completeness (QF2), we omit the quality criterion Specific artifacts (basic security solutions),
which requires a methodology to integrate explicit artifacts for countermeasures like access
control or encryption. Since such countermeasures are specific to the discipline of software
engineering, their adoption is regarded as a discipline-specific development activity as well.
Finally, from the assessment of the completeness, we also omit the criterion Documentation
(security process) because documenting the process is the subject of this thesis. The remaining
portion of the base profile is reused by our situational profile as is. We refer the reader to the
upcoming Section 3.6.3 for an overview of the assessed criteria, and to [UFF18] for a detailed
description of the indicators and resulting measures used to assess a certain criterion.

3.6.2 Methodology Model

To prepare the quality assessment, we construct a methodology model of our engineering
process and the conceptual artifacts involved. In Fig. 3.4, we use the notation by Uzunov
et al. [UFF135] to illustrate the process model on the left and the framework model of the
involved artifacts on the right. In the following, we describe both models separately.

Process Model

Uzunov et al. introduce a set of process patterns to describe recurring, security-related
activities that engineers engage in during the development of systems. In the following, we
check our proposed process against the set of process patterns and arrange the recognized
patterns as part of the process model depicted in Fig. 3.4. The authors distinguish between
patterns at different levels of granularity, separating (i) coarse-grained phase patterns, which
relate to general development phases, (ii) stage patterns referring to particular stages within a
certain phase, and (iii) fine-grained rask patterns, which correspond to individual development
activities at a certain stage. In particular, we recognized the following patterns in our approach:

Phase patterns: Due to our focus on information flow requirements, the only matching
phase pattern is the security requirements determination (SecReq). However, we apply
SecReq at different steps of the development life-cycle: during requirements analysis,
engineers document security requirements by turning an environmental model into a
flow policy, whereas the documented policy is refined during design at the level of the
active structure. To distinguish these different steps, Uzunov et al. introduce a set of
generic life-cycle modifiers [UFF15]. In Fig. 3.4, we use the RegAn and Des modifiers to
denote the initial requirements analysis and the subsequent design. Other existing phase
patterns besides SecReq either integrate specific security countermeasures, or focus on
their implementation or administration. Since such activities are specific to the software
engineering, they are beyond the scope of our discipline-spanning approach.
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Figure 3.4: Methodology model of the process (left) and the conceptual artifacts (right).

Stage patterns: By validating the refinement of security policies, our process matches the
security verification (SecVerif) stage pattern, which is used to “verify the correctness,
consistency and completeness” [UFF15, p. 226] of security-related artifacts.! As shown
in Fig. 3.4, we apply this pattern as part of the SecReq phase during design.

Task patterns: At the level of individual tasks, our process matches the refinement (Refine)
pattern because we consider security policies at different levels of granularity, refining
coarse-grained to finer-grained policies. As depicted in Fig. 3.4, the Refine pattern is
applied during design, prior to the SecVerif stage. Subsequently, inside SecVerif, the
manual reviews (Reviews) pattern matches as well because we provide engineers with a
validity check carried out manually. Both Refine and Reviews are executed in a loop-like
manner as long as further decomposition of the system is required (cf. Fig. 3.4).

Framework Model

With respect to conceptual artifacts, the framework model in Fig. 3.4 shows that our approach
is based on a Flow Policy as a specific kind of Security Policy. Uzunov et al. define a security
policy as “the solution space form of a security requirement, which is realized by a security
solution of some form” [UFF15]. In our work, the realizing security solution is the theory
of Information Flow (cf. Fig. 3.4). Dashed arrows indicate that both requirements analysis and
design lead to an individual Security Policy. The Environmental Model acts as a Generic Security
Policy, which is refined by any Specific Security Policy given in terms of the Active Structure.

"Boehm [Boe81] distinguishes the validation of requirements (“building the right product™) from their verifica-
tion (“building the product right”). Although our approach provides validation only, it still qualifies for the
security verification pattern by verifying that policies “provide the necessary level of security” [UFF15].
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3.6.3 Results

In this section, we present the assessment results obtained by measuring the criteria from
the situational profile (created in Section 3.6.1) on the basis of the methodology model (con-
structed in Section 3.6.2). In Table 3.2, we summarize the quality assessment by tabulating
the individual quality criteria, their corresponding quality factors, and the resulting quality
measures. For the presentation of measures, we apply the color scheme used by Uzunov et
al. [UFF18]. In the following, we discuss the measure for each criterion in detail.

Specific Activity Sequence: This criterion investigates whether process patterns “are placed
in a sensible order in a given methodology” [UFF18]. As indicators for this criterion,
Uzunov et al. provide a set of invalid pattern orderings. Comparing the order of process
patterns from Fig. 3.4 against these invalid orderings, no inconsistencies were detected.
Therefore, we asses our process as well ordered.

Compatibility: The compatibility criterion excludes inappropriate combinations among pro-
cess patterns, or incompatibilities between a process pattern and a generic life-cycle
modifier [UFF18]. Checking our process model against the indicators provided by
Uzunov et al., we detected that the embedding of a Reviews task inside a SecReq phase
is assessed as inappropriate. In general, the quality framework does not provide for any
verification tasks during SecReq at all, thereby contradicting the statement that manual
reviews “can be done at all development stages and as part of verification activities
in all phase [...] patterns.” [UFF15, p. 227]. Nevertheless, according to the given
indicators, we conclude that there are incompatibilities present in our process.

Broadness of Scope: This criterion refers to the encompassed development phases of a
methodology. Our process model from Fig. 3.4 uses two generic life-cycle modifiers
(RegAn and Des). Thus, the resulting measure for the broadness of our approach is
multi-phase. However, please note that any subsequent modifiers correspond to the
implementation or deployment of systems, which are discipline-specific activities that
have been excluded deliberately from our system engineering approach.

Coverage: This criterion investigates whether the process model covers each encompassed
development phase with security-related activities. Our process model provides RegAn
and Des with activities for the documentation and validation of security requirements.
Thus, our approach covers most phases, which is the optimal measure [UFF18].

Early Security Introduction: This criterion requires “an attempt to consider security require-
ments as early as possible in the development process” [UFF18]. Since the SecReq
pattern is part of our process model and applies to the earliest possible generic life-cycle
modifier (RegAn), the resulting measure for this criterion is yes.

Threat Assessment: Our approach does not consider security threats as an explicit part of
the engineering process. Thus, threat modeling [ XL19] and threat analysis [TCS18]
are promising future extensions to help identify a set of threats that need to be mitigated
by a security policy. Due to that shortcoming, the measure for this criterion is no.
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Table 3.2: Assessment results for the situational criteria profile.

Quality Factor | Quality Criterion Quality Measure
Correctness Specific activity sequence well ordered
of Construction | (valid pattern ordering)
Correctness Compatibility incompatibilities present
of Construction | (process patterns)
Completeness Broadness of scope multi-phase
(encompassed development phases)
Completeness Coverage most {policy documentation
(related development activities) and validation}
Completeness Specific activities yes
(early security introduction)
Completeness Specific activities no
(threat assessment)
Completeness, Specific activities manual
Assurance (verification)
Assurance Specific activity approach formal {information flow }
(formal verification)
Assurance Specific activities no
(security measurement)
Assurance Reusability high {generic policy indicates
(generated security designs) validity of specific policies}

Verification: Validating refinements is one of our primary objectives, as indicated by the
SecVerif pattern in our process model. However, according to the Reviews task pattern,
no automation has been implemented yet. Although our formalization provides the
basis for an automated validation, we assess the current approach as manual. Note that,
by focusing on validation, we do not address verification in the proper sense [Boe81].
Instead, verifying that security requirements are satisfied is the subject of Chapter 5.

Formal Verification: By integrating flow policies, our work applies formal methods from
the theory of information flow security. Since the SecVerif stage in our process model
is based on the formal rigor of this approach, we assess the verification as formal.

Security Measurement: No explicit measurement activities have been used to quantify the
level of security enforced by a specified policy. Hence, in particular, systems engineers
need to trade off different valid refinements against each other manually. In the absence
of a quantified level of security, the resulting measure for our approach is no.

Reusability: This criterion demands that artifacts “linked in earlier phases are also used in
later phases” [UFF18]. As can be seen from the Reviews task in Fig. 3.4, the Generic
Security Policy serves as an indicator for the validity of a Specific Security Policy, thereby
reusing artifacts across RegAn and Des. Accordingly, we assess the reusability as high.
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In the following, we discuss the significance of the above assessment results with respect to
the quality factors given in Section 3.2, starting with the correctness of construction (QF1).
In this context, the defect identified when assessing the compatibility criterion is caused by
an essential feature of our approach, which has been added deliberately in order to enable
requirements validation. Apart from this, no further deficiencies were identified, which is
why we conclude that our approach has been constructed correctly.

With respect to completeness (QF2), our approach benefits from its early security introduc-
tion and the coverage of most development activities. The limited broadness of scope is due
to the fact that our systems engineering approach deliberately omits any discipline-specific
activities for the implementation or deployment. Hence, we conclude that this criterion does
not compromise the completeness of our approach. In contrast, the missing threat assessment
clearly indicates that our work could be improved by integrating an upstream threat analysis,
which would enable security requirements not only to be documented, but also to be elicited
in a systematic and thorough way. Moreover, in the present form, our approach is also limited
by the manual validation that was revealed by the verification criterion. However, due to the
formalization given in Section 3.5.2, the validation is conceptually prepared for an automated,
rigorously defined check. Nevertheless, we conclude that our works leave room for additional
improvement with respect to completeness.

In terms of assurance (QF3), our approach meets the formal verification criterion and
also benefits from a high reusability of security policies. In contrast, the missing security
measurement indicates that engineers would benefit from additional support when deciding
which refinement is most precise, i.e., enforces the required level of security without being
overly restrictive. The assurance is also affected by the lack of automated verification.
Whereas both shortcomings give rise to promising future extensions, we conclude that they
do not affect the intrinsic assurance given by the formal rigor of our work.

3.7 Limitations

Security Threats. As suggested by the assessment in Section 3.6, our approach is limited by its
missing consideration of security threats. This view is shared by Tiirpe [Tiirl7], who points
out that threats are an indispensable dimension besides the stakeholders’ goals and the sys-
tem design, such that the interplay of all three dimensions must be taken into account during
security requirements engineering. Likewise, Bastys et al. [BPS18] propose attacker-driven
security as a design principle for information flow control, according to which the threats
posed by specific attackers must be modeled explicitly by means of threat modeling [XL19].
Consequently, we propose to enhance our work with an upstream, discipline-spanning threat
analysis, which enables systems engineers to “identify, analyze and prioritize potential se-
curity [...] threats to a software system and the information it handles” [TCS18, p. 275].
Currently, our work supports the specification of security policies, but does not help identify
threats that a policy must address. Due to the discipline-spanning nature of MBSE, the
challenge for a threat analysis is that any discipline-specific details are deliberately omitted
from the models in use. Therefore, such information cannot be used to identify threats.
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Side Channels. Another current limitation is that the documentation and validation of
security policies only takes into account the data communication, which is represented by
information flows. Thus, our view is currently restricted to the cyber layer of a CPS. Thereby,
we leave out of consideration that critical information could also be transferred by physical
effects such as noise, heat radiation, or energy consumption. In the field of cryptography, a
physical transfer of information beyond the designated communication channels is commonly
known as a side channel [Cadl1]. As described in Section 2.2, physical interactions are
(ideally) represented in terms of energy or material flows at the level of Consens. Hence,
the logical consequence is to incorporate such flows into the definition of flow policies as
well, and take them into account when checking the validity of refined security requirements.
Accordingly, by extending our view to the physical layer of CPSs, we could promote the early
identification of potential side channels.

Declassification. Furthermore, a limitation of our work is that the specified policies are
ultimate in the sense that they restrict the information flow unconditionally. It is therefore
impossible to specify that a flow is restricted only under certain conditions. This inflexibility
affects the applicability of our approach to real-world scenarios, where certain flows of critical
information are often indispensable to meet a system’s functional requirements. Introduc-
ing well-defined exceptions to a security policy, and thereby downgrading the sensitivity of
otherwise classified information, is also referred to as declassification [SS09]. For example,
in the scope of CONSENS, an obvious extension is to use the specified system behavior (cf.
Section 2.2.2) in order to authorize certain flows under specific behavioral conditions, e.g.,
when the system is in a particular state. Such an exception describes when a critical informa-
tion flow is authorized, which is one of four crucial dimensions of declassification [SS09].
However, in the context of our work, such an extension poses the challenge that the specified
exceptions must also be taken into account when checking the validity of refinements. Any
two flow policies involved in a refinement would need to be consistent with respect to their
specified exceptions. In particular, a refining policy must keep the conditions specified by the
refined policy without adding any inconsistent exceptions.

Requirements Verification. In addition, our approach is also limited in the sense that
we do not check the aforementioned system behavior against the specified flow policies.
Hence, no requirements verification takes place to find out whether the behavioral scenarios
adhere to a specified flow policy, or give rise to dependencies between critical and observable
information. In general, reasoning about information flow security on the basis of possible
execution traces is feasible [Man00Oa; McL96]. However, in order to make a clear statement
about the presence or absence of unauthorized information flows, systems engineers would
need to specify the behavior of a system exhaustively because secure information flow is a
hyperproperty (cf. Section 2.4.2). As such, it requires “sufficiently many possible traces”
[Man02, p. 91] that are indistinguishable with respect to observable information, regardless
of which critical information is processed on an individual trace. Therefore, engineers would
need to anticipate large parts of the system behavior upfront. This is a challenge because
usually only single execution traces are represented in the form of basic scenarios. Therefore,
the behavior specified at the level of ConsEens is likely to be incomplete and therefore does
not enable information flow requirements to be verified reliably.
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Figure 3.5: Overview of related works from different areas.

3.8 Related Work

According to our integration of MBSE and information flow security, we consider related
work from two areas (cf. Fig. 3.5). First, in Section 3.8.1, we address the intersection
of information flow and the more general field of MDE. Conversely, Section 3.8.2 covers
approaches towards MBSE that integrate security in a broader sense. In general, we lay the
focus on related works for security requirements engineering.

3.8.1 Information Flow in Model-Driven Security Requirements Engineering

FlowUML [AFWO06] enables an early validation of information flow policies during require-
ments engineering, similar to our work. To this end, the authors extract flows from UML
sequence diagrams and check these flows against logic-based security policies. Similarly,
Hoisl et al. [HSS14] address the security of object flows in business process models given
in terms of UML activity diagrams. Encryption is used as a security solution during the
downstream development in order to enforce the confidentiality and integrity of such flows.
Thereby, unlike our work, the approach is not based on information flow in a narrower sense.

RIFL [Bau+17] is a requirements specification language for secure information flow. As
such, flow policies relating different security domains can be specified natively by the ap-
proach. As a tool-independent specification language for information flow requirements,
RIFL is also applicable to specific domains such as CPSs. However, compared to our work,
RIFL is a plain requirements specification language, which does not address the refinement
of the specified policies as our major goal in this chapter.

In contrast, STAIRS [SSS09] is an approach with an explicit notion of refinement. On
the basis of a system specification that corresponds to a set of UML sequence diagrams, the
approach aims to preserve the information flow security whenever the system specification
is refined. However, please note that this notion of refinement differs profoundly from our
work because it corresponds to a refinement of the specified system behavior. In contrast, our
approach refines the security policies that act as requirements for this behavior.
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A well-known approach for model-driven security engineering on the basis of UML design
models is UMLsec [Jiir05]. Like our work, the approach provides a design notation that
is augmented with concepts for secure information flow. Moreover, dedicated extensions
have been proposed to connect the design approach of UMLsec with security requirements
engineering [HHJS11; Hou+10; MJ10]. Therefore, similar to our work, the approach supports
the transition between security requirements and secure designs. However, unlike our work,
a systematic refinement of security policies is not addressed.

IFlow [KSBR15] is another approach that integrates information flow security into UML-
based software designs. For the specification of security requirements, the authors make use
of policies that conceptually resemble the flow policies underlying our work. On this basis,
they enable formal verification of the system behavior with respect to the specified policies,
and the generation of code skeletons that are amenable to static analysis.

In summary, numerous related works combine information flow requirements and MDE.
However, most of them employ models from the UML and are therefore tailored to be used
by software engineers. Thus, as shown in Fig. 3.5, the intersection of Information Flow and
MDE includes merely approaches for MDSD . In contrast, none of these works are tailored to
systems engineering, which was the objective of our work in this chapter.

3.8.2 Security in Model-Based Systems Engineering

In the past, multiple technology-independent methodologies for secure systems engineering
have been proposed. For example, Tropos [MGMO03] promotes the model-based engineering
of security requirements throughout all phases of the systems engineering process, leading
to the Secure Tropos extension [MGO7]. Similar to our work, the methodology applies
incremental refinements to the system models in use. As a general methodology, Tropos is
also applicable to the engineering of information flow requirements. However, the approach
does not explicitly integrate formal methods from the field of information flow. Another
general methodology for secure systems engineering is ISSEP [RMR15]. The authors separate
the responsibilities of conventional systems engineers from those of security experts, who
provide the engineers with libraries of reusable security solutions to satisfy the specified
requirements. However, as distinct our work, these security solutions do not comprise any
formal methods from the field of information flow security.

Vasilevskaya et al. [VGNH14] present another security-aware development process for
networked embedded systems, referred to as SEED [VN16]. Similar to ISSEP, the approach
aims to provide systems engineers with the required security knowledge, which is shared by
security experts. In particular, the approach has been used to quantify the level of risk that a
system is exposed to [VN15]. Another approach towards risk analysis has been proposed by
Grunske and Joyce [GJO8]. By analyzing SysML-based component architectures, the authors
explicitly address the discipline-spanning systems engineering. The work by Ouchani et
al. [OMD13] also enables risk assessment on the basis of SysML, however, their analysis takes
into account the behavior of a system given in terms of sequence diagrams. In Section 3.6,
such a quantitative security analysis has already been identified as a shortcoming of our
constructive approach.
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Besides these risk-centric approaches, other works have also integrated security into
SysML. For example, Oates et al. [OTH13] address the security of industrial control sys-
tems by extending SysML with concepts for the representation of threats, vulnerabilities,
assets, and security solutions like encryption. Whereas the approach takes security threats
into account, there is no specific support for security requirements engineering. The SoSSec
method [Hac+17] provides an architecture description language [MTOO] for systems of sys-
tems, which are defined as “systems that are composed of independent constituent systems”
[Nie+15]. The authors enable known vulnerabilities and appropriate countermeasures to be
specified in SysML, and propose a simulative analysis to detect potential exploits. Similarly,
Lemaire et al. [LVIN17] analyze vulnerabilities in SysML models of industrial control sys-
tems. The analysis is conducted by a knowledge-based system with rules taken from dedicated
databases or derived from domain-specific guidelines. By focusing on vulnerabilities, both
works do not explicitly account for the security requirements engineering.

Ouchani and Lenzini [OL15] enable the detection of attack surfaces, using SysML activity
diagrams to describe both the behavior of systems and known attack patterns. Thereby,
they promote the validation of security requirements. Belloir et al. [Bel+14] present an
elicitation process for security requirements of systems of systems on the basis of SysML.
They support the translation of requirements into design models, similar to the intent of
this chapter. Another prominent methodology for secure systems engineering is SysML-
Sec [AR16]. Since the approach covers the entire development process, it also enables
systems engineers to account for predefined security requirements at the design level. To
that end, SysML-Sec enables software components to be refined systematically, which is a
commonality shared with our work. Nevertheless, none of the above approaches based on
SysML involve information flow and corresponding security policies.

Lemaire et al. [LVDN17] analyze data flows within SysML models of CPSs. The analysis
detects whether stakeholders may access specific data assets and thereby violate predefined
confidentiality policies. By specifying such policies, their work is similar to our approach.
However, the authors design a system in terms of its constituent hardware components,
whereas our approach aims at the enforcement of security policies by software components.

In summary, the multitude of the above approaches suggests that security has evolved into a
crucial factor for MBSE. Nevertheless, none of the previous works provide systems engineers
with formal methods from the area of information flow security, as indicated by the empty
intersection between Information Flow and MBSE in Fig. 3.5. Hence, connecting these isolated
fields is the novel contribution made in this chapter.

3.9 Summary

We presented a novel integration of formal methods from the theory of information flow
into the ConsEens technique used in systems engineering practice. Thereby, we enabled the
documentation of unauthorized information flows in terms of flow policies at an early stage
of MBSE. On this basis, our contributions help refine these policies during the system design
and validate that the intended restrictions are still enforced after each refinement.
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To assess our contributions, we referred to the quality framework for security methodologies
by Uzunov et al. [UFF18]. According to this framework, our approach promotes the assurance
of information flow restrictions by supporting the early requirements validation with formal
methods. In contrast, to improve the completeness of our work, a promising future extension
is the integration of an upstream threat analysis.

Engineers benefit from our approach by documenting information flow requirements at an
early, discipline-spanning stage, without deferring security needs to the downstream software
engineering. On this basis, our proposed validity check enables systems engineers to refine
the documented requirements consistently from the system-level to the subsystem-level. The
refined requirements lay the foundation for the derivation of security policies for individual
software components during the downstream software engineering.
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ARCHITECTURAL REFINEMENT OF
CoMPONENT-BASED SECURITY POLICIES

As demonstrated by the MEcHATRONICUML component model described in Section 2.3.2,
component-based principles are often applied to the architectural design of CPSs [CMMS16].
Accordingly, systems are decomposed into numerous software components, whereas the
global system behavior emerges from the local behavior of the constituent components.
Recently, the principle of CBSE has gained in importance due to the emergence of the
microservice architectural style [FLM19; Jam+18; Dra+17], which promotes a fine-grained
decomposition into small-size components that can be deployed and scaled independently.

When reasoning about the quality of component-based systems, a key feature is composabil-
ity [CSVC11]. According to this feature, local quality properties of constituent components
act as indicators for the global quality of a composite system. In the context of security,
composability enables software architects to check single components against localized secu-
rity policies and thereby reason about the global security of the composite system. We refer
to this approach as local reasoning [ORYO01]. Whereas reasoning about extra-functional’
properties like security is a well-established line of research [SSCC09; Zsc10; MRRW16],
their composability is regarded as “the most difficult challenge in CBSE” [CSVC11].

Local reasoning about information flow properties is particularly challenging. Since such
properties are not generally composable (cf. Section 2.4.2), a composite system may be
compromised by global information flows, even if all components are locally secure [Man02].
This problem gets even more difficult if the components communicate with each other in both
directions, which is a form of composition that is known as feedback [McL96].

In the presence of feedback composition, the composability of information flow properties
is a challenging problem [ZL96], which we address in the context of MEcHATRONICUML.
According to the top-down decomposition described in Section 2.3.2, the coarse-grained
security policy of a composite component must be enforced by finer-grained policies of its
subcomponents, thereby requiring security policies to be refined [LS11]. To ensure security
of composite components, the refined policies of the subcomponents need to be composable.
Hence, during the refinement, software architects must be supported by appropriate guidelines
that guarantee composability and thereby enable local reasoning about security.

"Following Crnkovi¢ et al. [CSVC11], we use the terms extra-functional and non-functional interchangeably.
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State of Research. The composability of information flow is a long-established research
topic, which has been approached from a theoretical viewpoint by McCullough [McC88],
Zakinthinos and Lee [ZL.95], McLean [McL96], as well as Mantel [Man02]. On the basis of
these fundamentals, recent approaches towards composability even address CPS characteris-
tics like message passing [LMT17] or time-sensitive behavior [RIB17]. However, instead of
taking architectural components into account, these works are based on lower-level program
specifications, thereby neglecting the refinement of security policies during the architectural
decomposition. In contrast, whereas the scientific literature also covers approaches towards
security for component-based CPSs [MA11; BPKN18; SLCS12], these works do not provide
architects with the formal rigor of information flow. Finally, existing approaches that ap-
ply information flow to a component-based design do not address specific characteristics of
CPSs. For example, previous works do not take into account the real-time behavior [SARL13;
CM15; GMB17] and therefore fail to detect timing channels (cf. Section 2.4). Likewise,
existing approaches assume a synchronous handshake communication [GMB17; SABB14],
which contradicts the asynchronous message passing of CPSs that underlies our work.

Contributions. To enable local reasoning about security in MEcHaATRONICUML, this chapter
makes the following contributions. Initially, we introduce a novel notion of component-based
security policies, in which the ports of a component are classified according to the security
sensitivity of their exchanged information. These sensitivities specify unauthorized depen-
dencies between ports and thereby restrict the information flow through a component. On this
basis, we augment the transition from CoNseNs to MEcHATRONICUML with a semi-automatic
translation that partially derives such component-based policies from the flow policies used
in Chapter 3. Thereby, we enable a seamless consideration of information flow restrictions
across MBSE and CBSE. Next, our major contribution is a set of architectural well-formedness
rules for the refinement of component-based security policies. By establishing these rules, we
draw up design guidelines that stipulate how the policies of subcomponents must be shaped
to be composable and thereby enforce the policy of their composite component. Following
these rules during refinement enables software architects to reason locally about security,
preventing the emergence of global information flows regardless of whether components are
assembled with or without feedback. The proposed rule set is based on the theory of compo-
sitional information flow by Mantel [Man02] and applies these theoretical principles to the
field of CBSE. Finally, we demonstrate the soundness of our approach by showing that our
rules guarantee composability in the context of the MEcHATRONICUML component model.

Novelty. The key novelty of our contribution lies in the synergy between CBSE and for-
mal methods [Laul7], which enables the design of secure software architectures for CPSs.
Thereby, we are the first in the field of architectural security to combine crucial CPS charac-
teristics on the one hand, and the formal rigor of information flow security on the other hand.
By formally underpinning our approach, we assure software architects that their policies are
refined in a well-formed way. Thereby, we enforce the intended security restrictions with-
out providing an opportunity for unauthorized information flows to emerge on composition.
Moreover, another novelty is the transition from flow policies used in MBSE to component-
based policies in the context of CBSE, which enables software architects to account for the
security requirements specified during the upstream systems engineering.

56



4.1. ScieNTIFIC CONTRIBUTIONS

Publication. The well-formed refinement of component-based security policies, as the main
contribution of this chapter, was initially proposed in a conference paper [*GS18], before
being elaborated and evaluated in the context of MEcHATRONICUML by another conference
paper [*GS19]. Furthermore, the transition of security policies from MBSE to CBSE has
been sketched in a workshop paper [*Ger18].

Outline. The remainder of this chapter is structured as follows. We condense our sci-
entific contributions in Section 4.1, before specifying the requirements for our approach in
Section 4.2. We give an overview on our work in Section 4.3 and introduce our notion of
component-based security policies in Section 4.4. Section 4.5 describes the transition from
flow policies to component-based policies, whereas we establish well-formedness rules for
these policies in Section 4.6. We provide evidence for the composability of our approach in
Section 4.7 and discuss known limitations in Section 4.8. Finally, we survey related work in
Section 4.9, before summarizing this chapter in Section 4.10.

4.1 Scientific Contributions
In summary, this chapter makes the following contributions:

* We augment the MEcHaATRONICUML component model with a notion of component-
based security policies, which are used by software architects to restrict the information
flow of individual software components.

* We enhance the integration of Consens and MeEcHATRONICUML with a translation of
flow policies into component-based security policies.

* We establish a set of architectural well-formedness rules for component-based security
policies. These rules act as a guide to software architects when refining policies during
the architectural decomposition.

* We provide evidence for the composability of component-based security policies.
Thereby, we assure software architects that the policies of subcomponents are guaran-
teed to enforce the information flow restrictions of a composite component.

4.2 Requirements

Crnkovi¢ et al. [CSVC11] identify three characteristic features of component models, accord-
ing to which the handling of extra-functional properties can be classified. These features
are the specification, management, and composability of properties, which will be used as
requirements (R1-R3) for the handling of security in our approach:

(R1) Specification: The specification of extra-functional properties is the “most basic sup-
port that a component model can provide” [CSVC11]. Accordingly, our approach must
enable software architects to impose security restrictions at the level of components as
building blocks of a software architecture.
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(R2) Management: This advanced feature describes how the conformance to a specified
property is managed by a component model. Instead of containerizing components to
manage their security from the outside, we delegate this responsibility to the inside
of each individual component, such that their implementations must conform to the
imposed security restrictions. Thereby, we adopt an endogenous approach to security
management [CSVC11]. Furthermore, we also assume that security is managed directly
by the collaboration of components, instead of utilizing security services provided by
the underlying computing platform to which components are deployed. Our approach
therefore corresponds to a security management per collaboration [CSVC11]. By
combining these two characteristics, we do not directly require our component model
to support the security management.

(R3) Composability: The most challenging feature of component models is their ability to
compose extra-functional properties of individual components [CSVC11]. Thus, in our
context, the local security restrictions of components must be composable and thereby
enable reasoning about the global security of overall software architectures.

4.3 Overview

To meet the requirements specified in Section 4.2, we extend MEcHATRONICUML’s architec-
tural design process from Fig. 2.5 on page 19. In Fig. 4.1, we highlight our extensions in
green. Initially, in response to the Derive Component Architecture activity, software architects
derive a set of partial component security policies, restricting the information flow at the
level of software components. We introduce these policies in the upcoming Section 4.4.
Each policy is derived from one or more non-unauthorized information flows inside the flow
policy documented by systems engineers at the level of the active structure (cf. Chapter 3).
On the basis of the prior derivation of the component architecture from the active structure,
the Derive Security Policies activity is an automatable procedure, which we describe in the
upcoming Section 4.5. Since component security policies can only be partially derived from
a flow policy, they need to be manually completed by software architects in the subsequent
Refine Security Policies activity.

Next, the completed component security policies are checked during the automatable Check
Well-Formedness activity. In the upcoming Section 4.6, we establish the well-formedness rules
underlying this check. If the refined policies are not well-formed, we require software archi-
tects to revise the refinement by repeating the Refine Security Policies activity and to recheck
the policies during the Check Well-Formedness activity. Once all policies are well-formed,
the Decompose Component activity may lead to a recursive decomposition of the architecture
as described in Section 2.3.1. In response to each decomposition, the security policies of
the decomposed composite component need to be refined by corresponding policies for the
resulting subcomponents. To this end, software architects repeat the Refine Security Policies
and Check Well-Formedness activities. Finally, the architectural design process terminates if
all security policies have been refined in a well-formed way and no further decomposition of
the component architecture is required.
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Figure 4.1: Proposed extensions to the MEcHaTRONICUML architectural design process.

4.4 Component-Based Security Policies

To enable the specification of security restrictions (R1 from Section 4.2), security policies
must distinguish authorized from unauthorized flows of information. Thus, on the one hand, a
policy must define which information is security-critical and may therefore act as the source of
an unauthorized information flow. On the other hand, a policy must define what information is
publicly accessible and may therefore represent the sink of an unauthorized flow. In the scope
of CBSE, we enable software architects to specify security policies on a per-component basis.
Since ports reflect the information exchange of a component, we consider them as sources or
sinks of an information flow. As a principle proposed by Bastys et al. [BPS18], we thereby
separate policies from the implementations of components. To that end, we classify ports
according to the sensitivity of the exchanged information. On the basis of the sensitivity levels
from Section 2.4.1, this leads to the following classification scheme, which also introduces
the visual encoding of sensitivities that we use during the remainder of this thesis:

@ Critical ports are sources of unauthorized information flows through a component.
Hence, in order to avoid public disclosure, information received over such a port must
not become publicly known.

© Observable ports are sinks of unauthorized information flows through a component.
Hence, information exchanged over such a port is publicly accessible and, therefore,
must not enable its observers to draw any conclusions about critical information.

Neutral ports are neither sources nor sinks and therefore used to authorize information
flows through a component. Unlike critical ports, information received over a neutral
port may become publicly known. Unlike observable ports, information exchanged
over a neutral port allows conclusions to be drawn about critical information.
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Since we restrict ourselves to the coordination behavior of MEcuaTRONICUML, our policies
involve only discrete ports (cf. Section 2.3.2). Hereafter, we define the security restrictions
imposed by the above sensitivities more precisely. As described in Section 2.4.2, definitions
of information flow security are given with the help of perturbations and corrections [Man03],
which we adjust to the asynchronous communication model underlying discrete ports.

On the one hand, asynchronous communication implies that the sending of messages cannot
be blocked. Thus, unlike communication by means of synchronous handshake, a component
may never actively refuse to receive a message sent by another component. Hence, compo-
nents can only be perturbed by influencing the messages they receive. This is also reflected by
traditional information flow properties such as generalized noninterference [McC87], gener-
alized noninference [MclL94], or nondeterministic noninterference [FG95], which all restrict
perturbations to incoming information. Since we adopt this approach, critical information is
limited to received messages, whereas sent messages will not undergo perturbation. Instead
of being perturbed, messages sent over critical ports may be used for corrections, as it is the
case for messages exchanged over neutral ports.

On the other hand, non-blocking communication implies that the receiving of a message is
not observable. Thus, the sender does not obtain any information about whether the receiver
is ready to receive a message. Intuitively, the observable behavior of a component is therefore
limited to the messages being sent. Nevertheless, according to the above classification,
messages received over observable ports must not depend on critical information as well. We
thereby prevent such received messages from being used for corrections, which would only
be possible if we assumed that the sending component delivers these messages as needed. In
case of observable ports, we avoid this unsafe assumption to ensure that our policies are more
freely composable without compromising the security of composite systems. Nevertheless,
note that messages received over neutral ports are still allowed to be used for corrections
according to our classification. In the upcoming Section 4.6, we will therefore restrict the
possible connections of neutral ports to ensure composability of security policies.

In Table 4.1, we summarize the differences induced by the above sensitivity levels. On the
one hand, perturbations are restricted to the receiving of messages over in (or in/out) ports.
However, only messages received over critical ports are assumed to be perturbed. In contrast,
messages received over neutral or observable ports will not undergo perturbation. On the
other hand, corrections are restricted to messages exchanged over neutral ports or sent over
critical ports. By contrast, observable ports must not be used for corrections, which would
otherwise constitute an unauthorized information flow. In the following, we describe an
example policy in Section 4.4.1, before discussing limitations of our policies in Section 4.4.2.

Table 4.1: Perturbations and corrections induced by the sensitivities of ports.

Critical Neutral Observable
g | 24 o]
In Perturbation | Correction -
Out Correction | Correction -
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Figure 4.2: Example component security policy of the Infotainment System.

4.4.1 Example Policy

We depict an example security policy for the Infotainment System in Fig. 4.2. Since the
positioning, ui, and engine ports are in/out ports being classified as critical, they represent
sources of unauthorized information flows. Accordingly, the information received over these
ports must not become publicly known. Therefore, the receiving of messages over these ports
is subject to perturbations. By contrast, the storage port, which represents the component’s
interface to the storage gateway, is classified as observable. The storage port thereby represents
the sink of an unauthorized information flow, and the exchange of information over this port
must not enable any conclusions to be drawn about the information that the component
receives over its critical ports. Thus, the messages sent to or received from the storage
gateway must not be affected by the aforementioned perturbations.

Finally, the traffic port is classified as neutral and therefore represents neither source nor sink
of an unauthorized flow. Hence, the information sent over this port can be used for corrections
and may therefore depend on critical information. For example, if a geographic location is
received from the positioning system over the critical positioning port, it is allowed to be sent
to the traffic reporting over the traffic port. Moreover, information received over the traffic port
may also become publicly known by influencing the exchange of information over the storage
port. If the traffic reporting was malicious, it could therefore exploit the neutrality of the traffic
port to circumvent the specified policy, e.g., by storing a the car’s location in the cloud. As
illustrated by this example, classifying ports as neutral requires special care when assembling
multiple components. We will address this challenge by proposing well-formedness rules for
component security policies in the upcoming Section 4.6.

4.4.2 Limiting Factors

In general, our component security policies are limited to discrete ports, which are used
for message passing. Hence, our policies do currently not restrict the signal exchange
over continuous and hybrid ports because this would require an extended, hybrid definition
of information flow security, which is beyond the scope of our work. Since continuous
components may use continuous ports only (cf. Section 2.3.2), we thereby also limit our
policies to discrete and hybrid components. According to these limitations, we assume that
a security policy is fully enforceable by controlling the message passing over discrete ports,
instead of controlling the signal exchange over hybrid ports.
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Another limitation relates to the determination of the sensitivities comprised by a com-
ponent security policy. These sensitivities can be partially derived from the flow policies
specified during MBSE, as we will describe in the upcoming Section 4.5. Nevertheless,
the derived policies still need to be completed manually by determining the sensitivities of
additional discrete ports that have not yet been classified. In general, the sensitivity of a port
should reflect the criticality of the exchanged information, whereas the information exchanged
by a discrete port corresponds to the messages that are eventually passed over it. However,
according to the MEcHATRONICUML process described in Section 2.3.1, these messages will
only become known during the behavioral design. Accordingly, they cannot be used to de-
termine the sensitivity of ports during the architectural design. Thus, to pinpoint a port’s
sensitivity, software architects must anticipate the information content that will be eventually
exchanged over that port, and overapproximate the criticality of the exchanged information.

Finally, by restricting perturbations to received messages, we assume that components
receive all security-critical information from the outside. Thus, our policies cannot be used
to protect critical information that is created by a component internally [Man03, pp. 33, 67].

4.5 Policy Derivation

As described in Section 2.3.1, a MEcHATRONICUML component architecture is derivable
from the active structure used in MBSE with Consens. This derivation is based on the trans-
formation of software-relevant system elements into software components [Hol19; Riel5;
Ana+14b; Gau+09]. System elements are regarded as software-relevant if they are provided
with a relevance annotation that indicates the involvement of software or control engineers.
On the basis of these annotations, a system element at the bottom level of the active structure
is transformed into a discrete component if it is relevant to software engineering. In contrast,
if a bottom-level element is relevant to control engineering, it is transformed into a continuous
component. Higher-level system elements are transformed into composite components. Such
a composite component is either hybrid if it is recursively composed of at least one continuous
subcomponent, or discrete if composed of discrete subcomponents only. Information flows
inside the active structure are transformed into connectors between the resulting components,
representing either a continuous signal exchange or a discrete message passing.

In this section, we enhance the transition between Consens and MEcHATRONICUML with
a derivation of component-based security policies. Since policies are limited to discrete ports
(cf. Section 4.4), we focus on the derivation of discrete or hybrid components, which commu-
nicate by message passing. To derive component security policies for such components, we
take into account a flow policy specified at the level of the active structure (cf. Section 3.5.1)
and label a subset of the discrete ports inside the resulting component architecture with corre-
sponding sensitivities. Thereby, we translate an unauthorized information flow from the flow
policy into an equivalent component-based representation that indicates sources and sinks.
In the following, we establish rules for the derivation in Section 4.5.1. In Section 4.5.2, we
apply these rules by deriving example security policies, before discussing the generalization
from one to many unauthorized flows in Section 4.5.3.
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Figure 4.3: Rules for the derivation of sensitivities from unauthorized information flows.

4.5.1 Derivation Rules

Figure 4.3 illustrates our derivation rules, which translate unauthorized information flows
into sensitivity labels for specific ports. In Fig. 4.3a, we illustrate the translation of an
unauthorized flow between two system elements, which correspond to a source and a target
component inside the software architecture. According to the unauthorized flow at hand, the
information sent by the source component must not influence any information received by the
target component. Therefore, discrete ports of the source component are classified as critical
if they enable messages to be sent, which is the case for out and in/out ports. Furthermore,
discrete ports of the target component are classified as observable if they enable messages to
be received, as it is the case for in and in/out ports. Hence, the policy from Fig. 4.3a excludes
an information flow from the source to the target component.

Figure 4.3b shows the translation of an unauthorized information flow from an environ-
mental element to a system element. Similar to Fig. 4.3a, the discrete in and in/out ports of
the corresponding target component are classified as observable. In addition, discrete in and
in/out ports of the top-level component are classified as critical, provided that they represent
the communication with the respective environmental element. The resulting security pol-
icy from Fig. 4.3b restricts the architecture such that the information received over specific
external ports must not flow to a particular internal component.
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Analogously, Fig. 4.3c illustrates the reverse case of an unauthorized flow from a system
element to an environmental element. In this case, the out or in/out ports of the corresponding
source component are classified as critical, whereas out and in/out ports of the top-level com-
ponent are observable if they represent the communication with the respective environmental
element. According to the resulting policy shown in Fig. 4.3c, no information must flow from
an internal component to specific external ports of the architecture.

Finally, in Fig. 4.3d, we address an unauthorized flow between two environmental elements.
By analogy with Fig. 4.3b and Fig. 4.3c, any in or in/out ports that receive information from
the source element are critical, whereas out or in/out ports that send information to the target
element are observable. Thereby, the security policy in Fig. 4.3d prevents an end-to-end flow
of critical information between specific external ports of the architecture.

In summary, our rules illustrated in Fig. 4.3 will always derive a critical sensitivity label
from the source of an unauthorized information flow, and an observable label from the target
of a flow. The result of a derivation by means of the proposed rules is a partial security policy
that still needs to be manually completed. This completion requires software architects to
label any discrete ports that have not been classified during the automated derivation. We
consider this completion as a refinement of a component security policy, which must be
well-formed in order to fully enforce the security restrictions specified by the underlying flow
policy. We address the well-formedness of such refinements in the upcoming Section 4.6.

4.5.2 Example Derivation

In Fig. 4.4, we show two partial security polices, which are derived from the flow policy of
the self-driving car shown in Fig. 3.3 on page 41. In particular, the partial policy in Fig. 4.4a
is derived from the unauthorized flow between User Interface and Storage Gateway. Thus, the
resulting partial policy represents a confidentiality requirement that prevents user data from
being leaked to the cloud. The unauthorized flow at hand restricts two system elements.
Hence, according to the derivation rule from Fig. 4.3a, the discrete ports of the User Interface
(which is the source of the flow) are classified as critical. In particular, both in/out ports are
critical because they enable the sending of messages. Furthermore, the discrete ports of the
Storage Gateway are classified as observable and thereby indicate the target of the unauthorized
flow. Again, this labeling affects each discrete port of the component because all of them are
either in or in/out ports, which enable messages to be received. Since the discrete ports of
other components such as the Electric Engine have not yet been classified, the depicted labeling
represents a partial security policy.

In contrast, the partial policy depicted in Fig. 4.4b is derived from the unauthorized flow
between Predictive Maintenance and User Interface. Hence, it specifies an integrity requirement,
preventing manipulation of the information displayed to occupants. The unauthorized flow
at hand affects an environmental and a system element. According to the rule from Fig. 4.3b,
the external maintenance port of the top-level component is classified as critical, representing
the source of the flow. Since the User Interface is the target of the flow, its discrete ports are
classified as observable. Again, the derived policy is partial because the discrete ports of
other components like Positioning System or Electric Engine have not been classified yet.
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Figure 4.4: Partially derived component security policies of the self-driving Car.

4.5.3 Generalization

Each of the derivation rules established in Section 4.5.1 refers to an individual unauthorized
information flow. However, a flow policy may generally include more than one such flow.
In particular, one and the same element may also act as the source and target of two distinct
unauthorized flows. For example, in Fig. 3.3 on page 41, this is the case for the User
Interface. However, as described in Section 4.5.1, source elements are always classified
as critical, whereas target elements are generally classified as observable. Thus, in this
situation, deriving a shared component security policy from both flows in combination leads
to conflicting sensitivities for the discrete ports of the User Interface. This is also illustrated
by the different sensitivities assigned in Fig. 4.4a and Fig. 4.4b, which would conflict with
each other when combined into a shared policy. To ensure consistency of component-based
security policies, such conflicts need to be avoided.

Even if multiple flows do not lead to conflicting sensitivities, a shared security policy can
still be overly restrictive. In such a case, the component security policy renders an information
flow unauthorized although it is authorized according to the flow policy. Thus, the intended
security restrictions of the flow policy are enforced, but not precisely preserved. In order
to avoid conflicting or overly restrictive policies, we generally assume that each individual
unauthorized flow is handled separately, deriving one distinct component security policy per
unauthorized flow.

In the general case, we therefore assume that multiple distinct security policies are derived
from a single flow policy. This is in accordance with the extended MecHaATRONICUML process
depicted in Fig. 4.1, which refers to a collection of multiple component security policies. In
the downstream steps of the process, all of these policies need to be handled separately. First,
each of the derived policies must be refined in a well-formed manner. Second, the component
behavior determined during the behavioral design (cf. Section 2.3.3) must adhere to all of
the resulting security policies as is.
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4.6 Well-Formedness of Refinements

The MecHATRONICUML process from Fig. 4.1 requires software architects to refine a com-
ponent-based security policy under two different conditions. First, a partial policy must be
completed after it is derived from a flow policy. Second, on decomposition of a component,
the ports of the resulting subcomponents must be included in the policy. In both cases,
additional discrete ports must be classified by labeling them with sensitivities, which must be
compatible with the pre-existing sensitivities of connected ports. To this end, we propose a
set of well-formedness rules that require any two connected ports to be classified compatibly.
The proposed rule set is based on the formal constraints for the composition of secure systems
by Mantel [Man02], which we transfer to the level of CBSE. In particular, we adjust the rules
to the asynchronous communication between components in MEcHATRONICUML.

Our proposed rules are applicable to particular connectors between two ports. We restrict
the presentation of our rules to unidirectional connections between in or out ports, whereas
a bidirectional connection between in/out ports must follow the rules for both individual
directions. The application of a rule leads to one of three different results, assessing the
compatibility of the connected ports. First, a well-formed refinement is denoted by @, in-
dicating that the intended security restrictions are enforced by a connection, without being
obviously enforceable by less restrictive sensitivities. In this case, software architects are not
required to revise the associated sensitivities and may proceed with the process as described
in Section 4.3. Second, @ denotes an ill-formed refinement, which applies if a connec-
tion does not enforce the intended security restrictions and therefore requires architects to
revise the sensitivities of the connected ports. Third, we denote a refinement by /% if it is
neither well-formed nor ill-formed. This is the case if the intended security restrictions are
enforced, but could obviously be enforced by less restrictive sensitivities. In this case, it is
strongly recommended that architects revise the associated sensitivities. In the following,
we present well-formedness rules for delegations in Section 4.6.1 and for assemblies in Sec-
tion 4.6.2. Subsequently, we provide software architects with best practices for the refinement
in Section 4.6.3 and illustrate the refinement with an example in Section 4.6.4.

4.6.1 Delegation

The information exchange between composite and subcomponents over delegation connectors
creates two different obligations. First, the composite component relies on the fact that its
security policy is enforced by its constituent subcomponents. Thus, subcomponents must treat
critical information reliably without downgrading its criticality, which would otherwise enable
unauthorized information flows. Second, the security policy of the composite component
guarantees that observable information does not depend on critical information, which is a
guarantee that must be provided by the subcomponents. To meet these obligations, the ports
bound by a delegation connector must be classified in a well-formed manner. In the following,
we provide dedicated well-formedness rules for incoming delegations between in (or in/out)
ports and for outgoing delegations between out (or in/out) ports.
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(a) In ports (b) Out ports

Figure 4.5: Well-formedness rules for delegations [*GS19].

Incoming

We depict the well-formedness rules for in ports in Fig. 4.5a (i)—(iii). If a subcomponent
receives critical information from a composite component, it must meet the obligation to
process this information reliably without downgrading its criticality. To ensure this form of
reliability, the perturbations supported by the composite component must also be supported
by the subcomponent. It is therefore mandatory that a critical in port of a composite compo-
nent only delegates to critical in ports of subcomponents, whereas delegations to neutral or
observable in ports are both ill-formed (i). In contrast, since a neutral in port of a composite
component is not affected by the two aforementioned obligations, it may delegate to arbitrarily
classified in ports of subcomponents (ii). However, only a delegation to a neutral in port is
well-formed because treating the received information as critical or observable would restrict
the information flow of the subcomponent without any reason. Finally, an observable in port
of a composite component must not depend on critical information. To provide this guarantee
given by the composite component, it is mandatory that such a port delegates to another
observable in port of a subcomponent, whereas other connections are ill-formed (iii).

Outgoing

In Fig. 4.5b (i)—(iii), we depict our well-formedness rules for out ports. As illustrated in
Table 4.1, we assume both critical and neutral out ports to be used for corrections. Therefore,
their associated rules (i—ii) are equivalent because the delegation is not affected by the
aforementioned obligations. First, since only received information is considered critical,
the port of the subcomponent does not have to be reliable with respect to the criticality of
information. Second, the port of the subcomponent does not need to guarantee that the
information being sent will not depend on critical information. Therefore, a critical (i) or
neutral (ii) out port of a composite component may delegate to arbitrarily classified ports of
subcomponents. However, a delegation to an observable out port leads to an overly restrictive
policy because the subcomponent will never use that port for corrections, opposed to the
assumption of the composite component. In contrast, only a delegation to a critical or neutral
out port is actually well-formed. Finally, an observable out port of a composite component
must not depend on critical information. To provide this guarantee, it may only delegate to
observable out ports of subcomponents (iii), whereas a delegation to a critical or neutral out
port is ill-formed.
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Figure 4.6: Well-formedness rules for assemblies [*GS19].

4.6.2 Assembly

When information is sent from one component to another over assembly connectors, it requires
special care if it allows critical conclusions to be drawn. Thus, such information must not be
circulated by the receiving component in an uncontrolled manner. We depict the respective
well-formedness rules for assembly connectors between a source and a target component in
Fig. 4.6 (i)—(iii). Similar to Fig. 4.5b, the rules for critical and neutral out ports are equivalent
because both are potentially used for corrections (cf. Table 4.1) and may thereby depend on
critical information. To prevent such information from being observable, both critical (i) and
neutral (ii) out ports of the source component must be mandatorily assembled with critical in
ports of the target component. Thus, connections to neutral or observable in ports are both
ill-formed because they would enable the exchanged information to be disclosed to the public.

In contrast, an observable out port of the source component (iii) must not be assembled with
a neutral in port because such a port may be used by the target component for corrections (cf.
Table 4.1). As described in Section 4.4, the target component thereby assumes that the source
component will always support such corrections by sending the right messages as needed. To
prevent this wrong assumption, an assembly connector between an observable out port of the
source component and a neutral in port of the target component is ill-formed. Furthermore,
assembling the observable out port with a critical in port leads to an overly restrictive security
policy: whereas the in port of the target component assumes to receive information that allows
critical conclusions to be drawn, no such information is ever sent by the source component
over its observable out port. Therefore, the refinement is only well-formed when assembling
the observable out port with an observable in port.

4.6.3 Best Practices

The established rule set provides software architects with an analytical, reactive assessment
regarding the well-formedness of the refined policies. However, due to their level of detail,
the proposed rules are not suited as a constructive guideline that architects may establish as
a proactive mindset. In particular, our rules refer to a one-way communication over in and
out ports. Thus, a two-way communication over in/out ports requires architects to follow the
rules for both ways of communication separately. We therefore condense our well-formedness
rules and provide software architects with best practices for the refinement of security policies
in the presence of in/out ports [*GS18]. Whereas the following best practices (BP1-BP3)
are in accordance with the proposed well-formedness rules, they guide software architects by
means of concrete recommended actions for the refinement:
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(BP1) Inheritance on Delegation: The in/out ports of subcomponents should always inherit
the sensitivity level from the delegating ports of their composite component. As
depicted in Fig. 4.5, such a refinement is always well-formed. This practice ensures
that the sensitivities of ports are not upgraded or downgraded by subcomponents.

(BP2) Non-Neutrality on Assembly: Assembly connectors must not be bound to neutral
in/out ports, as can be seen from Fig. 4.6. We thereby prevent components from using
received messages for corrections because an assembled component might not deliver
these messages as required.

(BP3) Equivalence on Assembly: Assembled components should agree on the sensitivity
of their connected ports. Therefore, in/out ports bound by an assembly connector
should share equivalent sensitivity levels. As shown in Fig. 4.6, such a refinement is
well-formed for critical and observable ports.

4.6.4 Example Refinement

In the following, we apply the best practices from Section 4.6.3 to the software architecture of
the self-driving car. In Fig. 4.7, we complete the partial confidentiality policy from Fig. 4.4a.
The resulting policy is well-formed and thereby classifies the discrete ports in such a way that
no information is leaked from the User Interface to the Storage Gateway. To this end, particular
subcomponents of the Car are restricted such that they must not leak specific information to
the Storage Gateway. First, the Body Control Module must not leak any information received
from the User Interface. Second, the Infotainment System must not disclose any information
received from the Positioning System, the User Interface, or the Electric Engine. Third, the Electric
Engine must not circulate the information received from the Infotainment System.
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Figure 4.7: Completed confidentiality policy of the self-driving Car.
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Figure 4.8: Refined confidentiality policy of the Infotainment System.

Since User Interface and Storage Gateway represent source and sink of the unauthorized flow
that needs to be prevented, these subcomponents are not effectively restricted because all of
their discrete ports are labeled with equivalent sensitivities. Since their security policies do
not combine critical and observable sensitivities, these components are secure by definition
and the information flow security of their behavior does not have to be verified. This is also
true for the Positioning System because it is limited to a single discrete port.

Note that the resulting security policy of the Infotainment System corresponds to the policy
known from Fig. 4.2. In Fig. 4.8, we further refine this policy on decomposition of the
component as illustrated in Fig. 2.7b on page 22. Again, the refinement is well-formed
and therefore ensures that the Navigation System and Data Handling subcomponents enforce
the security policy of their composite component. On the one hand, the policy of the Data
Handling requires that critical information received from the Navigation System or from the
User Interface through the ui port must not be disclosed over the observable storage port.
On the other hand, the information flow of the Navigation System is not effectively restricted
because its security policy does not combine critical and observable sensitivities. According
to this policy, the Navigation System is secure by definition. Thus, by means of the depicted
refinement, the security restrictions of the Infotainment System have been narrowed down to
finer-grained restrictions of the Data Handling without restricting the Navigation System.

4.7 Composability

In this section, we refer back to the requirements specified in Section 4.2. Whereas the specifi-
cation of security restrictions (R1) has been enabled by the policies introduced in Section 4.4,
the security management (R2) is not addressed directly at the level of the MEcHATRONICUML
component model (cf. Section 4.2). We therefore focus on the composability (R3). Provided
that policies are refined according to our well-formedness rules established in Section 4.6,
we show that a global policy can be securely composed of local policies. To this end, Sec-
tion 4.7.1 defines a security property that must be satisfied by a component in order to adhere
to a given policy. Subsequently, in Section 4.7.2, we show that this property will be preserved
by any composite component that is composed of secure subcomponents.
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4.7.1 Defining Security

In the following, we provide our component-based security policies with an underlying in-
formation flow property. As described in Section 2.4.2, we must address the problem that
information flow properties are not generally composable [Man(02] because one component
might block the communication behavior of another component. Thus, security properties
of individual components might no longer hold on composition. This problem becomes
even more challenging in case of feedback composition [Z1.96] because the two-way com-
munication enables components to block each other mutually. To ensure composability, the
information flow property we select is generalized noninterference as introduced by McCul-
lough [McC87]. This property is known to be composable even in case of feedback, provided
that components communicate asynchronously [ZL95]. In this case, a sending component
cannot be blocked by a receiving component, such that the security of the individual com-
ponents still holds on composition. Below, we first consider the perturbations involved by
generalized noninterference, before we transfer the property to real-time systems.

Perturbations

Generalized noninterference involves two different forms of perturbations, which are (i) the
deletion of critical inputs from an execution and (ii) the insertion of critical inputs into
an execution [Man03]. In both cases, the observable inputs and outputs processed during
that execution must not be affected by the perturbation. Thus, from the perspective of an
observer, the perturbed and unperturbed executions must be indistinguishable. Observations
that can be made in the absence of a perturbation must still be possible in the presence
of that perturbation. This suggests the use of an inclusion relation to encode generalized
noninterference: the observable behavior of an unperturbed system must be fully included in
the observable behavior of the perturbed one. In the context of formal languages, a similar
approach is followed by D’Souza et al. [DHRS11] who encode perturbations by means of
language operations and define information flow security in terms of language inclusion.

As described in Section 2.3.3, we assume the component behavior to be given in the
form of timed automata, for which language inclusion is undecidable [AD94] and therefore
unsuitable for the definition of verifiable information flow properties. Instead, we relate
the observable behaviors of automata by means of a simulation preorder [Mil71], which is
an even stronger condition [cf. Sti03]. Accordingly, a perturbed automaton must be able
to simulate each observable execution step of an unperturbed automaton. We illustrate this
approach in Fig. 4.9, depicting the timed automaton A reduced to its communication interface.
Required (?) and provided (!) synchronizations represent received and sent messages of a
component. These synchronizations are classified according to the sensitivity of a discrete
port, over which the represented messages are assumed to be passed. We generally assume
that components combine all possible sensitivities and both directions of communication.
Therefore, the depicted automata include required and provided synchronizations at each
possible sensitivity level. Please note that, in the following, ? and ! do not necessarily
represent a single synchronization, but a set of synchronizations with a common sensitivity.
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Figure 4.9: Perturbations of critical inputs required by Generalized Noninterference.

InFig.4.9a, we illustrate the perturbation by deletion. On the left, we depict the unperturbed
automaton A. On the right, we encode the deletion of critical inputs by composing A in
parallel with a perturbator automaton P. The perturbator may or may not provide a critical
synchronization required by the automaton A. In contrast, the unperturbed A may freely execute
any of the critical synchronizations it requires. Thus, during execution, it may be the case that
acritical input is processed by the unperturbed automaton, whereas the perturbed automaton is
unable process the same input. Regardless of such deletions, the observable synchronizations
required and provided by the unperturbed automaton must also be required or provided by
the perturbed one. In Fig. 4.9a, we illustrate this relation by means of a timed similarity
between both automata, as described in Section 2.3.3. Unlike observable synchronizations,
all neutral and critical synchronizations are treated as hidden (cf. Section 2.3.3) and thereby
excluded from the timed simulation. Hence, during execution, the perturbed and unperturbed
automata may differ arbitrarily with respect to all neutral synchronizations as well as critical
synchronizations being provided. Therefore, any of these synchronizations may be used for
corrections (cf. Section 2.4.2). In Fig. 4.9, we depict hidden synchronizations grayed out.

For the perturbation by insertion illustrated in Fig. 4.9b, we need to represent the case that
the perturbed automaton receives a critical input whereas the unperturbed automaton does not.
We encode this requirement indirectly by reattaching P from the right to the left automaton.
Hence, whenever a critical synchronization required by the left automaton is not provided
by P, the right automaton may freely execute the same synchronization, which is thereby
regarded as inserted into the execution. However, since we encode the insertion on the right
by means of deletion on the left, we only insert synchronizations that are admissible [Man03].
Regardless of this perturbation, the right automaton must still simulate the left automaton, as
illustrated by the timed similarity in Fig. 4.9b.
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Timed Generalized Noninterference

The difference between Figs. 4.9a and 4.9b can also be considered as a change in the direction
of the timed similarity. In fact, Fig. 4.9 effectively represents two simulations of the perturbed
by the unperturbed automaton and vice versa. This observation enables us to define infor-
mation flow security by means of a bisimulation [Sti98], which implies that two automata
simulate each other in both directions. Bisimulation is a long-established instrument for the
formal definition of information flow properties [FG95]. Thus, we rely on bisimulations to
transfer generalized noninterference to the real-time behavior underlying MEcHATRONICUML.
In particular, we use timed bisimilarity (~) as described in Section 2.3.3 to define a notion of
generalized noninterference that applies to timed automata:

Definition 4.1 (Timed Generalized Noninterference). Let A be a timed automaton with
the alphabet X(A) = JuOu {7} = Vu NuCu{r}. The automaton A satisfies timed
generalized noninterference, if and only if (P || A) / (NuC) ~ A/ (N u(C) for each P
with S(P)cCnluw{r}.

According to Definition 4.1, we require a timed bisimulation between the unperturbed
automaton A and the perturbed automaton P || A for each perturbator P. Since the perturbator
must only provide A with critical inputs, it is restricted to complementary synchronizations
from the set C'n I. Since we apply the hiding operator / (cf. Section 2.3.3) to all neutral
and critical synchronizations from the set NV u C, the bisimulation is restricted to observable
synchronizations from V. By involving a universal quantification over all P in Definition 4.1,
our notion of information flow security resembles an existing property called nondeducibility
on compositions [FG95]. In Chapter 5, we will address the challenge of handling this
universality during verification.

4.7.2 Preserving Security

In the following, we assume that timed generalized noninterference (cf. Definition 4.1) holds
for two timed automata A; with 3(A;) =% =L uwOyu{r} =V uN;uCyu{r} and
Ag with 3(Ag) = Y9 = b uOyu {7} = VouNauwCyuw {7}. A and Aj represent the
behaviors of two subcomponents. We depict this constellation in Fig. 4.10. To provide for the
composition of A; and A, both are equipped with external synchronizations at the outside
of Fig. 4.10 (representing communication of a subcomponent with a composite component
over delegation connectors), as well as internal synchronizations at the inside of Fig. 4.10
(enabling communication between subcomponents over assembly connectors). We consider
only connections that are not ill-formed. Thus, since neutral in ports are always ill-formed in
the context of assemblies (cf. Fig. 4.6), none of the internal inputs of A; and As are neutral.
Furthermore, as a deviation from Definition 4.1, we divide the perturbator automaton P into
P! for the perturbation of internal and P¢ for the perturbation of external communication.
In particular, we compose A; in parallel with the perturbators P and Pf, and A, with the
perturbators P§ and Py. In the following, we gradually extend Fig. 4.10 to demonstrate that
the depicted bisimulations are preserved under composition of A; and A,. In accordance
with Fig. 4.10, the following holds:
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Figure 4.10: Timed generalized noninterference as a property of the automata A, and As.

VP[Pl P Al P/ (NiuCh) s Ay [ (N1 uCh)

) . “4.1)
VP, Py: Py || Ao || Py [ (N2u C2) = Ag [ (NauCs)

As described in Section 2.3.3, the asynchronous communication in MEcHATRONICUML
can be encoded by synchronizing the communicating automata with an intermediary automa-
ton [KMRO2]. To encode an output, the intermediate automaton requires a synchronization
from the sending automaton, before providing a second, delayed synchronization to the re-
ceiving automaton to encode the input. Thus, we introduce auxiliary automata C's to represent
assembly connectors, enabling the subcomponents to communicate at a specific sensitivity
level s. This level s reflects the sensitivity of the required synchronizations used to receive the
corresponding inputs. Since inputs can only be critical or observable in case of an assembly
(cf. Fig. 4.6), we assume s € {c¢,v}. To enforce asynchronous communication over connector
automata and thereby prevent A; and Ay from synchronizing with each other directly, we
assume that 31 n 3o = {7}, which can be achieved by renaming shared messages. Since
connector automata enable a one-way communication, we denote them by C; or C; to
indicate their direction. Due to the asynchronous communication, the sending of messages is
non-blocking: a component can always send every message without restriction of any kind.
We therefore assume every C' to be input-total (cf. Section 2.3.3).

We show that timed generalized noninterference also holds for an automaton A with
Y(A)=TuwOu{r} =V uNuCu{r}. Since A results from the feedback composition
of Ay and As with ¥ (A) € X1 U X, it represents the behavior of a composite component.
As shown in Fig. 4.11, we use connector automata to establish the internal communicationZ,
suchthat A=A, || CT || Cy || C2 || CJ || Aa. The depicted synchronizations reflect our
well-formedness rules for assemblies from Fig. 4.6: critical and neutral outputs can only lead
to critical inputs, whereas observable outputs may lead to both critical and observable inputs.

2The depicted form of composition is known as hookup [McL96], enabling external communication as well.
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Figure 4.11: Composite automaton A resulting from the composition of A; and As.

To show that A preserves information flow security, we start by focusing on A only. Due
to the universal quantification in Eq. (4.1), we may replace the generic perturbator Pf with
a specific connector C;~ that provides A; with critical inputs. As shown in Fig. 4.11, these
critical inputs in C'; can be caused by outputs from Yo with arbitrary sensitivity levels, such
that X(CS) € Cy u 5. Thus, we need to hide X5 in order to preserve the bisimulation:

VPle : Ple || Al || C: / (N1 UCl UEQ) ~ A1 / (N1 UC1) (4.2)

Due to the universal quantification over all perturbators in Eq. (4.2), the bisimulation
also holds for a perturbator that is always ready to synchronize with A;. However, such a
construction is equivalent to omitting the perturbator entirely, enabling us to detach P} from
Eq. (4.2) without violating the bisimulation. Thus, it holds that A; / (NyuCy) ~ Ay || CS /
(N1 uCy U Xy). Therefore, we can replace the right-hand side of Eq. (4.2) as follows:

VPleIPf || A1 || C;_ / (N1u01 UEQ) NAl || C;_ / (N1 UClUZQ) (43)

At this point, we attached the connector automaton C';~ both to the perturbed automaton
Py || A; on the left of Eq. (4.3) and the unperturbed automaton A; on the right. In the
next step, we make use of the fact that weak timed bisimulation is preserved both under
the composition operator | and the restriction operator \, as shown by Yi [Yi91]. Thus,
in particular, it is also preserved under the | operator, which combines | and \ [Ben+96].
Therefore, we may compose both sides of Eq. (4.3) in parallel with the automaton C” || Aa,
whereas the bisimulation is preserved:

VPP P AL CF [ (NiuCru ) || COF || Az

Next, we use the fact that timed generalized noninterference holds for As as per Eq. (4.1).
In particular, it holds that VPy : C7” || Aa || PS5 [ (N2 u Ca) » C || A2 [ (N2u Cq). We
may therefore compose the right-hand side of Eq. (4.4) in parallel with the perturbator Py,
provided that we hide neutral and critical synchronizations in No U C5 on both sides:

VP{,Ps Pl || Ay || CF [ (NyUCLUSs) | CF || Az || PS [ (N2 U Ca)
S AL O [ (NMUCUEe) | CF | Ay [ (N2UCy)  (45)
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T

Figure 4.12: A; and A2 composed in parallel with connector automata C;” and C_.

Up to now, we connected A; and Ay by means of the connector automata C;” and C.
However, due to the hiding of N; uC', the communication over C” is restricted to observable
outputs of Aj, leading to critical inputs of A;. We depict this restriction in Fig. 4.12.
In particular, both critical and neutral synchronizations are hidden from A; and therefore
assumed to be replaced by 7 (cf. Section 2.3.3). However, we may show that the bisimulation
in Eq. (4.5) still holds when unhiding neutral and critical communication from A; to As,
synchronizing the corresponding outputs with C';” instead. This is due to the assumed input
totality of connector automata, which will never prevent a connecting automaton from sending
an output. Thus, whenever A; can execute a 7 that hides a critical or neutral output, then
A; || C can synchronize on the unhidden output as well. We make use of this property by
enabling C';” to synchronize with A; on neutral or critical outputs. To this end, we move the
hiding of N; u C] to the end of the terms on both sides of the equation:

VPE Py P{ | ALl CE [ S | Ol Az || PS [ (NauCa) [ (N uCh)
S AL CE 2 | O | Ay [ (N2 Ch) [ (N UCh) (46)

Furthermore, Fig. 4.12 also shows that the hiding of Yo prevents A from sending any
outputs over C; . Again, we may enable the communication over C; thanks to the input
totality of connector automata. Thus, for any synchronization provided by As, there will
always be a corresponding required synchronization in the connector C';". As depicted in
Fig. 4.13, this enables us to remove the hiding of 35 in Eq. (4.6). At the same time, we may
join the hiding of Ny u Cy and N; u (1, leading to the following bisimulation:

VP Py PE AL CT I CF | Az || Py [ (N1 uCru Ny u Cy)
Ay | CT O Az [ (N1uCLuNauCa)  (47)
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Figure 4.13: Unhiding of outputs due to the input totality of C;” and C_".

In the next step, we again exploit the fact that weak timed bisimulation is preserved under
the | and \ operators [Yi91], thereby ensuring preservation under parallel composition (||) as
well. Therefore, we may safely compose both sides of Eq. (4.7) in parallel with the missing
connectors C;; and C,”, whereas the bisimulation is preserved:

VP Py PE AL CO O M Az | Py [ (NiuCruNawCo) || CF | €
v A | CT G | A2 [ (NLuCLuNuCh) | CF | CF (4.8)

According to Fig. 4.11, the connector automata C; and C;” will only provide and require
observable synchronizations from the set V; UV5. It follows that X (C,, ) n (N;uC1UNouCy) =
@. This enables us to include C;” and C;” in the scope of the hiding operator without violating
the bisimulation:

VPL Py PU | A [ CE N CT I 1 G Az || Py [ (N1 wCruNauCy)
v AL CT N CT NGO 1 Az [ (NruCruNau ) (4.9)

Finally, from our well-formedness rules for delegations depicted in Fig. 4.5, we may
conclude that a neutral or critical port of a subcomponent may only be connected to neutral
or critical ports of a composite component, whereas other connections are ill-formed. Thus,
it holds that N; U C7; U No uCs € N u C. We may therefore extend the hiding of neutral and
critical synchronizations to the set N U C as follows:

VPL Py PE A CE G 1 CE NG I Az |l Py [ (N W C)
A GGG NG [ A2 [ (NU ) (4.10)
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Figure 4.14: Timed generalized noninterference as a property of the composite automaton A.

We may conclude from Eq. (4.10) that timed generalized noninterference holds for the
automaton A representing the behavior of a composite component. This final constellation
is depicted in Fig. 4.14. In summary, we showed that the property is preserved under feed-
back composition if subcomponents communicate asynchronously, which is reflected in the
input totality of the connector automata used for communication. Note that no additional
assumptions were made about the behavior of connectors. This is in accordance with the
observations by Zakinthinos and Lee, who point out that an intermediary component repre-
senting a connector “does not have to do much” [ZL96]. Thus, a connector may be regarded
as “a component that simply copies its input to its output after a fixed time” [ZL.96], thereby
reflecting the role of connectors in MEcHATRONICUML (cf. Section 2.3.2). In particular, the
delay of messages induced by a connector does not affect the information flow property and
its preservation because “the amount of delay is immaterial” [ZL96]. In addition, no assump-
tions have been made about the reliability of connectors in MEcHATRONICUML, which defines
whether messages may get lost in transit. Thus, whereas message delay or message loss need
to be considered explicitly when verifying functional properties of components [Dzil7], we
can abstract from these characteristics when taking information flow security into account.

4.8 Limitations

Continuous Signals. Our component-based security policies refer to discrete ports only
and are thereby limited to the message passing between components (cf. Section 4.4).
However, continuous signals transfer information as well and could be equally affected by
critical information flows. Thus, in future work, we propose to enhance our policies by
integrating both continuous and hybrid ports. However, such an integration would require
a widened, hybrid definition of information flow security that restricts not only the discrete
message passing, but also the continuous signal exchange of a component. Hybrid notions of
information flow have already been considered by previous works [PK13; LMTO04].
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Overspecified Policies. In our approach, security policies are specified by labeling indi-
vidual ports with sensitivities. Thus, as described in Section 4.4, the same sensitivity applies
to all messages that are eventually passed over a certain port, regardless of how critical
their information content actually is. A possible consequence is an overspecification of the
information flow restrictions, leading to overly restrictive security policies for particular com-
ponents. Hence, a promising future extension is to revise the security policies by assigning
more precise sensitivities to the individual messages once they are becoming known during
the behavioral design (cf. Section 2.3.3). In particular, revising the sensitivities could be
used for declassification [SS09], enabling engineers to downgrade the criticality of messages
under certain conditions (cf. Section 3.7). However, as a prerequisite of this approach, the
revised sensitivities must be aligned with any information flow restrictions that have been
specified at earlier stages of the development. For example, when declassifying individual
messages, an equivalent declassification would need to take place at the level of flow policies,
thereby ensuring consistency between the policies used in CBSE and MBSE. Furthermore,
the revised sensitivities must also preserve the composability of the approach, such that no
unauthorized information flows are accidentally introduced when assembling components.

Reconfiguration. Whereas the contributions of this chapter are limited to static component
architectures, the MEcHATRONICUML component model supports highly variable architec-
tures, providing both ports and subcomponents of a component with multiplicities [Heil5,
Chapter 3]. Thus, architectures give rise to various instantiations that differ in the number
of instances being created for certain ports or subcomponents. Thereby, MEcHaATRONICUML
supports flexible scaling of architectures, which is a main ingredient of the microservice
architectural style [Dra+17]. On the basis of this scalability, MEcHaATRONICUML also enables
structural reconfiguration of architectures as a form of self-adaptation [HBV19; Heil5, Chap-
ter 4]. Accordingly, at runtime, a CPS may autonomously add or delete specific instances of
ports or subcomponents in response to changing context conditions. With respect to security,
reconfiguration poses two different challenges that need to be addressed in future works. First,
a reconfiguration must not compromise the security of the architecture, as recently addressed
by Khakpour et al. [KSNW19]. Hence, the proposed well-formedness rules would need to be
taken into account at runtime to distinguish secure from insecure reconfigurations. Second,
during operation, a CPS may face changing security situations, which require variable secu-
rity restrictions to be enforced [Ben+19]. Thus, the security situation itself might be a context
condition that undergoes change and must trigger adaptations of security policies. Hence, as
a prerequisite, a component-based security policy would need to be adaptable itself.

Multiple Security Levels. In accordance with [Man03], our approach uses three differ-
ent levels of sensitivities to represent component-based security policies. As described in
Section 4.5.3, a consequence of this limitation is that, in general, multiple co-existing poli-
cies are needed in order to specify which information flows are unauthorized from different
viewpoints. For reasons of clarity and comprehensibility, it might be desirable for software
architects to represent these different viewpoints in a single, shared security policy that is
based on an arbitrary number of sensitivity levels. We refer the reader to [WM16] for an in-
depth investigation of how effectively information flow policies can be reduced from multiple
levels to a fixed number of levels as in our case.
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Figure 4.15: Overview of related works from different areas.

4.9 Related Work

Our contribution is an integration of composable information flow into MEcHATRONICUML,
which lies at the intersection of CBSE and CPSs. As shown in Fig. 4.15, we discuss related
work from different adjacent areas. In Section 4.9.1, we survey previous approaches for CBSE
of CPSs considering security in general. In Section 4.9.2, we focus more specifically on the
area of information flow security and its application to CBSE. Finally, Section 4.9.3 covers
the field of compositional information flow in the presence of crucial CPS characteristics.

4.9.1 Security for Component Architectures of Cyber-Physical Systems

Whereas a general overview on security in CBSE is given in [KBN14], we lay the focus on the
domain of CPSs. Saadatmand et al. [SLCS12] transform unsecured component architectures
for embedded real-time systems into a secured form. Similar to our work, the authors
enable architects to specify security requirements by indicating security-critical data at an
architectural level. On this basis, they augment the architectures by generating additional
components for security mechanisms like cryptography. Whereas the resulting architectures
are analyzable with respect to the real-time behavior of components, there is no dedicated
analysis of the information flow or other security properties. Mohammad and Alagar [MA11]
present a component-based approach for the development of embedded systems, using formal
methods to verify numerous trustworthiness properties including security. By addressing
real-time behavior, the authors take a crucial property of CPSs into account. Furthermore,
they also focus on the preservation of trustworthiness on composition. However, compared
to our work, the authors use access control as their underlying security model.
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4.9. ReELATED WORK

Borda et al. [BPKN18] present a compositional verification approach for self-adaptive
CPSs. To this end, the authors extend a process algebra with means to specify the adaptation of
systems. On this basis, they apply formal methods to check specifications against requirements
like security, however, without focusing on data confidentiality or integrity in particular.
Accordingly, the approach falls outside the area of information flow security.

Other approaches address the more general class of distributed systems and are therefore
applicable to CPSs in particular. For example, Jaskolka and Villasenor [JV17] detect insecure
interactions between components of distributed systems. Whereas the authors use formal
methods to specify systems in terms of algebraic representations, their underlying definition
of security is not based on information flow. Uzunov et al. [UFF13] propose a conceptual
framework guiding software architects during the decomposition of distributed systems.
Whereas the authors emphasize the need to integrate security policies into the decomposition,
they only propose a general methodology, without referring to specific forms of policies.
Thereby, they differ from our work, which refers to information flow policies explicitly.

Heyman et al. [HSJ09] address the refinement of formal security requirements, which are
attached to the interfaces of component architectures. Due to its generality, the approach is
also applicable to CPSs. On architectural decomposition, the authors check formally whether
the attached requirements are preserved. Whereas the general approach resembles our work
closely, the authors do not address information flow requirements. Another general approach
applicable to CPSs is proposed by Zhou and Alves-Foss [ZA08]. Similar to the goal of this
chapter, the authors propose a set of patterns for the preservation of security properties during
the architectural decomposition. These patterns enable software architects to decompose,
aggregate, or eliminate specific architectural elements such as components, without violating
predefined security policies. In contrast to this approach, which imposes restrictions on
the architectural decomposition itself, we aim to refine security policies without directly
restricting architects in the way they decompose an architecture. Furthermore, although
the authors refer to policies encompassing multiple security levels, they do not address
information flow security and the preservation of corresponding policies.

In summary, none of the aforementioned related works at the intersection of CBSE and
secure CPSs are based on information flow security. Hence, opposed to our contribution
proposed in this chapter, these approaches are not able to provide software architects with the
formal rigor and the associated security guarantees offered by the theory of information flow.
In particular, none of them address its inherent challenge of ensuring composabilty.

4.9.2 Information Flow Security in Component-Based Software Engineering

Stfaxi et al. [SARL13] address the information flow security of component-based distributed
systems. Similar to our work, the authors consider asynchronous communication by means of
message passing between components. Moreover, they also specify information flow policies
by labeling ports and establish rules that indicate whether these labels allow specific ports to
be connected securely. However, the underlying component model of the approach does not
address CPSs. In particular, there is no dedicated consideration of real-time behavior, which
we took as a basis when demonstrating the composability of our policies in Section 4.7.
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Ben Said et al. [SABB14] propose the secBIP framework for information flow security of
component-based systems. The authors consider components with stateful behaviors, which
communicate synchronously and thereby differ from our approach in the context of CPSs.
Yurchenko et al. [Yur+17] use component-based information flow policies to derive security
obligations that are verified by means of theorem proving. Unlike our contribution, the three
works discussed above do not directly address the composability of information flow [Man02],
which consists in enforcing global security on the basis of localized policies.

Greiner et al. [GMB17; Grel8] address this composability explicitly and thereby enable a
modular security verification for component-based systems. However, opposed to our work in
the scope of CPSs, the authors assume a synchronous communication between components.
Sun et al. [Sun+14] propose another compositional approach for secure information flow,
which involves a translation from component-based SysML models into representations that
are amenable to formal verification. Unlike our work, none of the above approaches cover the
refinement of global security policies into local ones during the architectural decomposition.

In contrast, Chong and van der Meyden [CM15] address the preservation of architectural
information flow policies when decomposing components in a top-down fashion. Another
commonality shared with our work is that the authors deduce security from a system’s global
structure and from local properties of its components, thereby adopting a compositional
approach. Whereas the authors present a general framework without defining precisely how
local properties are verified, we propose an accompanying verification technique in Chapter 5.

In summary, although the above works benefit from the formal rigor of information flow,
none of them combine asynchronous message passing and real-time behavior as crucial CPS
characteristics that we address in our work. In addition, the majority of approaches does
neither tackle the composability challenge of information flow security, nor the refinement of
policies during the architectural decomposition.

4.9.3 Compositional Information Flow Security for Cyber-Physical Systems

Wang and Yu [WY14] address the composability of information flow security for CPSs
represented by petri nets. However, similar to the works discussed in Section 4.9.2, the
authors do not take CPSs characteristics such as real time or message passing into account.
In contrast, Li et al. [LMT17] enable compositional reasoning about information flow under
the assumption that processes communicate asynchronously by message passing. Thereby,
they address one of the crucial characteristics underlying our work. However, the authors do
not consider the real-time behavior exhibited by CPSs. Another compositional approach is
presented by Rafnsson et al. [RJB17], addressing the preservation of information flow security
under composition of processes. The authors consider both asynchronous communication and
time-dependent behavior of processes, thereby combining similar characteristics as our work
in this chapter. However, whereas we focus on dense real time, the authors rely on a discrete
notion of time, which carries a remaining security risk because “the expressiveness of dense-
time models [...] is strictly larger than discrete-time ones” [Cas09, p. 22]. Accordingly,
“there are cases in which dense time must be used since there is no discretization (no matter
how small) that can faithfully emulate all dense time behaviors” [Gor+04, p. 183].
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4.10. SUMMARY

A general difference between our work and the compositional approaches discussed above
is that they compose behavioral specifications, given either in terms of program-level pro-
cesses or petri nets. Thereby, compared to our approach, none of the above works take the
architectural design of systems into account. As a consequence, the systematic refinement of
security policies during the architectural decomposition is beyond the scope of these works.

4.10 Summary

In this chapter, we addressed the well-formed refinement of component-based security poli-
cies, restricting the information flow through software components in MEcHATRONICUML.
Initially, we proposed a partial derivation of such policies from the flow policies specified by
systems engineers as described in Chapter 3. On this basis, we established a set of architec-
tural well-formedness rules, which ensure composability of the information flow restrictions
imposed by our policies. Thus, when security policies are completed or otherwise refined
during the architectural decomposition, the application of our rules indicates whether the
intended security restrictions are enforced by the refinement or not.

To validate that our contribution is sound, we demonstrated the composability of the
proposed approach. To this end, we showed that a well-formed security policy will preserve
our underlying information flow property under composition, provided that the assembled
components communicate asynchronously. Thereby, we reproduced a known result [Z1L96;
Z1.95] in the scope of the real-time behavior underlying MEcHATRONICUML.

Our contributions enable a seamless, security-preserving translation of the information flow
restrictions from MBSE to CBSE. On this basis, our well-formedness rules assure software
architects that their refined policies will enforce the intended security restrictions and prevent
unauthorized information flows from emerging on composition of components. Thereby,
we enable them to reason about the global security of a software architecture on the basis
of localized security policies for the constituent components. In the upcoming Chapter 5,
we will address the problem of checking the real-time behavior of components against these
localized policies, which thereby act as proof obligations.
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A VERIFICATION TECHNIQUE FOR REAL-TIME
INFORMATION FLOW SECURITY

The security policies introduced in Chapter 4 enable software engineers to impose informa-
tion flow restrictions on MEcHATRONICUML’s software components. Thereby, these policies
specify security requirements that must be satisfied by the implemented behavior of compo-
nents. In order to verify that a component meets these requirements, software engineers need
a corresponding verification technique that automatically detects unauthorized information
flows and thereby checks whether the component’s behavior adheres to its security policy.

In the scope of CPSs, a key challenge arises from the real-time behavior of components
(cf. Section 2.3.3). An observer who knows about the imposed real-time restrictions may use
this knowledge to draw conclusions about critical information from the observed response
times. In this case, the system is compromised by a timing channel (cf. Section 2.4), which
must be detected to verify the absence of unauthorized information flows. Therefore, in the
context of MEcHATRONICUML, a verification technique for secure information flow must be
timing-sensitive [KWH11] by taking the specified real-time behaviour into account.

To prepare for such a timing-sensitive verification, we defined the information flow security
of timed automata by means of a timed bisimulation in Section 4.7.1. Unlike language
equivalence of timed automata, timed bisimulation is known to be decidable [Cer93] and can
therefore be checked by existing verification techniques for real-time systems [cf. Wan(04].
Such techniques are highly sophisticated because they must explore the real-valued state space
of timed automata (cf. Section 2.3.3), comprising an infinite number of states. In particular,
to be processed algorithmically, the state space must be converted into a finite representation.
On the one hand, it is therefore desirable for software engineers to verify the information flow
security of real-time systems using off-the-shelf tools and thereby benefit from the maturity
and efficiency of their built-in verification algorithms. On the other hand, as described in
Section 2.4.2, information flow is known to be a hyperproperty [CS10], which interrelates
multiple execution traces. Therefore, it falls outside the traditional classification of safety and
liveness properties by Alpern and Schneider [AS85]. Since standard verification tools for
real-time systems are restricted to safety and liveness properties, engineers face the problem
that these tools are not applicable out of the box. Hence, in the scope of MEcHATRONICUML,
verifying the security policies of software components by means of existing, tool-supported
techniques is an unresolved problem, which we address in this chapter.
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State of Research. Traditionally, information flow properties are often verified through un-
winding [GM84; Man(0O0b], a technique that localizes the verification to properties of individ-
ual state transitions. Another prominent technique is referred to as self-composition [BDR11],
reducing the verification to a problem that can be solved by considering single execution traces
in isolation, without interrelating multiple traces. This approach enables information flow
to be checked by standard verification techniques restricted to safety and liveness properties,
including model checking [DHRS11; MZ07; HWSO06] or theorem proving [DHS05]. As a
complementary approach, model-checking techniques have also been specially tailored to
information flow [Dim+12] or even general hyperproperties [FRS15; Rab16, Chapter 5].
However, as of today, verification techniques for hyperproperties of timed automata are only
in the early stages of development [HZJ19; Heil8]. As a special case of hyperproperties, the
scientific literature also provides dedicated works on the information flow security of timed
automata [AS19; VNNI18; BCLR15; LMT10; Cas09; BT03]. Whereas these approaches
provide timing-sensitive verification techniques in general, none of them apply existing,
off-the-shelf tools while producing accurate verification results.

Contributions. The major contribution made in this chapter is a novel verification technique
for the information flow security of real-time systems, which is based on the application of
an off-the-shelf verification tool for timed automata. Thereby, we enable the detection of
timing channels by means of formal, tool-supported verification. Our verification technique
adopts the aforementioned idea of self-composition by checking whether a timed automaton
is properly refined by a variant of itself, differing in the amount of critical information that
is accessible. A proper refinement requires that this difference will have no effect on the
processing of any observable information, which would otherwise constitute an unauthorized
information flow. Thereby, we reduce the verification to a refinement check as introduced
in Section 2.3.3, applying the work by Heinzemann et al. [HBDS15; Heil5, Chapter 5] to
the problem domain of security. The refinement check adopts a two-step approach. First, an
automaton that undergoes verification is transformed into a test automaton [ABL9S], intro-
ducing an auxiliary location that encodes a violation of the refinement. In our case, such a
violation indicates the presence of an unauthorized information flow. Second, the state space
of the constructed automaton is explored to check whether the auxiliary location can ever by
reached. In our case, the verified automaton is secure whenever the location is unreachable.
To reason about the reachability, we apply the off-the-shelf model checker UppaaL [LLN18],
which implements efficient, practice-approved verification algorithms for the real-time be-
havior of timed automata. Thereby, we save software engineers from the need to explore the
infinite state space by implementing proprietary and error-prone algorithms from scratch. To
study the accuracy of the verification results, we apply our technique to a security-oriented
extension of the Common Component Modeling Example (CoCoME) [GH17].

Novelty. Along the lines of self-composition, verifying information flow properties by
means of model-checking techniques is a state-of-the-art approach. In contrast, the novelty
of our work is that we adopt this idea in the area of real-time systems in order to support
a timing-sensitive verification. Thereby, we are the first in the field to provide software
engineers with a method that enables them both to detect timing channels of timed automata
and benefit from the efficiency and maturity offered by an off-the-shelf model checking tool.
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5.1. ScienTtiFic CONTRIBUTIONS

Publication. Initially, we outlined the contributions of this chapter in [*Ger16]. Sub-
sequently, the technical details underlying our work have been published in a conference
paper [*GSB18]. In combination with the contributions of Chapter 4, we applied and evalu-
ated our approach in another conference paper [*GS19].

Outline. The remainder of this chapter is structured as follows. We sketch our scien-
tific contributions in Section 5.1, before specifying the requirements to be satisfied by our
verification technique in Section 5.2. Section 5.3 gives an overview on the integration of
our technique into the MEcHATRONICUML process. Next, we introduce our general verifi-
cation approach in Section 5.4, and describe the construction of the underlying automata in
Section 5.5. In Section 5.6, we conduct our case study before discussing limitations of our
approach in Section 5.7. Finally, we survey related work in Section 5.8 and summarize this
chapter in Section 5.9.

5.1 Scientific Contributions
The following contributions are made in this chapter:

* We propose a tool-supported, timing-sensitive verification technique for the information
flow security of timed automata. In particular, we reduce the verification to a refinement
check for real-time systems, which enables us to detect timing channels by means of
model-checking techniques.

* At the core of our proposed technique, we transform a timed automaton at hand into
a test automaton, enabling us to use the off-the-shelf model checker UppaaL to verify
the information flow security by checking the reachability of particular locations.

* We use a security-oriented extension of the community case study CoCoME [GH17]
to evaluate the accuracy of the verification results produced by our technique.

5.2 Requirements

In the following, we specify and justify three requirements (R1-R3) that must be satisfied by
our verification technique.

(R1) Timing Sensitivity: To enable the detection of timing channels, the security model
underlying our verification technique must be timing-sensitive [KWH11]. Accordingly,
we assume that observers are able to measure the instant of real time at which a
component sends a message and thereby responds to specific events. Furthermore,
during verification, we must take into account the amount of real time that passes during
the operation of a system, which is reflected in the real-time restrictions imposed on the
behavior of components. On this basis, the information flow property verified by our
technique must ensure that a component will only be deemed secure if its observable
response times do not depend on any critical information.
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Figure 5.1: Proposed extensions to the MEcHaTRONICUML behavioral design process.

(R2) Off-The-Shelf Verification: Since exploring the infinite, real-valued state space of timed

automata is tedious and error-prone, we delegate this task to an existing verification
tool. Thus, instead of developing verification algorithms from scratch, our proposed
technique should apply an off-the-shelf tool with built-in verification algorithms.

(R3) Accuracy: As a requirement for analysis techniques in general, the verification must

detect unauthorized information flows (including timing channels) as accurately as
possible. The implications of accuracy are twofold. On the one hand, all unauthorized
information flows must be rejected by our technique. Accordingly, the results produced
during verification must be sound, such that insecure systems are never classified as
secure. On the other hand, authorized information flows should not be rejected by
our technique. The verification results should therefore be complete, preventing secure
systems from being classified as insecure.

5.3 Overview

This chapter complements MecaaTRONICUML’s compositional verification approach from
Section 2.3.3 by adding a verification step for information flow security. Figure 5.1 highlights
our extension in green, which takes place after the specified component behaviors have been
verified as correct refinements of the respective coordination protocols. Once all protocols
are refined correctly, the information flow through the components undergoes verification in
the Verify Security Policies activity. In this step, we take into account the component security
policies resulting from the architectural design (cf. Fig. 4.1 on page 59) and check whether
the component behaviors adhere to these policies. In Fig. 5.1, the verification is depicted as
a collapsed subprocess [OMG13], which will be detailed in the course of this chapter.
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Component |™5) . ... ... ..
Behavior :

B Perturb

Perturbed
Automaton

: Critical Inputs :
{Refinement '
: Check ’ :
! ® comstruct | PN ®  Adust
: Test Automaton Automaton
3 = Component N

: Security Policy :

> >
T [N ©  Paralil Automaton

i Automaton Composition [adjusted]

® Reachability
Analysis

O O

yes
insecure Error location secure
reachable?

R

|

|

|

|

|

|

|

|

|

|

i Parallel | 5. ... ... ..
i Test Network v
|

|

|

|

|

|

|

\

Figure 5.2: Overview of the verification approach [adapted from *GSB18; HBDS15].

If the behavior of a component does not adhere to at least one of the component’s associated
security policies, we require software engineers to revise the behavior by repeating the Specify
Intra-Component Behavior activity and also rerun the Refinement Check. According to our
extension, the behavioral design terminates once all coordination protocols have been refined
correctly and all components adhere to each of their security policies.

5.4 General Verification Approach

To present a general view of our verification approach, we extend the Verify Security Policies
subprocess from Fig. 5.1 and show its interior process in Fig. 5.2. As depicted, the input of the
process comprises a component behavior, which is given in the form of a timed automaton and
will be checked against a component security policy. The final result of the process indicates
whether the component behavior is secure or insecure with respect to the given policy. In
Section 4.7.1, we defined the security restrictions imposed by our policies with the help of
timed bisimilarity. As described in Section 2.3.3, timed bisimulation is one of the refinement
definitions underlying MEcHaTRONICUML’S compositional verification approach. Therefore,
we reapply the refinement check [HBDS15; Heil5, Chapter 5] to the field of information
flow security. To verify the aforementioned bisimilarity, we check whether the component
behavior is properly refined by a perturbed variant of itself. Thereby, our technique applies
the principle of self-composition [BDR11].
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Figure 5.2 illustrates our approach, which uses model transformations to reduce the ver-
ification to a problem that is amenable to off-the-shelf verification. In the initial activity
Perturb Critical Inputs, the component behavior is transformed such that inputs classified as
critical by the component security policy will undergo perturbation. Thereby, the activity
produces a perturbed automaton as a variant of the original component behavior. In the scope
of Definition 4.1 on page 73, the original component behavior represents the automaton A,
whereas the perturbed automaton corresponds to the construction P || A.

The perturbation enables us to verify the information flow security by adapting the re-
finement check for timed bisimulation [HBDS15], which ensures timing sensitivity as per
requirement R1. According to this approach, the activity Construct Test Automaton transforms
the component behavior into a fest automaton [ABL98], which encodes the security policy
to be verified and thereby serves as an oracle [How78] for the perturbed automaton. Ac-
cordingly, the perturbed automaton must not deviate from the test automaton in terms of any
behavior that is considered observable by the policy. To keep track of such deviations, the
test automaton introduces an auxiliary location named error that encodes a policy violation.
Thus, the verification of the policy reduces to testing the reachability of this location during
execution. To this end, the activity Adjust Automaton ensures that the perturbed automaton
synchronizes with the test automaton when receiving equal inputs or sending equal outputs.
If the perturbed automaton deviates from the original component behavior in terms of an
observable input or output, the test automaton switches to its error location.

The synchronized execution of both automata is enabled by the Parallel Composition activity,
composing a network of timed automata that we refer to as parallel test network. Inside this
network, the unperturbed behavior is composed in parallel with its perturbed variant, as can
be seen from Fig. 5.2. Therefore, this part of the process reflects the underlying principle of
self-composition [BDR11]. Finally, in the Reachability Analysis activity, the information flow
is verified by analyzing whether the error location is ever reachable during execution of the
parallel test network, comprising both test automaton and perturbed automaton. Thereby,
we reduce the information flow security to a safety property verified using model-checking
techniques. In particular, as demanded by requirement R2, we analyze the reachability using
the off-the-shelf model checker UppaaL [LLN18] for timed automata. If the error location
may be reached on some execution trace, then the component behavior is deemed insecure
and the verified security policy is violated. In contrast, if the location is never reachable on
any possible trace, the component adheres to its policy and is therefore deemed secure. In
the broader context of the behavioral design (cf. Fig. 5.1), we use these verification results to
decide whether a component behavior adheres to a specific component security policy or not.

5.5 Automata Construction

In this section, we go into detail about the transformations used to construct the timed
automata underlying our verification approach. In Section 5.5.1, we address the perturbation
of automata, before we elaborate on the construction of our test automata in Section 5.5.2.
Finally, we illustrate the adjustment of the perturbed automata in Section 5.5.3.

90



5.5. AutoMATA CONSTRUCTION

5.5.1 Perturbed Automaton

In our initial publication [*GSB18], we relied on a notion of perturbation that corresponds
to the removal [Man00a] of all critical inputs at all times. We achieved this perturbation by
applying the restriction operator introduced in Section 2.3.3, thereby removing all edges from
an automaton that are triggered by some critical input. Accordingly, the resulting perturbed
automaton is considered secure by definition [*GSB18] because it is never able to receive any
critical inputs at all. This form of perturbation reflects the notion of purge, which was also
used in the original definition of noninterference [GM82] and provides the basis for well-
established information flow properties such as generalized noninference [McL94]. However,
Definition 4.1 on page 73 requires us to use a different form of perturbation, in which critical
inputs are not completely removed but situationally deleted [Man(00a] from the execution in
piecemeal fashion. Thus, instead of restricting all edges that are triggered by critical inputs,
we need to disable the individual edges independently and temporarily.

To enable this situative deletion, we extend a perturbed automaton with a dedicated Boolean
variable for each critical input it may receive.! These variables are used to conditional-
ize [*GS19] the receiving of inputs. Thus, to each edge triggered by a critical input, we attach
a condition referring to the variable associated with that input. These conditions correspond
to additional guards (cf. Section 2.3.3) for the respective edges. Thereby, the edge is only
enabled if the current value of the associated variable is true. In contrast, if the current
value is false, the concerning input undergoes perturbation and is regarded as deleted from
the execution. In Fig. 5.3, we perturb the component behavior of the Engine Control Unit
known from Fig. 2.10 on page 28. In particular, we
depict the perturbation of the adjust input, which we isAdjustEnabled

. e . adjust?w:=0
assume to be classified as critical by the associated
component security policy. Therefore, we use the
Boolean variable isAdjustEnabled to conditionalize
the receiving of the input. As shown in green, we
also add a corresponding guard to the edge triggered
by adjust?, which is therefore able to fire only if the Figure 5.3: Example perturbation.
associated variable is true. In contrast, setting the
variable to false will disable the edge and prevent the input from being received.

Using these variables, individual inputs may be situationally deleted from the execution
by disabling the corresponding edges on a temporary basis. According to Definition 4.1 on
page 73, this situational deletion is controlled by a perturbator automaton P that may be chosen
freely. At each point in time, a concrete perturbator P may or may not provide a perturbed
automaton A with a particular critical input. To account for the free choice of the perturbator,
we ensure that the values of the aforementioned variables are nondeterministically toggled
between true and false during execution. Thereby, edges triggered by critical inputs will be
disabled and re-enabled on a rotating basis at arbitrary times. Accordingly, the perturbed
behavior covers all possible ways to delete critical inputs.

distance > 10
speed :=...
done!

'In Definition 2.7 on page 24, the discrete state space of a timed automaton is restricted to its locations. However,
additional variables of data types like Boolean are supported by UppaaL as our underlying verification tool.
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5.5.2 Test Automaton

Since our definition of information flow security given in Section 4.7.1 relies on the notion
of bisimilarity, we base our verification technique on the test automata for timed bisimulation
as proposed by Heinzemann et al. [HBDS15; Heil5, Chapter 5]. However, instead of reusing
this construction as is, we need to account for the fact that the bisimilarity in Definition 4.1 on
page 73 is limited to observable messages from the set V', whereas non-observable messages
from N u C' are regarded as hidden. According to the hiding operator described in Sec-
tion 2.3.3, edges are replaced by 7 transitions if they are labeled with a symbol to be hidden.
Therefore, hiding messages by means of this operator gives rise to potential nondeterminism
because distinct edges can no longer be distinguished by their hidden symbols. As a con-
sequence, the use of the hiding operator is incompatible with the technique by Heinzemann
et al., which requires the transition function of an automaton to be deterministic [HBDS15,
p. 259]. The authors thereby assume that, given a certain input, the current location of the
automaton will never have two outgoing edges that can both fire at the same time. To account
for this restriction, we refrain from hiding non-observable communication by introducing 7
transitions. Instead, we realize the hiding of messages by adapting the construction of the
test automata. To that end, we relax the restrictions imposed by the timed bisimulation such
that messages may be treated as hidden. We thereby enable specific messages to be used for
corrections (cf. Section 2.4.2) without indicating a false positive information flow.

We show our adapted construction schema for test automata in Fig. 5.4. Deviating from
Fig. 2.8 on page 23, we label locations with names, whereas invariants are displayed outside of
their locations. The test automaton T4 is constructed from each edge S — S’ of the unperturbed
automaton A. Such an edge is labeled with a guard p, a symbol u, and a set A of clock resets. The
corresponding locations S and S’ are transformed into Sta and S%,. As depicted, Heinzemann
et al. introduce an auxiliary location named Err that represents a violation of the refinement.
In our case, the location indicates that the observable communication of the perturbed and
unperturbed automata deviate from each other, constituting an unauthorized information flow.
Consequently, we consider communication of the perturbed automaton secure if it is allowed
by the unperturbed automaton and insecure if not. To verify the bisimilarity as proposed
by Heinzemann et al., the test automaton must meet the following three responsibilities:
c accept the occurrence of secure communication, e reject the occurrence of insecure
communication, and e reject the non-occurrence of secure communication. Below, we
consider each of these cases in detail, before giving an example construction.

Accepting the Occurrence of Secure Communication

Communication of the perturbed automaton does not constitute an unauthorized information
flow if it is also possible for the unperturbed automaton. Accordingly, such communication is
secure and must be accepted by the test automaton. To accept communication, Heinzemann
et al. introduce the edge Sta — S&, labeled with o in Fig. 5.4. This edge can fire whenever
firing S — S’ is possible in A. To this end, Sta — S§, carries a symbol 7z, which complements
the original symbol u of S—S’. Following Heinzemann et al., the test automaton uses
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Figure 5.4: Schema for the construction of test automata [adapted from *GSB18; HBDS15].

complementary symbols as a general rule and is thereby able to synchronize its execution
with the perturbed automaton when sending or receiving equal messages. In addition to
the symbol 7, the edge Sta — S, is also labeled with a guard p A I(S), which combines the
original guard of S — S’ and the invariant of the source location S. Thereby, Heinzemann et
al. prepare for the case that I(S) cannot be carried over to Sta under certain circumstances
described under case e If not carried over, integrating the invariant into the guard ensures
that Sta — St can only fire when S may actually be active. Finally, the set A of clock resets
is carried over to Sta — ST, as is. By progressing from Sta to S%,, the test automaton reflects
the regular communication behavior of the unperturbed automaton, independent from the
sensitivity of the message p being communicated. Thus, in this case, no specific adaptations
of the original construction are needed to hide non-observable messages.

Rejecting the Occurrence of Insecure Communication

Observable communication of the perturbed automaton that is not possible for the unperturbed
automaton violates the bisimilarity in Definition 4.1 on page 73 because (P | A) / (N u
C) ¢ A/ (NuC). Inthis case, disabling critical inputs in P || A gives rise to communication
that cannot be observed when these inputs are enabled as in A. Such an observation can
therefore be made in the absence, but not in the presence of certain critical inputs. Accordingly,
as described in Section 4.7.1, such communication can no longer be observed when inserting
critical inputs into the execution. This deviation constitutes an unauthorized information
flow, and the test automaton must reject the occurrence of such communication as insecure by
switching to its Err location. In accordance with the original construction, we must distinguish
between two cases of insecure communication: @ observable messages that are not allowed
in a particular location and @ observable messages that are untimely because they violate
the time restrictions that apply in a particular location.

93



CHAPTER 5. A VERIFICATION TECHNIQUE FOR REAL-TIME INFORMATION FLOW SECURITY

In case @, amessage is only allowed in S if the corresponding symbol is included in the set
©(S) of all symbols labeling an outgoing edge. To track communication that is not allowed,
Heinzemann et al. create one edge Sta — Err for each message that is not in ©(S). In our
case, we create these edges only for observable messages v € V\O(S). We label the created
edges with I(S) as a guard to prevent them from firing outside the period of time in which
S can be active. Each of the edges carries a complementary symbol . Thus, whenever the
perturbed automaton sends or receives an observable message v that is not allowed in S, the
synchronization forces the test automaton to enter the Err location. Note that, whenever S is
a committed location representing an atomic sequence of state transitions (cf. Section 2.3.3),
the edges Sta — Err are omissible because the sequence is not assumed to be interruptible.

Unlike the original construction, a non-observable message does not represent an informa-
tion flow because it is considered hidden. Nevertheless, since handshake communication is
mandatory (cf. Section 2.3.3), we must explicitly enable the perturbed automaton to send
or receive such messages, even if they are not allowed by the unperturbed automaton. Thus,
for each message 7 ¢ Vu©(S), which is neither observable nor allowed, we create a loop
Sta — Sta. We thereby adopt an existing approach by Bossi et al. [BFPR02] towards verify-
ing information flow security through bisimilarity. As for observable communication, each
loop is labeled with a guard I(S) and a symbol 7. By firing these loops, the unperturbed
automaton will ignore non-observable messages that are not allowed. Such messages can
therefore be inserted by the perturbed automaton to correct its execution.

In case @, Heinzemann et al. consider communication as untimely if it occurs outside the
period of time in which it is allowed to occur. This period is defined by the time restrictions
that apply for a message i # 7 in location S. In particular, . can only be sent or received in S
if both the guard p; of any outgoing edge labeled with i and the source invariant 1(S) hold.
Thus, the time at which such an edge cannot fire is defined by -(p; A1(S)). A message is
therefore untimely if sent or received at a time when none of the corresponding edges can
fire. This time amounts to the intersection A; =(p; A 1(S)). As distinct from Heinzemann et al.,
we only regard untimely communication as an information flow if the message is observable.
Thus, if 4 €V, we create an edge Sta — Err that is labeled with the above intersection as a
guard and a complementary symbol n. If the perturbed automaton sends or receives p €V
untimely, the synchronization forces the test automaton to indicate the violation by switching
to Err. In contrast to the original construction, if x ¢ V, then untimeliness does not constitute
an information flow. In this case, following Bossi et al. [BFPR02], we create a loop Sta — Sta
with the same guard as Sta — Err. Thus, instead of switching to Err, the adjusted test automaton
will ignore non-observable messages that are sent or received untimely.

Note that the above intersection also takes into account that i occurs after the invariant I(S)
has expired. To detect this untimeliness, Sta must remain active until after I(S). Therefore,
Heinzemann et al. do not carry over invariants to the test automaton [HBDS15, p. 272].
Since our approach treats certain messages as non-observable, invariants can be carried over
if they do not prevent the untimeliness of observable messages from being detected. Since
invariants enforce progress during execution, we thereby ensure that possible corrections are
made as required. To decide whether I(S) can be carried over, we use a function expiry to
provide Sta with an invariant. In Eq. (5.1), we distinguish between three cases:

94



5.5. AutoMATA CONSTRUCTION

1(5) vs27Ah s g¢v
expiry(S) = I(S) ESL/\S*:JyfV/\p:true (5.1)

true else

First, if none of the outgoing edges S 272, 5+ are labeled with an observable symbol, then
no untimely communication is possible in Sta at all. Thus, we can safely assign the invariant
I(S) to Sta. Second, even if observable communication is possible in S, there are still cases in
which we may safely assume that untimely communication will never occur after |(S) because
Sta has already been left at that time. We can make this assumption if at least one outgoing
edge of S can fire unconditionally and is labeled with a non-observable symbol. If so, such an
edge will always be used to exit Sta before I(S) has expired. Thus, we carry over the invariant

if there exists an outgoing edge S 272 5* with a symbol o ¢ V and an unconditional guard
of p = true. Third, if none of the above conditions apply, untimely communication after 1(S)
may occur in Sta. In this case, we follow the original approach by Heinzemann et al. and
assign a non-expiring invariant of true, which will never force Sta to be left.

Rejecting the Non-Occurrence of Secure Communication

Conversely, the bisimilarity in Definition 4.1 on page 73 may also be violated because any
observable communication of the unperturbed automaton is not possible for the perturbed
automaton, suchthat A / (NuC) & (P || A) / (NuC). Inthis case, enabling critical inputs
in A gives rise to communication that cannot be observed when these inputs are disabled
as in P || A. Such an observation can therefore be made in the presence, but not in the
absence of certain critical inputs. This deviation indicates that some communication can no
longer be observed when critical inputs are deleted from the execution (cf. Section 4.7.1).
Thus, whenever the communication does not occur although it is considered secure, the test
automaton must switch to its Err location and thereby indicate an unauthorized information
flow. To handle this case, Heinzemann et al. introduce the constructs labeled with e in
Fig. 5.4. We adopt this approach only for observable communication of x € V. Accordingly,
we add an auxiliary location that is reachable from St at any point in time when S — S’ can
fire. To ensure this timing, the edge to the auxiliary location is labeled with the guard p A I(S),
intersecting the original guard of S — S and the invariant of S. Since the edge represents a 7
transition, it may reach the auxiliary location without synchronization. In our approach, which
is based on the UppaaL model checker, the auxiliary location is committed (cf. Section 2.3.3).
Hence, it must be left instantly upon entry by firing one of its outgoing edges, which are used
to decide between the occurrence or non-occurrence of the communication.

First, if the auxiliary location is entered at a time when the message i can be sent or received
by the perturbed automaton, the edge labeled with 7z can fire and forces the test automaton to
enter the N location. According to Heinzemann et al., this location represents a neutral state
of the verification. In our case, it indicates that the communication has occurred securely.
Second, the edge labeled with fallback? represents the non-occurrence of the communication.
We introduce fallback as an auxiliary channel that is always ready to synchronize, i.e., a
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Figure 5.5: Test automaton constructed from the behavior of the Engine Control Unit.

complementary fallback! synchronization is assumed to be provided at any time. Whenever
the auxiliary location is entered at a time when the message p can not be sent or received by
the perturbed automaton, the test automaton is forced to synchronize over the fallback channel
and enter the Err location. We ensure this behavior by giving fallback the lowest priority
among all synchronization channels, thereby making use of channel priorities as a feature of
UppaaL. Accordingly, any predefined synchronization channel takes precedence over fallback
and ensures that Err is only reachable when the message 1 cannot occur at some time during
the interval in which it should occur.

Example Construction

In the following, we illustrate the construction of test automata using the example of the
Engine Control Unit, as previously shown in Fig. 2.10 on page 28. Since hybrid ports are left
out of consideration (cf. Section 4.4.2), we restrict ourselves to the message passing over
the discrete storage and infotain ports. We assume that the component security policy being
verified classifies the infotain port as critical and the storage port as observable. Accordingly,
store is the only observable message and must not depend on the adjust and continue messages,
which represent critical inputs. Both done and fail are critical outputs used for corrections (cf.
Table 4.1 on page 60).

Figure 5.5 shows the test automaton constructed from the component behavior of the Engine
Control Unit. For reasons of clarity and comprehensibility, we use multiple neutral locations
N;_3. Furthermore, multiple loops that differ only in their synchronizations are merged into a
single loop with alternative synchronizations. Finally, we also omit any edges that can never
fire because their guards do not intersect with the invariant of their source locations.
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As can be seen, there are six edges reaching the Err location to indicate an unauthorized
information flow. On the one hand, according to case case @ each of the three regular
locations connects to Err in order to indicate that the store message occurs untimely when
p # 5. However, since the clock p can never exceed the value of 5 according to the invariants
carried over from the original automaton, the corresponding edges to Err are restricted by a
guard of p < 5. On the other hand, as demanded by case e, each of the three regular locations
also connects to a committed auxiliary location in order to indicate the non-occurrence of
store at p =5. Each of these auxiliary locations is used to activate either one of the neutral
locations N;_3, or the Err location by synchronizing over the fallback channel. Note that, since
store is allowed to occur in each of the three regular locations, no edges to Err are created for
case @ This even applies to the pre-existing committed location depicted in blue. Although
it does not allow store to occur, it encodes an atomic sequence of state transitions, which is
not assumed to be interruptible by any communication that is not allowed (cf. Section 5.5.2).

5.5.3 Adjusted Automaton

In the scope of the refinement check [HBDS15], an automaton is adjusted to ensure the
correct verification of a particular refinement definition by the test automaton. Following
this approach, we show our schema for the adjustment of automata in Fig. 5.6. According
to the original adjustment, each edge S — S’ inside the perturbed automaton A, is basically
carried over to the adjusted automaton A,q;. As depicted, the symbol 1 and the clock resets
A are both left unchanged. Since the test automaton uses complementary symbols 7z as
described in Section 5.5.2, Heinzemann et al. thereby ensure synchronization between both
automata when sending or receiving equal messages during parallel composition. However,
the adjustment requires a detailed consideration of invariants. If carried over to the adjusted
automaton, invariants could prevent the test automaton from detecting the non-occurrence of
communication [HBDS15, p. 276]. Whereas Heinzemann et al. do not carry over invariants to
the adjusted automaton at all, our approach considers certain messages non-observable. This
allows us to carry over invariants as long as they do not affect any observable communication.
Thus, when transforming A, into A.q;, we carry over the invariant [(S) provided that all
messages sent or received in the location S are non-observable, i.e., ©(S)nV =a. If so,
carrying over the invariant will never prevent the non-occurrence of communication from
being checked because case e in Fig. 5.4 only applies if € V. Nevertheless, to prepare
for cases in which the invariant is not carried over, we follow the original approach by
Heinzemann et al. and prevent edges from firing outside of the time in which their source
location may be active. Thus, by analogy with Section 5.5.2, we integrate the invariant I(S)
into the guard of each outgoing edge S — S’, resulting in the guard p A I(S).

As distinct from the original adjustment, we also need to ensure that non-observable
communication is properly hidden during verification. Accordingly, the amount of non-
observable messages communicated by the perturbed and unperturbed automata is allowed
to differ arbitrarily. To this end, the loops introduced for case e in Section 5.5.2 already
enable the adjusted automaton to send or receive non-observable messages whenever the test
automaton is unable to. Conversely, we also need to enable the test automaton to send or
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Figure 5.6: Schema for the adjustment of automata.

receive such non-observable messages whenever the adjusted automaton is unable to, e.g.,
because the message is a critical input that undergoes perturbation. Therefore, we once more
apply the concept by Bossi et al. [BFPR02] and enhance the adjusted automaton with loops
to ignore non-observable communication of the test automaton. As depicted in Fig. 5.6, we
create a loop S — S for each non-observable symbol 7, ¢ V. The associated guard ensures
that a loop fires only at times when none of the outgoing edges of S allow the perturbed
automaton to send or receive the same message. The time in which such an edge cannot
fire corresponds to the negation —p; of its guard. On this basis, the time frame in which the
perturbed automaton is unable to sent or receive 5 amounts to the intersection A; -p; over all
outgoing edges labeled with 7. Using this intersection as a guard ensures that a loop can only
fire when the perturbed automaton is not regularly able to send or receive the corresponding
message. Thereby, the message is ignored without altering the state of the automaton.

Figure 5.7 exemplifies the adjustment using the example of the Engine Control Unit from
Fig. 2.10 on page 28. Since the adjustment takes the perturbed automaton as a basis,
the guards inside the depicted automaton also refer to the conditions isAdjustEnabled and
isContinueEnabled, which have been added to perturb the receiving of the respective critical
inputs (cf. Section 5.5.1). As can be seen, loops have been introduced for the non-observable
messages adjust, continue, done, and fail. For the sake of clarity, we merge multiple loops
if they differ only in their synchronizations. The guards of these loops enable the adjusted
automaton to send or receive the associated messages whenever the perturbed automaton
is not regularly able to do so. A loop is therefore only created if the sending or receiving
of a message is conditional, i.e., if the corresponding edge in A, is equipped with a guard.
Conversely, if a message can be sent or received unconditionally, no loop must be produced.
Since the observable store message may be sent in any of the three regular locations, none
of the invariants of the perturbed automaton can be carried over to the adjusted automaton.
Instead, in Fig. 5.7, the guards of all edges have been intersected with the corresponding source
invariants as described above. The situation is different with the committed location of the
perturbed automaton because it does not allow store to be sent (cf. Fig. 2.10 on page 28).
Therefore, as shown in Fig. 5.7, it is possible to preserve the committed characteristics
including the implicit invariant, which forces the location to be left immediately upon entry.

98



5.6. Caske Stupy

isAdjustEnabled Ap <5

p=5 adjust? w:=0 p=5Aw<40
store! store!
p:=0 _ p<5AW<40 p:=0
-
done!
4 adjust? |
p<5 continue? | done!
-isAdjustEnabled Ap<5 continue? | ~ PsS5Aws<40
adjust? done! | fail! adjust? | continue?
isAdjustEnabled
Ap<5 m
adjust? fail!
isContinueEnabled p<5
Ap<5 = p<5Aw<40
continue? | done! | fail! fail!
<
-isContinueEnabled Ap <5 -isAdjustEnabled Ap <5
continue? adjust?

Figure 5.7: Adjusted automaton of the Engine Control Unit.

According to the adjusted automaton depicted in Fig. 5.7, the Err location of the test
automaton from Fig. 5.5 is never reachable during execution of the parallel test network. This
confirms our expectation that the behavior of the Engine Control Unit adheres to the component
security policy encoded by the test automaton. According to this result, the sending of the
observable fail message is in no way affected by the receiving of the critical adjust and continue
messages, even if the adjusted automaton is arbitrarily perturbed by manipulating the values
of isAdjustEnabled and isContinueEnabled.

5.6 Case Study

We evaluate the proposed verification technique by means of a case study originally con-
ducted in [*GS19]. In the context of the requirements specified in Section 5.2, the timing
sensitivity (R1) is a functional attribute, which we addressed by reducing the verification to
a refinement check for real-time systems. Furthermore, the off-the-shelf verification (R2)
is ensured because our technique is based on the application of the UppaaL model checker.
In our case study, we therefore evaluate the accuracy (R3) of the proposed technique. In
particular, we aim to answer the following research question (RQ):

RQ: How accurate are the verification results that software engineers obtain when applying
our verification technique?

In the following, we rely on the guidelines by Runeson and Host [RHO9] to report this study.
Thus, to answer our RQ, we first justify the selection of the studied case in Section 5.6.1.
Subsequently, we describe the data collection in Section 5.6.2 and the analysis of the collected
data in Section 5.6.3. Next, Section 5.6.4 presents our obtained results. In Section 5.6.5, we
discuss the validity of our findings.
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Figure 5.8: Example security policy in the context of CoCoME [adapted from *GS19].

5.6.1 Case Selection

The selected case for our study is CoCoME, a community case study for the design of
component-based systems [Her+08]. The study is concerned with a trading system that is
used by customers (e.g., of supermarkets) to purchase products. Due to CoCoME’s focus on
CBSE, it matches the MEcHATRONICUML design method and its underlying component-based
principles, according to which the system behavior emerges from the composition of multiple
components. Due to the composability of our approach in this thesis (cf. Section 4.7), we
apply the proposed verification technique to the individual components inside CoCoME’s
architecture. In particular, we select CoCoME due to the existence of a security-oriented
extension [GH17], providing a collection of predefined information flow requirements that
we use as a benchmark for our study.

In Fig. 5.8, we illustrate the component architecture of CoCoME. As depicted, the Trading
System comprises a Cash Desk and a Server component. The Cash Desk communicates with
a Barcode Scanner used to register the purchased products, as well as a Cash Box and a Card
Reader for cash or credit card payment. Furthermore, a Light Display and a Printer are used
to give information to customers, whereas the Cash Desk also communicates with a bank to
process cashless payments. The Server stores the inventory data. To this end, it comprises a
Persistence component that provides access to the Data storage. The server runs an Application
software, which enables the inventory data to be retrieved or manipulated either by the Cash
Desk during the sales process, or by a store manager in the role of a Client. Whenever the
stock is running low, the Application is also responsible for reordering specific products from
another store automatically.

100



5.6. Caske Stupy

5.6.2 Data Collection

To conduct our study, we recreate the architecture of CoCoME on the basis of the MEcHA-
TRONICUML component model (cf. Section 2.3.2). To this end, we carry over the set of
components from [GH17, p. 19], resulting in the architecture depicted in Fig. 5.8. The inter-
action between CoCoME’s components is based on dedicated interfaces, which are provided
by particular components and required by other components. In MecHaATRONICUML, we
represent CoCoME’s interfaces by means of ports connecting the respective components. In
particular, a provided interface corresponds to a discrete in port, whereas a required interface
translates into a discrete out port. By restricting ourselves to the use of discrete ports, we
account for the fact that the implementation of components in CoCoME is based on the pro-
cedural programming paradigm. Accordingly, an interface comprises a set of services, each
one reflecting the signature of an operation that can be called by the requiring component to
invoke a behavior of the providing component. If at least one service of an interface involves
areturn value, we account for this two-way communication by converting the respective ports
to in/out ports. On the basis of the resulting architecture, we regard each service call as a
message passed from the requiring to the providing component, and the corresponding return
value (if any) as a message passed back in the reverse direction from the providing to the
requiring component. By using discrete ports only, we abstract from the physical interaction
of the system with its environment through hardware components such as Barcode Scanner
or Printer. However, we thereby account for the fact that CoCoME follows a procedural style
of programming, whereas our approach described in this thesis is equally restricted to the
message passing over discrete ports (cf. Section 4.4.2).

Security Policies. On the basis of the component architecture, we take into account the
security requirements for CoCoME documented in [GH17, Section 4]. These requirements
protect the confidentiality of the information exchanged between specific actors (e.g., cus-
tomers, cashiers, bankers, or store managers) across the interfaces of components. Thereby,
the given requirements restrict the information flow through the system. For each service and
each piece of information exchanged over that service, the requirements indicate to which
actors the information is allowed to be disclosed. In this context, individual pieces of infor-
mation correspond to the parameter values or return values of a service call. In our study,
we address the confidentiality of information entered through the external interfaces, which
correspond to the eight external ports of the Trading System depicted in Fig. 5.8. For each
external port, we specify a dedicated component security policy that treats the port and any
information entered through the corresponding interface as critical. For each policy, we
classify the residual external ports depending on whether the corresponding interfaces are
authorized to disclose the critical information. To this end, we take into account the actors
that interact with the system over a specific port. From the given security requirements, we
extract whether the critical information is allowed to be disclosed to these actors or not. If all
critical pieces of information may be disclosed to all of the actors that interact over a certain
port, then this port is classified as neutral. However, if any critical piece of information must
not be disclosed to some actor, then the port over which this actor interacts is classified as
observable. The result is a set of eight component security policies for the Trading System.
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Table 5.1: Security policies and verification results [adapted from *GS19].

Security Policies of External Ports Verification Results of Components
light bank product barcode cash card Expected Light Cash
Display Trans. printer Disp. store Scanner Box Reader Result Display Printer Desk App.
> (o] (o] (o] @ @ @ secure v v v 4
@ > (o] insecure v v X v
(o] > (o] (o] (O @ @ secure v v v v
o (o] (0] > (o] (o] [o) secure v v v v
(o] (o] (o] (o] > (o] (o] (o] insecure v v v X
(o] (o] > © o)) insecure v v X N/A
(o] (o] (-] insecure v v X N/A
(o] (o] (o] (o] (o] (o) [} insecure v v X v

We summarize these policies in Table 5.1, where the columns on the left represent the
external ports of CoCoME’s architecture. Each line reflects the security policy of one
specific port, which is classified as critical and highlighted in gray. Subsequently, we refine
each of the specified policies manually by classifying the internal ports of the architecture as
well. We thereby obtain security policies for the subcomponents of the Trading System, which
are all well-formed according to the rules established in Section 4.6. As an example, Fig. 5.8
illustrates the refined policy for the bankTransaction port, which must not leak information to
the productDispatcher port. We visualize the residual policies in Appendix A.

Component Behavior. On the basis of CoOCoME’s use cases described in [Her+08], we use
UppaaL timed automata to model the stateful behavior of the bottom-level subcomponents
inside the architecture. From the use cases, we extract causal dependencies between service
calls. We encode such calls and the corresponding return values (if any) by outputs and inputs
attached to specific edges. Since test automata are limited to deterministic systems [JLSOO,
p. 271, we resolve nondeterminism by providing particular edges with auxiliary synchroniza-
tions. We also use clock constraints to account for timeouts, thereby enabling a component to
react to situations in which an input from another component is not received within a fictitious
time limit. Note that, unlike the original definition of the CoCoME case, we abstract from the
detailed data processing of components. In particular, our models do not represent the indi-
vidual parameters of service calls or return values, and the way in which these parameters are
determined or processed by components. Furthermore, we restrict the behavioral modeling
to Light Display, Printer, Cash Desk, and Application as the only components that are effectively
restricted by at least one of their refined security policies. Since the residual components
never combine critical and observable ports in their policies, they are secure by definition and
do not require verification at all.

Manual Assessment. Subsequently, we manually assess the security of the specified com-
ponent behavior with respect to the individual policies. To that end, we use our expert opinion
to check the behavior of the components for potential information flows. We thereby specify
whether a certain policy is expected to be violated or adhered to by the respective component.
According to the composability of our approach (cf. Section 4.7), the specified expectations
also assess the security of the overall component architecture: if at least one component is
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expected to violate its security policy, then the architecture is deemed insecure. Conversely,
if we expect all components to adhere to their policies, the architecture is deemed secure.
Using these expert opinions, we obtain expected results for the automated verification. Ta-
ble 5.1 indicates these expected results for each individual security policy. In particular, the
architecture is expected to be secure with respect to the policies for the lightDisplay, printer, and
productDispatcher ports, and is deemed insecure for the policies of the residual ports.

Automated Verification. Finally, to assess the accuracy of our technique with respect to
the expected results, we carry out the verification procedure as described in Section 5.3. To
construct the underlying automata as illustrated in Section 5.5, we use model transformations
operating on dedicated metamodels for timed automata. We developed these metamodels as
part of a publication that enables MDE on the basis of UppaaL [*Sch+17]. Building upon
the transformation results, we use UpPAAL to check the behaviors of the four aforementioned
components against the eight refined security policies. For each component and each of
its associated policies, we thereby obtain a corresponding verification result that we use to
analyze the accuracy of our technique.

5.6.3 Analysis

To measure the accuracy of our technique, we analyze the collected data by comparing the
obtained verification results against the expected results, which have been specified manually.
Accordingly, evidence for the measured accuracy is provided by our expert opinion. If
the architecture is deemed secure with respect to a policy, this expectation is satisfied if
the verification results indicate that all four components adhere to their refined policies.
Conversely, if deemed insecure for a certain policy, the architecture satisfies this expectation
if the verification detects at least one component that violates its refined policy. On this basis,
the measured accuracy amounts to the number of policies for which the verification results
satisfy our expectations.

5.6.4 Results

We present the obtained verification results on the right-hand side of Table 5.1. For each
of the four components, a result of v indicates that the component behavior adheres to the
respective security policy. In contrast, a result of X represents the detection of a policy
violation. According to these results, the Light Display and Printer components adhere to all
of the eight refined policies. In contrast, both Cash Desk and Application are compromised by
information flows detected by the verification, thereby violating individual policies. Moreover,
in case of the Application component, no verification result is available for the barcodeScanner
and cashBox policies because UppaaL is running out of the memory it is allocated by default.
When analyzing these cases in detail, it appears that a large number of ports is classified
as critical by the respective security policy. Thus, we attribute the failure to the increased
number of critical inputs being perturbed during verification as described in Section 5.5.1.
Our findings therefore suggest that the abnormal termination of UppaaL’s model checking
procedure is caused by the growing state space resulting from the perturbation.
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Despite these failures, the security policies for the lightDisplay, printer, and productDispatcher
port are always adhered to by all components. Thus, since the architecture is expected to be
secure with respect to these policies, we regard this expectation as satisfied. In case of the
residual policies, for which the architecture is expected to be insecure, our verification results
indicate that either Cash Desk or Application violate their refined policies. Accordingly, the ver-
ification of these policies satisfies our expectations as well, regardless of the aforementioned
cases in which no verification result could be obtained for the Application. In summary, our
proposed technique was able to verify each of the eight policies according to expectations,
without assessing an insecure architecture as secure or vice versa. Hence, with respect to our
RQ, we regard the verification results as accurate. Nevertheless, the abnormal termination
in two cases suggests that further studies should analyze how the proposed technique scales
on verification of large state spaces. In particular, the scalability should be considered in
the presence of security policies that classify large amounts of information as critical and
therefore require an excessive perturbation.

5.6.5 Validity

In the following, we discuss potential threats to the validity of our results from Section 5.6.4.
According to Runeson and Host [RH09], we distinguish between construct validity (ques-
tioning the suitability of our measurements to answer the research question), internal validity
(questioning outside influences on our measurements), external validity (questioning the
generalizability of our results), and reliability (questioning the replicability of our study).
With respect to construct validity, a threat to our results is that both the refinement of
security policies and the modeling of the component behavior have been carried out as
manual tasks by ourselves. Thus, our study is not based on predefined evaluation artifacts
that serve as a ground truth. On the one hand, the applied well-formedness rules from
Section 4.6 admit a certain degree of freedom, such that policies can be refined in various
ways. On the other hand, instead of analyzing a given implementation of the component
behavior as is, the behavioral models are only loosely based on the description of CoCoME’s
use cases [Her+08]. As a consequence of these manual interventions, one cannot rule out
the possibility that the security policies or component behaviors have been specially tailored
to provoke certain results, thereby affecting the measured accuracy. In our study, we aim to
reduce the dimension of this threat by taking CoCoME’s predefined security requirements
and use cases as a basis for our data collection, instead of creating such artifacts artificially.
Moreover, since evidence is given on the basis of expert opinion, the internal validity of our
study is threatened by human errors that could have been made during the manual assessment
of the expected security results. If an expected result is incorrectly assessed upfront, it
potentially affects the measured accuracy of the corresponding verification result. Thus, we
may have committed measurement errors by regarding verification results as accurate although
they are actually inaccurate, or vice versa. Whenever a policy violation is detected during
verification, we aim to reduce this threat manually by double-checking the counterexamples
provided by UppaaL. Thereby, we ensure that the detected violation actually represents an
information flow that justifies our manual assessment of the corresponding expected value.
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A threat to the external validity is that our findings bear little relation to the original
CoCoME case and its associated security requirements. On the one hand, the behavioral
models of our study omit the detailed data handling of components, abstracting from the
way in which they process, store, or propagate individual parameters on the invocation of a
service (cf. Section 5.6.2). On the other hand, according to the procedural programming
style underlying CoCoME, the associated security requirements are based on a definition of
information flow [GMB17] that differs profoundly from the one applied in our approach.
For these reasons, the security values assessed or verified in our study are not necessarily
transferable to the original CoCoME case. The external validity is also threatened because
CoCoME is not a CPS. Whereas hardware components are part of the trading system, the
case does not reflect their interaction with the physical system context. In particular, the
time restrictions that we impose on the behavioral models are fictitious, instead of being
induced physically. Therefore, it might not be possible to generalize the measured accuracy
to real-world cases that are based on CPSs in a narrower sense.

To foster reliability of the obtained results, we facilitate the replication of our study
by other researchers. To that end, we provide access to our collected data in [*Ger20a],
including (i) the component behaviors given in terms of UppaaL timed automata, (ii) the
corresponding automata checked by UppaAL to verify the information flow security, (iii) the
model transformations used to construct these automata as described in Section 5.5, and
(iv) the launch configurations used to invoke these transformations for each security policy.

5.7 Limitations

Inherent Limitations of the Refinement Check. As an extension of MeEcHATRONICUML’s
refinement check [HBDS15] and its underlying concept of test automata [JLS00; ABL9S],
our verification technique is subject to certain inherent limitations [Brel0, pp. 62—63]. First,
checking a refinement relation between two systems by means of test automata requires the
transition function of the more abstract system to be deterministic [JLS00, p. 27]. In our
approach, due to the underlying principle of self-composition, the behavior of a component
acts both as the abstract system being refined and (in its perturbed form) as the refining
system. Therefore, our technique is restricted to component behaviors with deterministic
transition functions as well. In the context of MEcHaATRONICUML, this restriction does not
imply any consequences because the real-time statecharts used to model the component
behavior must be deterministic anyway, expect for nondeterministic choices being modeled
explicitly [HBDS15, p. 259]. Another inherent limitation is that the abstract system must not
include any 7 transitions [JLS00, p. 27]. Thus, each edge must be labeled with a symbol other
than 7. In contrast, MECHATRONICUML generally allows 7 transitions to be used in real-time
statecharts because received messages are optional [*Dzi+16]. Hence, this limitation affects
our technique. Taken as a whole, our approach is not applicable in a context that requires
nondeterminism or 7 transitions. In such contexts, alternative verification techniques for
timed bisimulation [Cer93; WL97] would need to be taken as a basis. We refer the reader to
[Brel0, pp. 62—63] for a closer examination of the aforementioned limitations.

105



CHAPTER 5. A VERIFICATION TECHNIQUE FOR REAL-TIME INFORMATION FLOW SECURITY

As another inherent limitation, the refinement check does not take message parameters
into account [Heil5, p. 134]. Therefore, it is not sensitive to differing parameter values.
With respect to security, such differences may obviously constitute an information flow. As
an extension of the refinement check, our proposed verification technique is not capable of
detecting such flows, which has also been identified as a threat to the validity of our case study
discussed in Section 5.6.5. An obvious approach to address this shortcoming is to encode all
possible combinations of parameter values as individual symbols used to synchronize edges.
However, this approach implies a considerable blowup of the underlying test automata because
each possible combination of parameter values gives rise to distinct edges (cf. Section 5.5.2).
Future works therefore need to address the scalability problems involved by this approach.

Assumptions & Guarantees. The security guarantee provided by our technique is based on
the assumption that the original construction of test automata [HBDS15] ensures accuracy,
i.e., indicates whether a weak timed bisimulation is satisfied or violated without committing an
error. Moreover, we also assume that the accessible information is restricted to the messages
passed over discrete ports. In contrast, we leave out of consideration that a component might
make information accessible over other communication channels, such as signal exchange
over hybrid ports. Furthermore, the provided guarantee is only transferable to a real system if
the accessibility of information is not increased during the downstream development phases,
in which components are deployed to concrete execution platforms. Such an increased access
could be exploited by malicious actors to establish additional information flows, which are not
covered by our model-driven verification technique. Refining the modeled behavior such that
verified properties still hold for a real, deployed system is a general challenge. With respect
to security, our approach must cope with the additional challenge that verified information
flow properties of a system are not guaranteed to be preserved when the system specification
is refined [Jac89]. This phenomenon is also known as the refinement paradox [Ros95].

At the technical level, another assumption relates to the corrections made by an automaton
that undergoes perturbation. Such corrections enable the perturbed automaton to deviate
from the communication behavior of the unperturbed automaton with respect to particular
messages. As described in Section 4.4, corrections are restricted to neutral or critical outputs
as well as neutral inputs. Due to the asynchronous communication, the sending of neutral or
critical outputs is not subject to any restrictions because messages can be freely sent without
asking the receiver’s permission. In contrast, using neutral inputs for corrections is only
possible on the assumption that the respective received messages have been delivered as
needed. Accordingly, this assumption imposes restrictions on the communication behavior
between a sending and a receiving component. Inputs with other sensitivities are not affected
by this assumption because deviations are either explicitly considered as for critical inputs,
or ruled out completely as for observable inputs. To handle the case of neutral inputs, our
architectural well-formedness rules given in Section 4.6.2 therefore prevent inputs from being
used for corrections at the global, architectural level. At the local level of individual compo-
nents, this thesis does not address the question whether MEcnaTRONICUML’S compositional
verification approach (cf. Section 2.3.3) is suitable to guarantee that a sending component
fulfills its behavioral contract in such a way that particular messages are always delivered to
the receiving component as needed. We leave such considerations to future work.
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Soundness & Completeness. On the basis of the aforementioned assumption that the
original refinement check provides accurate verification results, we adapted the technique to
properly hide non-observable communication. Thereby, we aim to ensure that unobservable
deviations do not lead to the indication of false positive information flows. To the best of our
knowledge, our adaptations did not introduce false negative errors, in which an information
flow fails to be detected. Accordingly, no such errors were revealed when conducting our case
study in Section 5.6. Nevertheless, there might be false positives left that have not been ruled
out by our adaptations. For example, due to the fact that we omit invariants under certain
circumstances described in Section 5.5.2 and Section 5.5.3, our technique might enable an
automaton to delay in the concerning locations until after their regular invariants have expired.
In this case, particular edges are not forced to fire before the expiry, potentially preventing an
automaton from making corrections in response to a perturbation.

Quantitative Information Flow. As illustrated in Section 5.3, our technique is limited to
qualitative verification results, indicating whether a system is compromised by an information
flow or not. However, it might also be desirable for software engineers to learn the amount
of information that is exposed by a flow, enabling them to reason about security from a
quantitative point of view. For example, quantitative security issues are raised in the context
of differential privacy [Dwol1]. Further, reasoning about such issues is the subject of a line of
research on quantitative information flow [Smi09]. Accordingly, a promising extension of our
work is an integration of quantitative analysis techniques. To achieve this goal, future works
might build upon various quantitative extensions of the UppaaL model checker, which enable
reasoning about costs or probabilities [LLN18]. In the context of security, such techniques
have already been used to reason about quantitative aspects of attacks [KS17].

Declassification. Another limitation of our technique is that the verified security policies
are unconditional, associating each message with a fixed sensitivity (cf. Section 4.4). Ac-
cordingly, we do not support the concept of declassification [SS09] as already introduced in
Section 3.7. Declassifying information could help instruct our verification technique to not
report information flows under well-defined exceptional circumstances, e.g., in a particular
location or given a certain clock valuation. In the scope of MEcHATRONICUML, the specifi-
cation of such exceptions has already been prototyped in a bachelor thesis [Cor18]. Future
works must integrate the specified exceptions into the construction of the test automata and
thereby ensure that declassified information is taken into account during verification.

Hardening. Whereas the goal of our technique is to detect insecure behavior, our approach
does currently not help software engineers prevent information flows proactively, or fix flows
reactively after they were detected. Both supporting measures could enable a system to be
hardened against security incidents in a systematic way. On the one hand, the MECHATRON-
1cUML method already provides engineers with a constructive, semi-automated technique to
synthesize the behavior of a component from the predefined coordination protocols that need
to be implemented [DGB14; EH10]. The approach enables an incorporation of well-defined
interdependencies between the component’s ports, each filling a role of an individual protocol
(cf. Section 2.3.3). Thus, a promising enhancement is to also consider interdependencies
that must be avoided in order to adhere to a given security policy. Thereby, engineers could
prevent policy violations from the ground up.
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Contribution

Real Time

Figure 5.9: Overview of related works from different areas.

On the other hand, further existing works help fix the given behavior of a system if it is
compromised by an information flow [AS19; BCLR15; BFPRO2]. To apply such techniques
in our context, future works need to address potential repercussions that an automated fix
may have on the functional requirements of a component. In MEcHaATRONICUML, fixing the
information flow with the help of automated techniques must not invalidate any properties
that have been verified upfront by the compositional approach described in Section 2.3.1.

5.8 Related Work

As shown in Fig. 5.9, our contribution is a novel combination of the following characteristics.
First, we consider dense real-time behavior and thereby enable a timing-sensitive verification.
Second, we apply UppaaL as an off-the-shelf verification tool. Thus, Section 5.8.1 first gives
an overview on general verification techniques for information flow and their support by off-
the-shelf tools. In Section 5.8.2, we focus more specifically on timing-sensitive approaches.

5.8.1 General Verification Techniques for Information Flow Security

A traditional verification technique for information flow is unwinding [GM84; ManOOb;
Bos+04]. In this technique, a global security property of a system is deduced from local
properties of individual system actions. In the context of state-based systems as we consider,
such actions correspond to the individual state transitions. However, due to the real-valued
state space of timed automata, localizing the verification to properties of single state transitions
is a challenging task. In fact, to the best of our knowledge, unwinding has not been applied
in the scope of real-time systems. Furthermore, whereas the verification results obtained
through unwinding are generally sufficient to guarantee a certain security property, they are
not always necessary [Man0Ob] and may therefore indicate false positive information flows.
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In the area of language-based information flow [SMO3], the security of programs is often
verified with the help of type systems [VIS96]. Such approaches enforce security by inferring
the types of the individual language constructs used in a given program. Type systems aim
to ensure soundness of the verification results and therefore detect all insecure programs
in a reliable fashion. However, similar to the unwinding technique, they may reject secure
programs as insecure. Compared to our work in the context of state-based systems, the
language-based approach involves a profoundly different model of computation. Therefore,
type systems are not directly applicable in our context. We refer the reader to [FRS05; MZ10]
for a consideration of information flow security under different models of computation.

Another prominent verification technique that originates from the field of language-based
security is commonly known as self-composition [BDR11]. According to this approach,
the indistinguishability of two different program executions is verified by analyzing single
executions of a composite program, being composed of two copies of the original program.
By self-composing programs, a hyperproperty such as information flow (cf. Section 2.4.2) is
made accessible to standard verification techniques, which are otherwise restricted to prop-
erties like safety or liveness (referring to individual executions in isolation). Consequently,
numerous language-based approaches have taken advantage of the underlying idea to verify
the information flow security of programs using techniques like theorem proving [DHSO05],
model checking [HWSO06], or combinations thereof [TAO5]. Furthermore, self-composition
has also been adopted outside the field of language-based security. For example, van der
Meyden and Zhang [MZ07] as well as D’Souza et al. [DHRS11] both make use of the under-
lying idea to verify the information flow security of state-based systems by means of model
checking. Thereby, these works resemble our approach in the context of timed automata.
Nevertheless, they do not take real-time systems into account and therefore fail to conduct a
timing-sensitive analysis that helps detect timing channels. Furthermore, whereas these works
develop algorithmic decision procedures that are generally amenable to model checking, they
do not discuss the applicability of existing, off-the-shelf model checking tools.

Information flow properties like ours, which are intrinsically defined on the basis of
bisimulation (cf. Definition 4.1 on page 73), are also amenable to the reuse of standard
verification techniques for bisimilarity, as discussed by Focardi et al. [FPRO2]. Thus, in our
context, existing decision procedures for timed bisimulation [Cer93; WL97] are generally
applicable. Nevertheless, since such procedures must handle the infinite state space of real-
time systems algorithmically, they require great development efforts to ensure efficiency and
correctness of the verification algorithms to be implemented. In contrast, our approach
takes an off-the-shelf verification tool as a basis, which enables us to benefit from its proven
maturity instead of implementing the underlying verification algorithms from scratch.

Instead of reducing information flow security to standard verification problems, a com-
plementary approach is pursued by Finkbeiner et al. who adapt model-checking techniques
to information flow properties in particular [Dim+12], or even to hyperproperties in gen-
eral [FRS15; Rab16, Chapter 5]. Hyperproperties represent a relatively new line of research
that has not yet established off-the-shelf verification tools with an advanced degree of matu-
rity. Whereas the above works do not focus on a timing-sensitive analysis, we will discuss
ongoing research on the verification of timed hyperproperties in the upcoming Section 5.8.2.
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5.8.2 Timing-Sensitive Information Flow Security

In the field of language-based security, Agat [Aga00] uses a type system (cf. Section 5.8.1)
to rule out timing channels of imperative programs, whereas the same approach is pursued
by Mu and Qin [MQ17] in the context of a formal specification language. Another language-
based work on the detection of timing channels in imperative languages is presented by
Giacobazzi and Mastroeni [GMO05], however, without proposing a particular verification
technique. Unlike the above works, the type system proposed by Hedin and Sands [HSOS5] is
sensitive to the history of executed instructions, which may affect the time needed to execute
a subsequent instruction. Thereby, the authors account for the effects of an instruction cache
on the execution times. The same approach is adopted by Kashyap et al. [KWH11] to enforce
information flow security by means of dedicated task scheduling strategies. Similarly, Son
and Alves-Foss [SA09] focus on the scheduling of tasks as well, however, explicitly restrict
their approach to a discrete notion of time.> In fact, opposed to our proposed verification
technique, none of the above works explicitly consider a notion of dense real time.

Approaches towards information flow in process algebras have been enhanced with a notion
of time by Focardi et al. [FGMO3], extended by Huang et al. [HPLP09].> Similarly, Rafnsson
et al. [RIB17] also verify the absence of timing channels in compositions of interacting
processes. Whereas the above works are all based on a discrete time model, Roscoe and
Huang [RH13] extend process algebras with both discrete time and dense real time. Similar
to our work, the authors of the latter approach propose verification techniques that take an
off-the-shelf model checking tool as a basis. However, these techniques are either restricted
to the case of discrete time, or approximate the dense real-time behavior in a discrete fashion.

Whereas all aforementioned works differ profoundly from our approach in the underlying
model of computation, Kopf and Basin [KB06] address the field of synchronous, state-
based systems. A commonality shared with our work is that the authors apply the idea
of self-composition (cf. Section 5.8.1) to make use of an off-the-shelf model checker.
Nevertheless, the approach is once more restricted to a discretized notion of time. In summary,
none of the approaches discussed above provide a verification technique in which time is
treated as a continuous, real-valued magnitude. As previously discussed in Section 4.9.3, the
aforementioned related works are therefore limited in the detection of timing channels.

In contrast, there are also approaches that handle timing channels in real-time systems
given as timed automata. Cassez [Cas09] takes into account a security property that turns
out to be undecidable. Accordingly, the author is not concerned with concrete verification
techniques. Whereas Benattar et al. [BCLR15] synthesize controllers that enforce security
of timed automata, Nielson et al. [NNV17] derive secure timed automata from language-
based specifications. In [VNNI18], the same authors propose an algorithm that imposes
security restrictions on a given automaton. As distinct from the above approaches, André and
Sun [AS19] use off-the-shelf tools to synthesize timing parameters of secure timed automata.
Similar to our work, the authors apply the principle of self-composition and reduce the
problem to a reachability check. However, according to the constructive nature of the above
approaches, they are not primarily concerned with verification.

*The titles of [SA09; FGMO03; HPLP09] refer to real time, despite underlying discrete notions of time.
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Lanotte et al. [LMT10] provide a theoretical framework to investigate information flow
properties of timed automata. Being defined on the basis of bisimulation, these properties
are conceptually similar to the one underlying our work (cf. Definition 4.1 on page 73).
In [LMTO2], the same authors consider a more specific privacy property, which is amenable to
off-the-shelf model checking tools by applying the idea of self-composition [Gor+04, p. 173].
Nevertheless, the more general properties investigated in [LMT10] are not provided with
applied verification techniques. In contrast, Barbuti and Tesei [BT03] reduce the verification
of the information flow security to a reachability check. Similar to our work, the authors apply
UppaaL as an off-the-shelf tool [Tes04, Section 5.7]. However, the verified property only
guarantees that the set of reachable locations does not depend on critical information [Tes04,
p. 121].> This approximation affects both soundness and completeness. On the one hand,
the observable events of an automaton might not depend on critical information, even if the
reachability of locations does. On the other hand, if the reachability does not depend on
critical information, the observable events might do so nevertheless. Thus, in the general
case, the proposed technique fails to give accurate security guarantees.

In summary, the related works discussed above do either not provide (accurate) verification
techniques that apply off-the-shelf tools, or the techniques they provide are restricted to a
discrete notion of time. Accordingly, as illustrated by Fig. 5.9, the novelty of our contribution
is that we verify the information flow security both under consideration of dense real-time be-
havior and with the help of an off-the-shelf technique. Only recently, verification approaches
with a similar combination of characteristics have been developed for the larger class of timed
hyperproperties [HZJ19; Heil8]. As independently proposed in our work, both approaches
make use of self-composition as a means to verify hyperproperties of timed automata. Unlike
our technique, Ho et al. [HZJ19] mainly investigate the theoretical decidability of the verifica-
tion problem. In contrast, the approach by Heinen [Heil8] resembles our work more closely
because it is based on a practical application of UppaAL as an off-the-shelf verification tool.

5.9 Summary

We presented a tool-supported verification technique for the information flow security of
real-time systems given in the form of timed automata. On the basis of the component-
based security policies developed in Chapter 4, our technique helps check the behavior of
MecaaTtrONICUML components against information flows such as timing channels. Thereby,
we complement MEcHATRONICUML’s compositional verification approach for functional
properties with a corresponding technique to verify security properties. Our approach takes
the refinement check by Heinzemann et al. [HBDS15] as a basis.

We evaluated the accuracy of our technique by conducting a security-related extension of
the community case study CoCoME. On the basis of predefined information flow policies, we
demonstrated that the obtained verification results satisfy the expectations assessed manually
on the basis of expert opinion. However, our study also revealed a scalability bottleneck of
our technique, which takes effect if large amounts of information are classified as critical.

3We refer the reader to Jaume et al. [JATM13] for a discussion of the security trade-off involved by this approach.
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Our verification technique enables software engineers in the context of MEcHATRONICUML
to check automatically whether the behavior of a component adheres to a given security policy.
In the light of the composability attested in Section 4.7, the security of a system is deducible
from the verification results of its bottom-level subcomponents. Instead of analyzing the
real-time behavior by means of proprietary algorithms that need to be implemented from
scratch, we enable engineers to benefit from the maturity of an off-the-shelf verification tool.
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IMPERATIVE REFINEMENT OF DECLARATIVE
MobDEL TRANSFORMATIONS

In this thesis, transformations of models have been previously used to translate flow policies
into component-based security policies (cf. Section 4.5), or to analyze timed automata for
security properties (cf. Section 5.5). As described in Section 2.1.2, such model transfor-
mations are traditionally distinguished between declarative and imperative [MG06]. Using
declarative transformations, developers define patterns of model elements that relate to each
other. These patterns declare what source and target elements are transformed into each other
when executing a transformation. In case of imperative transformations, developers specify
sequences of algorithmic instructions. Thereby, they control explicitly how source elements
are transformed into target elements during execution.

Today, developers may choose between dedicated transformation languages from both cat-
egories [KG17]. Howeyver, as suggested by empirical investigations [Heb+18; BCG19b], the
advantages of special-purpose transformation languages over general-purpose programming
languages are not perceived as significant by developers. In this context, we address the prob-
lem that using transformation languages to encode the logic of transformations often requires
large-sized, verbose transformation definitions. Neither declarative nor imperative languages
provide a silver bullet for this verbosity and therefore fail to reduce the development effort
for model transformations. On the one hand, declarative languages save developers from the
need to encode explicitly how transformation rules are to be applied, implicitly delegating
the rule application to the execution engine. However, in practice, the transformation logic
often involves complex alternatives between rules, or exceptions to the basic rules. Encoding
such alternatives or exceptions enlarges the overall size of the rule set, affecting both main-
tainability and performance [Str+16]. On the other hand, since imperative rules are applied
explicitly, they enable a more flexible encoding of alternatives or exceptions. As a drawback,
imperative languages require developers to implement large amounts of repetitive boilerplate
instructions by hand. These instructions are needed to link the elements created by different
rules and thereby produce a coherent target model. Taken as a whole, developers are in a
dilemma because they must cope with the verbosity of transformations one way or the other,
enlarging either the size of the rule set or the amount of boilerplate instructions. The goal
of this chapter is therefore to combine the best of both worlds, reducing the verbosity of
transformations by integrating the benefits of declarative and imperative languages.
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State of Research. Hybrid transformation languages like the Atlas Transformation Lan-
guage (ATL) combine a declarative application of rules with an imperative rule implemen-
tation [JABKO8]. However, although rules are applied automatically, developers must still
implement boilerplate instructions manually to ensure that the target elements of a rule are
linked with further elements created by other rules. To save this manual effort, approaches
towards metamodel matching aim to infer transformation rules from the underlying source
and target metamodels [LFH14]. However, this approach assumes that rules can be inferred
fully automatically, without enabling developers to preconfigure the inference upfront with
manually defined rules. In contrast, declarative approaches as presented in [FB16] aim to link
target elements semi-automatically on the basis of predefined rules, but without the need to
encode the transformation logic in full detail. However, by focusing on declarative rules, this
approach does not enable a flexible, imperative encoding of alternative or exceptional logic.

Contributions. To benefit from the strengths of both declarative and imperative transfor-
mations, this chapter contributes a hybrid transformation approach that enables a declarative
transformation to be refined with imperative instructions. Initially, we enable developers to
give a transformation definition in terms of a transformation model [Béz+06], encompass-
ing simple declarative type mappings that reflect recurrent relations between classifiers (cf.
Section 2.1.1) from the source and target metamodels. To automate the linking of target
models, we present a heuristic inference engine that augments the type mappings with addi-
tional feature mappings, defining how to translate features of source classifiers into features
of target classifiers. As described in Section 2.1.1, such features link the individual model
elements with each other and thereby ensure coherence of models. By linking target elements
with the help of heuristics, we prevent developers from the burden of handcrafting repetitive
boilerplate instructions. Since our engine matches corresponding features automatically by
analyzing the manual type mappings, we adopt a semi-automated approach. To execute a
transformation, the inferred mapping models can be interpreted using a framework [Joh97]
that we conceptualize in this chapter as well. If the transformation logic involves alternative
or exceptional parts that cannot be encoded using our mapping models (or cannot be inferred
correctly), the framework enables developers to refine the execution manually with impera-
tive instructions. The implementation of the framework is solely based on general-purpose
language facilities, which we identify explicitly to check state-of-the-art imperative trans-
formation languages against them. Thereby, we analyze the feasibility of implementing our
framework using particular host languages. In combination, our contributions ensure con-
ciseness of transformation definitions because neither the simple logic of linking elements,
nor complex alternatives or exceptions to this logic need to be encoded verbosely.

Novelty. Compared to the existing works on automating the definition of model transforma-
tions, our contributions are novel by ensuring manual control of the automation. First, unlike
metamodel matching, we enable developers to preconfigure the inference of feature mappings
upfront with a given set of type mappings. Second, unlike the approach from [FB16], we
support an imperative refinement of declarative mappings in cases when the logic of a trans-
formation cannot be fully encoded in a declarative fashion. In summary, we thereby support
manual intervention by transformation developers, enabling them to benefit from a reduced
verbosity even if the generation of a transformation definition cannot be fully automated.
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Publication. We published an early version of our execution framework in a conference pa-
per [*GSB17], restricting our approach to refinements of endogenous transformations that are
based on the implicit copy design pattern [LK14]. Conceptually, since such transformations
use a common source and target metamodel, each classifier is implicitly mapped to itself. We
generalized our approach to exogenous transformations in a bachelor thesis [Bud18], taking
into account explicit mappings between classifiers from different metamodels. Building upon
these results, we presented our heuristic inference engine in a workshop paper [*GB19].

Outline. The remainder of this chapter is structured as follows. We initially summarize
our scientific contributions in Section 6.1. In Section 6.2, we give an overview on our
work and introduce the concept of mapping models in Section 6.3. Section 6.4 presents our
heuristic inference engine, before we propose the execution framework for mapping models
in Section 6.5. Subsequently, we conduct case studies to evaluate our approach in Section 6.6.
We discuss known limitations in Section 6.7 as well as related work in Section 6.8. Finally,
Section 6.9 sums up this chapter.

6.1 Scientific Contributions

To overcome the verbosity of model transformations, the hybrid approach presented in this
chapter comprises the following contributions:

* We introduce a concept of mapping models, enabling developers to define a model
transformation in terms of type mappings between source and target classifiers.

* We propose an automated inference engine, enabling developers to augment these
type mappings with feature mappings, which are used to link the elements of models
resulting from a transformation.

* We present a framework for the automated execution of the augmented mapping mod-
els, encompassing a generic execution algorithm that can be refined using imperative
transformation instructions.

* We identify the required language facilities underlying our execution framework and
check state-of-the-art imperative transformation languages against these requirements.

* We conduct five case studies in which we showcase the ability of our approach to reduce
the verbosity of model transformations accurately and effectively.

6.2 Overview

Since we address the general case of exogenous transformations (cf. Section 2.1.2), we
motivate our contributions on the basis of language translation as the most widespread
category of transformation intents [Bat+16, p. 179]. As a concrete example, we refer to the
translation from active structures used in MBSE into component architectures used in CBSE
(cf. Section 4.5), illustrating the source and target metamodels in Fig. 6.1.

115



CHAPTER 6. IMPERATIVE REFINEMENT OF DECLARATIVE MODEL TRANSFORMATIONS

= name : EString } o name : Estring @)

type

[0.1]
E AtomicComponent component
e (]| Type [0.1] | component
14
B ConnectableElement E Class ' E Connectoréndpoint
¢ T D g
coa
= name : EString *
. E StructuredComponent (1)
e
> 11 connector | [1.2]
Endpoints
parent
parentComponent 1; m Component o
owned (1]
part | 1] [1] | Attribute embeddedComponentParts | [1.%] o ports | [*]
H Property H ComponentPart | g Port |
coccccjlccccccca)
= name : EString @) = name : EString @)
partWithPort componentPart ¥ [1] 11| portType
* connectors | [*] connectors
[E DiscretePort H PortConnector
eecccccccccccccacdac)
—
r Legend o
owned H DelegationConnector
[*] |, Connector omcccae }
14
cccccaal ——
Inheritance [] B blyConnector
Vecccapead
Containment
g \ —
2.4 |, end portParts | [*]
Cro: e

CrossReference 5, = o
H Connectortnd H PortPart
Relation ceccccccccccccca
ccccce -)

Figure 6.1: Relations between classes for the translation from UML to MecHaTRONICUML.

According to an integration of Consens into SysML [KDHM13], we assume that an active
structure is given as a UML class diagram [OMG17]. Thus, on the left, we show a simplified
excerpt from the UML metamodel, representing each system element as a Class. The nesting
of elements is realized with the help of a Property, which refers to a Type. In our context, this
Type corresponds to another Class as a nested element. A Port is a specific Property that enables
a Class to be linked by means of a Connector, thereby representing relations between elements
such as information flows. To this end, a ConnectorEnd represents the coupling between a
Connector and a Port as a specific form of ConnectableElement.

On the right, we show a simplified excerpt from the MEcHATRONICUML metamodel, reflect-
ing its underlying component model (cf. Section 2.3.2). Accordingly, we distinguish between
bottom-level components represented by AtomicComponent and higher-level composite com-
ponents represented by StructuredComponent. In both cases, a Port enables the interaction of
a Component. Since we restrict our example to discrete components, DiscretePort is the only
relevant type of port. A ComponentPart refers to another Component, which thereby acts as
a subcomponent. Furthermore, a PortConnector binds two instances of a ConnectorEndpoint,
representing either a Port of a Component or a PortPart of a ComponentPart. On this basis,
dedicated types of connectors are used to distinguish between delegations and assemblies.
Whereas a DelegationConnector connects a Port to a PortPart, an AssemblyConnector connects
one PortPart to another. In the following, we use the example transformation to define our
addressed problem in Section 6.2.1. Next, in Section 6.2.2, we derive requirements for our
solution, which we propose in Section 6.2.3.
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6.2.1 Problem Definition

To define a model transformation, developers must indicate which source and target classes
relate to each other. For example, declarative approaches like triple graph grammars [ALS16]
relate the classes by means of a correspondence metamodel, whereas imperative languages
like QVTo [OMG16] reflect such relations in the signatures of operations. In our example
from Fig. 6.1, a Class either relates to an AtomicComponent or a StructuredComponent, depending
on whether it comprises at least one Property as a part. Accordingly, such a Property bears
relation to a ComponentPart. A UML Port is related to a DiscretePort, and a UML Connector
relates either to a DelegationConnector or an AssemblyConnector. Finally, a ConnectorEnd is
related to a PortPart, provided that it refers to a Property as a partWithPort.

As shown by numerous scientific works [DGC17; FB16; Gue+13; BVIM13; Wim+10;
LHBJO06], relations between source and target classes can be used to establish transformation
rules. Given a set of source elements, the relations define the target elements that need to be
created, thereby mapping source to target models. Nevertheless, developing fully functional
transformations often leads to verbose transformation definitions because developers must
cope with two remaining challenges that we describe in the following. As a point of reference,
we will refer to the approach by Freund and Braune [FB16], which uses mappings from source
to target models for a similar purpose as in our work.

Boilerplate Initialization of Features

To form a coherent model, target elements must be linked with each other by initializing
their features (cf. Section 2.1.1). The initialization applies to attributes (e.g., name in
Fig. 6.1), as well as references including containments (e.g., between Component and Port)
or cross-references (e.g., between ComponentPart and Component). We address the problem
that initializing the features marked by @) in Fig. 6.1 is unnecessarily tedious. Due to the
relations between source and target classes, the correct initialization of the target elements
is partially obvious from the initialization of the given source elements. For instance, since
a Property represents a part of a Class, it is obvious from the given relations that the related
ComponentPart must be one of the embeddedComponentParts of the related StructuredComponent.
Similarly, a Component must obviously act as the componentType of a ComponentPart whenever
the related Class serves as the type of the related Property. As another example, the name of a
ComponentPart can obviously be carried over from the name of the related Property one-on-one.

In imperative languages like QVTo, initializing the above target features requires devel-
opers to handcraft large amounts of repetitive boilerplate instructions in a verbose fashion.
Declarative approaches like the one by Freund and Braune [FB16] reduce this verbosity be-
cause they deduce the initialization of a coherent target model automatically. Nevertheless,
as a limitation pointed out by the authors, their approach only ensures that a target model is
syntactically valid with respect to its metamodel [FB16, p. 293]. In contrast, the approach
does not aim to match target features with corresponding source features. As a drawback, a
portion of the features marked by @) might be left uninitialized, potentially losing information
carried by the source model.
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Increased Size of Rule Sets

In most cases, not all features of the target metamodel enable an automated initialization
as described above. Often, this inability is caused by structural heterogeneity [Wim+10] in
comparison to the source metamodel. For example, when transforming a UML Connector into
a DelegationConnector of MEcHATRONICUML, the connectorEndpoints (marked by ) in Fig. 6.1)
must be initialized with a DiscretePort. However, compared to other features, this initialization
is less obvious because the source Connector does not directly refer to a Port. Therefore, this
Port in the source model is not directly navigable and cannot be used to establish a relation
to the DiscretePort in the target model. Thereby, the source metamodel differs from the target
metamodel, in which each DelegationConnector refers directly to the respective DiscretePort.
Due to this structural heterogeneity, the connectorEndpoints constitute an exception to the
default transformation logic. Unlike the majority of features, the initialization of this reference
is hard to deduce from the given relations between source and target classes. As can be seen
from this example, there are still situations in which transformation definitions must be
extended manually, either to make exceptions to the basic transformation rules or to choose
explicitly between alternative rules.

We address the problem that, in such situations, purely declarative approaches require
transformation developers to encode exceptional or alternative initializations either by in-
creasing the size of individual transformation rules, or by increasing the number of rules
in the rule set [Str+16]. In both cases, the overall size of the rule set increases, thereby
inducing verbosity of the transformation definition. In the example, the endpoints of an
AssemblyConnector or DelegationConnector must be initialized on a case-by-case basis, e.g.,
by establishing two separate rules. Additionally, in case of a delegation, the respective rule
must be increased itself because it requires the developer to (i) iterate over each end of the
source Connector, (ii) select a ConnectorEnd without a partWithport, and (iii) navigate to the
role and thereby obtain a Port that relates to the DiscretePort in the target model. In case
of declarative transformation languages, increasing the overall size of the rule set implies
not only higher maintenance efforts, but may also cause performance bottlenecks during the
automated rule application [Str+16]. Accordingly, both maintainability [AB11; KGBH10;
RNHR13] and performance [GTB18; ABKP11] are considered as crucial quality factors for
model transformations.

To decrease the size of the rule set and the associated verbosity, reuse of model transfor-
mations is a prominent research topic [Bru+20; CFSS16; Kus+15]. For example, declarative
approaches have been extended with mechanisms such as rule inheritance [Wim+12] or
variability-based transformation [Str+18]. However, to overcome the aforementioned ver-
bosity issues of declarative approaches, controlling the application of rules more explicitly
by means of imperative instructions is attractive to developers [Shil9]. For example, as
described above, initializing the endpoints of a DelegationConnector involves operations such
as iteration, selection, or navigation of model elements. As another shortcoming pointed out
by Freund and Braune [FB16, p. 293], their approach does not enable developers to express
such complex operations by means of imperative instructions.
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6.2.2 Requirements

From the example problem defined in Section 6.2.1, we derive a set of requirements (R1-R3)
that our contributions must satisfy:

(R1) Accuracy: When deducing definitions of model transformations automatically, corre-
sponding source and target features must be matched as accurately as possible.

(R2) Reduced Verbosity: Deducing a transformation definition automatically should reduce
its verbosity in comparison to a manual, purely imperative definition.

(R3) Imperative Logic: To enable exceptional or alternative initializations of features, trans-
formation definitions must support the encoding of imperative transformation logic.

The subsequent requirements (R4 and RS5) do not directly derive from our example problem
and will be justified below:

(R4) Executability: To enable the automated transformation of source into target models, the
logic encoded by a transformation definition must be executable [CH06] on the basis
of a proper transformation engine.

(R5) General-Purpose Language Facilities: To ensure a wide-ranging applicability of our
approach, implementing the above transformation engine should require only general-
purpose facilities available in state-of-the-art imperative transformation languages.

6.2.3 Solution Approach

We address the requirements specified in Section 6.2.2 by proposing a hybrid, semi-automated
approach that reduces the verbosity of model transformations by combining the strengths of
both declarative and imperative transformation languages. First, to overcome the boilerplate
instructions required by imperative languages to initialize features, we build upon a declarative
approach and provide developers with means to deduce such initializations automatically.
Second, to integrate alternative or exceptional transformation logic, we enable developers to
refine these declarations with imperative instructions.

We illustrate the transformation process in Fig. 6.2. In the initial activity Define Type
Mappings, developers create a transformation model encompassing declarative type mappings
between classifiers from the source and target metamodels. These mapping models will be
described in Section 6.3. The goal of the subsequent activity Infer Feature Mappings is to
reduce the verbosity as demanded by requirement R2. To this end, we provide developers
with a heuristic inference engine that augments the predefined type mappings with additional
feature mappings, rendering boilerplate instructions unnecessary. To account for the accuracy
demanded by requirement R1, we aim to map source features to their corresponding target
features, thereby preventing a loss of the information included in the source model. In a
technical sense, our inference engine is itself a model transformation because it produces an
augmented mapping model. We will describe the engine in Section 6.4.
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Figure 6.2: Overview of the proposed transformation process.

Imperative
Instructions

On the basis of the inferred feature mappings, we satisfy requirement R4 by providing
an execution framework that acts as a transformation engine for mapping models. To this
end, our framework implements an algorithm for the transformation of source into target
models. Again, the execution algorithm is a model transformation itself, which is used to
operationalize a mapping model and thereby acts as an interpreter. To meet requirement R3,
our framework provides capabilities to refine the execution with imperative instructions. In
the activity Refine Transformation, such refinements are specified manually by the developer
using an imperative transformation language. Finally, in the activity Execute Transformation,
the execution framework can be applied multiple times to transform a source model into a
target model, taking into account the declarative type and feature mappings as well as the
imperative transformation instructions. We describe our execution framework in Section 6.5.

6.3 Mapping Models

Our approach is based on a declarative transformation model [Béz+06] that is used to relate
the source types of a transformation and their corresponding target types, thereby declaring
a transformation definition. Since such a model comprises numerous type-level mappings
between the source and target metamodels, it is referred to as mapping model. We define
the structure of mapping models by means of a metamodel shown in Fig. 6.3. All classes
highlighted in gray originate from the Ecore metamodel depicted in Fig. 2.1 on page 11,
which we take as a basis for our approach. As can be seen, each mapping model is constituted
by a MappingRoot, in which all mappings are directly or indirectly contained. In particular, a
MappingRoot comprises a number of ClassifierMapping elements. We use ClassifierMapping as
the abstract superclass of all kinds of type mappings supported in our approach. To ensure
identifiability if necessary, each ClassifierMapping may be given an optional name. In the
following, we first address the different kinds of type mappings in Section 6.3.1. Thereafter,
in Section 6.3.2, we focus more specifically on feature mappings.
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6.3.1 Type Mappings

The most basic form of ClassifierMapping is a mapping between a source and a target class.
Such mappings are represented by a ClassMapping whereas source and target each correspond
to an EClass. A class mapping establishes a transformation rule, according to which a new
element of the target class is to be created for each existing element of the source class.

Classes are not limited in the number of mappings they are allowed to participate in.
Accordingly, various types of correspondences can be modeled, differing in how often each
class acts as source or target of a mapping. Wimmer et al. [Wim+10] distinguish such cor-
respondences between copying (1:1), partitioning (1:n), merging (n:1), and generating (0:1)
of elements. Both 1:1 and 1:n mappings are supported natively by our approach, enabling an
element of a source class to be either copied to an element of a target class, or partitioned
to multiple elements of different target classes. In addition, we also support n:1 mappings
from distinct source classes to the same target class. However, please note that the source
elements are not going to be merged into the same target element. Instead, such mappings
describe numerous 1:1 correspondences, copying source elements with distinct classes to
numerous target elements with a shared class. Besides merging, our approach also disregards
0:1 correspondences, which require target elements to be generated from scratch. Instead,
both merging and generating of elements are typical operations that require a transformation
to be refined imperatively (cf. Section 6.5.2).

As an example, Fig. 6.4 reflects the class mappings from Section 6.2.1 between the UML
metamodel on the left and the MEcHaTRONICUML metamodel on the right. Accordingly, the
example includes both 1:1 mappings (e.g., from Property to ComponentPart) and 1:n mappings
(e.g., from Class to AtomicComponent and StructuredComponent). In the remainder of this
section, we will first introduce additional modeling elements to control the mapping of model
elements more precisely by means of context conditions or subtyping. Finally, we will briefly
address the mapping of enumerations.
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Figure 6.4: Mapping model for the translation from UML to MEcHATRONICUML.

Context Conditions

Class mappings are not necessarily unconditional. Under certain circumstances, a target
element should only be created if the source element is in a specific context (constituted by
its attribute values or references to other elements). For example, the 1:n mapping of a Class
in Fig. 6.4 does not represent a partitioning in the proper sense because the source element
must be mapped either to an AtomicComponent or to a StructuredComponent, depending on its
context. We therefore enable developers to attach such context conditions to class mappings,
thereby restricting the circumstances under which the existing source elements are mapped
to newly created target elements. This enables developers to control the creation of target
elements more precisely. Accordingly, in the metamodel shown in Fig. 6.3, a ClassMapping
can be equipped with a condition as an EString given in a constraint language. To check these
conditions during the execution of our mapping models (cf. Section 6.5), we require the
string to be a valid expression of the OCL [OMG14].

At the center of Fig. 6.4, we show the context conditions required by our example in terms
of OCL expressions. For example, alternative conditions are used to choose between the two
mutually exclusive mappings of a Class, depending on whether there exists a part that is of type
Property. Furthermore, such a Property is only mapped to a ComponentPart if its isComposite
attribute is true and it is not itself a Port. Another pair of alternative conditions is used to map
a Connector either to an AssemblyConnector or a DelegationConnector, depending on whether
there exists at least one end that refers to a partWithPort. Accordingly, a final condition requires
that a ConnectorEnd refers to a partWithPort in order to be mapped to a PortPart.
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Subtyping

As described in Section 2.1.1, metamodels support subtyping [LW94] of classes, thereby
enabling features of a shared superclass to be inherited by multiple subclasses. For example,
the MecuaTRONICUML metamodel depicted in Fig. 6.1 uses subtyping relations on the basis
of Component, PortConnector and ConnectorEndpoint as abstract superclasses. To account for
such subtyping relations, a class mapping may represent the superclass mapping of multiple
subclass mappings that share common properties. Accordingly, the example in Fig. 6.4
includes additional class mappings for two of the aforementioned superclasses, mapping
Class to Component and Connector to PortConnector.

In the metamodel from Fig. 6.3, we illustrate these relationships by means of a bidirectional
reference that enables a ClassMapping to indicate multiple subclassMappings and, conversely,
superclassMappings. In this context, well-formedness of a mapping model requires that the
source and target classes of each superclass mapping are substitutable by those of the cor-
responding subclass mapping. For example, in Fig. 6.4, the mapping between Class and
Component acts as the superclass mapping of the two subclass mappings from Class to Atom-
icComponent and Class to StructuredComponent. This relationship is well-formed because a
Component is substitutable by its subtypes AtomicComponent and StructuredComponent.

Opposed to the behavior of a default class mapping, superclass mappings do not create
an element of their own (possibly abstract) target class. Instead, the responsibility for the
creation of the target element is delegated from the superclass mapping to a subclass mapping,
which creates an element of its associated subclass. The selection of this delegated subclass
mapping depends on the given source element. To select a subclass mapping, the following
two requirements must be satisfied. First, the source class of the subclass mapping must
be substitutable by the class of the given source element. Second, the source element must
also fulfill a context condition that may be attached to the subclass mapping (see above). In
Fig. 6.4, the conditions attached to the two subclass mappings for Class are mutually exclusive.
Thus, the choice of the delegated subclass mapping is unambiguous. However, in the general
case, more than one subclass mapping might be selectable. To resolve such ambiguities, we
leave the concrete selection procedure to the upcoming Section 6.5, where we describe the
execution of our mapping models.

Conversely, whenever a subclass mapping is responsible for the creation of a target element,
it is also obliged to account for the properties of a corresponding superclass mapping. For
example, such properties might specify how to initialize additional features that the subclass
inherits from the respective superclass. As described in Section 2.1.1, metamodels support
multiple inheritance. A ClassMapping may therefore refer to multiple superclassMappings, as
reflected by the metamodel in Fig. 6.3. Accordingly, on creation of a target element by a
subclass mapping, the properties of each indicated superclass mapping must be taken into
account as well. This is also true for all transitive superclass mappings, which must be taken
into account recursively.
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Enumerations

To initialize attributes that refer to enumerations as data types (cf. Section 2.1.1), our
mapping models support enumeration mappings as well. Such mappings establish relations
between corresponding source and target enumerations from the respective metamodels. In
Fig. 6.3, we therefore introduce an EnumerationMapping as a second kind of ClassifierMapping.
Such a mapping refers to a source and a target enumeration of type EEnum, and comprises a
number of LiteralMapping elements. Each LiteralMapping maps a source literal to a target literal,
whereas both source and target correspond to an EEnumLiteral from the corresponding source
or target enumeration. However, instead of mapping all literals of the source enumeration by
means of explicit literal mappings, an enumeration mapping may indicate a default value as
a distinguished EEnumLiteral from the target enumeration. Thus, a source literal without an
explicit literal mapping is implicitly mapped to this default target literal.

6.3.2 Feature Mappings

Besides the creation of target elements, a model transformation is also responsible for initial-
izing their features. To this end, we enhance our class mappings by introducing dedicated
feature mappings, which define how the features of target elements must be initialized. As
shown in Fig. 6.3, a FeatureMapping describes a mapping from an optional source feature to a
mandatory target feature. Both correspond to an EStructuralFeature, which is either an attribute
or a reference (cf. Section 2.1.1). Feature mappings are accommodated by class mappings
to control the initialization of the created target elements. To initialize its associated target
feature, a feature mapping defines how to obtain an initialization value from the source ele-
ment. In this context, a source feature indicates that its values should be mapped to the target
model, serving as initialization values for the respective target feature. In the following, we
refer to the values mapped from the source to the target model as source values. In Fig. 6.4,
we augment all class mappings with corresponding feature mappings. For example, in the
context of the mapping between Class and Component, the source value of the name attribute
is mapped to the same-named target attribute. Moreover, the source values of the ownedPort
reference are mapped to the ports reference. Note that, for bidirectional references such
as ports, it is sufficient to initialize them in one direction only, whereas the corresponding
opposite references like component will be implicitly initialized as well.

In the context of a feature mapping, only source values of primitive data types (cf. Sec-
tion 2.1.1) can be mapped from the source to the target model directly. By contrast, in case of
non-primitive types such as enumerations or classes, the source values must first be translated
into target values that conform to the target feature. In these cases, a feature mapping must
refer back to a ClassifierMapping that acts as a translator (cf. Fig. 6.3). Thus, if the types
of source and target features are enumerations, the translator must be an EnumerationMapping
between them. Otherwise, if source and target are references, the translator is a ClassMapping
that is able to translate the source elements into conforming target elements. To reduce the
complexity of Fig. 6.4, the translators are omitted. As an example, the feature mapping
between ownedPort and ports uses the class mapping from Port to DiscretePort as its translator.
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Under certain circumstances, the source value of a feature mapping, which must be mapped
to the target model, does not originate from any specific source feature. For this reason, the
source reference of a FeatureMapping is optional in Fig. 6.3. Whenever no source feature is
given, the source value of the feature mapping is assumed to be the source element of the class
mapping itself. This is useful in case of 1:n mappings that are used for partitioning a source
element into multiple target elements (cf. Section 6.3.1). In this case, a feature mapping
without an indicated source feature can be used to initialize references between two distinct
target elements, for which no corresponding references exist inside the source metamodel
because both target elements correspond to the same source element.

A feature mapping is only well-formed if its features satisfy the criterion of compatibility.
For a source feature to be compatible with a target feature, they must be either both references
or both attributes. If the data type of an attribute is primitive (cf. Section 2.1.1), compatibility
requires the type of the other attribute to be identical. By contrast, in case of references or non-
primitive attributes, the source values must be translatable into the type of the target feature.
Thus, in both cases, a classifier mapping must be indicated as a translator. On the one hand, if
source and target features are attributes and their types are enumerations, the translator must
be a proper enumeration mapping from the source enumeration to the target enumeration.
On the other hand, if source and target features are references, their types are classes.
Accordingly, the translator must be a proper class mapping with respect to the subtyping
relations inside the source and target metamodels. In particular, the mapping’s source class
must be contravariant and, therefore, substitutable by the class of the source reference. Thus,
the mapping is guaranteed to be applicable to each source element. Conversely, the mapping’s
target class must be covariant and, therefore, able to substitute the class of the target reference.
Thereby, each target element is guaranteed to conform to the target feature.

The compatibility of features also applies to their multiplicities (cf. Section 2.1.1). On
the one hand, if the source feature accommodates multiple values, it is a many feature and
therefore only compatible with another many feature as its associated target. On the other
hand, if the source is a single feature that accommodates no more than one value, both single
or many features can serve as compatible targets. A more detailed, numeric consideration of
compatible multiplicities is left to future works.

6.4 Inference Engine

As described in Section 6.2.3, we use the manually specified type mappings to automatically
infer additional feature mappings, which are needed to initialize a target model. This inference
is based on the decision tree that we illustrate in Fig. 6.5. In the context of a mapping model,
we apply the inference to each class mapping and to each feature of the target class that can
be initialized manually (instead of deriving its values automatically from other sources). The
decision-making process leads to one of five final decisions marked by (1) to (5). To account
for the accuracy demanded by requirement R1 in Section 6.2.2, the underlying heuristics of
the process aim to match each target feature with a corresponding set of source features, from
which the values for the initialization will be derived.
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Figure 6.5: Decision tree for the inference of feature mappings from type mappings [*GB19].

As can bee seen from the tree in Fig. 6.5, the initial decision made by our engine is
to check whether there is a source feature that is compatible (cf. Section 6.3.2) with the
target feature at hand. In this case, ambiguities between multiple compatible source features
are still possible. Handling such ambiguities is the subject of the left-hand subtree. “Our
initial tiebreaker is the name of features. On the basis of our observation that features with a
corresponding information content are often given the same names, we check for the existence
of a same-named source feature. If such a feature is compatible, an unambiguous mapping
between the same-named features is created according to the final decision @” [*GB19].
For example, this decision is taken to map each of the name attributes in Fig. 6.4 to its same-
named counterpart. Otherwise, if there is no same-named source feature that is compatible,
our decision tree takes into account the target feature’s multiplicity. As described below, we
proceed depending on whether the target is a single or many feature (cf. Section 2.1.1).

Single Features. If a target feature is restricted to a single value, no more than one feature
mapping must be created. If only one source feature is compatible, we again arrive at final
decision (1) and map the respective features unambiguously. In Fig. 6.4, we thereby infer
the mapping between the type of a Property and the componentType of a ComponentPart. In
contrast, if multiple source features are compatible, we remove the ambiguity by making a
selection as per final decision (2), creating a single mapping for one selected source feature.
In our decision tree, “we abstract from this selection, which is based on the order of features
and takes into account how many feature mappings for a certain source feature have already
been inferred before. In particular, we give preference to those source features that have
been mapped least often. We select from these features in the order specified by their source
metamodel because we also traverse and assign the target features according to their order.
Thereby, we make use of our observation that the relative order of corresponding features is
often consistent between source and target metamodels” [*GB19]. For example, in Fig. 6.4,
initializing the componentPart of a PortPart requires a selection between the partWithPort and
definingEnd of a ConnectorEnd. Whereas the latter is omitted from Fig. 6.4 because it is not
mapped, both references are of type Property and therefore equally compatible.
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Many Features. “In contrast, if the target is a many feature, it supports multiple co-existing
feature mappings with different source features. However, mapping numerous compatible
source features to the same target is not always the right decision to avoid information loss.
Instead, there are cases in which numerous source features need to be distributed among
different target features. Thus, as an additional tiebreaker in case of a many feature, we take
into account if the type of the target feature is unique among all the many features of the target
class. If the type is unique, then the target feature represents the only compatible candidate to
map the source features to. Hence, in final decision (3), we create multiple feature mappings,
one for each compatible source feature” [*GB19]. For example, in Fig. 6.4, this decision is
used to initialize the ports, connectors, portParts, and connectorEndpoints references. However,
in all of these cases, the number of compatible source features is restricted to one, such that
only one mapping is created for each of the aforementioned target features. On the contrary,
provided that the target feature’s type is not unique, it is possible to distribute the source
features among different target features. In this case, we again arrive at final decision (2),
creating only one feature mapping by selecting from the compatible source features.

Incompatibility of Features. It is possible that none of the source features ensure compat-
ibility with a target feature at hand. As an example from Fig. 6.4, the portType of a PortPart
cannot be mapped automatically because the role of the source ConnectorEnd is of type Con-
nectableElement, for which there exists no mapping to Port as the required target class. In such
situations, our fallback procedure is to create a feature mapping in which the optional source
feature is omitted (cf. Section 6.3.2). However, this decision requires that the source class
is translatable into some target class that conforms to the type of the target feature. Thus, if
there exists a class mapping that could act as a translator, we arrive at final decision (4) and
create a feature mapping that refers to the source class itself instead of a particular source
feature. In the scope of our example, there are no translators that could be used to initialize
the portType or any other uninitialized reference. Accordingly, these target features are left
unmapped as per final decision (3).

6.5 Execution Framework

To ensure the executability demanded by requirement R4 from Section 6.2.2, we propose a
framework [Joh97; GHIV94] for the automated execution of mapping models, as well as their
manual refinement. At the core of this framework, we propose an execution algorithm that
generalizes our previous work [*GSB17] on reducing the verbosity of endogenous transfor-
mations, which are based on identical source and target metamodels. In this special case,
each class is implicitly mapped to itself, thereby enabling transformations to be designed
according to the implicit copy pattern [LK14]. By contrast, we adapt the underlying concept
to the general case of exogenous transformations with explicit mappings between classes from
different metamodels. Section 6.5.1 introduces our execution algorithm, before we address its
refinement with imperative instructions in Section 6.5.2. Finally, in Section 6.5.3, we analyze
the language facilities that are needed to implement our framework.
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6.5.1 Execution Algorithm

Figure 6.6 illustrates the interaction between transformation modules in the context of our
execution framework. On the right, we depict a pseudo code implementation of our execution
algorithm encapsulated by a module named Execution. The notation of the code is oriented
towards the OCL [OMG14]. The main ingredient of our algorithm is an operation called
transform, which translates a given source element into a target element. The translation
depends solely on the existing source elements and will never be recursively affected by the
created target elements. Benelallam et al. [BGTC18] refer to this property as non-recursive
rule application. The transform operation is parametrized by a ClassMapping that serves as
a translator (cf. Section 6.3.2). Both source and target element are typed by Element, which
we assume to be the implicit superclass of arbitrary classes. Thus, Element acts both as the
context type of transform (thereby typing the source element on which the operation is invoked
by a caller) and its return type (thereby typing the target element returned to the caller). In
Fig. 6.6, we use the scope resolution operator :: to separate the context type from the operation
name, whereas : separates operations from their return types or variables from their types.

import Execution; module Execution {
module uML2MuML { e - Element :: transform(translator : ClassMapping) : Element {
main() { if (cache.contains(self, translator)) {
return cache.get(self, translator);
}
classes.transform(class2c nent);
} o var result;
--1-#= Connector :: transform(c2c : ClassMapping) : PortConnector { if (self.conformsTo(translator)) {
for (sub : translator.subclassMappings)
var result := self.Execution::transform(c2c); if (result = null) {
O result := self.transform(sub); -
result.connectorEndpoints += }
self.end->select(partWithPort = null) }
.role.transform(port2port);
if (result = null) {
return result; result := translator.target.new();
} cache.put(self, translator, result);
self.initialize(translator, result);
} } else {
cache.put(self, translator, result);
}
return result;
— Legend }
:’ O _________________________ > - Element :: initialize(cm : ClassMapping, result : Element) {
Transformation Dynamic Operation for (super : cm.superclassMappings) {
Module Dispatch Call self.initialize(super, result);
} i

-+ Operation Signature

Context - Operation (Parameters) . Return for (fm : cm.featureMappings) {
Type Name Type var sourceValues := fm.source = null ?
self : self.get(fm.source);

-+ Conditional Expression

Condition ? Value . value var targetValues := fm.target.many ?
: (true) ! (false) result.get(fm.target) : null;
.. e 4= - if (fm.translator = null) {
Scope Assignment Incremental Equality ) e;zregitvalues += sourceValues;
Resolution Assignment

targetValues +=
sourceValues.transform(fm.translator); e

}

result.set(fm.target, targetvalues);

Figure 6.6: Interaction between transformation modules involved in the execution framework.
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The Execution module can be imported by imperative transformations, enabling them to
invoke the interpretation of a mapping model. On the left-hand side of Fig. 6.6, we illustrate
such a transformation named UML2MUML, reflecting our example introduced in Section 6.2. In
this context, the root elements of the UML source model are assumed to be of type Class and
stored in a variable called classes. Thus, from its main operation, the transformation triggers
the interpreter by invoking the transform operation on each root element. The invocation is
marked by @). By invoking transform, each Class is passed to the operation as its source
element, which is to be translated into a target element of type Component. Accordingly, the
variable called class2component is assumed to represent the class mapping between Class and
Component from Fig. 6.4, which is passed to the transform operation as its translator.

In the following, we describe the procedure of transform when invoked on a source Class.
Within the scope of the operation, the source element is denoted by self. To simplify the
presentation in Fig. 6.6, we assume that features are either references or attributes with
primitive data types. Thus, we omit the handling of enumerations (cf. Section 6.3.1), which
do not occur in our example. In the mathematical sense, a mapping must not map an element
more than once. We ensure this behavior by applying the principle of memoization [Mic68].
Thus, our algorithm initially consults a cache of mapped elements, recording each triple
of source element, translator, and target element. On this basis, we assume that the contains
operation indicates whether a source element has already been mapped before by a given class
mapping. If self has already been mapped by the translator, our algorithm returns the cached
target element, which is retrieved using the get operation. Otherwise, if self has not been
mapped before, the transform operation must create and initialize a new target element, which
is stored in the result variable. Below, we address the creation and initialization separately.

Creation

As a prerequisite for the creation of a target element, the source element must conform to the
class mapping that serves as translator. To this end, the operation conformsTo checks (i) whether
the class of self substitutes the source class of the translator and (ii) whether self fulfills an OCL
constraint that might be attached to the translator as a context condition (cf. Section 6.3.1).
If the source element is non-conforming, the returned value of the result variable is still null,
thereby indicating that the element could not be translated successfully. In contrast, if the
source element conforms to the class mapping, our algorithm first checks whether the creation
of the target element must be delegated to a potential subclass mapping (cf. Section 6.3.1).
Thus, we traverse all subclass mappings sub according to their order inside the translator. As
long as no subclass mapping has initialized the result with a value other than null, we attempt to
create a target element by invoking transform recursively with the respective sub as a translator.
We mark this invocation by @. In our example, transform might be invoked twice for both
subclass mappings from Class to AtomicComponent and StructuredComponent (cf. Fig. 6.4).
However, as described above, the invocation will only return an element different from null if
self conforms to sub. For example, assuming that the Class denoted by self contains at least
one part of type Property, the context conditions imposed in Fig. 6.4 are only fulfilled for the
subclass mapping to StructuredComponent, which is therefore responsible for the creation.
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Once transform has been invoked recursively, the given translator between Class and Struc-
turedComponent does not refer to any subclass mappings itself (cf. Fig. 6.4). Hence, in the
further course of our algorithm, the result variable is still null because no subclass mapping
could be used to create the target element. In such a case, the translator is itself responsible for
the creation. To this end, we obtain the target class of the translator (StructuredComponent in our
example) and create a new element of that class using the new operation. The created element
is assigned to the result variable, and the triple of self, translator, and result is immediately
stored in the cache using the put operation. Next, to initialize the features of the created result,
we invoke a second operation named initialize on self, passing both translator and the result as
arguments. We mark this invocation by @). By contrast, whenever the result is no longer null
because it has been previously created by a subclass mapping, the translator is not responsible
for the creation. In this case, the triple of self, translator, and the pre-existing result is simply
cached without invoking initialize. Accordingly, target elements are initialized locally upon
their creation, a property referred to as locality by Benelallam et al. [BGTC18].

Initialization

Initializing a target element requires the execution of any feature mappings indicated by
the class mapping that is responsible for the creation. Inside the initialize operation, the
target element is denoted by result. Initially, our algorithm takes into account potential
superclass mappings of the given class mapping cm. For each super, we invoke initialize
recursively, thereby executing the feature mappings accommodated by superclass mappings
prior to those accommodated by subclass mappings. In our example, super corresponds to
the aforementioned class mapping from Class to Component, which accommodates feature
mappings for the initialization of the name and ports of the target Component (cf. Fig. 6.4).
We mark the recursive invocation of initialize by @).

After all superclass mappings have been handled, the initialize operation iterates over the
feature mappings accommodated by the class mapping cm itself. Thus, for each feature
mapping fm, we first obtain the sourceValues for that mapping. As described in Section 6.3.2,
the source values are subject to the condition whether the feature mapping fm indicates a
source feature or not. We therefore use a conditional expression to ensure that, whenever the
source feature is null, there is only a single source value that corresponds to the source element
denoted by self. Conversely, if fm indicates a source feature, we use a reflective operation
named get to obtain the values of the source element for that feature. Next, we use another
conditional expression to account for the fact that multiple feature mappings with a shared
target feature may co-exist, as described in Section 6.4. Thus, if the respective target feature
is a many feature (cf. Section 2.1.1), we must assume that another feature mapping with the
same target has been executed before. If so, the feature might already be initialized with
pre-existing targetValues, which must be preserved. Therefore, we use the aforementioned
get operation to save the pre-existing targetValues. In contrast, if target is not a many feature,
no more than one feature mapping for each target must exist. Accordingly, we assume that
there is no pre-existing target value and therefore set the targetValues to null. Benelallam et
al. [BGTC18] refer to the above assumptions as single assignment on target properties.
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On this basis, we need to extend the existing targetValues with new values resulting from
the execution of fm. If the translator of fm is null (indicating that both source and target features
are primitive attributes), the sourceValues are assumed to conform directly to the type of the
target feature. Thus, in this case, we use the += operator to simply add the sourceValues to the
existing targetValues in an incremental fashion. For example, this is the case when executing
the feature mapping between the name of a source Class and the name of a target Component
from Fig. 6.4. By contrast, if the translator of fm is not null, it must be used to translate the
source values into conforming target values. We carry out the translation by invoking the
transform operation recursively on each of the sourceValues. In particular, whenever source
is a containment (cf. Section 2.1.1), the translated sourceValues correspond to elements that
are hierarchically contained by self. Thereby, we traverse the source model in a descending
fashion according to the recursive descent design pattern for model transformations [LK14].
As a parameter for the recursive invocation of transform, we pass the translator indicated by fm.
This invocation is marked by @). As described above, invoking transform will either create a
new target element with the aid of the translator, or obtain this target element from the cache
if it has been created by the translator before. In both cases, no explicit navigation through the
target model is necessary to obtain the target elements needed as values for the initialization
of a feature. This property is also referred to as forbidden target navigation by Benelallam et
al. [BGTC18]. In our example, the recursion takes place when executing the feature mappings
used to initialize the ports, connectors, and embeddedComponentParts of a StructuredComponent
(cf. Fig. 6.4). Again, we use the incremental += operator to append the translated values to
the pre-existing targetValues. Finally, we use a reflective operation named set to initialize the
target feature of the result with the obtained targetValues. After all feature mappings have been
processed by initialize, the transform operation returns the initialized result to its caller.

6.5.2 Imperative Refinement

The algorithm presented in Section 6.5.1 is generic in the sense that it translates arbitrary
source elements into target elements depending on a given mapping model. However, as
described in Section 6.2.1, there are exceptional cases in which the logic of a transformation
is not adequately encoded by the declared mappings, or cannot be encoded by means of
declarative mappings at all. In the context of our example, the latter case occurs for a
UML Connector that is mapped to a DelegationConnector in MEcHATRONICUML. Unlike an
AssemblyConnector, the connectorEndpoints must be initialized with a DiscretePort. However,
from the context of the source Connector, the corresponding Port is not directly navigable.
Therefore, it cannot be simply mapped to a target element of type DiscretePort, which is
required for the initialization. Instead, this Port must be obtained by iterating over each end of
the source Connector in order to select a ConnectorEnd without a partWithPort, which therefore
enables the relevant Port to be accessed as its role. Since such a complex operation is hard to
encode in a declarative fashion, requirement R3 from Section 6.2.2 demands an imperative
encoding of transformation logic. To satisfy this requirement, our execution framework
enables transformation developers to refine the execution of declarative mappings by means
of individual imperative instructions.
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In particular, developers may refine the execution on a per-type basis, redefining the trans-
form operation for specific source classes (subclassing the generic class Element) that require
exceptional logic during their translation into target classes. Thereby, we account for the fact
that types represent suitable branch conditions in the scope of model transformations [Heb+18,
p. 452]. For example, the UML2MUML transformation in Fig. 6.6 redefines transform for the
Connector class. Thus, the c2c parameter of the operation is assumed to represent the class
mapping between Connector and PortConnector from Fig. 6.4, therefore adjusting the opera-
tion’s return type to PortConnector. We use this redefinition to encode the exceptional logic that
is needed to initialize the endpoints of a delegation connector as described above. To select
at runtime between the different definitions of transform, our approach is based on a dynamic
dispatch of operations. Thus, whenever transform is called on a source element, the actual
type of that element determines whether the generic default implementation or a type-specific
refinement is invoked. Since transform is recursively called by the generic implementation (cf.
Section 6.5.1), our framework underlies the inversion of control principle [GHIV94]. Thus,
refinements are not invoked explicitly by the transformation developer but implicitly by the
framework itself, thereby inverting the control flow.

For example, in the default case, the recursive call marked by @ in Fig. 6.6 invokes
the generic definition of transform. However, when initializing the connectors of a target
Component, the translated source values are of type Connector. Consequently, the operation
call is dispatched dynamically to invoke the type-specific redefinition of transform inside the
UML2MUML transformation. However, a redefinition may always delegate the translation to the
generic definition inside the Execution module. Accordingly, in Fig. 6.6, the source Connector
denoted by self is first translated into the target PortConnector as defined by the declarative
mapping model. To this end, ) marks the invocation of the default implementation, reusing
c2c as a translator. Thus, the resulting PortConnector will be partially initialized by executing
the feature mapping between end and connectorEndpoints that is accommodated by c2c (cf.
Fig. 6.4). After returning the control to the redefinition, the PortConnector is stored in the
result variable. If the result is an AssemblyConnector, it is already fully initialized with the
corresponding endpoints of type PortPart. In contrast, if the result is a DelegationConnector,
it must still be post-processed to be initialized with an endpoint of type DiscretePort, thereby
requiring a refinement of the transformation logic encoded by the mapping model. We
specify this refinement in the further course of the redefinition, where we iterate over each
end of self and use a select operation to filter out the ConnectorEnd with a partWithPort equal
to null. Subsequently, we obtain the role of that ConnectorEnd, representing the Port that can
finally be translated into the DiscretePort needed for the initialization. The invocation of this
translation is marked by @), assuming that the required translator between Port and DiscretePort
is accessible through a variable named port2port. Since there is no redefinition for Port, the
translation is carried out by the generic definition of transform, before using the += operator to
assign the obtained DiscretePort to the connectorEndpoints of the result. Note that, in case of an
AssemblyConnector, the above assignment does not have any effect because each end does refer
to a partWithPort. Thus, no explicit distinction between assemblies and delegations must be
made inside our redefinition. Finally, the refined PortConnector denoted by result is returned
to the generic implementation, which continues the execution of the given mapping model.
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6.5.3 Language Facilities

In the previous sections, we presented our framework in the form of a pseudo code implemen-
tation, thereby providing a language-independent solution for the execution and refinement
of mapping models. Nevertheless, to ensure a successful implementation, a programming
language must offer specific facilities that our framework is based on. In [*GSB17], we
therefore extrapolated these core language facilities from our conceptual approach. Thereby,
we enable practitioners to analyze the feasibility of implementing the concept using concrete
host languages. In particular, the following language facilities (LF1-LF3) are mandatory:

(LF1) Module Superimposition is a mechanism that enables transformation developers “to
overlay several transformation definitions on top of each other and then execute them as
one transformation” [WSD10, p. 286]. In our approach, this is essential for type-specific
transformation modules (such as UML2MUML) to be superimposed upon the Execution
module, thereby avoiding code duplication of the generic transform operation. Note
that, in general, module superimposition does not require a transformation module to
explicitly import another module, unless specific contents from that module are directly
accessed [WSD10, p. 302]. However, since our approach is based on a direct call of
transform (cf. Fig. 6.6), an import of the Execution module is required.

(LF2) Dynamic Dispatch of operations must be supported to select at runtime between the
generic default implementation of the transform operation and type-specific refinements
of itself. In particular, the selection must be made on the basis of the actual runtime
class of the element upon which the operation is called. Thus, as a prerequisite, it
must be possible to redefine one and the same operation for different context types, i.e.,
operations must be polymorphic. Note that, although operation overriding is considered
as a central aspect of module superimposition [WSD10], our approach does not strictly
depend on the ability to override the generic transform operation. Overriding is one
possible way to ensure that operations are dispatched dynamically, provided that the
implementation of classes can be changed. If so, the generic implementation inside
the Element class can be overridden inside specific subclasses. However, in the general
case of unchangeable classes, dynamic dispatch can also be achieved by other, more
broadly applicable mechanisms such as the visitor pattern [GHIV94].

(LF3) Reflection [Smi82]is an indispensable facility that must be provided by the underlying
environment used for metamodeling. This requirement arises from the fact that the
algorithm presented in Section 6.5.1 invokes multiple reflective operations either on
particular classes from the source or target metamodels, or on the model elements as
instantiations of these classes. In particular, the algorithm creates new elements of a
given target class by means of a reflective new operation. Furthermore, the algorithm
requires each model element to provide reflective access to its values for specific
features, which is the purpose of the get operation. Conversely, our algorithm also
requires a reflective mechanism such as the set operation, which is used to initialize
the values of elements for specific features. The application of reflection to model
transformations has been previously investigated by Kurtev [Kur10].
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Table 6.1: Comparative overview of facilities offered by transformation languages.

Language Facility QVTo | ATL | K3 | ETL | Xtend
(LF1) Module Superimposition v v v v v
(LF2) Dynamic Dispatch v v 4 4 v
(LF3) Reflection v v v v v

As demanded by requirement RS from Section 6.2.2, LF1-LF3 are general-purpose facil-
ities available in state-of-the-art imperative languages. To support this claim, we conduct a
feasibility analysis in which we check existing transformation languages against the facili-
ties. From the languages surveyed in [KG17], we include only those that support imperative
instructions, thereby excluding purely declarative ones. As can be seen from Table 6.1, we
take into account the imperative QVTo [OMG16] and the hybrid ATL [JABKOS] as the most
widespread, de-facto standards for model transformations [Bat+16; BCG19b]. Furthermore,
we consider Kermeta 3 (K3)! and the Epsilon Transformation Language (ETL) [KPPOS§]
as further imperative languages. In addition to the above special-purpose languages, we
also address Xtend? as a general-purpose language that “lends itself well to creating model
transformations” [Heb+18, p. 447]. Below, we discuss each of the facilities separately.

With respect to LF1, module superimposition has been explicitly built into ATL [WSD10].
However, the other languages are equipped with alternative mechanisms that can be used to
import language modules into each other, thereby enabling different transformations to share
the generic default implementation of our execution algorithm. Accordingly, LF1 is offered
by all of the considered languages, as shown in Table 6.1. The facility LF2 is supported
natively by QVTo, ATL, and ETL. All of these languages enable operations to be defined in
the context of arbitrary classes. At runtime, the invoked definition is selected depending on
the actual class of the element that an operation is called upon. In contrast, Xtend explicitly
supports multiple dispatch. Therefore, the language enables the context element to be treated
as a default operation parameter. On this basis, operations are invoked dynamically according
to the runtime class of the elements passed as a parameter. Since K3 is based on Xtend, it
makes use of the very same mechanism to support dynamic dispatch. In summary, each of
the considered languages provides LF2, as indicated by Table 6.1. Regarding LF3, ATL is
the only language with a reflective application programming interface (API) for accessing or
initializing specific features, or for invoking specific operations of model elements. However,
all other languages provide access to the reflective API offered by EMF as the underlying
metamodeling environment. Therefore, in Table 6.1, we label LF3 as provided by each of the
languages. In summary, as of today, each facility is properly offered by all of the languages
taken into account. Accordingly, we conclude that our execution framework can generally be
implemented in a wide range of host languages with imperative features.

1http ://www.kermeta.org
2https ://www.eclipse.org/xtend
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6.6. CASE STUDIES

6.6 Case Studies

In this section, we conduct case studies to evaluate our contributions with respect to the
requirements specified in Section 6.2.2. Whereas the imperative logic (R3) and the exe-
cutability (R4) are functional attributes covered by the execution framework presented in
Section 6.5, the feasibility of implementing the framework using general-purpose language
facilities (R5) has already been validated in Section 6.5.3. We therefore focus on the quanti-
tative evaluation of R1 and R2 by addressing the following research questions (RQs):

RQ1: How accurately can declarative feature mappings be inferred?

RQ2: How effectively can the verbosity of imperative transformations be reduced?

In the following, we rely on the reporting guidelines for case studies by Runeson and
Host [RHO9]. Accordingly, to illustrate the design of our studies, we first elaborate on the
selection of cases in Section 6.6.1, before addressing the data collection in Section 6.6.2 and
our analysis of this data in Section 6.6.3. Subsequently, we present the results obtained from
the analysis in Section 6.6.4 and discuss threats to the validity of these results in Section 6.6.5.

6.6.1 Case Selection

Our studies refer to five different transformation cases. In the following, we describe the
selected cases and the underlying selection criteria. First, we address a transformation in
which models of a media library are translated between different syntactic representations.
The origin of this case is the work by Freund and Braune [FB16], which served as a reference
pointin Section 6.2.1. By selecting this case, we aim to confirm that our contributions alleviate
the identified verbosity problems. In the following, this case is referred to as Lib2Lib. The
second selected case is another syntactic translation of participants involved in an educational
institution [FV09]. We refer to this case as Edu2Edu.

In the above cases, the source metamodels closely match with the target metamodels
because both represent the same semantic content, differing in its syntactic representation
only. To ensure that our studies are less biased by such a close match between source and
target metamodels, the next selected case involves metamodels that do not bear a direct
semantic relationship. This case is referred to as Class2ER, addressing a translation between
class diagrams and entity-relationship (ER) diagrams [Wim+10]. Since this case involves a
higher structural heterogeneity (cf. Section 6.2.1) compared to the previous ones, it entails
an advanced complexity of the transformation logic to be encoded.

Although the three above cases have been selected from the scientific literature, each of
them has the characteristics of a toy problem. Thus, to increase the relevance of our studies,
the two residual cases are transformations that have been practically applied in the scope of
this thesis. On the one hand, the fourth selected case is the translation of active structures
given as UML class diagrams into MEcHATRONICUML component architectures, as described
in Section 6.2. The reason for selecting this case, which we refer to as UML2MUML, is that
the underlying source and target metamodels have not been synthesized ad hoc. Instead, they
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are real-world metamodels that are practically relevant even outside the studied transformation
scenario. Thereby, we aim to reduce the risk that the obtained results could be biased by
synthesizing metamodels, as is the case with the prior toy problems. On the other hand, the
fifth selected case is the automata construction from Section 5.5. Unlike the above exogenous
scenarios, this transformation is endogenous because it uses UppaAL timed automata as a
common source and target metamodel. With respect to RQ1, this case only acts as a trivial
sanity check because each feature must be unambiguously mapped to itself as a same-named
counterpart (cf. Fig. 6.5). This case is referred to as TA2TA.

6.6.2 Data Collection

Building on the analysis of language facilities from Section 6.5.3, we select QVTo [OMG16]
as a host language to provide an implementation of our execution framework, which is given
in Appendix B. Moreover, we also provide an imperative reference transformation written
in QVTo for each case. These reference transformations act as a benchmark (i) for the
transformation logic underlying the individual cases and (ii) for the size of the resulting
transformation definitions encoding this logic. In addition, we also create a mapping model
for each case, whereas the respective class mappings are extrapolated from the imperative
operations inside our reference transformations. Whereas the mapping models for Lib2Lib
and Class2ER are based on plain class mappings, the residual cases involve superclass
and subclass mappings (cf. Section 6.3.1). Furthermore, the UML2MUML case involves
conditional mappings, which are restricted by OCL constraints (cf. Section 6.3.1).

In the next step, as a point of reference for our inference engine, we enhance the mapping
models manually by adding the respective feature mappings. Again, we extract these map-
pings from the imperative operations in our reference transformations. However, in general,
not all parts of the transformation logic can be defined by means of class and feature mappings.
Hence, on the basis of our execution framework implemented in QVTo, we extend the refer-
ence mapping models with imperative refinements as described in Section 6.5.2. Thereby, we
create hybrid transformation definitions, which are intended to reflect the same transforma-
tion logic as the imperative reference transformations. Please note that the Edu2Edu case is
special as it does not require such an imperative refinement at all and can therefore be defined
solely in term of declarative mappings. Nevertheless, like all other cases, it still requires
imperative glue code to trigger the execution of the mapping model (cf. Section 6.5.1). To
confirm that the hybrid transformation definitions are in fact equivalent to the imperative
reference transformations, we execute both of them with a test input model and match the
resulting output models against each other.

Subsequently, we take the manual class mappings as a basis for the application of our
inference engine (cf. Section 6.4), using its heuristics to infer the feature mappings for each
case automatically. We assess the accuracy of the produced results by comparing the inferred
mappings against the mappings defined manually in the prior step. Furthermore, to assess
the effective reduction of the imperative instructions, we measure the number of source lines
of code (SLOC) that were needed by the imperative reference transformations and by the
corresponding imperative refinements of the individual cases.
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6.6.3 Analysis

In the following, we describe how we analyze the collected data to answer our research
questions. To analyze the accuracy of our inference engine, we compare the feature mappings
inferred automatically against the reference mappings declared manually. “We regard an
inferred feature mapping as a true positive if the same mapping is also present inside the
reference mapping model. A false positive is an inferred mapping that is not part of the
reference mappings. On this basis, we measure precision and recall in order to quantify
how many of the inferred mappings are actually correct, and how many required mappings
could be correctly inferred” [*GB19]. Furthermore, to analyze the effective reduction of
the imperative verbosity, we compare the size of each reference transformation against its
corresponding refinement and calculate the portion of SLOC that could have been saved.

6.6.4 Results

Table 6.2 summarizes the obtained results of the data collection and analysis. The left part
shows the amount of class and feature mappings declared as part of the reference mapping
models. The center part of the table illustrates the inference of feature mappings. On the right,
we give an overview on the amount of imperative instructions. Moreover, we also indicate the
equivalence of the execution results between the purely imperative reference transformations
on the one hand, and our hybrid transformations on the other hand.

According to our findings, all feature mappings required in case of Lib2Lib and Edu2Edu
could be successfully inferred, leading to an optimal value of the recall for both cases.
Unsurprisingly, the recall of the TA2TA case was optimal as well due to the identity of the
source and target metamodel. The recall of the two residual cases was suboptimal, however,
the values of 89% and 75% still suggest that large amounts of the manual work could
potentially be saved. For the reasons stated above, its is also unsurprising that the TA2TA case
achieved the highest possible precision. Whereas the precision measured for the Edu2Edu
case was optimal as well, the residual cases each showed a number of false positives. For
the Lib2Lib and Class2ER cases, this number was small enough to conclude that the vast
majority of mappings was inferred correctly with a precision of 83% and respectively 89%.
As opposed to these results, the precision achieved for the UML2MUML case was only 41%.
Accordingly, more than half of the mappings inferred by the automated engine would need to
be removed or adjusted manually be the transformation developer.

Table 6.2: Results of the conducted case studies [adapted from *GB19].

Mappings Inference Instructions

True False Reference Refinement Equivalent

Case Class Feature Positives Positives Precision Recall SLOC SLOC Reduction Execution
Lib2Lib 5 10 10 2 83% 100% 28 15 46% v
Edu2Edu 4 10 10 0 100% 100% 27 11 59% v
Class2ER 5 9 8 1 89% 89% 40 29 28% v
UML2MUML 11 12 9 13 41% 75% 52 34 35% v
TA2TA 81 110 110 0 100% 100% 1278 839 34% v
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With respect to RQ1, the recall did not fall below 75% in any of the cases that were studied.
This result suggests “that the accuracy of our approach is essentially profitable because the
majority of required feature mappings could be automatically inferred. However, as indicated
by the precision, the actual benefit for transformation developers is apparently depending
on the characteristics of the concrete source and target metamodels at hand. In particular,
transformations involving large, industrial-scale metamodels like UML provide manifold
opportunities for mapping non-corresponding, yet compatible features in an incorrect way,
leading to a loss of precision” [*GB19]. In cases like UML2ZMUML, developers are therefore
required to make an extra effort because the results of the inference must be post-processed
and double-checked for false positive mappings. Future works should aim to reduce this
number of mappings being inferred incorrectly. For example, this could be achieved by
excluding untranslatable features from the inference engine explicitly, or by limiting the set
of class mappings that can act as a translator for particular features.

In terms of imperative instructions, the findings in Table 6.2 suggest that the transformation
definitions could be effectively reduced in each case. Since Edu2Edu does not require an
imperative refinement at all, this case benefits from the highest reduction by 59%, whereas its
remaining eleven SLOC are glue code that is needed to invoke the interpretation of the mapping
model. Similarly, since Lib2Lib is based on metamodels with a close resemblance as well,
its imperative verbosity could be reduced by 46%. In contrast, Class2ER, UML2MUML and
TA2TA only achieved reductions between 28% and 35% due to the fact that more imperative
instructions are needed to overcome a greater structural heterogeneity (cf. Section 6.2.1)
compared to the other cases. Nevertheless, with respect to RQ2, our studies showed that we
were able to reduce the effective verbosity of the imperative transformation definitions to a
considerable amount. However, note that the effective reduction indicated in Table 6.2 does
not necessarily imply an improved efficiency in terms of the overall development effort. The
reason is that reducing the amount of manually specified instructions may come at a price
of inaccurate feature mappings inferred by our automated approach, as it was shown in the
context of RQ1. This inaccuracy may burden developers with an extra effort for correcting
the inferred mappings, which is beyond the scope of RQ2.

6.6.5 Validity

As previously described in Section 5.6.5, we distinguish between various types of valid-
ity [RHO9]. First, with respect to construct validity, the results for RQ2 are threatened by
our choice of SLOC, which might not be a representative metric to measure the verbosity of
imperative transformations at all. Whereas our studies are based on the assumption that the
single lines are similarly verbose, the actual verbosity might vary from line to line, requiring
developers to put a different amount of effort into each single line. Furthermore, it is impor-
tant to point out that the imperative verbosity does not fully reflect the mental development
effort. First, in addition to the manual encoding of the imperative refinements, developers
must also double-check the inferred feature mappings, which increases their cognitive load.
Second, inaccurate inference results as detected for RQ1 must be manually corrected. Both
issues imply an extra effort that is not taken into account by RQ2.
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“The internal validity of our studies is affected by the manual specification of reference
transformations. Instead, the results of our studies could be less biased when using predefined
sets of transformation definitions like the ATL transformation zoo [Kus+13] or a dedicated
benchmark for model matching [WL13] as a ground truth. Furthermore, the results of our
studies might not be representative for other cases, thereby affecting the external validity. In
particular, the library case [FB16] was known to us prior to the development of our solution
[...]. Therefore, our approach could have been tailored specifically to this case, whereas
more general characteristics of other cases might have been disregarded” [*GB19].

To promote the reliability of our results, we enable their replication by making the collected
data publicly available [*Ger20b]. Our data set includes the mapping and example models
of all cases, the QVTo-based implementations of our inference engine and the execution
framework, as well as the imperative reference transformations and refinements for each case.

6.7 Limitations

Correspondences. As described in Section 6.3.1, our mapping models are currently restricted
to 1:1 and 1:n correspondences, thereby enabling a transformation to copy or partition the af-
fected model elements [Wim+10]. In contrast, further types of correspondences like n:1 or 0:1
are not supported. Accordingly, mapping models cannot be used to specify that elements must
be merged or generated from scratch. Enabling the definition of advanced correspondence
types could further reduce the amount of imperative transformation instructions. However,
on the downside, it is more challenging to infer these advanced correspondences accurately,
as compared to the basic correspondences underlying our current approach.

Accuracy. Our inference engine presented in Section 6.4 could be improved with respect
to the accuracy of the inferred mappings. First, to prevent target features from being left
unmapped (cf. Fig. 6.5), a workaround is to extend the search space for compatible source
features. This could be achieved by navigating from the source element of a class mapping to
other, referenced source elements that provide a compatible source feature. In particular, this
form of source navigation could also be used to define the aforementioned n:1 correspondences
because it enables features of multiple source elements to be mapped to features of a single
target element. Second, the accuracy of the inferred feature mappings could also be improved
by considering the numeric multiplicities of source and target features as an additional
criterion for their compatibility. Third, as already described in Section 6.6.4, particular
features could be excluded from the inference explicitly, thereby avoiding the inference of
false positive mappings. For the same purpose, the scope in which individual class mappings
may act as translator could be limited to particular features, thereby preventing other features
from being translated wrongly. Furthermore, additional techniques to infer more accurate
transformations include machine learning, as recently done in [BCG19a], and search-based
MDE [BSA17] as a means to trade off alternative inference results against each other. Finally,
another different approach towards improving the accuracy is to reduce the inference of
metamodel mappings to a more general matching problem, e.g., from well-researched fields
like schema matching or ontology matching [IV11].
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Confidence. Given the fact that the inference results are potentially inaccurate (see above),
another limitation is that our engine does not inform transformation developers about the
degree of accuracy. Thus, developers are uncertain about the confidence they should have
in the inferred mappings. The indication of confidence in model transformation rules was
recently pioneered in [BBMV 18], whereas Bayesian inference has been used as one concrete
method to reason about uncertainty in the context of models [HP14]. In future works,
such an approach could be an initial step towards explainability [Koh+19] of the inference.
Explanations of the inference results could help balance the manual effort that developers
must make to double-check their accuracy, as discussed in Section 6.6.4.

Language Integration. Due to the hybrid nature of our approach presented in this chapter,
the transformation definitions are divided into a declarative and an imperative part. Therefore,
clarity and comprehensibility of transformation definitions are affected. A possible future
improvement is to integrate our inference engine directly into an imperative transformation
language. Using such an integration, it could be sufficient for transformation developers to
declare transformation rules including source and target types only, whereas the declared rules
are implemented automatically by generating the initialization instructions for the respective
target features. Thereby, users of imperative languages would no longer be forced to involve
a declarative approach, thereby increasing the applicability of our inference engine.

Interpretation. The execution algorithm for mapping models proposed in Section 6.5.1 is
designed as an interpreter that is based on a single generic operation. A limitation induced by
this design decision is that refinements can only be specified per source type on the basis of
dynamic dispatch, as described in Section 6.5.2. Thus, in case of 1:n mappings with acommon
source type, a potential distinction between the different target types must be made explicitly
as part of the refinement, leading to additional amounts of imperative instructions. In contrast,
an alternative approach towards the execution is to synthesize an imperative transformation
from a declarative mapping model. This kind of synthesis is also referred to as a higher-order
transformation (HOT) because the source and target artifacts are themselves transformation
definitions [Tis+09]. In our case, a synthesized transformation definition could provide one
imperative operation for each declarative type mapping. Concerning the limitation to per-
type refinements, these individual operations have a beneficial effect because they can be
overridden independently of each other. Thereby, a HOT-based execution enables a more
fine-grained specification of refinements on a per-mapping basis, without requiring additional
instructions to distinguish between different target types.

Co-Evolution. Despite the fact that we address exogenous model transformations in general
(cf. Section 6.2), our approach can also be used with more specific transformation intents
such as migration [Lic+16]. For example, co-evolution refers to the approach of migrating a
model to an evolved version of its metamodel [HKB17]. In case of a single evolutionary step,
source and target metamodels are often broadly similar. Hence, whereas our inference engine
is currently restricted to feature mappings, the similarity of source and target metamodels
might even enable an accurate inference of type mappings, e.g., between all those classifiers
that remain unchanged during the evolution. We have prototyped the application of our
execution framework to this scenario in a bachelor thesis [Som18].
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6.8 Related Work

In literature, the most general approach for reducing the verbosity of model transformations is
reuse. We refer the reader to [Bru+20; CFSS16; Kus+15] for an overview of the field. In this
section, we focus on approaches that are more closely related to our work because they rely on
mapping models as transformation definitions (cf. Section 6.8.1), or generate transformation
definitions automatically (cf. Section 6.8.2).

6.8.1 Mapping Models

Lopes et al. [LHBJO6], Guerra et al. [Gue+13], as well as Bollati et al. [BVIM13] all use
mappings between metamodels to define model transformations. Similar to our approach,
these works also enable the specification of context conditions to filter the application of a
mapping. Both [LHBJ06] and [BVIM13] use a HOT to generate an executable transformation
definition from the mapping models. Thereby, these works differ from our approach of
interpreting the mapping models by means of an execution algorithm. Diskin et al. [DGC17]
propose a formal approach in which so-called meta-traceability links between the elements of
source and target metamodels serve as a mapping model. To execute the transformations, the
authors apply formal operations from the area of category theory. In contrast to our work, all
of the above approaches require a manual definition of mapping models, whereas a reduced
development effort by means of an automated inference is beyond their scope.

Wimmer et al. [Wim+10] provide developers with a set of operators to define mappings be-
tween the elements of source and target metamodels. The proposed mapping operators reflect
recurrent correspondences and thus can be reused as building blocks of custom transforma-
tions. Again, unlike our work, the authors use a HOT to generate an executable transformation
definition. The general intent of the approach is to reduce the development effort for model
transformations and is therefore similar to the goal of our work. Nevertheless, developers
must tailor the provided operators to their metamodels at hand. Thus, opposed to our approach
of inferring mappings automatically, features still need to be mapped manually.

In contrast to the approach of executing mapping models by means of a HOT, Freund and
Braune [FB16] use an execution algorithm as an interpreter, thereby resembling our work.
Their algorithm ensures coherence of target models, even if the links between target elements
have only been partially defined by the developer. In this respect, the goal of the algorithm
is similar to the one of our inference engine. As a conceptual difference, our work separates
the concerns of inference and execution, whereas the proposed algorithm combines both
responsibilities. In general, the presented approach is affected by two crucial limitations,
both of which we address in our work. First, the proposed algorithm only ensures that the
syntactical constraints of the target metamodel like multiplicities are satisfied. As opposed
to this, we match corresponding source and target features to preserve the semantic content
of models during a transformation. Second, the authors do not enable developers to enrich
mapping models with imperative instructions, which might be required to correct or complete
the decisions made by the execution algorithm. In comparison, we adopt a hybrid approach
by supporting an imperative refinement of declarative mapping models.
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If declarative mappings are insufficient to fully encode the transformation logic, the use
of a HOT enables developers to customize the generated transformations, e.g., at the level of
imperative instructions. Nevertheless, none of the above works address such an imperative
refinement on a systematic basis, as we do in this chapter. Furthermore, only Freund and
Braune [FB16] use automated decision making to reduce the number of mappings created
manually. However, these decisions are made on the fly during execution and are not
permanently reflected in the mapping models. Therefore, in Section 6.8.2, we will focus
more specifically on automated approaches generating permanent transformation definitions.

6.8.2 Model Transformation Generation

A survey of approaches to the generation of model transformations is given in [BDB16]. In
general, such approaches can be classified in two major categories, generating transformation
rules either by models or by metamodels. We illustrate this categorization in Fig. 6.7. For ex-
ample, a subfield of search-based MDE [BSA17] is model-driven optimization, using models
to encode optimization problems, which are solved by means of search techniques [Joh+19].
One possible approach is a rule-based encoding, which intersects with the field of model
transformation generation by models because solutions are offered as sequences of transfor-
mation rules that must be applied to optimize a given model. Since such optimizations are
endogenous transformations, the approach differs from our work with a more general focus
on exogenous translations.

Another field in the first category is model transformation by example [Kap+12; Var06],
which uses exemplary pairs of source and target models to infer transformation rules. On the
one hand, in case of a demonstration-based approach as adopted by Kehrer et al. [KAH17], a
transformation is exemplified by changing a model manually. These exemplary changes are
recorded and used to infer generalized transformation rules automatically. Unlike our work,
this approach primarily addresses endogenous transformations. On the other hand, in case of a
correspondence-based approach, examples are given pairwise in terms of pre-existing source
and target models, thereby extending the scope to exogenous translations. Corresponding
elements of the example models must be indicated manually and are used to infer generalized
correspondences between the respective metamodels [Kap+12, p. 206]. Although the inferred
correspondences resemble our mapping models, corresponding features must still be mapped
manually at the level of the example models. In contrast, our inference engine aims to map
corresponding features automatically on the basis of manually specified correspondences
between types. As the main difference between our approach and model transformation by
example, we do not require the existence or creation of concrete example models.

Previous works on model transformation by example are increasingly based on search tech-
niques [MSS18; GKHE18; BS16; KSBB12], thereby intersecting with the aforementioned
field of search-based MDE. Recently, this cognification [CCBG18] has been pushed forward
by Burguefio et al. [BCG19a] who use neural networks to learn transformations from sets of
example source and target models. As an advantage over our work, this approach does not
require developers to specify any correspondences manually. Nevertheless, on the downside,
a sufficiently large number of example models must be available as a training set.
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Figure 6.7: Overview of related works from the area of model transformation generation.

The second category depicted in Fig. 6.7 includes approaches towards model transformation
generation by metamodels. Since the inference engine presented in Section 6.4 is based on
mappings between metamodels, our work falls into this category as well. As another approach,
Kehrer et al. [KTRK16] derive transformations for the editing of models from the respective
metamodels. These transformations ensure that the edited models are consistent with the
constraints of the metamodel such as multiplicities. Again, since editing transformations are
endogenous, they differ from the exogenous translations addressed in our work.

Co-evolution [EKSS18] is another field in which model transformations are generated by
metamodels. As surveyed in [HKB17], approaches like the one presented in [KSW19] aim to
compensate for evolving metamodels by co-evolving the associated models. Recently, related
works also address the co-evolution of metamodels and model transformations [RIKDI18;
KKE18; KSW18]. Both approaches derive rules for the migration of artifacts from the
changes between different versions of a metamodel. In contrast, we address completely
exogenous transformations without an evolutionary relationship between metamodels.

Finally, model transformation generation by metamodels also subsumes the area of meta-
model matching [LFH14]. This approach closely relates to our work because mapping models
are inferred by matching similar metamodels against each other. “To this end, the authors
take not only structural but also linguistic similarity measures into account. Thus, their works
differ from our approach which primarily analyzes the compatibility of features, using same
names only as a tiebreaker. Metamodel matching increases the level of automation compared
to our work because we require developers to manually indicate a set of correspondences be-
tween types. However, the matching approach is limited to metamodels with a certain degree
of similarity” [*GB19], which enables a fully automated inference of accurate matches. In
contrast, our semi-automated approach ensures that the inferred feature mappings are compat-
ible with respect to the type mappings defined manually, even if the underlying metamodels
are dissimilar due to structural heterogeneity (cf. Section 6.2.1).
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Unlike our work, approaches from the two aforementioned fields of co-evolution and meta-
model matching have been combined with techniques from search-based MDE [KSW19;
KSW18; Kes+14]. In contrast, our novel contribution depicted in Fig. 6.7 is that we
pre-configure the automated inference (as known from metamodel matching) with man-
ual correspondences® (as used in the area of correspondence-based model transformation
by example). Thereby, we enable transformation developers to generate model transforma-
tions semi-automatically, even in cases where the dissimilarity of metamodels does not allow
for a fully automated generation. For future works, we propose an in-depth comparison of
our semi-automated approach against the existing, more highly automated works on model
transformation generation. The goal of such a comparison is to trade off the accuracy of the
generated transformations against the remaining manual effort that developers must make.

6.9 Summary

In this chapter, we presented a hybrid model transformation approach that addresses the
verbosity problems raised by existing transformation languages. First, on the basis of trans-
formation models comprising declarative type mappings, we proposed an engine for the
automated inference of additional feature mappings. Compared to imperative languages, we
thereby reduce the amount of boilerplate instructions that developers must specify manually
to initialize the features of models. Second, we presented a framework for the execution of
these mapping models, which enables developers to refine a transformation with imperative
instructions. Compared to declarative languages, we thereby prevent alternative or excep-
tional transformation logic from being encoded by large-sized sets of transformation rules. In
addition, we explicitly identified the underlying language facilities that imperative languages
must provide to serve as a host language for the implementation of our execution framework.

We conducted five case studies, in which we analyzed the accuracy of the declarative
mappings inferred automatically and the reduction of the verbosity as measured by the
imperative instructions specified manually. Our findings suggest that the majority of mappings
can actually be inferred, thereby reducing the verbosity to a considerable degree. However,
our accuracy assessment also showed that the precision of the inference decreases in case of
transformations between dissimilar metamodels with a higher structural heterogeneity.

Our semi-automated approach is beneficial for transformation developers because it enables
a reduced verbosity even in case of heterogeneous metamodels, for which transformations
cannot be inferred fully automatically. First, developers can pre-configure the inference with
type mappings, thereby ensuring syntactic validity of the inferred feature mappings. Second,
developers may refine the mappings with imperative instructions, thereby accounting for
transformation logic that requires an imperative style of encoding. Finally, the identified
language facilities enable practitioners to analyze the feasibility of implementing our execution
framework in concrete imperative host languages. By conducting such a feasibility analysis,
we observed that a range of common transformation languages qualify as a host.

3Lafi et al. [LFH14] report that some approaches for metamodel matching enable a specification of initial
mappings. However, to the best of our knowledge, these mappings do not take effect on the matching results.
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CoNCLUSION

We conclude this thesis by summarizing our scientific contributions with a focus on the
obtained results and their benefits from an engineering viewpoint. We give this summary in
Section 7.1. Finally, in Section 7.2, we briefly discuss future research perspectives suggested
by our contributions.

7.1 Summary of Contributions

Due to their high degree of interconnection, next-generation CPSs must satisfy particular
security requirements to achieve protection goals like confidentiality or integrity of the ex-
changed information. Therefore, dedicated security countermeasures must be adopted during
the engineering to make systems secure by design. One possible countermeasure is to control
the information flow security [Manl1], using dedicated formal methods to analyze systems
with respect to confidentiality and integrity requirements. Nevertheless, a major unresolved
problem is that the theory of information flow security suffers from a limited scope of ap-
plicability in engineering practice, especially when targeting complex, discipline-spanning
application domains like CPSs. In this thesis, we offered a solution to this problem by inte-
grating formal methods for information flow security into a model-driven design method for
CPSs, including Consens for the discipline-spanning systems engineering [Ana+14a] and
MecaatroNICUML for the discipline-specific software engineering [*Bec+14].

Our first contribution is a specification technique for security policies as an extension
of Consens, thereby front-loading the security requirements engineering to the initial,
discipline-spanning stage of systems engineering. To prevent an underspecification of se-
curity requirements, we turned two of the partial models of ConsEens into flow policies
known from the theory of information flow [Man03]. The resulting security policies enable
systems engineers to document unauthorized information flows of a system under develop-
ment and to refine the documented flows when decomposing a system into subsystems. Our
contribution includes a validity check for these refinements, which formally assures engineers
that an initial, system-level security policy is refined at the subsystem-level such that the spec-
ified requirements are preserved. We evaluated our contribution on the basis of a systematic
quality framework for security methodologies [UFF18]. The evaluation identified the early
consideration of security aspects and their formal assurance as main benefits of our work.
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As our second contribution, we presented a set of architectural well-formedness rules for
component-based security policies in the scope of the MEcHATRONICUML component model.
The proposed rules guide software architects both during the translation of flow policies into
component-based policies and during the refinement of these policies on decomposition of
components into subcomponents. In particular, a well-formed refinement ensures that the
security restrictions imposed by the security policy of a component are correctly enforced by
the policies of the constituent subcomponents. Thus, refining security policies according to
our rules enables architects to reason locally about the security of components, preventing
the emergence of global information flows when individual components are assembled. We
thereby tackle the well-known composability problem of information flow security [Man02],
providing architects with a guarantee that an architecture is globally secure whenever it is
composed of locally secure components. We gave formal evidence for this composabil-
ity while taking into account the asynchronous communication and the real-time behavior
underlying MeEcHaTRONICUML, thereby evaluating the soundness of our contribution.

The third contribution made in this thesis is an automated verification technique for the
information flow security of MEcHaATRONICUML components, which are real-time systems
whose behavior is given in the form of timed automata [AD94]. To verify that acomponent ad-
heres to its predefined security policy, we applied the concept of self-composition [BDR11] to
check whether the component behavior is properly refined by a variant of itself with restricted
access to security-critical information. We thereby reduce the verification to a refinement
check [HBDS15], which enables us to apply the off-the-shelf model checker UppaAL instead
of implementing proprietary verification algorithms. The proposed verification technique
is timing-sensitive [KWH11] by taking the specified real-time behavior of components into
account. As a result, software engineers benefit from the ability of our technique to detect
timing channels [BGN17]. If such channels remain undetected, they enable attackers draw
security-critical conclusions from the timing of messages passed by a component. Further-
more, in combination with the composability demonstrated as part of the second contribution,
the proposed technique enables a compositional verification in which the security of an overall
architecture follows directly from the verified security of single components. We successfully
evaluated the accuracy of our verification technique using a security-oriented extension of
the community case study CoCoME for component-based systems [GH17].

Finally, at the base level of MDE, our fourth contribution tackles the verbosity of model
transformations, which served as an enabling technology for the translation and verifica-
tion of security policies within the scope of the previous contributions. To reduce this
verbosity and the associated effort to develop transformations using existing transformation
languages [Heb+18], we relied on the concept of declarative transformation models [Béz+06].
On this basis, we proposed an inference engine that enables developers to semi-automate the
definition of model transformations, using a basic transformation model to infer additional
repetitive boilerplate declarations. In addition, we proposed a framework that executes the
inferred transformation models automatically, but also enables developers to refine the execu-
tion manually with imperative, type-specific instructions. We pointed out the core language
facilities required to implement our framework and conducted five case studies to evaluate
the reduced verbosity as well as the accuracy of the inference engine.
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In summary, we extended the model-driven design method with techniques for the spec-
ification, refinement, and verification of security policies. Thereby, we enable a consistent
handling of security aspects across systems and software engineering. Whereas the design
method was previously restricted to the safety of CPSs, we integrated a complementary focus
on security engineering, thereby promoting the overall resilience of systems [TSHL16].

7.2 Future Perspectives

The contributions summarized in Section 7.1 give rise to various perspectives of future
research, which have already been discussed by chapter (cf. Sections 3.7, 4.8, 5.7 and 6.7).
In the following, we recap the most crosscutting challenges from a more general viewpoint.

Security Requirements Engineering: Whereas our specification technique from Chapter 3
enables the early documentation of security requirements and the validation of their
refinements, other requirements engineering activities are beyond the current scope of
our work. For example, this limitation applies to the elicitation of security requirements.
Therefore, as also pointed out by the evaluation conducted in Section 3.6, an upstream
assessment of security threats is a promising future extension, which could enable
engineers to elicit security requirements in a systematic way. However, as already
discussed in Section 3.7, performing a threat analysis at the level of MBSE is challenging
due to the abstraction of platform-specific implementation details, which cannot be
taken into account for the early elicitation of concrete threats. Furthermore, since
our contributions do not address the software requirements engineering in the context
of MecHaTRONICUML [Hol19; Hol+16b], the security requirements specified at the
level of Consens are not explicitly handled during this phase. Thus, future research
activities should enable software requirements engineers to analyze upfront whether a
requirements specification including security requirements is consistent and realizable
during the downstream software design.

Adaptivity: The contributions made in this thesis do not enable engineers to declassify
information [SS09]. Accordingly, our works do not address security policies that
are adaptive to changing security situations, as recently envisaged by Bennaceur et
al. [Ben+19]. This is a major limitation due to the focus of MEcuATRONICUML o0n self-
adaptation of systems, which is achieved by structural reconfiguration of the underlying
component architectures [HBV19]. As already described in Section 4.8, future works
must use adaptive security policies to sense changes in the security situation and trigger
reconfigurations that are necessary to prevent policy violations. As recently proposed
by Khakpour et al. [KSNW19], security policies must also be used to decide whether
a specific reconfiguration is secure or must be suppressed because it puts the system
at risk. A crucial research challenge is to account for the adaption of security policies
consistently across all phases of the engineering process. For example, the adaptivity
must also be considered by systems engineers during the policy specification (cf.
Chapter 3), or by software engineers during the verification of policies (cf. Chapter 5).
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Evolution: Our contributions are limited in the sense that the underlying models are static,

describing a system under development in delivery condition. Thereby, we do not
take into consideration that systems evolve over time after they have first been deliv-
ered, such that their security must be maintained [Fel+14; Jiir+19]. With respect to
security, considering the evolution of systems is an indispensable obligation because
the capabilities of attackers are expected to evolve as well, thereby establishing new
attack vectors. Thus, security is not a steady state, but must be re-established by taking
countermeasures in response to evolution of the attack surface. Since the MEcHA-
TRONICUML component model already supports multiplicities as a means to enable
structural reconfiguration (cf. Section 4.8), this variability could provide the basis for
the secure evolution of architectures as a future research topic.

Cognification: Like many other research fields, MDE is currently subject to an increasing

cognification [CCBG18], integrating techniques from areas like artificial intelligence.
Several contributions of this thesis have potential for being cognified as well. For
example, future works could use the well-formedness rules proposed in Section 4.6
to search for optimal refinements of security policies automatically. Similar to a
proposal by Scandariato et al. [SHF18], such an approach could be used to optimize the
security arrangements made by software architects, enabling design space exploration
on the basis of search-based MDE [BSA17]. For example, optimizing refinements
could ease the integration of third-party or legacy components with fixed or even
unknown security policies, minimize the verification effort by reducing the number
of policies that must be actively verified, or enforce the principle of least privilege
by preventing policies from being more permissive than necessary. Another example
is a cognification of the inference engine proposed in Section 6.4. In future works,
more accurate transformation rules could potentially be inferred with the help of search
techniques [cf. MSS18; GKHE18; BS16; KSBB12] or machine learning [cf. BCG19a].

Resilience: Whereas Consens and MEcHATRONICUML previously addressed the safety of

systems under development, our contributions extend the design method with an ap-
proach for security engineering. We thereby account for the fact that CPSs must be
equally resilient to threats from both categories [TSHL16], especially because security
incidents can have safety-critical consequences. A limitation of our contributions is
that safety and security aspects are still handled separately, instead of considering a
possible interplay between both properties in detail. By contrast, the cross-fertilization
between safety and security engineering is a prominent research topic [BW18; PB13],
which should be taken into account by future works.

Layered Security: Controlling the information flow security is only one of many possible

148

measures that can be adopted when securing software systems. However, since the
effectiveness of the individual security measures is limited to specific kinds of attacks,
no measure provides a silver bullet for overall security on its own. Instead, the approach
of taking multiple complementary security measures, which are arranged in layers, is
known as layered security.
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For example, due to its restrictiveness, information flow control can only rule out
such flows that do not affect the system’s functionality. In contrast, a certain degree
of information flow might be indispensable to satisfy the functional requirements
of a system. Thus, such flows can only be ruled out by information flow control
if it is possible to declassify certain critical information (see above). Nevertheless,
declassified information must still be secured as effectively as possible. Future works
must therefore trade off information flow control against more permissive measures
such as taint tracking [SAB10], as done by Balliu et al. [BSS17]. Furthermore, since
there are cases in which the information exchange cannot be effectively restricted at all,
complementary measures such as authentication and encryption must be adopted to
secure the exchanged information against tampering or disclosure. In this respect, the
discipline-spanning domain of CPSs is particularly challenging because information
security might also be compromised by exploiting continuous signals (cf. Section 4.8)
or even physical side channels (cf. Section 3.7). Engineers must therefore protect such
forms of interaction by suitable measures as well. In addition, since the engineering
of CPSs also involves the physical layer of a system under development, physical
protection measures such as door locks must also be put in place by engineers.

A future research challenge is therefore to integrate other proactive security measures
besides information flow control into the design models. Such an integration would
enable engineers to check the interplay of various security measures by conducting
comprehensive security analyses. For example, Tuma et al. [TSB19] recently integrated
a notion of encryption into a lightweight information flow analysis. Compared to our
approach of analyzing the information flow only, a comprehensive security analysis
could enable engineers to reason about a system’s level of protection more significantly.
In this context, future works must also analyze possible repercussions of security
measures on other quality properties like performance [WR10; SLCS12].

Multiple security layers are of particular importance whenever a single layer is success-
fully compromised by an attacker. In this situation, security measures must compensate
for other, compromised measures to prevent or at least delay a successful attack. Since
each measure represents an individual line of defense, this approach is also referred to
as defense in depth [Sty0O4]. For example, information flow security assumes that the
direct access to information is limited to specific actors (cf. Section 2.4.1). If attackers
succeed to invalidate these assumptions, the level of security guaranteed by information
flow control is suspended. Thus, future works must also put in place reactive security
measures such as intrusion detection [SEH19] to alleviate the impact of attacks.

Platform-Specific Deployment: According to our model-driven approach, the platform-
independent design models emphasized in this thesis must be used to derive executable
implementation artifacts, which can be deployed to a specific execution platform. A
general challenge for the deployment is to preserve properties that have been verified
at the model level. To this end, none of the assumptions made during the platform-
independent design must be falsified by the platform-specific implementation.
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In particular, to preserve verified security properties on deployment, design-level se-
curity measures must be properly implemented. For example, Peldszus et al. recently
addressed this challenge in the context of data flow analyses [Pel+19]. To implement
the information flow control as a security measure adopted in our work, fundamental
assumptions that were made about the accessibility of information by specific actors
(cf. Section 2.4.1) must not be falsified at the implementation level. Accordingly,
access control is a means to implement information flow security [Man03, p. 23] such
that the provided security guarantees are preserved on deployment.

In the context of MDE, future works must enable engineers to synthesize proper access
control implementations automatically and thereby preserve information flow security
on deployment without manual intervention. Accordingly, the synthesis must ensure
that the design is properly refined by the implementation. A challenging research
task is therefore to deal with the refinement paradox [Ros95] as already described in
Section 5.7. According to this phenomenon, secure information flow is not guaranteed
to be preserved in case of a proper refinement [Jac89]. Hence, synthesizing secure
implementations is a future research challenge that must be treated with special care.
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IMPLEMENTED EXECUTION FRAMEWORK

Listing B.1: QVTo-based implementation of the execution framework from Section 6.5.

modeltype mappings uses ’http://www.upb.de/2020/Mappings’;
modeltype ecore uses ’'http://www.eclipse.org/emf/2002/Ecore’;

library Execution;

mapping Element :: transform(translator : ClassMapping) : Element
when {self.conformsTo(translator)} {

init {
if (result.oclIsUndefined()) {
translator.subclassMappings->forEach(sub) {
if (result.oclIsUndefined()) {
result := self.map transform(sub);
}
};

if (result.oclIsUndefined()) {
result := translator.target.ePackage.
eFactoryInstance.create(translator.target);

}
}
}
self.map initialize(translator, result);
}
query Element :: conformsTo(cm : ClassMapping) : Boolean {
var c¢ = self.oclAsType(EObject).eClass();
return (c = cm.source or c.eAllSuperTypes->includes(cm.source))
and self.ocl(cm.condition);
}
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blackbox query OclAny :: ocl(constraint : String) : Boolean;
mapping Element :: initialize(cm : ClassMapping, reslt : Element) {
cm. superclassMappings->forEach(super) {
self.map initialize(super, reslt);
}s
cm. featureMappings->forEach(fm) {

var sourceValues : Sequence(OclAny);

if (fm.source.oclIsUndefined()) {
sourceValues += self;

}
else {

sourceValues += self![EObject].eGet(fm.source);
};

var targetValues : Sequence(OclAny);

if (fm.target.many) {
targetValues += reslt![EObject].eGet(fm.target);
};

if (fm.target.oclIsKindOf(EAttribute)) {
targetValues += sourceValues;

}
else {
targetValues += sourceValues[Element].map transform(fm.
translator);
}s

if (fm.target.many) {
targetValues := targetValues->excluding(null);
reslt![EObject].eSet(fm.target, targetValues);

}
else {
var targetValue = targetValues->any(true);
reslt![EObject].eSet(fm.target, targetValue);
}
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