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Abstract: In the context of the energy transition, sound decision making regarding the development 

of renewable energy systems faces various technical and societal challenges. In addition to climate-

related uncertainties affecting technical issues of reliable grid planning, there are also subtle aspects 

and uncertainties related to the integration of energy technologies into built environments. Citizens’ 

opinions on grid development may be ambiguous or divergent in terms of broad acceptance of the 

energy transition in general, and they may have negative attitudes towards concrete planning in 

their local environment. First, this article identifies the issue of discrepancies between preferences 

of a fixed stakeholder group with respect to the question of the integration of renewable energy 

technology, posed from different perspectives and at different points in time, and considers it as a 

fundamental problem in the context of robust decision making in sustainable energy system plan-

ning. Second, for dealing with that issue, a novel dynamic decision support methodology is pre-

sented that includes multiple surveys, statistical analysis of the discrepancies that may arise, and 

multicriteria decision analysis that specifically incorporates the opinions of citizens. Citizens are 

considered as stakeholders and participants in smart decision-making processes. A case study ap-

plying agent-based simulations underlines the relevance of the methodology proposed for decision 

making in the context of renewable energies. 

Keywords: energy transition; renewable energy integration; NIMBY; decision making; smart city; 

citizen participation; ambiguity; multicriteria decision analysis 

 

1. Introduction 

In recent decades, a steady increase in CO2 emissions by the global population has 

significantly contributed to manmade climate change, the consequences of which are al-

ready being felt [1–4]. For some time now, discussions have been taking place at various 

levels—both nationally and internationally—on the awareness of the problem and the 

need for global or international efforts [5,6] to sustainably reduce greenhouse gases—first 

and foremost CO2—in order to limit the increase in the Earth’s average temperature to 

such an extent that tipping points are avoided. Such efforts to drastically reduce CO2 emis-

sions are defined by national agendas and politically set milestones, which mainly foresee 

a stepwise reduction in greenhouse gas emissions towards climate neutrality in all sectors 

[7,8] by approximately the middle of the 21st century. 

In the context of the so-called energy transition with reference to the energy sector, 

depending on the political framework, geographical and economic boundary conditions, 

differences in climate targets, variable technology mixes, and different time schedules can 

be envisaged with regard to the phasing out of fossil-based forms of energy generation 
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and the integration of climate-neutral energy technologies in national transformation 

paths [9]. 

Germany is in a special situation here, as not only has an ambitious roadmap—65% 

reduction by 2030, 100% reduction by 2045 [10]—been postulated, but nuclear energy no 

longer plays a role in the future mix of sustainable power generation technologies with 

the politically enacted nuclear phase-out. Even if Germany, as part of the European inter-

connected grid, can compensate for fluctuations by means of electricity imports, there 

must of course be a massive expansion of renewable energies and storage in order to 

achieve the climate targets that it has set itself. The decarbonization of industry—e.g., add-

ing more hydrogen-based power and heat generation [7,8,11]—indicates quite clearly that 

it is not just a matter of replacing existing fossil-based power generation plants, but also 

of meeting an ever-increasing demand for electricity and the necessary supply infrastruc-

ture (i.e., conversion, storage, transport, and distribution). 

In addition to purely political and administrative hurdles, as well as economic un-

certainties regarding suitable long-term locations of sustainable energy supply technolo-

gies, decision-making processes regarding grid planning should be relatively fast in order 

to achieve the ambitious climate targets in the energy sector. However, questions regard-

ing regional energy system planning and decentralized integration of sustainable energy 

technology (SET)—which mainly take place at the distribution grid level [12], and entail 

environmental impacts—should be answered in cooperation with the population via ap-

propriate participation and engagement formats. Though there is a widespread awareness 

of the problem among the population, and the energy transition as well as the achieve-

ment of corresponding climate targets via climate actions generally enjoy great acceptance 

in society in many countries, this is rather restrained when it comes to concrete regional 

SET integration and on-site grid expansion, and deviates from the approval or acceptance 

of measures to achieve abstractly formulated sustainability targets [13]. This discrepancy 

or ambiguity, which often has to do with a phenomenon labeled “not in my back yard” 

(NIMBY) [14,15], can complicate and delay SET deployment. 

In conclusion, acceptance problems related to specific regional integration plans con-

trast with the generally rather positive attitude towards the energy transition. Thus, the 

following question is of utmost relevance: How should decision makers—e.g., grid plan-

ners or politicians—sustainably deal with these ambiguities or discrepancies? Neverthe-

less, grid expansion plans need to be developed and implemented as rapidly as possible 

according to the set milestones, considering the population, and especially the ambiguity 

or discrepancy regarding SET integration in decision-making processes. 

This paper addresses the question of how decision makers can be supported in re-

gional grid expansion and SET integration issues, while taking into account the opinions 

and aforementioned possible ambiguities of the population directly affected by concrete 

planning and implementation, and proposes a novel methodology that includes struc-

tured double surveys, statistical evaluations regarding socioeconomic factors as drivers 

for the mentioned discrepancies, and multicriteria decision analysis to consider various 

criteria in final decisions in addition to citizen acceptance. The proposed methodology is 

transferable to other contexts, where the surveys used differ ‘only’ in the choice of per-

spective: a global or abstract perspective that allows for inferences to be made about gen-

eral attitudes, or a local or concretizing perspective that reveals expected deviations from 

the global survey. In particular, the added value lies in the generic approach that combines 

dynamic MCDA (DMCDA) and statistical analysis to deal with these ambiguities. 

The structure of this paper is as follows: Section 2 briefly highlights acceptance issues 

in the context of sustainable energy technologies, smart participation/engagement for-

mats, and dynamic MCDA, and how to deal with ambiguities. Section 3 presents a novel 

generic methodology for dealing with discrepancies in decision making, using SET inte-

gration as an example. An agent-based simulation is used to demonstrate the added value 

of the methodology in Section 4, considering the integration of photovoltaic and wind 

power plants in the German city of Karlsruhe by means of simplified, synthetic double 
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surveys and considering only residential locations. The paper concludes with a discussion 

and an outlook in Section 5, where next steps and some scientific challenges towards op-

erationalization of the proposed methodology are sketched and highlighted, respectively. 

2. State of the Art 

This section underlines the relevance of the aforementioned ambiguity issues in de-

cision making and the originality of the proposed methodology in terms of a brief state-

of-the-art overview of the following related topics: SETs and issues related to their accept-

ability for integration into the built environment, highlighting the need for research on 

community involvement in grid planning decisions; different types of citizen participa-

tion and engagement formats that demonstrate the possibilities and opportunities for 

public participation in decision making in smart cities; and MCDA in the context of re-

newable energy systems, emphasizing the added value of multicriteria evaluations of dif-

ferent decision alternatives, especially taking into account public opinion. 

Sustainable energy technologies are diverse, and differ fundamentally in their basic 

functionality, which can be conversion, storage, or transport (e.g., [16]). Potential SET for 

electricity generation and storage, which can be implemented in a decentralized manner 

and will potentially play a role in urban environments, includes photovoltaic and wind 

power plants, renewable gas power plants, but also chemical, electrical, thermal, rota-

tional kinetic, or potential energy storage. 

In many countries, hydrogen is seen as a key enabler of the energy transition [11,17], 

as electrolyzers, for example, can be used to produce hydrogen from excess electricity, 

which can be converted back into electricity or used for heat generation, e.g., by means of 

fuel cells or combustion. Application scenarios are envisaged in the energy, industrial, 

and transport sectors; thus, in addition to the implementation of generation plants and 

storage facilities, one must also assume a massive expansion of the transport and distri-

bution network infrastructure [18,19]. 

In addition to essential basic functional properties, SETs differ at the visual–haptic 

level, since these technologies have a spatial extent, a characteristic appearance, and also 

differ in terms of special requirements for their location, as well as implying expenses with 

regard to grid connection. The environmental impact of SET integration is often viewed 

with suspicion by local residents, who often expect a lasting deterioration in their quality 

of life. Aesthetic aspects or negative economic effects in the form of a decrease in tourism 

or a decline in the value of real estate and land usually play a special role here 

[14,15,19,20], also leading to the introduction of new terms such as “scenic beauty value” 

and methods for their assessment [21]. However, SETs can also differ in terms of funda-

mental issues of sustainability—especially when it comes to life-cycle assessment—and 

can give rise to corresponding reservations [22]. 

In general, hesitant or dismissive attitudes in this context can be attributed to the “not 

in my back yard” (NIMBY) phenomenon [14,15,19]. This phenomenon can be observed 

for different regional implementation plans, whatever type of technology and infrastruc-

ture measure is at stake—from the integration of wind turbines to the development of 

hydrogen generation, distribution, and transport infrastructures [19]. In general, it can be 

observed in many countries—including Germany—that although there is a strong aware-

ness of the problem of manmade climate change and a positive attitude towards the need 

to take measures, and the energy transition is welcomed in principle, the implementation 

of measures is rather slow [13]. Different studies on decision making have shown that 

people tend to prioritize short-term risks, such as an economic slowdown, over long-term 

risks, such as climate change [13]. 

In the context of regional expansion plans, communication, awareness raising, atti-

tudes regarding renewable energy, and engagement and participation, in conjunction 

with social factors, play an essential role in accelerating SET integration [13]. New pro-

cesses and methodologies are needed in order to enable SET integration decisions to be 

made effectively and sustainably in the face of the aforementioned ambiguity and an acute 
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urge to act [23–26]. This paper presents a novel methodology that supports decision mak-

ers in the context of grid expansion to systematically incorporate citizens’ opinions as well 

as discrepancies in their opinions into their decisions. 

Participation deals with the process of involving the public and stakeholders in mak-

ing decisions that affect themselves, whether passively via consultation, or actively via 

two-way engagement [23]. There are different types of engagement, such as (1) top-down 

one-way communication and/or consultation, where engagement is initiated by an agency 

with decision-making power for communicating decisions, or for consulting with stake-

holders/the public while retaining decision-making power; (2) top-down deliberation 

and/or coproduction, where stakeholders/the public are engaged in two-way discussions 

prior to making a decision—coproductive approaches would involve jointly developing 

a decision and ways to implement it, where the organization with decision-making power 

would be responsible for the implementation; (3) bottom-up one-way communication 

and/or consultation, where engagement is initiated and led by stakeholders/the public to 

persuade decision-making bodies to allow engagement/consultation, and to influence de-

cision makers or overturn decisions; and (4) bottom-up deliberation and/or coproduction, 

where engagement is initiated and led by stakeholders/the public, who engage in two-

way discussions on the decision; decisions are made and implemented by a group of 

stakeholders/the public—possibly in a coproductive manner [27]. Appropriate methods 

of engagement depend on the purpose and context in which engagement is needed, where 

success can be seen as achieving beneficial outcomes or building trust in decision-making 

processes. In our context, engagement means actively consulting with the public on vari-

ous SET implementations to achieve beneficial and widely accepted solutions. 

With regard to concrete means of participation, citizen e-participation is a form of 

coproduction with the potential to—for example—enhance government service quality 

[28]. In general, digital citizen participation is of great importance for the development of 

smart sustainable cities [29], where citizens and communities need to be proactively en-

gaged—e.g., using digital tools and smart technologies—and diverse audiences should be 

considered to ensure equity and social justice [25]. Citizen participation particularly plays 

a key role in the energy transition and in successful energy project planning and imple-

mentation [24,30], and must be further considered in strategic planning and, at the re-

gional/community level, participation should be supported and considered in the early 

phases [31]. Furthermore, the governance framework enabling communities to participate 

needs to be enhanced [26]. Our research promotes public participation in the energy tran-

sition, and proposes several structured double surveys with a fixed stakeholder group 

that enable a structured unveiling and handling of discrepancies in the context of sustain-

able decision making. 

The evident conflict between economic and environmental goals was the main driver 

that led energy planners to use MCDA methods in the early 1980s [32]. Beginning with 

questions about grid design with respect to a single energy carrier, the importance of us-

ing MCDA methods for planning issues has increased with the growth in the complexity 

of energy systems. This is due in part to the use of multiple energy sources and the pro-

liferation of distributed generation and conversion thereof [33,34]. Especially in the con-

text of decision-making processes with respect to planning renewable energy systems, 

MCDA methods [35] are especially beneficial—for example, as qualitative data and 

knowledge from local stakeholders can be integrated [36] and can, for instance, be applied 

in the context of robustly selecting appropriate locations for solar plant sites [37], or for 

the general assessment of a country’s ability to generate renewable energy [38]. Further-

more, the assessment of societal acceptance with regard to SET implementation [39] and 

its integration into MCDA approaches [40] is essential for sustainable energy system 

transformation. In this context, social indicators—manifested for example in the impact 

on the personal environment, the sociocultural sensitivity, the attitude towards a particu-

lar technology, or the general acceptance by the public—are of great importance for the 

evaluation process. Ambiguities in the assessment of acceptance or acceptability that is 
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associated with uncertainties referring to equivocal human opinions may be handled, for 

example, with the help of fuzzy set theory [41,42]. However, to the best of the authors’ 

knowledge, the ambiguities that arise in the context of evaluating different decision alter-

natives—which result from changing perspectives on the decision subject, as well as the 

temporal influences that arise from possibly changing framework conditions and assump-

tions under which decisions are made—are not sufficiently taken into account in the liter-

ature. 

To integrate temporal aspects into MCDA, different approaches exist that combine 

MCDA methods with scenario planning, life-cycle analysis, or via stand-alone MCDA 

models that—for example—consider past and future data with the help of several deci-

sion matrices [43]. 

In conclusion, handling ambiguities resulting from taking a global and local view on 

the decision problem represents a fundamental issue in decision making, and constitutes 

a research gap that this work begins to fill. 

3. Methodology 

The intent of this paper is to propose a generic procedural flow of decision making 

that systematically accounts for ambiguities regarding assessments within a fixed stake-

holder group. Essentially, we mean ambiguities in a given context, which arise due to 

different perspectives within a context, such as those presented in the field of energy tran-

sition and SET integration issues, where stakeholders can also be citizens. 

The methodology described in this section refers to a workflow that starts with two 

surveys, separated in time, in which a fixed stakeholder group participates. This ‘double 

survey’, or ‘global-local survey’, contains identical assessment categories in both cases, 

but differs in perspective. 

The first global survey addresses a basic attitude regarding abstractly defined goals, 

whereas the second local survey aims at an assessment of the stakeholders regarding con-

crete, locally defined measures. Crucial here is the use of identical rating categories and 

scales for a numerical assessment of discrepancies or ambiguities. For statistical analyses, 

the first survey additionally collects socioeconomic data as well as information on place 

of residence. 

It is decisive to establish a representative stakeholder group depending on the ques-

tion. However, in this paper, we will not elaborate on this point, but would like to empha-

size that the participation of all relevant groups is of great importance, but the selection 

must be made in relation to the context of the problem. Otherwise, negative results are 

possible, as shown for example in [44,45]. Once the relevant groups are defined, the sam-

ple size matters. There are scientific approaches (e.g., [46]) to determine the appropriate 

number of participants given constraints such as confidence level and margin of error. 

In the approach presented here, statistical analyses of discrepancy enable decision 

makers to select and calibrate weights in an MCDA approach that incorporates citizen 

assessment, including discrepancies, as well as other criteria, such as cost. We illustrate 

this approach in the context of SET integration. 

General assumptions and simplifications made can be summarized as follows: 

• Fixed group: Carefully selected participants representing socioeconomic facets and 

urban habitats in a given city. Furthermore, the survey is based on a stated commit-

ment by the participants—no random participation, so as to avoid bias and dispro-

portionate representations of socioeconomic attitudes and allocations to urban habi-

tats; 

• Global–local survey with this fixed group addressing a global view on energy tran-

sition and assessment of concrete SET integration plans in the local context, related 

to different energy technologies. 
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This approach can be repeated, and the dynamic nature of the problem manifests 

itself in the ambiguity of a single double survey and the iterative use of this global–local 

survey. 

3.1. Decision Criteria for SET Integration 

For determining decision criteria for SET integration, future safety and resilience re-

quirements on the power grid need to be considered; for example: 

(i) The possibility of autarky at the city level: In the case of a long-lasting outage of the 

supraregional power grid, the operation of downstream critical infrastructure in par-

ticular needs to be ensured by a city’s own supply via its local grid. The distance 

between energy sources and storage facilities and critical infrastructure should be 

kept as short as possible in order to minimize transmission losses and reduce the 

probability of failure due to external influences, such as extreme weather conditions; 

(ii) The capability to manage unpredictable impacts of climate change: Global warming 

increases the number of people around the world who are affected by extreme 

weather events [3], and has increased the probability of unprecedented extreme hot 

and wet events [4]. Strong winds, hailstorms, heavy rainfall, and subsequent flood-

ing, for example, endangering overhead power lines, pylons, substations, and trans-

former stations, may lead to potential damages and, consequently, have impacts on 

the power supply; 

(iii) The need to meet unforeseeable future demands for electricity: Changing climate 

conditions and, for example, a general increase in warm temperature extremes in the 

future [47], may increase the demand for air conditioning in public and private build-

ings. Furthermore, despite the use of renewable heat sources as an alternative, an 

increase in electricity consumption for heating can be expected [48]. The growing im-

portance of electromobility will also increase the load on the power grid, as well as 

the further decentralization of power generation from individual large power plants 

to many small-scale generators based on renewable energies. 

Based on these requirements, the following criteria, among others, may be consid-

ered in the framework of integrating SETs: 

• Profitability: Reasonable price/performance ratio (including research costs); 

• Reaction time: Coupling fast-responding storage types with slow ones to fill all 

power gaps in the power supply and, thus, increasing the overall absorptive capacity 

of the distribution network; 

• Safety of the urban area: Considering the potential harm of the various technologies 

for people and the environment in the event of an accident; 

• Location dependency: Suitability for the built environment according to size, dis-

tance to critical infrastructures, and dependency on geological conditions, for exam-

ple; 

• Scalability: Ability of a technology to be deployed at different scales due to various 

requirements for the power supply of critical infrastructure, for example; 

• Volatility: Ensuring that the emergency solution supplies power with the same sta-

bility as the distribution grid; 

• Relative land use: Reasonable ratio of output and available land due to limited space 

in the urban environment; one may consider combinations with other uses; 

• Citizen acceptance: The public’s attitude towards local SET implementation. 

This list is of course not final, and may be adapted by new insights in the future and 

according to the changing outlines of the task at hand. Some of the criteria mentioned are 

techno-economic in nature or relate to safety and security of supply and, thus, can only 

be evaluated by corresponding experts and stakeholders, e.g., electric utilities, urban and 

regional planners, or operators of other critical infrastructure. 
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3.2. Global–Local Survey 

Citizens’ opinions towards a specific technology are elicited with the help of surveys 

at different points in time. Consequently, surveys have different boundary conditions 

shaped by the political or economic environment, for example. Opinions are expressed on 

a qualitative scale. Surveys are twofold, reflecting global and local perspectives on imple-

menting different technologies. Let 

𝒯 = {𝒯1, … , 𝒯𝑙}  

be the set of SETs under investigation and 

𝑇 = {𝑡1, … , 𝑡𝑝}  

be the set of different time points that mark the end of a specific survey round. A survey 

round consists of two surveys that elicit citizens’ opinions on different levels. The first 

survey 𝑆𝑡
𝐺 asks for opinions towards a technology on a global scale and, hence, general 

sentiments towards different technologies; this survey is denoted as “global survey” in 

the following text. The second survey 𝑆𝑡
𝐿 asks specifically for implementations in one’s 

own city and, thus, in the immediate vicinity; this survey is denoted as “local survey” in 

the following. Some time elapses between the global and local surveys. Let 

c = {𝑐1, … , 𝑐𝐾}  

be the set of citizens participating in the series of surveys. In addition to sentiments to-

wards different SETs, certain socioeconomic factors 𝐹 = {𝐹1, … . 𝐹𝐸} are elicited as well. 

The outcomes of a global survey of citizen 𝑐𝑖 at time point 𝑡 are summarized as follows: 

𝑦𝑡
𝑖,𝐺 = (𝑦𝑡,1

𝑖,𝐺 , … , 𝑦𝑡,𝑙
𝑖,𝐺)  

with 𝑦𝑡,𝑗
𝑖,𝐺 ∈ {1, … , 𝑃} values from a qualitative scale. The same holds for a local survey 

𝑦𝑡
𝑖,𝐿. Furthermore, for each citizen 𝑐𝑖, 

𝐹𝑐𝑖 = {𝐹1
𝑐𝑖 , … 𝐹𝐸

𝑐𝑖}  

captures information on socioeconomic variables. After each survey round, the global and 

local surveys are aggregated by some aggregation functions 𝛼𝐺: {1, … , 𝑃}𝐾⋅𝑙 → {1, … , 𝑃}𝑙 

and 𝛼𝐿: {1, … , 𝑃}𝐾⋅𝑙 → {1, … , 𝑃}𝑙. These may depend, for example, on the composition of 

participants, promoting equity, and giving more weight to the opinions of underrepre-

sented groups. In addition, these functions can be helpful when the group composition 

changes in a survey round, or even between survey rounds. For the purposes of this paper, 

we assume a fixed group of survey participants. How to deal with this condition not being 

met will be the subject of further research, and is beyond the scope of this paper. The 

aggregated opinions on the global implementation of the SETs studied are then denoted 

by 

𝑆𝑡
𝐺 = 𝛼𝐺(𝑦𝑡

1,𝐺 , … , 𝑦𝑡
𝐾,𝐺)  

and 𝑆𝑡
𝐿 = 𝛼𝐿(𝑦𝑡

1,𝐿 , … , 𝑦𝑡
𝐾,𝐿). 

3.3. Statistical Analysis of Ambiguities and MCDA 

If discrepancies between 𝑆𝑡
𝐺 and 𝑆𝑡

𝐿 towards specific technologies appear in a sur-

vey round, further analyses can be carried out to determine the corresponding drivers 

𝐷 ⊆ 𝐹. The decision makers may consider these drivers when consolidating 𝑆𝑡
𝐺 and 𝑆𝑡

𝐿 

according to 

𝑆𝑡 = ℎ(𝑆𝑡
𝐺 , 𝑆𝑡

𝐿 , 𝐷)  

with a function ℎ: {1, … , 𝑃}2𝑙 × 𝐹 → {1, … , 𝑃}𝑙. Exemplarily, the global and local surveys 

can be consolidated by means of the weighted sum 
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𝑆𝑡 = 𝑤𝐷
𝐺 ⋅ 𝑆𝑡

𝐺 + 𝑤𝐷
𝐿 ⋅ 𝑆𝑡

𝐿  

where the weights 𝑤𝐷
𝐺  and 𝑤𝐷

𝐿  are possibly influenced by the identified drivers 𝐷. The 

consolidated surveys are aggregated over time according to the function 

𝛾: {1, … , 𝑃}|𝑇|⋅𝑙 → {1, … , 𝑃}𝑙  

The final outcome of the surveys is summarized as follows: 

𝑆 = 𝛾 (𝑆1, … , 𝑆𝑡𝑝
) = (𝑠1, … , 𝑠𝑙)  

with 𝑠𝑗 ∈ {1, … , 𝑃}. 

To identify a suitable SET mix, MCDA is carried out after the surveys are completed. 

Let 

𝒜 = {𝒜1, … , 𝒜𝑚}  

be the set of decision alternatives with 

𝒜𝑖 = ∑ 𝑤𝑘
𝑖

𝑙

𝑘=1

𝒯𝑘  

and 𝑤𝑘
𝑖 ∈ [0,1], ∑ 𝑤𝑘

𝑖 = 1𝑙
𝑘=1 . Hence, each alternative represents a specific technological 

mix. Let 

𝒞 = {𝒞1, … 𝒞𝑛}  

be the set of criteria that decision makers wish to consider in deciding on an appropriate 

technological mix. Let 𝒞𝒞 ∈ 𝒞 reflect the respective citizens’ opinions on a specific tech-

nological mix, which is elaborated on the basis of several survey rounds. 

The score of a decision alternative 𝒜𝑖 , 1 ≤ 𝑖 ≤ 𝑚, with respect to a criterion 𝒞𝑗 , 1 ≤

𝑗 ≤ 𝑛, is defined as follows 

𝑥(𝒜𝑖 , 𝒞𝑗) ≔ 𝑥𝑖𝑗   

The values can be summarized in a decision table, as depicted in Table 1. 

Table 1. Decision table of MCDA. 

Criteria (Units)/Alternatives 𝓒𝟏 (Unit 1) 𝓒𝟐 (Unit 2) … 𝓒𝒏 (Unit m) 

𝒜1 𝑥11 𝑥12 … 𝑥1𝑛 

𝒜2 𝑥21 𝑥22 … 𝑥2𝑛 

…     

𝒜𝑚 𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛 

The results of the particular surveys can be mapped as follows: 

𝑥(𝒜𝑖 , 𝒞𝒞) = ∑ 𝑤𝑘
𝑖

𝑙

𝑘=1

𝑠𝑘  

In order to compare different alternatives with respect to several criteria underlying 

different units, a value function for the criterion 𝒞𝑗 maps scores to a common scale, as 

follows: 

𝑣𝑗 = {
ℝ → [0,1]

𝑥𝑖𝑗 ↦ 𝑣𝑗(𝑥𝑖𝑗)
, 𝑗 = 1, … , 𝑛  

Hence, the scores of all criteria for an alternative 𝒜𝑖 can be summarized in the vec-

tor 

𝑣𝑖 = (𝑣1(𝑥𝑖1), … , 𝑣𝑛(𝑥𝑖𝑛))  
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The overall score for the alternative 𝒜𝑖 is calculated according to 

𝑣(𝒜𝑖) = 𝜎(𝑣𝑖 , 𝑤)  

with 𝑤 = (𝑤1, … , 𝑤𝑛) , ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, and 𝜎: [0, 1]2𝑛 → [0, 1], where 𝑤𝑗  is the preference 

with respect to the criterion 𝒞𝑗. 

The methodology is illustrated in the flowchart in Figure 1. 

 

Figure 1. Flowchart illustrating the steps of the decision support methodology. 

3.4. Integrating Survey Results 

The procedure described previously leads to ranking values for the different alterna-

tives—individual compositions of SETs—suggesting to decision makers which composi-

tion is preferable. While technically straightforward, the determination of the prefer-

ences—especially for the citizens’ opinions—is delicate. On the other hand, the sensible 
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determination of the 𝒞𝒞 values is also key, as these are dependent on personal prefer-

ences and on several local and global surveys at different points in time. The subjectivity 

of this composition poses a challenge. Presenting additional facts and information based 

on the contextual data of the opinion-poll-like incisive events between the surveys, as well 

as the socioeconomic factors of the participants, may help decision makers in choosing 

their preferences in a less subjective way, essentially providing understanding as to why 

specific participants have certain attitudes. For one, direct correlation between events and 

socioeconomic factors and attitudes can be determined and communicated in comprehen-

sible ways, as illustrated in the study in the following section, which shows a typical case 

of NIMBY. Furthermore, deep datamining for statistical analysis can provide even more 

insights and help decision makers to better identify hidden patterns in survey partici-

pants’ discrepancies, and determine the weighting of global and local surveys for their 

aggregation which, in turn, feeds into MCDA’s 𝒞𝒞 values. In addition, the results of the 

statistical analyses may also influence the weighting of the 𝒞𝒞 criterion itself in the final 

MCDA, as discrepancies that emerge across multiple survey rounds further sensitize de-

cision makers to the importance of this criterion. However, this is generally very complex 

and time-consuming, and obviously requires the necessary data to be available, which is 

frequently simply not the case. Nevertheless, ultimately, it is always up to the decision 

makers as to the way in which to consider such additional information when making their 

decision(s). In particular, this work provides decision makers with a methodology to sys-

tematically incorporate citizens’ opinions, as well as discrepancies in their opinions, into 

their decisions—a process of multiple global and local surveys and statistical analyses of 

the discrepancies that arise, the results of which are incorporated into the aggregation of 

these global and local surveys and, finally, into the criterion of citizen acceptance in the 

MCDA. 

We would like to emphasize that the focus of this paper is on how to deal with the 

discrepancies mentioned, and not on a detailed description of the procedural flow includ-

ing the specification of the parties involved. Experts are needed in order to define and 

evaluate all other criteria for SET integration, in addition to the “citizen acceptance” crite-

rion. Experts, e.g., social scientists, are also needed to identify representative survey 

groups and relevant socioeconomic factors associated with urban living environments. In 

addition, the determination of appropriate weights in the MCDA should be done by a 

group of stakeholders or decision makers, e.g., consisting of representatives of local gov-

ernments, urban and regional planners, and utility companies. All of these processual as-

pects are the subject of current and future work. 

4. Results 

To study our approach, we set up an exemplary framework for iteratively conducting 

global–local surveys. For proposing a methodology as a first step, did not conduct real 

surveys, but rather generated synthetic data via an agent-based simulation. We consider 

the city of Karlsruhe and its residential buildings as survey participants, of which we have 

11,664. For the sake of simplicity, we regard two renewable energy sources—namely, 

wind power and solar energy—and hence, technologies—wind turbines (𝒯1) and pho-

tovoltaic plants (𝒯2), respectively—that are subject to opinion surveys. The surveys ask 

for personal attitudes towards their implementation that are subsumed under the crite-

rion 𝒞𝒞 “citizen acceptance”. We assume four survey rounds with one global and one 

local survey. The survey participants express their attitudes towards a specific technology 

according to a scale from “one” to “five”, where “one” reflects disagreement, “three” re-

flects indifference, and “five” reflects agreement, with intermediate scores of “two” and 

“four”. The decision alternatives that represent different technological mixes and criteria 

used in the study can be found in Table 2. The scores of the decision alternatives with 

respect to criteria 𝒞1, 𝒞2, 𝒞3, 𝒞4, 𝒞5, 𝒞6, and 𝒞7 reflect a qualitative assessment of the tech-

nologies regarding profitability, reaction time, safety of the urban area, location depend-

ency, scalability, volatility, and relative land use, respectively. The scores of the decision 



Algorithms 2022, 15, 47 11 of 21 
 

alternatives for the criterion 𝒞𝒞 are gained from the simulations further explained in Sec-

tion 4.2; they, among others, depend on the distance to the next photovoltaic plant and 

wind turbine, whose potential locations are further discussed in Section 4.1. 

Table 2. Decision alternatives and criteria. 

Decision Alternative Technological Mix 

𝒜1 0.3 ⋅ 𝒯1 + 0.7 ⋅ 𝒯2 
𝒜2 0.5 ⋅ 𝒯1 + 0.5 ⋅ 𝒯2 
𝒜3 0.1 ⋅ 𝒯1 + 0.9 ⋅ 𝒯2 
𝒜4 0.7 ⋅ 𝒯1 + 0.3 ⋅ 𝒯2 

Criterion Explanation 

𝒞1 Profitability 

𝒞2 Reaction time 

𝒞3 Safety of the urban area 

𝒞4 Location dependency 

𝒞5 Scalability 

𝒞6 Volatility 

𝒞7 Relative land use 

𝒞𝒞 Citizen acceptance 

4.1. Photovoltaic Plants and Wind Turbines 

To enable consideration of local preferences in the agent-based simulation, we had 

to provide the evaluation framework with the geographic context of potential wind tur-

bine and photovoltaic plant locations. As no official data for such locations were available, 

we applied potential wind turbine locations according to the German regulations in the 

vicinity of Karlsruhe. As for the photovoltaic plants, potential locations were identified in 

every suitable area within the city—mainly in meadows and green places. Naturally, the 

wind turbines are located in the outer regions of the city, while the photovoltaic plants are 

located further within. Figure 2 shows the locations used in the simulation in different 

colors (blue, cyan) in combination with the citizens’ residences (yellow). 
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Figure 2. The entity locations for the agent-based simulation. Blue indicates potential wind turbines, 

cyan indicates potential photovoltaic plants, and yellow indicates survey participants. 

4.2. Agent-Based Simulations of Global–Local Surveys 

The survey participants are modeled as agents that vote in each survey round, glob-

ally and locally. The global voting values are generated according to a normal distribu-

tion, where the mean and standard deviation change with each survey round. In general, 

a rather positive global attitude towards renewable energy technologies with changing 

variance is assumed, interpreted as changing boundary conditions over time that influ-

ence the opinions of the participants. For this study, the mean values of the distribution 

functions for the global voting value for photovoltaic power were equal to or higher than 

the mean values in the context of voting on wind turbines. In most survey rounds, the 

standard deviations in the context of wind power are equal to or higher than those of 

photovoltaic power. This can be interpreted as a more positive attitude towards photo-

voltaic power, with fewer uncertainties. 

In our setting, the local voting value of a participant depends on the current global 

voting value and the distance to the next wind turbine or photovoltaic plant. The basic 

idea of setting the local voting value is as follows: the closer the participant lives to the 

specific implemented technology, the greater the deviation from the global voting value; 

the higher the global voting value, the more this deviation may vary. Here, the local voting 

value is always equal to or smaller than the global voting value. We assume a rather neg-

ative attitude towards implementations in the immediate environment, although this at-

titude is less rigid if a participant is already positive in the global survey. 

4.2.1. Global Survey 

At each survey round, the general opinions of citizens are elicited in a global survey, 

providing an overview of these opinions with respect to both wind turbines and photo-

voltaic plants. In general, the attitudes are positive towards SETs but even more so to-

wards photovoltaic plants (Figure 3). 
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Figure 3. Citizens’ attitudes regarding wind power (left) and photovoltaic plants (right) in the first 

global survey. The values range from 1 (dark red; negative attitude) to 5 (green; positive attitude). 

We assume that citizens have a more positive attitude towards photovoltaic plants than towards 

wind turbines, as reflected by more red and dark red dots in the left-hand image than in the right-

hand image. 

4.2.2. Local Survey 

The local survey is carried out some time after the global survey, and illustrates the 

discrepancies that emerge when comparing global and local voting values, as modeled 

citizens tend to change their opinion if the respective technology is to be implemented in 

their immediate vicinity (Figure 4). 

 

Figure 4. Deviations and discrepancies in citizens’ attitudes towards wind turbines (left) and pho-

tovoltaic plants (right) between the first local and global surveys. Values range from 1 (green; no 

discrepancy) to 5 (dark red; strongest discrepancy). The blue dots in the left-hand image are wind 

turbine locations, and the cyan dots in the right-hand image are photovoltaic plant locations. In both 

images, the tendency of citizens to change their opinion if they are personally affected becomes 

visible, caused by the proximity of entities. 
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4.2.3. Statistical Analysis and MCDA 

After each round of the survey, emerging discrepancies can be statistically analyzed 

and presented to the decision makers in various ways—e.g., as images, as illustrated 

above—to help them to identify the relevant factors and to better understand why citi-

zens’ opinions differ from their general attitudes toward SETs. As we do not have access 

to the socioeconomic data of the different households, we solely focused on citizens’ loca-

tions to illustrate our methodology. As we have already seen, the distance to the next po-

tential wind turbine or photovoltaic plant influences opinions on local implementation of 

SETs. Decision makers can now consider these insights when consolidating aggregated 

global and local surveys in each survey round. They could acknowledge these discrepan-

cies and, for example, weight local surveys higher than global surveys, or rate global opin-

ions—in this example, more positive opinions—higher, and take the discrepancies into 

account when weighting criterion 𝒞𝒞. Technological mixes are also implicitly associated 

with a particular implementation, and a high weighting of 𝒞𝒞 may preclude area-wide 

implementations in the immediate vicinity. For this reason, we weighted global surveys 

higher than local surveys—in part because global attitudes toward SETs are generally 

positive, but favor a particular technology. In this context, further visual support can help 

decision makers to capture the participants’ opinions and personal prerequisites, as ex-

emplarily provided for wind power, illustrating distributions of global and local opinions 

towards wind power, discrepancies, and potential distances to nearest wind turbines (Fig-

ure 5). Figure 6 shows that higher discrepancies tend to be associated with greater dis-

tances. 

 

Figure 5. The panels ‘windPowerGlobal’ and ‘windPowerLocal’ show the distribution of global and 

local voting values for wind power on a qualitative scale from 1 to 5. The panels ‘discrepancyWind’ 

and ‘distanceWind’ illustrate the distribution of discrepancies between global and local voting val-

ues and the distribution of potential distances (km) to the nearest wind turbine. 
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Figure 6. Scatterplot of discrepancies between global and local votes for wind power and potential 

distances (km) to the nearest wind turbine. The greater the discrepancy, the more the mean distance 

decreases. 

After the final round of surveys, the findings on citizens’ opinions of SETs are aggre-

gated over time, and provide values for the criterion 𝒞𝒞 of the subsequent MCDA. 

The MCDA is carried out on the basis of the decision alternatives and criteria pre-

sented in Table 2. In this study, the scores of a decision alternative with respect to a specific 

criterion are based on a qualitative assessment of the different technologies with regard 

to the criterion in question. The assessment is set out as follows: Profitability, scalability, 

and relative land use are significantly better rated for photovoltaics than for wind power. 

The reaction time and safety receive a medium-to-positive assessment—similar for both 

technologies, but better for photovoltaic. Location dependency is positively assessed for 

both technologies, but better for wind power than for photovoltaic power. Volatility is 

rated negatively for both technologies, with wind power scoring slightly better. Safety, 

scalability, relative land use, and citizen acceptance receive the highest weights in the 

overall assessments, followed by profitability. Reaction time, location dependency, and 

volatility receive the lowest weights. Each score is normalized proportionally to the sum 

of all existing scores. In this setting, the technological mix of 10% wind power and 90% 

photovoltaic power has the highest rank in the overall assessment (Figure 7). The option 

with 70% wind power and 30% photovoltaic power is the least popular. In addition to the 

absolute rankings of the decision alternatives, the decision makers can also see the contri-

butions of each criterion to the overall assessment. 
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Figure 7. Stacked bar chart of results of the MCDA. 

The next step is to analyze the stability of these results and their robustness against 

small value/weight changes. For example, changing the weighting of a criterion does not 

affect the ranking of alternatives. If the weighting of the criterion “profitability” were in-

creased, the assessment of the highest ranked alternative would improve, and the assess-

ment of the lowest ranked alternative would deteriorate; reducing the weight would have 

the opposite effect. If the weighting of the criterion “location dependency” were increased, 

the assessment of the highest ranked alternative would deteriorate, and the assessment of 

the lowest ranked alternative would improve; reducing the weight would have the oppo-

site effect. The “scalability” criterion has a high weighting; reducing the weighting would 

worsen the assessment of the best ranked alternative and improve the assessment of the 

worst-ranked alternative; the same applies to the criterion “relative land use”. Changes in 

the weights of the criteria “reaction time”, “safety”, and “citizen acceptance” have little 

effect on the evaluation of the alternatives. The strongest effect when changing the 

weighting is observable for the criterion “volatility”; as the weighting increases, the dif-

ferences in the assessments of the individual alternatives decrease. Figures 8 and 9 illus-

trate analyses of the criteria “profitability” and “volatility”, respectively. 

 

Figure 8. Effects of changing the weighting of the criterion “profitability” on the overall scores of 

the decision alternatives. The upper values of the x-axis are the absolute weights in the range 0 to 

10. The lower values represent the relative normalized weights. 
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Figure 9. Effects of changing the weighting of the criterion “volatility” on the overall scores of the 

decision alternatives. The upper values of the x-axis are the absolute weights in the range 0 to 10. 

The lower values represent the relative normalized weights. 

Therefore, the result is robust to changes in the weighting of individual criteria. How-

ever, changes in the weighting of the criterion “volatility” make the assessments of the 

decision alternatives less distinguishable. 

Sensitivity analyses can also be performed with respect to technological mixes. The 

decision alternatives are formed from certain percentage shares of wind power plants and 

photovoltaic plants. The higher the percentage of wind turbines in the technological mix, 

the worse the corresponding decision alternative is evaluated. The evaluation of the deci-

sion alternatives thus decreases with increasing weighting of the wind turbines. 

Visual support, such as that used in this study by means of a sophisticated MCDA 

tool, clearly helps decision makers in deciding between different technological mixes. 

5. Conclusions 

Regional energy system planning and the decentralized integration of sustainable 

energy technologies should be carried out in cooperation with the population through 

suitable participation and engagement formats. Although the achievement of climate 

goals through climate protection measures is generally highly respected, concrete regional 

integration of sustainable energy technology and grid expansion potentially meet re-

sistance if implemented nearby. The question is how decision makers, such as grid plan-

ners or politicians, should deal with these ambiguities. This paper presents a novel deci-

sion support methodology for the exemplary task of integrating sustainable energy tech-

nologies, which deals with the ambiguities that arise in opinion surveys on local imple-

mentations of these technologies. The methodology includes structured double surveys 

to help reveal ambiguities. Moreover, the approach suggests statistical analyses to identify 

socioeconomic factors driving the discrepancies. Based on the additional insights gained 

and the multicriteria decision analysis proposed, decision makers are offered multiple 

possibilities to decide how to take these ambiguities into account in order to fairly con-

sider citizen acceptance alongside other criteria. The cascading procedure to aggregate 

single-level surveys in multiple stages—each with the possibility for statistical analysis 

and specific parametrization of the aggregation—shows a structured, novel, and general 

way to approach similar challenges, and is therefore applicable in a wide variety of prob-

lems where ambiguities referring to a group of stakeholders may occur. The double sur-

veys in particular serve as a procedural innovation step (especially in the context of smart 

cities) to make precisely these ambiguities visible and workable. The evaluation of the 

suggested process flow by simulation of the survey behavior of artificial stakeholders and 

their changes in attitude over time proved the validity and applicability of the suggested 
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method on the one hand, and on the other showed a practicable means of evaluation when 

no real survey data or stakeholder participation is readily available. As is common for 

multicriteria decision analysis, this approach depends on the specific executing operator 

and, thus, can only provide the means to identify potential drivers of discrepancies. The 

resolution by determining weights and aggregating is subjective to the operator. 

Several directions for future work are apparent. The selection of socioeconomic fac-

tors in the context of statistical analyses of discrepancies regarding dominant factors, the 

treatment of marginalized groups, etc., is a topic that must be deeply researched. A bal-

anced composition of participants and the consideration of different groups each play a 

role, especially in the aggregation of the global and local survey results. It is essential to 

more closely examine how to deal with imbalances as well as, if necessary, a changing 

group composition. In addition to the pure information presentation of statistical anal-

yses, methodologies need to be developed that systematically support decision makers in 

deriving robust decisions or alternatives from the insights gained from statistics. These 

issues are the subject of current research, and will be further explored in the context of 

real surveys and studies at the methodological level, where data privacy and data protec-

tion are considered with utmost caution when dealing with socioeconomic data. Further-

more, plain correlations such as those seen in the discrepancy maps can easily be deter-

mined. However, complex statistical analyses may be difficult to perform and present to 

the decision makers in a meaningful way, thus causing further difficulties as to what to 

infer from the given information in a specific case. The results of these analyses influence 

both the values of the citizen acceptance criterion and its weighting in the multicriteria 

decision analysis. Transferring this knowledge to the personal preferences and weightings 

is a complex undertaking, and of course requires further research. Furthermore, against 

the background of iterative surveys with a representative or fixed stakeholder group, the 

handling of bias and associated distortions in the results should be systematically inves-

tigated. To illustrate the added value of our methodology, we set up an agent-based sim-

ulation framework to iteratively conduct global–local surveys and generate synthetic 

data, based on specific participant voting behavior derived from empirical data. For future 

work, it would be beneficial to gain more knowledge in this respect, or to work with real 

data that are elicited via several structured survey rounds. In particular, information on 

the actual socioeconomic characteristics of a sample group of participants would help to 

better uncover the potential of statistical analyses in terms of discrepancies, and to im-

prove approaches to processing the findings in order to make them useful for decision 

making. 

Moreover, general aspects referring to multicriteria-based decision making for sus-

tainable energy technology integration, including the selection and participation of ap-

propriate experts and stakeholders, is the subject of current and future interdisciplinary 

research. 
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