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ON GAGLIARDO-NIRENBERG INEQUALITIES WITH VANISHING

SYMBOLS

RAINER MANDEL1

Abstract. We prove interpolation inequalities of Gagliardo-Nirenberg type involving Fourier
symbols that vanish on hypersurfaces in Rd.

1. Introduction

In a recent paper by Fernández, Jeanjean, Mariş and the author the following inequality
of Gagliardo-Nirenberg type was proved

‖u‖q . ‖(|D|s − 1)u‖1−κ2 ‖u‖κ2 (u ∈ S(Rd)).(1)

Here, (|D|s − 1)u = F−1((|ξ|s − 1)û(ξ)), the symbol . stands for ≤ C for some positive
number C independent of u and the parameters s > 0, κ ≥ 1

2
, 2 < q < ∞, d ≥ 2 are

supposed to satisfy d
s
(1
2
− 1

q
) ≤ 1 − κ ≤ d+1

2
(1
2
− 1

q
), see [14, Theorem 2.6]. In this paper

we investigate such inequalities in greater generality both by extending the analysis to a
larger class of exponents but also allowing for more general Fourier symbols. We expect
applications in the context of normalized solutions of elliptic PDEs and orbital stability [2,
9, 24] or long-time behaviour [26] of time-dependent PDEs just as the classical Gagliardo-
Nirenberg Inequality [23]. In [14] and [21] applications of (1) to variational existence results
and symmetry breaking phenomena for biharmonic nonlinear Schrödinger equations are given.
Further interesting research directions regard optimal constants as well as the existence and
qualitative properties of maximizers in such inequalities as in [3, 12, 20, 26, 27]. We refer
to [6,7,11] for interpolation inequalities in different spaces like Lorentz spaces, Besov spaces,
BMO or weighted Lebesgue spaces.

We shall be concerned with inequalities of the form

‖u‖q . ‖P1(D)u‖1−κr1
‖P2(D)u‖κr2(2)

where q, r1, r2 ∈ (1,∞), κ ∈ (0, 1) and P1, P2 are smooth Fourier symbols that may vanish on
some smooth compact hypersurface S ⊂ Rd with at least k ∈ {0, . . . , d − 1} non-vanishing
principal curvatures in each point. We will assume that Pi vanishes of order αi ≤ 1 on S and
behaves like | · |si at infinity, see Assumption (A1), (A2) below for a precise statement. This
covers (1) as a special case where (α1, α2, s1, s2) = (1, 0, s, 0) and S is the unit sphere in Rd,
so k = d − 1. As an application of our results for (2) we obtain the following generalization
of [14, Theorem 2.3] to general exponents (r1, r2) 6= (2, 2).
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Theorem 1. Assume d = 1, κ ∈ (0, 1), s > 0. Then

‖u‖q . ‖(|D|s − 1)u‖1−κr1 ‖u‖κr2 (u ∈ S(R))

holds provided that q, r1, r2 ∈ (1,∞) satisfy

1− κ ≤
1− κ

r1
+
κ

r2
−

1

q
≤ (1− κ)s.

In the higher-dimensional case we restrict ourselves to r1 = r2 = r ∈ (1, 2] and q ∈ [2,∞)
to avoid heavy notation. Our generalization of [14, Theorem 2.6] reads as follows.

Theorem 2. Assume d ∈ N, d ≥ 2, κ ∈ (0, 1), s > 0. Then

‖u‖q . ‖(|D|s − 1)u‖1−κr ‖u‖κr (u ∈ S(Rd))

holds provided that the exponents r, q ∈ (1,∞) satisfy

2(1− κ)

d+ 1
≤

1

r
−

1

q
≤

(1− κ)s

d
and

1

2
≥

1

r
,
1

q′
≥
d+ 1− 2κ

2d
.

Both results arise as special cases of Theorem 3 and Theorem 4 where the inequalities (2)
are proved for suitable exponents q, r1, r2 ∈ (1,∞) and symbols P1, P2 ∈ C∞(Rd) that satisfy
the following conditions:

(A1) There is a compact hypersurface S = {ξ ∈ Rd : F (ξ) = 0} with F ∈ C∞(Rd), |∇F | 6=
0 on S and at least k nonvanishing principal curvatures in each point, {Pi(ξ) = 0} ⊂ S
and Pi(ξ) = ai+(ξ)F (ξ)

αi
+ + ai−(ξ)F (ξ)

αi
− for smooth functions ai+, ai− near S where

αi ≤ 1.

(A2) For any open neighbourhood of S there is C > 0 such that |∂α(1/Pi(ξ))| ≤ C(1 +
|ξ|)−si−|α| holds for |α| ≤ ⌈d

2
⌉ + 1 outside of this neighbourhood where s1, s2 ∈ R.

In the case d = 1 assumption (A1) is supposed to mean S = {ξ ∈ R : F (ξ) = 0} =
{ξ1, . . . , ξm} with F ∈ C∞(R), F ′ 6= 0 on S, {Pi(ξ) = 0} ⊂ S and Pi(ξ) = ai+(ξ)F (ξ)

αi
+ +

ai−(ξ)F (ξ)
αi
− for smooth functions ai+, ai− near S. Here, F (ξ)+ = max{F (ξ), 0} and F (ξ)− =

−min{F (ξ), 0}. The probably most relevant examples are given by Pi(ξ) = |F (ξ)|αi or
Pi(ξ) = |F (ξ)|αi−1F (ξ).

Our approach makes use of estimates from [10, 22] that, roughly speaking, can be used
to find estimates of the form ‖u‖q . ‖P1(D)u‖r. We will comment on such inequalities in
Remark 2. It turns out that it is not sufficient to interpolate these estimates naively (using
the Riesz-Thorin Theorem, say) to get satisfactory results which at least reproduce the
above-mentioned results from [14]. For this reason we split up the corresponding operators
dyadically, both for frequencies close to S and at infinity. A combination of the resulting
estimates will allow to conclude. We stress that the proof from [14] does not carry over from
the L2(Rd)-setting since Plancherel’s Theorem does not have a counterpart in Lr(Rd) with
r 6= 2.
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2. Preliminaries

In the following we decompose a given Schwartz function u ∈ S(Rd) in frequency space.
We start by separating the frequencies close to the critical surface from the others by defining

(3) u1 := F−1(τ û), u2 := F−1((1− τ)û) where τ ∈ C∞
0 (Rd), τ = 1 near S.

This function τ is considered as fixed from now on. It is not surprising that our analy-
sis related to u1 only involves the parameters α1, α2 that measure how Pi(ξ) vanishes as
dist(ξ, S) → 0. Accordingly, the parameters s1, s2 only play a role in our estimates involving
u2. For both u1 and u2 we introduce a dyadic decomposition into infinitely many annular
regions in order to prove our estimates via Bourgain’s summation argument [5]. We will need
the following abstract version of this result from [8, p.604].

Lemma 1. Let β1, β2 ∈ R, θ ∈ (0, 1), let (X1, X2) and (Y1, Y2) be real interpolation pairs of
Banach spaces. For j ∈ N let Tj be linear operators satisfying

‖Tjf‖Y1 ≤ M12
β1j‖f‖X1

, ‖Tjf‖Y2 ≤ M22
β2j‖f‖X2

.

Then we have

‖
∑

j∈N

Tjf‖(Y1,Y2)θ,∞ ≤ CM1−θ
1 Mθ

2‖f‖(X1,X2)θ,1(4)

provided that (1 − θ)β1 + θβ2 = 0 with β1, β2 6= 0. In the case (1 − θ)β1 + θβ2 < 0 we have
for all r ∈ [1,∞]

‖
∑

j∈N

Tjf‖(Y1,Y2)θ,r ≤ CM1−θ
1 Mθ

2‖f‖(X1,X2)θ,r .(5)

The whole point of this result is (4); the estimate (5) is a rather trivial consequence of the
summability (over N) of the interpolated bounds

‖Tjf‖(Y1,Y2)θ,r . 2j(β1(1−θ)+β2θ)‖f‖(X1,X2)θ,r for all r ∈ [1,∞].

Here, (Y1, Y2)θ,r, (X1, X2)θ,r denote real interpolation spaces [4]. In our context, this Lemma
will be applied to the Banach spaces Yi := Lqi(Rd) where the exponents q1, q2 are supposed
to satisfy 1

q
= 1−κ

q1
+ κ

q2
. The spaces Xi are defined as the completion of the Schwartz

functions S(Rd) with respect to ‖u‖Xi
:= ‖Pi(D)u‖ri, which we will abbreviate by Xi :=

Pi(D)−1Lri(Rd). Note that Pi(D)−1 is meaningful in the sense of distributions whenever the
parameters α1, α2 from (A1) are smaller than 1 because then the singularity of the Fourier
symbol is integrable. Moreover, for any given Schwartz function ‖u‖Xi

= 0 holds if and only
if u = 0. Hence, ‖ · ‖Xi

is a well-defined norm on the set of Schwartz functions. Instead of
defining the spaces Xi in the case max{α1, α2} = 1, we will treat this case simply by passing
to the limit max{α1, α2} ր 1 in our final estimate (2). Here, we will use that our bounds
depend locally uniformly on α1, α2 ∈ (−∞, 1].

The link to Gagliardo-Nirenberg-type inequalities is provided by the general interpolation
property [4, Theorem 3.1.2], namely

‖f‖(X1,X2)κ,r ≤ ‖f‖1−κX1
‖f‖κX2

(0 < κ < 1, 1 ≤ r ≤ ∞).



4 RAINER MANDEL1

In fact, choosing X1, X2 as above we obtain for u ∈ S(Rd)

(6) ‖u‖(X1,X2)κ,r ≤ ‖P1(D)u‖1−κr1 ‖P2(D)u‖κr2 (0 < κ < 1, 1 ≤ r ≤ ∞).

3. Dyadic decompositions and related estimates

We first provide the dyadic decomposition in Fourier space related to frequencies away
from the critical surface. To this end we use a dyadic partition of unity, i.e., we choose

(7) η ∈ C∞
0 (R), supp(η) ⊂ [−2,−

1

2
] ∪ [

1

2
, 2],

∑

j∈Z

η(2j·) = 1 almost everywhere on R

(see [4, Lemma 6.1.7]) and define for some fixed ξ0 ∈ S

Tjf := F−1
(

η(2j|ξ − ξ0|)f̂
)

= Kj ∗ f

where Kj(x) := F−1
(

η(2j|ξ − ξ0|)
)

(x) = 2−jdF−1 (η(| · |)) (2−jx)eix·ξ0 .
(8)

The only reason for introducing ξ0 ∈ S is that for any such ξ0 we have Tju2 = 0 for j ≥ j0
where j0 ∈ Z only depends on ξ0 and τ . This is because û2(ξ) = (1 − τ(ξ))û(ξ) does not
contain frequencies close to S. As a consequence, only the bounds for j ց −∞ will be of
importance.

Lemma 2. Assume d ∈ N and let η ∈ C∞
0 (R). Then we have for j ∈ Z

‖Tj‖p→q . 2−jd(
1

p
− 1

q
) for 1 ≤ p ≤ q ≤ ∞.

Proof. For all r ∈ [1,∞] we have ‖Kj‖r = 2−jd‖F−1 (η(| · |)) (2−j·)‖r . 2−j
d

r′ . Hence, for any
given p, q such that 1 ≤ p ≤ q ≤ ∞ we get for 1

r
:= 1 + 1

q
− 1

p
from Young’s Convolution

Inequality

‖Tjf‖q . ‖Kj‖r‖f‖p . 2−j
d

r′ ‖f‖p . 2−jd(
1

p
− 1

q
)‖f‖p.

✷

The above Lemma will be used to analyze the validity of Gagliardo-Nirenberg inequalities
in the large frequency regime. To analyze the frequencies close to the critical surface S we
consider operators of the form

T̃jf := F−1
(

η
(

2j(ξd − ψ(ξ′))
)

χ(ξ′)f̂(ξ)
)

= K̃j ∗ f

where K̃j := F−1
(

η
(

2j(ξd − ψ(ξ′))
)

χ(ξ′)
)

.
(9)

Here we used the notation ξ = (ξ′, ξd) ∈ Rd−1 × R ≃ Rd. In the degenerate case d = 1 we
interpret η(2j(ξd − ψ(ξ′)))χ(ξ′) as η(2j(ξ − c)) for some constant c ∈ R. In the case d ≥ 2
the functions η ∈ C∞

0 (Rd) and χ, ψ are required to satisfy

ψ ∈ C∞(Rd−1), χ ∈ C∞
0 (Rd−1) and at least k ∈ {0, . . . , d− 1}

eigenvalues of the Hessian D2ψ are non-zero on supp(χ).
(10)

The reason is that S may locally be written as the graph of some function ψ with these
properties. Our analysis of the mapping properties of T̃j follows [22, Section 4]. Contrary to
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the situation for Tj , only the bounds for j ր +∞ will be of importance. We give a separate
treatment in the case d = 1 because it is much simpler. As above, Young’s Convolution
Inequality gives the following.

Lemma 3. Assume d = 1 and η ∈ C∞
0 (R). Then we have

‖T̃j‖p→q . 2−j(
1

p
− 1

q
) for 1 ≤ p ≤ q ≤ ∞, j ∈ Z.

The results in the higher-dimensional case are much more complicated and depend on the
number k ∈ {0, . . . , d − 1} of non-vanishing principal curvatures of S. We first analyze the
kernel function K̃j, which is entirely analogous to [22, Lemma 4.4].

Proposition 1. Assume d ∈ N, d ≥ 2, let χ, ψ, k be as in (10) and η ∈ C∞
0 (R). Then the

kernel function K̃j satisfies

(11) ‖K̃j‖r . 2−j(
2d−k

2
− 2d−k−1

r
) if 1 ≤ r ≤ 2, ‖K̃j‖∞ . 2−j.

Proof. The bound ‖K̃j‖2 . 2−j/2 follows from Plancherel’s identity and (9). To prove (11) it

thus suffices to show ‖K̃j‖1 . 2−j(
k+2

2
−d) as well as ‖K̃j‖∞ . 2−j, which in turn follows from

the following pointwise bounds

|K̃j(x)| .N 2−j(1 + |x′|)−N if |x′| ≥ c|xd|,

|K̃j(x)| . 2−j(1 + |xd|)
− k

2 if |x′| ≤ c|xd|.

To prove those we adapt the proof from [22]. We have

K̃j(x) = cd 2
−j(F−1η)(2−jxd)

∫

Rd−1

ei(x
′·ξ′+xdψ(ξ

′))χ(ξ′) dξ′

for some dimensional constant cd > 0. We choose c > 0 sufficiently large such that the
smooth phase function Φ(ξ′) = x′ · ξ′ + xdψ(ξ

′) satisfies |∇Φ(ξ′)| ≥ c−1|x′| for all ξ′ ∈ Rd−1

in the case |x′| ≥ c|xd|. In view of χ ∈ C∞
0 (Rd−1) the method of non-stationary phase gives

|K̃j(x)| .N 2−j |(F−1η)(2−jxd)|(1 + |x′|)−N

.N,M 2−j(1 + 2−j|xd|)
−M(1 + |x′|)−N for |x′| ≥ c|xd|.

In the second estimate we used that F−1η is a Schwartz function. The theory of oscillatory
integrals gives (see [25, p.361])

|K̃j(x)| .M 2−j(1 + 2−j|xd|)
−M(1 + |xd|)

− k
2 for |x′| ≤ c|xd|.

✷

Next we use Proposition 1 to find reasonable upper bounds for the operator norms of T̃j as
maps from Lp(Rd) to Lq(Rd) where 1 ≤ p ≤ q ≤ ∞. The latter condition is mandatory since

T̃j is a translation-invariant operator covered by Hörmander’s result from [17, Theorem 1.1].
The bounds have a simple expression except for the points belonging to the following set

E :=
{

(p, q) ∈ (1,∞)2 :
1

p
=

k + 2

2(k + 1)
,
1

q
≤

k2

2(k + 1)(k + 2)
or
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1

q
=

k

2(k + 1)
,
1

p
≥

k2 + 6k + 4

2(k + 1)(k + 2)

}

.

The necessity of removing these points will be commented on later in Remark 2. Our findings
are visualized in the Riesz diagram from Figure 3.

Lemma 4. Assume d ∈ N, d ≥ 2 and let χ, ψ, k are as in (10) and η ∈ C∞
0 (R). Then

‖T̃j‖p→q . 2−jA(p,q) for 1 ≤ p ≤ q ≤ ∞, j ∈ Z, j ≥ j0

holds for 1 ≤ p ≤ q ≤ ∞ with (p, q) /∈ E where A(p, q) := min{A0, A1, A2, A
′
2, A3, A

′
3, A4, A

′
4}

is given by Ai = Ai(p, q), A
′
i = Ai(q

′, p′) and

A0 = 1, A1 =
k + 2

2

(

1

p
−

1

q

)

, A2 = −
k

2
+
k + 1

p
,

A3 =
2d− k

2
−

2d− k − 1

q
, A4 =

k + 2

2

(

1

p
−

1

q

)

+
2d− k − 2

2
−

2d− k − 2

q
.

For (p, q) ∈ E we have ‖T̃j‖p→q .ε 2
−j(A(p,q)+ε) for any ε > 0.

Proof. We first analyze the range 0 ≤ 1
q
≤ 1

2
≤ 1

p
≤ 1 in the nondegenerate case k ≥ 1.

Plancherel’s Theorem gives

‖T̃jf‖2 = ‖η
(

2j(ξd − ψ(ξ′))
)

χ(ξ′)f̂‖2 . ‖f̂‖2 = ‖f‖2

due to η, χ ∈ L∞(Rd). The Stein-Tomas Theorem for surfaces with k non-vanishing principal
curvatures [25, p.365] yields as in [22, Lemma 4.3]

‖T̃jf‖q . 2−
j

2‖f‖2, ‖T̃jf‖2 . 2−
j

2‖f‖q′ if
1

q
≤

k

2(k + 2)
.

The Fourier Restriction-Extension operator f 7→ F−1(f̂ dσM) for compact pieces M of hy-
persurfaces with k non-vanishing principal curvatures has the mapping properties from [22,
Corollary 5.1], so it is bounded for (1

p
, 1
q
) belonging to the pentagonal region

1

p
>

k + 2

2(k + 1)
,

1

q
<

k

2(k + 1)
,

1

p
−

1

q
≥

2

k + 2
.

So for these exponents and Mt := {ξ ∈ supp(χ) : ξd − ψ(ξ′) = t} with induced surface

measure dσMt
= (1 + |∇ψ(ξ′)|2)1/2 dξ′ we have for ĝ(ξ) := χ(ξ′)f̂(ξ)(1 + |∇ψ(ξ′)|2)−1/2

‖T̃jf‖q .

∫

R

|η(2jt)|‖F−1(ĝ dσMt
)‖q dt .

∫

R

|η(2jt)|‖g‖p dt . 2−j‖f‖p.

Moreover, restricted weak-type bounds from Lp,1(Rd) to Lq,∞(Rd) even hold for all (p, q) be-
longing to the closure of the above-mentioned pentagon, which implies ‖T̃jf‖q,∞ . 2−j‖f‖p,1
in the same manner. Interpolating all these bounds shows that ‖T̃j‖p→q . 2−jmin{A0,A1,A2,A′

2}

holds except for the red points in Figure 3, which finishes the analysis in the case 1 ≤ p ≤
2 ≤ q ≤ ∞ and k ≥ 1.
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For 2 ≤ p ≤ q ≤ ∞ or 1 ≤ p ≤ q ≤ 2 we use Proposition 1. We have

‖T̃j‖1→1 + ‖T̃j‖∞→∞ . ‖K̃j‖1 . 2−j(
k+2

2
−d)

Interpolating this with the above bounds gives ‖T̃j‖p→q . 2−jmin{A3,A′

3
,A4,A′

4
} and hence the

claim for k ≥ 1.

Finally, in the degenerate case k = 0 we interpolate the estimates

‖T̃j‖∞→∞ + ‖T̃j‖1→1 . ‖K̃j‖1 . 2−j(1−d), ‖T̃j‖1→∞ . ‖K̃j‖∞ . 2−j ,

‖T̃j‖2→2 . 1, ‖T̃j‖1→2 + ‖T̃j‖2→∞ . ‖K̃j‖2 . 2−j/2

to obtain

‖T̃j‖p→q . 2−jmin{A1,A4,A′

4
} = 2−jmin{A0,A1,A2,A3,A′

3
,A4,A′

4
}.

This finishes the proof. ✷

The optimality of our constants is not clear in general. In the range 1 ≤ p ≤ q < 2 or
2 < p ≤ q ≤ ∞ we expect that improvements are possible. It would be interesting to see
whether recent results and techniques for oscillatory integral operators by Guth, Hickman,
Iliopolou [15] and Kwon, Lee [19] (Proposition 2.4, Proposition 2.5) can be adapted. Any
advance in this direction provides a larger range of exponents q, r1, r2 for which our Gagliardo-
Nirenberg inequalities hold.

4. Gagliardo-Nirenberg Inequalities

We start with the frequencies away from the critical surface S, set s := (1−κ)s1+κs2. Our
aim is to prove that the general Gagliardo-Nirenberg inequality (2) holds in this frequency
regime whenever the parameters belong to the following set:

B :=
{

(q, r1, r2, κ) ∈ (1,∞)3 × (0, 1) :
1− κ

r1
+
κ

r2
≥

1

q
≥

1− κ

r1
+
κ

r2
−
s

d
with

1− κ

r1
+
κ

r2
=

1

q
only if (1− κ)s1 + κs2 > 0

}

.

(12)

Proposition 2. Assume d ∈ N, κ ∈ (0, 1) and (A2) for s1, s2 ∈ R. Then

‖u2‖q . ‖P1(D)u‖1−κr1 ‖P2(D)u‖κr2 (u ∈ S(Rd))

holds provided that (q, r1, r2, κ) ∈ B.

Proof. Define Tju := Tj(u2) where Tj and u2 = F−1((1 − τ(ξ))û) were defined in (8),(3),
respectively. Since we have τ = 1 on an open neighbourhood of ξ0, there is j0 ∈ Z such that
∑j0

j=−∞ η(2j|ξ − ξ0|) = 1 on supp(1− τ), see (7). This implies

u2 = F−1

(

j0
∑

j=−∞

η(2j|ξ − ξ0|)(1− τ(ξ))û(ξ)

)

=

j0
∑

j=−∞

Tju(13)
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1
p

1
q

1

1

A0

A1 A2

A′
2

A3

A′
3

A4

A′
4

1
2

k
2(k+2)

k2

2(k+1)(k+2)

k+4
2(k+2)

1
2

k+2
2(k+1)

Figure 1. Riesz diagram with the bounds for the mapping constant of T̃j
from Lemma 4. The exceptional points are coloured in red.

in the sense of distributions. To determine the mapping properties of Tj with the aid of
Lemma 2 set ηi(z) := η(z)|z|−si for z ∈ R where si is taken from Assumption (A2). Then
η ∈ C∞

0 (R), 0 /∈ supp(η) implies ηi ∈ C∞
0 (R) for i = 1, 2 and we have for i = 1, 2 and j ∈ Z

Tju = F−1
(

η(2j|ξ − ξ0|)û2(ξ)
)

= F−1
(

ηi(2
j|ξ − ξ0|) (2

j|ξ − ξ0|)
si û2(ξ)

)

= 2jsiF−1
(

ηi(2
j |ξ − ξ0|)mi(ξ)Pi(ξ)û(ξ)

)

where

mi(ξ) :=
(1− τ(ξ))|ξ − ξ0|

si

Pi(ξ)
.

The Mikhlin Multiplier Theorem [4, Theorem 6.1.6] and assumption (A), notably |∂α(1/Pi)(ξ)| .
(1 + |ξ|)−si−|α| for 0 ≤ |α| ≤ ⌊d

2
⌋ + 1 and ξ ∈ supp(1 − τ) (by choice of τ), imply that mi

is an Lri(Rd)− Lri(Rd)-multiplier. Here we used ri ∈ (1,∞). This implies for ri ≤ qi ≤ ∞,
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exploiting Lemma 2,

‖Tju‖qi . 2jsi‖F−1(ηi(2
j|ξ − ξ0|)mi(ξ)P̂i(D)u(ξ))‖qi

. 2
j(si−d(

1

ri
− 1

qi
))
‖F−1(mi(ξ)P̂i(D)u(ξ))‖ri

. 2
j(si−d(

1

ri
− 1

qi
))
‖Pi(D)u‖ri

= 2
j(si−d(

1

ri
− 1

qi
))
‖u‖Xi

.

We use Bourgain’s summation argument to conclude. Eq. (5) from Lemma 1 yields the bound
‖u2‖q . ‖u‖(X1,X2)κ,q provided that

(1− κ)

(

s1 − d

(

1

r1
−

1

q1

))

+ κ

(

s2 − d

(

1

r2
−

1

q2

))

> 0,
1

q
=

1− κ

q1
+
κ

q2
, ri ≤ qi ≤ ∞.

Such q1, q2 may be chosen if and only if

1− κ

r1
+
κ

r2
≥

1

q
> (1− κ)

(

1

r1
−
s1
d

)

+ κ

(

1

r2
−
s2
d

)

.(14)

Since the above bound yields the desired inequality via

‖u2‖q
(13)
= ‖

j0
∑

j=−∞

Tju‖q
(5)

. ‖u‖(X1,X2)κ,q

(6)

. ‖P1(D)u‖1−κr1 ‖P2(D)u‖κr2,

the claim is proved for exponents as in (14).

Restricted weak-type estimates are obtained with the aid of (4). As above we get ‖u2‖q,∞ .
‖u‖(X1,X2)κ,1 provided that

(1− κ)

(

s1 − d

(

1

r1
−

1

q1

))

+ κ

(

s2 − d

(

1

r2
−

1

q2

))

= 0,

1

q
=

1− κ

q1
+
κ

q2
, ri ≤ qi ≤ ∞, q1 6= q2, si − d

(

1

ri
−

1

qi

)

6= 0.

Such q1, q2 can be chosen if and only if there is q2 ∈ [1,∞] such that

1− κ

r1
+
κ

r2
≥

1

q
= (1− κ)

(

1

r1
−
s1
d

)

+ κ

(

1

r2
−
s2
d

)

,

1

q
−

1− κ

r1
≤

κ

q2
≤

κ

r2
, q2 6= q,

1

q
− (1− κ)

(

1

r1
−
s1
d

)

6=
κ

q2
6= κ

(

1

r2
−
s2
d

)

.

In particular, the weak bounds hold in the case

1− κ

r1
+
κ

r2
>

1

q
= (1− κ)

(

1

r1
−
s1
d

)

+ κ

(

1

r2
−
s2
d

)

.(15)

In order to turn the weak-type estimates into strong estimates we use once more real inter-
polation. Choose

1

q̃
=

1

q
+ ε,

1

q∗
=

1

q
− ε, κ̃ = κ+ δ, κ∗ = κ− δ
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for ε := δ( 1
r2
− s2

d
− 1

r1
+ s1

d
) and δ > 0 sufficiently small. Note that q 6= 1 implies |ε| > 0. So

(15) holds for (q̃, κ̃), (q∗, κ∗) and we have 1
q
= 1

2
(1
q̃
+ 1

q∗
), 1

2
(κ̃ + κ∗) = κ. So the reiteration

property [4, Theorem 3.5.3] gives

‖u2‖q . ‖u2‖(Lq̃,∞,Lq∗,∞) 1
2
,q

. ‖u‖((X1,X2)κ̃,1,(X1,X2)κ∗,1) 1
2
,q

. ‖u‖(X1,X2)κ,q

(6)

. ‖P1(D)u‖1−κr1
‖P2(D)u‖κr2.

✷

Remark 1.

(a) The above interpolation procedure only partially applies in the case 1
q
= 1−κ

r1
+ κ

r2
, (1−

κ)s1+κs2 = 0. Our computations show that it works out under the additional assump-
tions s1 = s2 = 0 or q = r1 = r2, which does not seem to be optimal in general. We
believe that an explicit characterization of the interpolation space (X1, X2)κ,1 would be
useful to get less restrictive sufficient conditions in this endpoint case. Formally, one
might expect that this space resembles P1(D)κ−1P2(D)−κLr,1(Rd) with 1

r
= 1−κ

r1
+ κ

r2
.

Analogous formulas for weighted Lorentz spaces may, however, fail, see Corollary 6.2
and Counterexample 6.3 in [1]. For that reason we believe a characterization of
‖u‖(X1,X2)κ,1 to be nontrivial.

(b) The classical Gagliardo-Nirenberg inequality ‖∇jv‖q . ‖∇mv‖1−κr1 ‖v‖κr2 from [23] holds

for j,m ∈ N provided that 1
q
− j

d
= (1 − κ)( 1

r1
− m

d
) + κ

r2
and j

m
≤ 1 − κ < 1. The

above result shows that the large frequency part of this estimate holds provided that
1
q
− j

d
≥ (1−κ)( 1

r1
− m

d
)+ κ

r2
and j

m
< 1−κ < 1. To see this it suffices to replace v by

∇−ju and evaluate (12) for s1 = m − j, s2 = −j. As mentioned above, the endpoint
case 1− κ = j

m
is unfortunately not reproduced.

Next we establish the interpolation inequality for frequencies close to the critical surface S.
Here, the assumption (A1) will be needed and the estimates depend on the parameters α1, α2.
The basic strategy is the same as in the previous Proposition, but Tj and Lemma 2 need to

be replaced by T̃j and Lemma 4. An explicit characterization of the admissible exponents
is possible in general, but we prefer to avoid the heavy computations. So we describe the
set of parameters in an abstract way following the same interpolation scheme as above with
si − d( 1

ri
− 1

qi
) replaced by αi −Aε(ri, qi) where

Aε(r, q) :=

{

1
r
− 1

q
, if d = 1,

A(r, q) + ε · 1(p,q)∈E , if d ≥ 2.
(ε > 0)

Accordingly, we obtain our bounds in a completely analogous manner. Since the summation
index will range from some j = j0 to +∞ instead of j = j0 to −∞, the crucial inequalities
will be opposite to those before. For notational simplicity we introduce α := (1−κ)α1+κα2.
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Using (5) we shall obtain strong bounds for parameters in

A1 := {(q, r1, r2, κ) ∈ (1,∞)3 × (0, 1) : There are ε > 0, q1 ∈ [r1,∞], q2 ∈ [r2,∞], such that

1

q
=

1− κ

q1
+
κ

q2
and (1− κ)Aε(r1, q1) + κAε(r2, q2) > α}.

Using instead (4) with Y1 = Y2 = Lq(Rd) we obtain strong bounds for

A2 := {(q, r1, r2, κ) ∈ (1,∞)3 × (0, 1) : q ≥ max{r1, r2} and there is ε > 0 such that

(1− κ)Aε(r1, q) + κAε(r2, q) = α}.

Using (4) for general q1 6= q2 we obtain restricted weak-type bounds for

Aw
3 := {(q, r1, r2, κ) ∈ (1,∞)3 × (0, 1) : There are ε > 0, q1 ∈ [r1,∞], q2 ∈ [r2,∞] such that

1

q
=

1− κ

q1
+
κ

q2
, αi 6= Aε(ri, qi) and (1− κ)Aε(r1, q) + κAε(r2, q) = α}.

Finally, interpolating all endpoint estimates with each other yields

A3 := {(q, r1, r2, κ) ∈ (1,∞)3 × (0, 1) : There are q̃ 6= q∗, κ̃, κ∗ and θ ∈ (0, 1) with

(q̃, r1, r2, κ̃), (q
∗, r1, r2, κ

∗) ∈ Aw
3 ∪A2 and

1

q
=

1− θ

q̃
+

θ

q∗
, κ = (1− θ)κ̃+ θκ∗}.

We thus conclude, just as before, that the Gagliardo-Nirenberg inequality holds in this fre-
quency regime for parameters from A := A1 ∪ A2 ∪ A3.

Proposition 3. Assume d ∈ N, κ ∈ (0, 1) and (A1) for α1, α2 ≤ 1. Then

‖u1‖q . ‖P1(D)u‖1−κr1
‖P2(D)u‖κr2 (u ∈ S(Rd))

holds provided that (q, r1, r2, κ) ∈ A.

Proof. We concentrate on the case d ≥ 2 and α1, α2 < 1. Recall u1 = F−1(τ(ξ)û) where τ
was chosen in (3). According to Assumption (A) there are τ1, . . . , τL ∈ C∞

0 (Rd) such that
τ1+ . . .+τL = τ holds and the critical surface S is locally given as the graph of some function
ψl as in (10). More precisely, S ∩ supp(τl) = {ξ ∈ supp(τl) : ξ̃d = ψl(ξ̃

′) where ξ̃ = Πlξ}.
Here, Πl denotes some permutation of coordinates in Rd. Since Pi vanishes of order αi near
the surface in the sense of Assumption (A1), we may write

Pi(ξ)
−1τl(ξ) =

[

τli+(ξ)(ξ̃d − ηl(ξ̃
′))−αi

+ + τli−(ξ)(ξ̃d − ηl(ξ̃
′))−αi

−

]

χl(ξ̃
′)

with τli+, τli− ∈ C∞
0 (Rd), χl ∈ C∞

0 (Rd−1), ξ̃ := Πlξ.
(16)

In view of this we define T , its local versions T l and the dyadic operators T l
j via

T u := u1 = F−1(τ(ξ)û(ξ)), T lu := F−1(τl(ξ)û(ξ)),

T l
j u := F−1

(

τl(ξ)û(ξ) η(2
j(ξ̃d − ψl(ξ̃

′)))χl(ξ̃
′)
)

(ξ̃ = Πlξ).
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So there is j0 ∈ Z such that

(17) T =

L
∑

l=1

T l =

L
∑

l=1

∞
∑

j=j0

T l
j .

As in the previous lemma we introduce ηi(z) := η(z)(z−αi
+ + z−αi

− ) so that ηi ∈ C∞
0 (R) due to

η ∈ C∞
0 (R), 0 /∈ supp(η). Then Lemma 4 yields

‖T l
j u‖qi = ‖F−1

(

η(2j(ξ̃d − ψl(ξ̃
′)))χl(ξ̃

′) τl(ξ)û(ξ)
)

‖qi

= ‖F−1
(

η(2j(ξ̃d − ψl(ξ̃
′)))χl(ξ̃

′)Pi(ξ)
−1τl(ξ)P̂i(D)u(ξ)

)

‖qi

(16)
= 2jαi‖F−1

(

ηi(2
j(ξ̃d − ψl(ξ̃

′)))χl(ξ̃
′)(τli+(ξ) + τli−(ξ))P̂i(D)u(ξ)

)

‖qi

. 2j(αi−A(ri,qi))‖F−1((τli+(ξ) + τli−(ξ))P̂i(D)u(ξ))‖ri

. 2j(αi−A(ri,qi))‖Pi(D)u‖ri

= 2j(αi−A(ri,qi))‖u‖Xi
.

Note at this point that these estimates are uniform with respect to αi (and j, of course). In
fact, these parameters only enter the definition of ηi in a way that the bounds from Lemma 4
persist as max{α1, α2} → 1. Here, it is crucial that the support of η does not contain zero.
For parameters in A1 we thus obtain

‖u1‖q ≤
L
∑

l=1

‖
∞
∑

j=j0

T l
j u‖q . ‖u‖(X1,X2)κ,1

(6)

. ‖P1(D)u‖1−κr1
‖P2(D)u‖κr2

and similarly the claim follows for parameters in A using the same interpolation scheme as
in Proposition 2.

In the case d = 1 the analysis is essentially the same because (16) still holds with χl ≡ 1

and ξ̃d − ηl(ξ̃
′) = ξ − ξl for S = {ξ1, . . . , ξl}, see Assumption (A1) and the explanations

following it. Replacing Lemma 4 by Lemma 3 the result follows along the same lines as
above given our definition for Aε in the case d = 1.

As anticipated, the case max{α1, α2} = 1 is obtained by passing to the limit max{α1, α2} ր
1 in the inequality ‖u1‖q . ‖P1(D)u‖1−κr1

‖P2(D)u‖κr2. For instance, to prove the bound
for α1 = 1, α2 < 1 we apply these bounds to the functions uε := P1(D)εu and obtain
‖uε1‖q . ‖P1(D)u‖1−κr1

‖P2(D)u‖κr2 uniformly with respect to ε ց 0. So uε1 ⇀ u1 gives the
claim. The analogous argument works for α1 < 1, α2 = 1 and finally for α1 = α2 = 1. ✷

4.1. The one-dimensional case and Proof of Theorem 1. We first discuss the one-
dimensional case where it is possible to give a precise statement in the general framework.
We concentrate on parameters αi, si such that

α := (1− κ)α1 + κα2 > 0, s := (1− κ)s1 + κs2 > 0

in order to provide results that we believe to be optimal.
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Theorem 3. Assume d = 1, κ ∈ (0, 1) and that (A1), (A2) hold for s1, s2 ∈ R, α1, α2 ≤ 1
such that α, s > 0. Then

‖u‖q . ‖P1(D)u‖1−κr1
‖P2(D)u‖κr2 (u ∈ S(R))

holds provided that q, r1, r2 ∈ (1,∞) satisfy

α ≤
1− κ

r1
+
κ

r2
−

1

q
≤ s.

Proof. We derive this result from the estimates that we established in the previous section.
In view of u = u1 + u2, see (3), it suffices to combine Proposition 2 and Proposition 3. The
estimate related to frequencies away from the critical surface is valid provided that (12) holds,
i.e.,

(1− κ)

(

1

r1
−
s1
d

)

+ κ

(

1

r2
−
s2
d

)

≤
1

q
≤

1− κ

r1
+
κ

r2
.

This is satisfied under our assumptions. So it is sufficient to show that the estimate from
Proposition 3 holds in the case

1

q
≤

1− κ

r1
+
κ

r2
− α.

Indeed, one subsequently verifies (using α > 0) that (q, r1, r2, κ) belongs to A1 iff 1
q
<

1−κ
r1

+ κ
r2

− α, to Aw
3 = A3 iff 1

q
= 1−κ

r1
+ κ

r2
+ α, and finally to A = A1 ∪ A2 ∪ A3 iff

1
q
≤ 1−κ

r1
+ κ

r2
− α. This proves the claim. ✷

Proof of Theorem 1: This follows from Theorem 3 for the symbols P1(D) = |D|s −
1, P2(D) = I that satisfy the hypotheses of the Theorem for (α1, α2, s1, s2) = (1, 0, s, 0). ✷

4.2. The higher-dimensional case and Proof of Theorem 2. Given the results of the
previous section, explicit criteria require for a characterization of A. In the general case, this
appears to be rather cumbersome to do analytically (no problem though assuming computer
assistance). To simplify the discussion we concetrate on the special case r1 = r2 = r ∈ (1, 2]
and q ∈ [2,∞).

Theorem 4. Assume d ∈ N, d ≥ 2, κ ∈ (0, 1) and that (A1), (A2) holds for s1, s2 ∈
R, α1, α2 ≤ 1 such that α, s > 0. Then

‖u‖q . ‖P1(D)u‖1−κr ‖P2(D)u‖κr (u ∈ S(Rd))

holds provided that the exponents r, q ∈ (1,∞) satisfy

2α

k + 2
≤

1

r
−

1

q
≤
s

d
and min

{

1

r
,
1

q′

}

≥ max

{

1

2
,
k + 2α

2(k + 1)

}

.

with min{1
r
, 1
q′
} = k+2

2(k+1)
,min{1

q
, 1
r′
} ≤ k2

2(k+1)(k+2)
only if α < 1.
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Proof. We determine a subset of A via the ansatz q1 = q2 := q. We find (q, r, r, κ) ∈ A2 ∪A3

if Aε(r, q) ≥ α for some ε > 0. In the range 1 < r ≤ 2 ≤ q <∞ we have

Aε(r, q) = A(r, q)+ε1(p,q)∈E , A(r, q) = min

{

1,
k + 2

2

(

1

r
−

1

q

)

,
k + 2

2
−
k + 1

q
,−

k

2
+
k + 1

r

}

,

see Figure 3. Then Aε(r, q) ≥ α for small enough ε > 0 is equivalent to

1 ≥ α,
1

r
−

1

q
≥

2α

k + 2
, min

{

1

r
,
1

q′

}

≥ max

{

1

2
,
k + 2α

2(k + 1)

}

, (r, q) ∈ E ⇒ α < 1.

Since these conditions hold under our assumptions, the interpolation inequality holds for
the frequencies close to the critical surface S thanks to Proposition 2. On the other hand,
Proposition 3 yields the inequality for the remaining frequencies since our assumptions imply
1
r
− 1

q
≤ s

d
. This proves the claim. ✷

Proof of Theorem 2: This follows from Theorem 4 for the symbols P1(D) = |D|s −
1, P2(D) = I. The hypotheses of the Theorem hold for (α1, α2, s1, s2, k) = (1, 0, s, 0, d − 1)
because S is the unit sphere with d− 1 non-vanishing principal curvatures. ✷

Remark 2. Our estimates are uniform with respect to κ ∈ (0, 1), see (4),(5). So they persist
in the limit κ ց 0 or κր 1. In particular we obtain ‖u‖q . ‖P1(D)u‖r provided that d ≥ 2
and

2α1

k + 2
≤

1

r
−

1

q
≤
s1
d

and min

{

1

r
,
1

q′

}

≥ max

{

1

2
,
k + 2α1

2(k + 1)

}

where

min

{

1

r
,
1

q′

}

=
k + 2

2(k + 1)
, min

{

1

q
,
1

r′

}

≤
k2

2(k + 1)(k + 2)
⇒ α1 < 1.

(18)

In the case α1 = 1 this gives

2

k + 2
≤

1

r
−

1

q
≤
s1
d

and min

{

1

r
,
1

q′

}

>
k + 2

2(k + 1)
,

which generalizes results by Kenig, Ruiz, Sogge [18, Theorem 2.3] and Gutiérrez [16, Theo-
rem 6] for the Helmholtz operator −∆ − 1 = |D|2 − 1 where (k, s1) = (d − 1, 2) and d ≥ 3.
For d = 2 see [13]. It also shows that the bounds Aε(p, q) from Lemma 4 cannot be replaced
by A(p, q). Indeed, otherwise the above argument would imply the above inequality to hold for
min{1

r
, 1
q′
} = k+2

2(k+1)
, which is known to be false in general, see [22, Section 4.3].

5. An extension

In [14] it was shown that a “local” version of Gagliardo-Nirenberg inequalities is of interest,
too. Here one looks for a larger set of exponents where (2) holds under the additional
hypothesis ‖P1(D)u‖r1 ≤ R‖P2(D)u‖r2 where R > 0 is fixed, see Corollary 2.10 in that
paper. A simple consequence of our estimates above is the following.

Corollary 1. Assume d ∈ N, κ ∈ (0, 1) and (A1), (A2) for s1, s2 ∈ R, α1, α2 ≤ 1. Then the
inequality

‖u‖q . (Rκ−κ1 +Rκ−κ2)‖P1(D)u‖1−κr1 ‖P2(D)u‖κr2
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holds for all u ∈ S(Rd) satisfying ‖P1(D)u‖r1 ≤ R‖P2(D)u‖r2 provided that κ1, κ2 ∈ [0, κ]
and (q, r1, r2, κ1) ∈ B, (q, r1, r2, κ2) ∈ A.

Proof. Choose κ1, κ2 as required. Then Proposition 2 gives

‖u1‖q . ‖P1(D)u‖1−κ1r1
‖P2(D)u‖κ1r2

= (‖P1(D)u‖r1‖P2(D)u‖−1
r2
)κ−κ1 · ‖P1(D)u‖1−κr1

‖P2(D)u‖κr2

. Rκ−κ1‖P1(D)u‖1−κr1 ‖P2(D)u‖κr2.

Similarly, Proposition 3 implies

‖u2‖q . Rκ−κ2‖P1(D)u‖1−κr1
‖P2(D)u‖κr2.

Summing up these inequalities gives the claim. ✷

In the context of our particular example P1(D) = |D|s− 1, s > 0 and P2(D) = I this gives
the following generalization of [14, Corollary 2.10].

Corollary 2. Assume d ∈ N, κ ∈ (0, 1), s > 0. Then

‖u‖q . (Rκ + 1)‖(|D|s − 1)u‖1−κr ‖u‖κr

holds for all u ∈ S(Rd) satisfying ‖(|D|s − 1)u‖r ≤ R‖u‖r provided that

d = 1, 1 < r, q <∞, 1− κ ≤
1

r
−

1

q
≤ s or

d ≥ 2, 1 < r ≤ 2 ≤ q <∞,
2(1− κ)

k + 2
≤

1

r
−

1

q
≤
s

d
and

min

{

1

r
,
1

q′

}

≥ max

{

1

2
,
k + 2− 2κ

2(k + 1)

}

.

Proof. This corresponds to the special case (α1, α2, s1, s2, k, r1, r2, κ1, κ2) = (1, 0, s, 0, d −
1, r, r, 0, κ) in Corollary 1. ✷
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