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Tailoring manufacturing processes to optimum part quality often requires numerous resource-intensive
trial experiments in practice. Physics-based process simulations in combination with general-purpose
optimisation algorithms allow for an a priori process optimisation and help concentrate costly trials on
the most promising variants. However, considerable computation times are a significant barrier, espe-
cially for iterative optimisation. Surrogate-based optimisation often helps reduce the computational
effort but surrogate models are typically case-specific and cannot adapt to different manufacturing situ-
ations. Consequently, even minor problem variations e.g. geometry adaptions invalidate the surrogate
and require resampling of data and retraining of the surrogate. Reinforcement Learning aims at inferring
optimal actions in variable situations. In this work, it is used to train a neural network to estimate optimal
process parameters (‘‘actions”) for variable component geometries (‘‘situations”). The use case is fabric
forming in which pressure pads are positioned to optimise the material intake. After training, the net-
work is found to give meaningful parameter estimations even for new geometries not considered during
training. Thus, it extracts reusable information from generic process samples and successfully applies it
to new, non-generic components. Since data is reused rather than resampled, the approach is deemed a
promising option for lean part and process development.
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1. Introduction and related work

Industrial manufacturing processes generally require careful
parametrisation for optimum operation in terms of part quality,
throughput or efficiency. In current practice, identification of such
optimum parameters employs resource-intensive, experience-
guided trial-error campaigns and often entails significant rework
for error correction. This holds all the more when processing com-
plex materials, such as textiles used for continuous-fibre reinforced
plastics (CoFRP). Additionally, growing demand for adaptive and
customisable production principles (‘‘mass customisation”) fos-
tered development of flexible manufacturing technologies, e.g.
additive manufacturing [1], modular production cells [2], adaptive
moulds [3] or mould-free technologies [4].

Besides technical readiness, flexible technologies also require
efficient approaches for production line ramp-up and process opti-
misation. For instance, Shamsaei et al. [5] study additive manufac-
turing and find that recurring optimisation tasks for ever-changing
geometries or materials, respectively, are a significant economical
barrier. They call for a comprehensive framework to ‘‘leverage
information from prior similar studies and . . .systematically char-
acterize the relation between process parameters and part features
so that the . . .process can be optimized in a more efficient manner”.
Recently, similar suggestions have emerged in other domains as
well, including but not limited to material forming [6] as addressed
in this work.

In textile forming, as in any other process, component geome-
try, material and process must match in mutual regard [7] and dif-
ferent approaches to ensure and optimise formability have
emerged. Among others they comprise qualitative design guideli-
nes [8], analytical formulae for simple cases [9], geometry analysis
tools [10] and inverse approaches which directly yield sets of form-
able shapes [11]. However, most established are simulations,
which broadly fall into two categories [12]: kinematic and
physics-based simulations. Kinematic methods (cf. [13,14]) are
computationally inexpensive but involve severe simplifications.
Their counterpart, physics-based simulations – often Finite Ele-
ment (FE) models – enable a rigorous virtual analysis of numerous
process dynamics and material peculiarities [15].

Their inherently digital nature beneficially allows a direct com-
bination with optimisation algorithms, which is often subsumed
under ‘‘virtual process optimisation”. While such approaches prin-
cipally enable an automatic identification of process optima [16],
the computational effort for iterative optimisation often renders
them impracticable in practice.

One option to reduce the numerical effort during optimisation
is surrogate-based optimisation (SBO) [17]. Surrogates are numer-
ically efficient, data-driven approximations of expensive simula-
tions based on input-output-observations. Once sufficiently
trained, optimisation can be done on the surrogate in short time.
Regarding material forming optimisation, metalwork applications
dominate literature. See [18] for a review. For composite materials,
most SBO-applications concentrate on structural optimisation, e.g.
stiffness or buckling characteristics [19,20]. To the author’s knowl-
edge, [21–24] are the first reports on surrogates for virtual process
analysis and optimisation in textile forming.

Although literature reports significant speed-ups through SBO,
current approaches are mostly application-specific and fall short
on reusability in new scenarios. Even subtle problem variations,
e.g. geometry variation in manufacturing, instantly invalidate the
surrogate and require resampling of data and reconstructing the
surrogate. Thus, demand for generalised models has been identi-
fied early on, e.g. in [25], and continues to be prevalent.

With the advent of advanced machine learning (ML) techniques,
first approaches towards generalisation and automation have been
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presented. For instance, [26] addresses variable materials in sheet
metal forming and [27] presents an ML-approach to select suitable
forming technologies for a given component geometry. Variable
process parameters are not considered, though.A surrogate-
approach for variable process parameters for a complex deep
drawn part is discussed in[28]. Unlike classical surrogate tech-
niques, the presented approach allows for a full-field assessment
of the strain distribution instead of a single performance metric.
The considered geometry remains constant, though. In [29] an
ML-approach for an automatic work-path generation for variable
geometries in tool-free ‘‘metal driving” is presented. Although
the results are convincing, the point-wise nature of the process
seems to restrict applicability to common tool-based processes
such as stamp forming. Thus, outside tailored solutions for niche
applications, the development of a surrogate framework for rapid
manufacturability assessment and process optimisation remains
an open field of research.

1.1. Scope of this work

This work proposes the combination of physics-based process
simulations with ML-techniques to extend classical SBO towards
variable instead of fixed manufacturing scenarios. The overall
aim is to train an ML-model to estimate optimal manufacturing
parameters for a new component geometry. To this end, a rein-
forcement learning (RL) approach from the prior work [30]is inves-
tigated. More specifically, an ML-model iteratively interacts with
generic sample geometries in a simulation environment. Thereby
it gradually learns which geometries require which parameter set-
tings.In addition to [30], this work employs validated and physics-
based FE-simulations instead of simplified models, investigates the
effect of different hyperparameters, analyses in detail the training
behaviour on component scale and evaluates the transferability to
new, non-generic components. Fabric forming with variable blank
holders (pressure pads) serves as a use case, although the approach
is in principle technology-agnostic.

The paper is organised as follows: Section 2 describes the RL
approach and the use case including a brief introduction of the
FE simulation model. Section 3 at first presents results of an algo-
rithm hyperparameter study and then discusses the algorithm’s
performance in two test scenarios. The work is summarised in Sec-
tion 4 and concludes with an outlook on possible next steps.

2. Methodology

2.1. Optimisation concept and general workflow

Classical surrogate-based optimisation. Formally, an FE process
simulation can be seen as a function ufem : P # Q which maps pro-
cess parameters P to a part quality metric Q. The goal during pro-
cess optimisation is to solve

p� ¼ argmax
p

ufem; ð1Þ

i.e. find a parameter combination p� 2 P which maximises the part
quality q 2 Q . In many cases P is high-dimensional and ufem non-
linear and non-convex. Under such conditions gradient-free optimi-
sation algorithms, e.g. evolutionary algorithms, can give good
results. Yet, they usually require many computation-intensive eval-
uations of ufem, which makes a direct application impracticable.
Surrogate-based optimisation (SBO) seeks to reduce the computa-
tion time by constructing a numerically efficient approximation –
a surrogate – and optimise on it instead of ufem. Usually termed
model ‘‘training”, the approximation is typically obtained by fitting
a preselected model function to a dataset of process observations.
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Different classes with countless sub-variations have emerged for
the model function ranging from simple polynomial regression to
advanced approaches such as support vector machines [17].

Proposed optimisation workflow with reinforcement learning.
Although SBO generally increases optimisation efficiency, current
surrogates are inevitably task-specific. Consequently, any task-
variations, e.g. a geometry change from g1 2 G to g2 2 G, instantly
invalidates the surrogate, which in turn impedes efficient explo-
ration of different part and process designs. As a remedy, this work
suggests the construction of a more generalised process-surrogate

P : G# P; ð2Þ

which accepts a geometry g 2 G as input and directly estimates
optimal process parameters p�.

Like a regular surrogate, P is constructed using process sam-
ples. While any surrogate technique could model P, this work
deliberately employs deep neural networks for the following rea-
sons: First, they are universal approximators [31]. That is, given
sufficient data, they can reproduce any continuous function
regardless of its complexity. Second, due to their remarkable mod-
elling capacity, a rich corpus of efficient training algorithms is at
disposal and, third, comprehensive open-source libraries allow
for convenient and efficient implementation [32]. Eventually, spe-
cialised subtypes of neural networks exist, which take advantage of
certain data structures, e.g. images.

Fig. 1 visualises the approach. In the following, circumflexes dis-
tinguish estimated from ground truth values, asterisks denote (es-
timated) optima and vertical bars imply ‘‘evaluated for”. For
instance, p̂�jg denotes the estimation of optimal parameters for
geometry g. During training, P is iteratively presented different
geometry samples g from a predefined geometry set G and esti-
mates the according optimal process parameters p̂�jg . A process

simulation ufemðp̂�Þjg then evaluates the obtained part quality q.
The ML-literature usually refers to q as ‘‘reward”. Overall, P aims
to maximise q to make optimal parameter recommendations per
geometry more likely over time. The ultimate goal after training
is to give process parameter recommendations even for ‘‘new”
geometries outside the training data. In ML, the overall approach
is known as ‘‘Reinforcement Learning” (RL).

Traditionally, RL is an approach to solve an incompletely-known
Markov decision process (MDP) and originates from control theory
Fig. 1. Training and application scheme of the envisaged ML-model P. During
training P learns to relate individual geometries g 2 G to their optimal process
parameters. After training, it can give meaningful process recommendations even
for ‘‘new” geometries.
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[33]. More recently, it has also drawn attention in neighbouring
disciplines such as engineering optimisation, see e.g. [34] for
chemical reactions and [35] for material processing, in which RL-
algorithms successfully substitute classical optimisation algo-
rithms for a fixed optimisation task. See also [36] for a review on
RL in production systems. In this work, the overall aim of RL is to
extract manufacturing similarities from generic parts and apply
them for efficient process optimisation of a multitude of new,
non-generic parts. That is, unlike prior work, variable instead of
fixed optimisation tasks are addressed.
2.2. Use case ‘‘fabric forming”

2.2.1. Process overview
Continuous-fibre reinforced plastics (CoFRP) are increasingly

applied in load-bearing structures, yet their complex and non-
linear material behaviour requires diligent process optimisation
for defect-free manufacture. Thus, CoFRP-manufacture is deemed
a relevant use case, although the envisaged RL-assisted optimisa-
tion approach is in principle not restricted to a certain process
technology.

CoFRP-processing generally comprises multiple steps and often
involves a stamp-forming step of a textile. This work focusses on
stamp forming of a dry woven fabric (‘‘preforming”), an important
process step during Resin Transfer Moulding (RTM) [37]. As woven
fabrics generally show low shear resistance, (trellis-) shear is the
predominant in-plane-deformation mode, usually quantified by
the shear angle c12 (cf. Fig. 2).

Due to progressive yarn compaction and according in-plane
compressive stress accumulation, woven fabrics show a material-
dependent shear limit, the ‘‘locking angle” clock12 [39]. Shearing
beyond clock12 significantly increases the likelihood of forming
defects such as wrinkling or textile folding [40]. Also, yarn com-
paction reduces resin permeability during subsequent infiltration
and may lead to so-called ‘‘dry spots”. Adverse appearance aside,
such defects may significantly impair the component’s load-
bearing capacity [38,41].

One option to improve the forming result and mitigate defects
are restraining forces which control the local material draw-in dur-
Fig. 2. Visualisation of textile deformation: a) plain-weave fabric before and after
shearing (close-up), b) shear angle definition, c) example of textile wrinkling [38].



Fig. 3. a) Schematic illustration of an exemplary process simulation setup for blank holder assisted draping with applied symmetry conditions. b) Parameter definition for the
box-geometries (width wg and length lg) along with geometry examples for visualisation.
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ing tool stroke. Active or passive systems can introduce these
forces [42] such as textile grippers [43], clamping systems [44],
drawbeads [45] or global blank holders [46,47]. If adjusted appro-
priately to geometry and material, these forces evoke local tensile
stresses in the textile which alleviate defects to a certain extent.
Despite comprehensive knowledge on underlying physical mecha-
nisms only little and mostly qualitative guidance is available on
how to identify optimal parameters for a given geometry.
2.2.2. Simulation task
Setup. The studied use case is optimisation of two pressure pad

positions p ¼ ðp1; p2Þ during draping of a woven fabric single layer
into corners of variable cuboid geometries g (‘‘boxes”, cf. Fig. 3 a).
The quadratic pressure pads (25� 25 mm) can be positioned along
the component perimeter with 25 mm distance to the stamp open-
ing line. A Coulomb friction law with a constant, isotropic coeffi-
cient of friction of 0:25 and pad downforces of 7 N impose
tangential stresses which control the deformation of the fabric dur-
ing draping. The deliberately double symmetric scenario enables
symmetry constraints for reduced computational effort.

The fabric is quadratic and measures wf � lf ¼ 600� 600 mm in
width and length with a constant thickness of 0.3 mm. Warp and
weft direction align with the x- and y-axes, respectively. To facili-
tate engineering interpretation of the results and the RL-algorithm
behaviour, this work focuses on cuboid geometries whose corners
are deliberately severe in order to evoke strong defect tendencies
(cf. Fig. 3 b)). While the geometries’ height is fixed (150 mm),their
width wg and length lg are bound relative to the fabric by
1
6 6

wg
wf
;
lg
lf
6 1

2. Within these bounds Latin Hypercube Sampling

ensures a space-filling sampling of the geometry parameters.
Simulation model. Regarding forming simulation, a macroscopic

FE-based modelling approach is utilised, which allows for the con-
stitutive description of relevant deformation mechanisms of the
studied fabric. The simulation model, comprising parameterised
membrane, bending and contact models for the balanced plain
weave carbon fabric T700SC-12K-50C by ZOLTEK, is embedded
within the commercially available FE-solver ABAQUS/EXPLICIT using

VUMAT and VUGENS user-subroutines.
Superimposed membrane and shell elements account for the

textile-typical decoupling of membrane and bending behaviour.
Membrane behaviour [48] is implemented using a hyper-
viscoelastic material formulation, which correctly accounts for
fibre reorientation under large deformation. Shear locking is
addressed by a non-linear shear modulus. Bending behaviour is
implemented using a hypo-viscoelastic formulation coupled with
a Voigt-Kelvin approach in a non-orthogonal, curvilinear fibre-
parallel frame [49]. Both, membrane and bending behaviour have
4

been validated in experiments, cf. [48,49]. ABAQUS’ built-in general
contact algorithmmodels the tool-ply interface. The tools are mod-
elled as rigid surfaces and close in 2 s at constant speed.

Model generation. An in-house developed, PYTHON-based frame-
work [50,51] is used for fully automatic model generation, solution
and result evaluation. It further enables concurrent handling of
multiple jobs to keep the overall computation time within reason-
able bounds. Please note that the applied symmetry conditions
may confine process manipulability. As discussed in e.g. [52]
allowing for asymmetric material intake leads to a wider range
of forming results than a strictly symmetric intake. Exploiting sym-
metry for numerical efficiency thus inadvertently limits the pro-
cess optimisation potential. However, this concession is deemed
acceptable since evaluation of the general applicability is priori-
tised over optimisation impact. Once the methodological principle
is validated, follow-up work may address a wider range of process
conditions or geometries.
2.2.3. Optimisation task for the use case of stamp forming
Part quality definition. Any process optimisation requires at least

one scalar part quality measure q for maximisation or minimisa-
tion, i.e. the objective function. In fabric forming optimisation,
the shear angle c12 is a frequently used proxy for defect formation
(cf. Section 2.2). More specifically, it is common practice to evalu-
ate the maximum shear angle cmax

12 for optimisation [16].
However, cmax

12 loses expressiveness near the locking angle
(cmax

12 � clock12 ) since forming defects such as wrinkling may continue
to grow although cmax

12 remains practically constant. Hence, this
work applies the modified mean Gaussian curvature j as proposed
by Haanappel [53] as a direct quantification of local fabric wrin-
kling. In accord with the forming literature [51,49], curvature eval-
uation takes place just before tool closure (80% tool stroke) when
wrinkles are well pronounced.

As j is a field quantity it requires mapping to a scalar quantity
for optimisation. In theory, the maximum curvature jmax could be
evaluated, yet in practice this proves erratic and susceptible to
physically implausible outliers. In such cases literature recom-
mends characterising the defects by a global statistical distribution
instead of a local criterion [54]. Fig. 4 shows a histogram of all fab-
ric elements’ j along with an exemplary forming result for visual-
isation. While the vast majority of the fabric experiences mild
curvature, only few elements show severe curvature.

Under such conditions, literature suggests evaluating a suffi-
ciently high quantile jqnt of a fitted Weibull distribution as a proxy
for maximum curvature [54]. Fig. 4 shows an exemplaryWeibull fit
along with the 99%-quantile jqnt as used in this work to repro-
ducibly quantify part quality q, i.e. jqnt ¼ q ¼ ufem.



Fig. 4. Exemplary fabric forming result and histogram of the local fabric curvature
j. The histogram also shows a fitted Weibull distribution, whose 99%-quantile
quantifies part quality during optimisation.
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2.2.4. Temporary substitute function for efficient hyperparameter
tuning

The performance of neural networks depends on an appropriate
adjustment of so called hyperparameters, e.g. number of neurons
per layer. They are typically determined empirically by parametric
studies which requires numerous algorithm trials and simulations.
Since each evaluation of ufem (simulation run) takes about 20 min
to complete, hyperparameter tuning could become prohibitively
expensive when done directly on ufem. However, in this work the
deliberate simplicity of the geometries allows to engineer a substi-
Fig. 5. a) Example visualisation of the process variation through repositioning of pressu
obtained through full-factorial sampling of all possible pad positions.

5

tute function usubjg , which temporarily replaces ufemjg during
hyperparameter tuning (Section 3).

To outline the underlying reasoning, the objective function
ufemjg of an example geometry g is visualised through a full-
factorial (FF) sampling of all possible pad positions: Fig. 5 a) illus-
trates the variation of the pad positions p1 and p2 for an example
geometry g and Fig. 5 b) shows the according contour plot of
ufemjgðp1; p2Þ for 13� 13 different pad positions. Please note that
the FF-samples serve for visualisation only. They are in no way
involved in algorithm training. Clearly, ufem shows a distinct min-
imum and diagonally above two maxima. The yellow marker in
Fig. 5 a) and b) relates pad position and ufem. Imagined movements
of the marker, e.g. during optimisation, simultaneously reposition
the pads and alter ufem.

The overall shape ofufem with minima andmaxima can be qual-
itatively reproduced by an analytical function

usubðpÞjg ¼ usubðp1; p2Þjg
¼ usub

1 ðp1Þjg þusub
2 ðp2Þjg

ð3Þ

wherein

usub
1;2 ðp1;2Þjg ¼

1
2

exp a1;2jg
� �

� exp b1;2jg
� �h i

ð4Þ

In essence, Eq. 3 is a sum of shifted (Gaussian) bell curves. It is
designed to qualitatively mimic ufemjg and its location of maxima
re pads. b) Contour plot of the objective function ufem jg of an example geometry g
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and minima for a geometry g of width wg and length lg. It is addi-
tionally normalised to the interval ½�1;1� for value-wise distinction
from ufem. The coefficients, the underlying rationale and a compar-
ison betweenusub andufem are given in the Appendix. Once suitable
hyperparameters are found, usub is discarded and training takes
place on physics-based simulations ufem.
2.3. Two-step ML-model for P

An automatic part evaluation, as aspired in this work, requires a
geometry representation format. Several approaches have been
developed in the past, which broadly split into local and global
descriptions. Local approaches often describe the geometry by
individual points with fundamental properties such as principal
curvatures. This point-wise description suits well point-wise pro-
cesses such as metal-driving [29]. However, interactions of neigh-
bouring geometric features are observed in stamp forming, which
point-wise approaches cannot describe. Thus, geometry descrip-
tions on component level have emerged.

In some cases, geometry parameters, e.g. corner radii or aspect
ratios, can efficiently describe component features [6,55]. While
this may be sufficient in some cases, such approaches are always
restricted to a predefined parameterisation scheme and thus
hardly transferable to arbitrary geometries. Other geometry repre-
sentations localise distinct features, e.g. cutouts or beads, and
quantify their relative position [56]. Although complex geometries
can be encoded, such approaches still rely on hand-crafting fea-
tures and prove susceptible to modelling errors. As a remedy,
ML-inspired approaches have been proposed,e.g. [57,58,27,59],
which suggest non-parametric geometry encoding in grid-
structured data such as pixels or voxels.

Such grid-based approaches can efficiently retain spatial rela-
tions, which often govern manufacturing scenarios. In case of tex-
tile forming, a close correlation between component curvature and
material strain can be observed. A collision-free tool closure
requires an undercut-free component geometry and allows for pro-
jection into the tool-plane. Grey-scale values can quantify the local
elevation above the tool-plane similar to a topographic map
(Fig. 6). Likewise, grey-scale values represent the material strain
field of the simulation with each pixel representing an element’s
shear angle c12. See[59]for details on the encoding scheme.
Fig. 6. Image-based implementation of function P with two sub-functions lML
1 and

lML
2 inspired by[59,30]. After conversion to a topographic map, lML

1 interprets the
geometry g and yields an estimation of the shear angle distribution s. Subsequently,
lML

2 estimates optimal process parameters p̂� on the basis of s.
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Convolutional neural networks (CNNs), a sub-type of neural
networks specialised in image processing, are deliberately
designed to identify patterns in spatially structured data. See
[60] for a detailed discussion of CNNs. Given a sufficient number
of layers and templates (‘‘deep” network), complex relationships
can be encoded. In this work, CNNs learn the relation between
(box-) geometries, forming results and optimum process parame-
ters. More specifically, the envisaged function P consists of two
composed sub-functions lML

1 and lML
2 , each implemented as a

CNN (Fig. 6):

p̂� ¼ PðgÞ ¼ lML
2 lML

1 ðgÞ� � ð5Þ
At first, lML

1 evaluates a geometry grey-scale-image g and
returns an estimation of the spatial shear angle distribution s.
Then, lML

2 evaluates s and yields a process parameter recommenda-
tion p̂�. This work concentrates on lML

2 and uses an existing, pre-
trained implementation of lML

1 from the prior work [59].

2.4. Training of lML
2 by reinforcement learning

Formal concept of reinforcement learning. The function lML
2 shall

learn to estimate optimal process parameters given an estimated
forming result s ¼ lML

1 ðgÞ. From an RL-perspective, this corre-
sponds to finding a function – often termed ‘‘policy” – which yields
the optimal action p� (process parameters) in a given state s (form-
ing result). The optimal action is the one that yields the maximal
reward q (part quality)

lML
2 ¼ argmax

p
qðs;pÞ: ð6Þ

This work assumes constant process parameters p, i.e. p is set
once and kept constant during the tool stroke. Consequently, only
a single decision must be taken and state transitions do not occur.

For completeness, please note that other process technologies
may require parameter variations over time, though. For instance,
consider in-situ adaptions of the tool closing speed to avoid defects
from excessive or uneven cavity pressures. In such cases, the pro-
cess passes through a whole sequence of states (pressure distribu-
tions) and according actions (increase/decrease speed), which can
be seen as an MDP. It can also be solved using RL but goes beyond
the scope of this work.

In theory, classical optimisation techniques could solve Eq. 6. As
this is usually time-consuming, Actor-Critic-techniques eliminate
the optimisation by parametrising lML

2 , e.g. through a neural net-
work with adjustable weights h, and gradually tuning h in direction
of increasing part quality q during training.

Network training. The training scheme is visualised in Fig. 7 and
outlined in the following. In one training iteration i, at first new
observations for each geometry g 2 G are generated. To this end,
lML

1 draws a sample g from the geometry set G and estimates the
forming result s (shear angles). Then, lML

2 interprets s and infers
a parameter recommendation p̂jg . An according forming simulation

ufemjgðp̂jgÞ determines the resulting quality q. Eventually, the
observation tuple fs; p̂jg ; qg is appended to a process memory M.
The procedure repeats for the remaining geometries in G.

The subsequent network training involves two networks: the
desired network lML

2 (the ‘‘actor” in RL terms) and an auxiliary net-
work lML

aux : S;A# Q (‘‘critic”). At first, the critic-parameters hML
aux are

adjusted to match the observations in the memory M. See [30] for
details of its training. The updated critic then provides information
to compute the gradient rhq for the actor-update, i.e. the direction
of increasing quality q:

hML
2; iþ1 ¼ hML

2; i þ g rhq: ð7Þ



Fig. 7. Training scheme of lML
2 : Process parameters p are either inferred by the

actor lML
2 (‘‘exploitation”) or drawn randomly (‘‘exploration”). A simulation

ufem jgðpÞ evaluates the according quality q and completes a new observation for
the memory M. Based on M, the critic is updated and provides gradient-information
for the eventual actor update.

Fig. 8. Evolution of �usub
v for different learning rates g. Best performance is observed

for g ¼ 10�4 with which �usub
v decreases most rapidly, yields the lowest value of �usub

v

and shows least scatter.

Fig. 9. Visualisation of data augmentation through mirroring (top view). a) Before
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Therein, g represents the step size (‘‘learning rate”). As it controls
both training stability and speed, g is an important hyperparameter
to tune (cf. Section 3.1). A detailed derivation of rhq is given in the
Appendix.

The network parameters hML
2 are initialised randomly. Thus,

gradient-information will be of low significance at training begin
and a direct application of Eq. 7 most likely makes lML

2 approach
the local minimum in closest proximity (‘‘exploitation”) without
searching the parameter space for better, ideally global optima
(‘‘exploration”). To reconcile this exploration-vs-exploitation
dilemma, this work employs a variant of ‘‘e-greedy” exploration:
Actor updates (Eq. 7) are delayed until the critic has reached suffi-
cient accuracy. Prior work hints itrn ¼ 60 iterations sufficient [30].
Until then, parameters are drawn randomly from a uniform distri-
bution UðPÞ only. Once the actor training starts (itrn > 60), the
chance e 2 ½0;1� of probing random parameters gradually
decreases until lML

2 acts virtually deterministic (e � 0). See [30]
for implementation details.
and b) after mirroring about the x-y-bisector (dashed line). Both yield the same part
quality q.

Fig. 10. Evolution of �usub
v for different data treatments (no treatment, data doubling

and mirroring). Mirroring significantly improves both learning speed and final
result of �usub

v at negligible cost.
3. Results and discussion

The results split up into two parts: Hyperparameter studies for
best practices during training (Section 3.1) and assessment of opti-
misation performance in the draping use case (Sections 3.2 and
3.3).

3.1. Algorithm hyperparameter study using usub

ML-algorithms require tuning of hyperparameters for optimal
learning performance, typically through extensive parametric
studies. As this becomes time-consuming with actual simulations
ufem, the substitute function usub (Section 2.2.4) is used instead.
Results hint three hyperparameters as most decisive: The learning
rate g, data augmentation and the number of training geometries
nT. As individual learning runs scatter (random network initialisa-
tion), ten independent runs are performed for each hyperparame-
ter configuration and their average �usub is evaluated.

In order to test lML
2 ’s optimisation performance on new geome-

tries, this work considers five separate validation box-geometries
gsub
v1...5. The validation geometries stem from a separate Latin Hyper-

cube Sampling of the box-geometries’ width wg and length lg and
resemble the geometry samples in Fig. 3b). Owing to the separate
sampling, they are not part of the training geometries and always
7

new to lML
2 . In the following plots, solid lines show the average per-

formance �usub
v of lML

2 across the validation geometries gsub
v1...5 during

training. The shaded areas visualise the according 95 %-confidence
interval.
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Learning rate. According to [60], the learning rate g (step-size) is
one of the most relevant hyperparameters with a suggested value
range 10�6 < g < 1. In general, smaller values stabilise learning but
in turn significantly prolong training. Typically, complex problems
require smaller learning rates and thus g allows for a rough qual-
itative assessment of problem complexity.

Fig. 8 shows the evolution of �usub
v for g ¼ 10�3;10�4;10�5.

Lower and higher values did not show any convergence at all
and are thus omitted for readability. After the initial exploration
phase (i 6 itrn), the graphs decline rapidly before they asymptoti-
cally approach a constant value. The highest learning rate
g ¼ 10�3 performs worst (highest final value, most scatter). Best
performance is observed for g ¼ 10�4. Not only yields it the best
(i.e. lowest) final value (�usub

v � �0:8), it also converges the fastest
and shows least scatter. Comparison to the suggested range
10�6 6 g � 1 implies a medium-complex learning problem.

Data augmentation. The second aspect concerns the use of data
augmentation strategies. In general, ML algorithms benefit from
larger datasets, yet in many situations, data is scant and acquisition
of further samples is expensive. In ML a common strategy to
improve performance is to conjure additional data by careful vari-
ation of existing data. For instance, in image recognition transfor-
mations such as mirroring, image rotation or distortion can be
applied [61].
Fig. 11. Bar plot of the best (lowest) value of �usub
v for different numbers of training

geometries nT in G. Increasing nT initially improves �usub
v until it stays practically

constant from nT � 14 on.

Fig. 12. Visualisation of the objective function ufem (contour plot) and lML
2 ’s parameter r

allows for convergence assessment of ufem.

8

In this work, any augmentation strategy must retain the pixels’
spatial information. Thus, eligible operations reduce to rotation
and mirroring. The applied symmetry conditions, cf. Fig. 3 a), pre-
clude rotation operations, leaving mirroring about the x-y-bisector
as the only available augmentation option. The studied textile ZOL-

TEK T700SC-12K-50C is a balanced, plain weave fabric. This implies
identical membrane and bending behaviour in warp- and weft-
direction[62,63] and yields an additional symmetry plane at 45 �
(dashed line). Thus, original and mirrored configuration give iden-
tical, yet mirrored, forming results ufem. Fig. 9 visualises the
concept.

Fig. 10 visualises the impact of data augmentation on the learn-
ing performance. It shows three different dataset configurations:
original data (no treatment), mirrored (augmented) data and dou-
bled data. The latter refers to original data which is merely copied
and appended to the dataset. Thereby no additional information is
introduced, yet the dataset is of the same size as the augmented
dataset. This prevents possible graph distortions from unequal
dataset sizes, as can be seen when comparing original to doubled
data. Although they use the same information content, the doubled
dataset seems to outperform original dataset (faster decline). Yet,
this is a premature conclusion as the dataset size directly determi-
nes the number of network adjustments per iteration (i.e. training
speed). For a valid ‘‘mirrored-vs-original”-comparison equal data-
set sizes must be ensured – here done by ‘‘data doubling”.

Both graphs, doubled and mirrored data, initially decline at the
same rate, yet final values differ: The doubled data approaches
�usub

v � �0:5 while the mirrored data achieves �usub
v � �0:85. Hence,

exploitation of known symmetries (data augmentation) indeed
introduces new, usable information and significantly improves
the learning result at low cost. Note that in this work, only one
symmetry plane can be exploited. Yet the impact of data augmen-
tation expectedly grows when more symmetries are present.

Training geometries. The third factor on training performance is
the number of training geometries nT in the geometry set G. Using
only few training geometries most likely does not provide suffi-
cient information for generalisation. Conversely, when already
using many geometries, adding even more geometries probably
introduces only little additional information. Thus, a threshold
number of training geometries must exist, which provides just suf-
ficient information for generalisation.
ecommendations (markers) during training for training geometry gfem
t1 . The line plot
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To validate this hypothesis, lML
2 is trained with

nT ¼ 8;10; . . . ;20 geometries in G: The obtained graphs resemble
the previous plots, i.e. initial descent followed by an asymptote.
However, significant differences appear regarding the final values
of �usub

v which the bar plot in Fig. 11 summarises.
Overall, adding geometries to G always improves �usub

v , yet the
first additional geometries contribute most. This supports the
above intuition of a ‘‘marginal utility” of geometries. More specif-
ically, from nT ¼ 14 on, the �usub

v remains approximately constant.
This hints a threshold of geometry samples, beyond which addi-
tional geometries contribute just little additional information. In
general terms, the results suggest that a finite number of geometry
samples nT in G holds sufficient information to analyse any new
sample from G. Although nT will probably grow with complexity
of G, the results hint that it will remain finite. Note that this finite-
Fig. 13. Visualisation of the objective function ufem (contour plot) and lML
2 ’s parameter

gfem
v1...3. The line plot allows for convergence assessment of ufem.

9

ness is a necessary precondition when aiming for a fully geometry-
independent surrogate in the long term.
3.2. Algorithm deployment on FE-simulations

The hyperparameter studies in the previous section reveal a
promising RL-configuration for training on ufem (FE-simulation).
In accord with Section 3.1, training involves nT ¼ 14 geometries
per iteration i with imax ¼ 150 iterations in total. Data augmenta-
tion is also applied. Intermediate evaluations of lML

2 on the training
and validation geometries allows monitoring the training progress.
In the following, testing results are first discussed for one exem-
plary training geometry gfem

t1 followed by three validation geome-
tries gfem

v1...3.
recommendations (markers) during training for (unknown) validation geometries
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Training geometries. Fig. 12 shows a contour plot of ufem (objec-
tive function) obtained through full-factorial sampling along with a
plan view of the geometry dimensions analogous to Fig. 5. As
before, these full-factorial samples serve for visualisation only.
Markers visualise lML

2 ’s parameter recommendations over the
course of training. Their hue denotes the order of appearance dur-
ing training.Analogous to �usub

v in Section 3.1, the line plot on the
right visualises ufem to assess convergence.

The plots show a successful optimisation: The markers initially
appear almost random with significant scatter, then begin to con-
centrate and eventually accumulate around the optimum. As a
result, the convergence plot initially (60 < itrn < 80) shows some
wavering around ufem � 5:2� 10�2mm�1 before it decreases by
� 13% within 30 iterations (80 < itrn < 110) to an approximately
constant value of ufem � 4:5� 10�2mm�1. Analogous results are
obtained for the other training geometries, which leads to the con-
clusion that lML

2 is able to estimate optimal parameters for a range
of ‘‘known” geometries.

Validation geometries. For assessment of lML
2 ’s performance on

‘‘unknown” geometries Fig. 13 gives analogous plots for three val-
idation geometries gfem

v1...3.
Fig. 14. a) Visualisation of lML
2 ’s parameter recommendations p̂� for the five test geome

length. Sub-image c) and d) show ufem for the ’limit’-geometries ~g1;5. A blue marker show
after training.

10
Overall, the observed behaviour resembles Fig. 12, yet two
remarkable differences prevail: First, unlike the training geometry
gt1, the markers approach the optimum but do not exactly pinpoint
it. More specifically, in Fig. 13 a) p�

1 and p�
2 are over-, and in c) and

b) underestimated. Second, the initial wavering around the con-
stant value of ufem takes a little longer (60 < itrn < 100). This sug-
gests that lML

2 requires more training iterations to also improve
on the validation geometries gfem

v1...3 compared to the training
geometries gfem

ti .
The differences are well explicable bearing in mind the differ-

ence between gfem
t1 and gfem

v1...3: Since gfem
t1 is part of the training

geometries, lML
2 directly explores the corresponding objective

function ufemjgfemt1
during training. Thus, evaluating lML

2 on gfem
t1

solely amounts to ‘‘recalling” information from a previous (i.e.
‘‘known”) process situation. In contrast, the validation geometries
gfem
v1...3 are not part of the training geometries and their objective

functions ufemjgfemv1...3
are ‘‘unknown” to lML

2 during testing. Conse-

quently, lML
2 must make statistical inference on the basis of previ-

ous training situations, which introduces certain deviations. Yet
these deviations are deemed acceptable as lML

2 ’s recommendations
are always near-optimal.
tries ~g1...5 shown at the bottom, b) their contour line for comparison of height and
s the true optimum p�

fem and a yellow marker lML
2 ’s parameter recommendation p̂�
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Overall, lML
2 is capable of extracting overarching process pat-

terns from the supplied training geometries in G and utilises them
for unknown (validation-) geometries.
3.3. Transferability outside the training geometry class

Having tested lML
2 ’s performance on unknown geometries

inside the training geometry-class of boxes (gfem
v1...3 2 G), this section

discusses its prediction performance on five geometries outside
this class, i.e. ~g1...5 R G. The gallery at the bottom of Fig. 14gives
a visual impression. Starting with a rather compact geometry ~g1,
they stepwise elongate in y-direction by 20 mm per step. For the
first two steps, also their height and width reduce by 10 mm and
their tips morph from conical to spherical. Sub-image b) shows
their contour line (silhouette) in the yz-plane for visualisation.
The geometries ~g1...3 are generated by rotating this contour about
the y-axis; the geometries ~g4;5 additionally feature a non-
rotational, trapezoidal part in the centre. The last geometry ~g5 is
identical to the double-dome gdd, a common benchmark geometry
in fabric forming. It features several forming-relevant characteris-
tics, e.g. non-, single- and double-curved areas. Note that ~g1...5 are
all near-convex and thus show qualitatively a forming behaviour
similar to the training box-geometries.

Fig. 14 a) plots lML2’s parameter recommendations p̂� with a
yellow marker for each geometry. Similar to the boxes, p̂� moves
– with some wavering – in positive y- and negative x-direction
as the geometries stretch. To validate the optimality of the recom-
mendations, the subplots c) and d) give ’omniscient’ contour plots
ofufem (objective function) for the ’limit’-cases ~g1 and ~g5 analogous
to Fig. 5. The ochre-shaded area marks their bounding box for com-
parison with previous plots; the dashed line outlines its plan-view
contour. A yellow marker locates lML

2 ’s parameter recommenda-
tion p̂�, a blue marker the actual optimum p�

fem observed during a
full-factorial experiment.

Although slightly overestimated, lML
2 ’s parameter recommenda-

tions p̂� are in vicinity of the actual optima p�
fem and react in a plau-

sible way to geometry variations. Thus, lML
2 ’s recommendations are

deemed useful suggestions even for geometries outside the train-
ing geometry-class of boxes. Note that lML

2 has only been trained
on boxes (Section 3.2). This implies that the employed RL-based
approach has successfully extracted tacit process-knowledge from
process-samples and is able to apply it to new situations. This
applicability across geometries significantly enhances current sur-
rogate capabilities, which are typically geometry-specific ‘‘one-
off”-models. Follow-up research may further investigate, if a
component-specific continuation of training refines lML

2 ’s initial
recommendations so that they converge to the actual optimum
similar to a classical surrogate during optimisation.
4. Conclusion

This work presents a Reinforcement Learning (RL) based
approach for estimation of optimal manufacturing parameters for
variable component geometries. In this case study, pressure pads
must be positioned to optimise the material draw-in during fabric
forming. Unlike classical surrogate-based optimisation (SBO) the
presented approach trains a function P which takes the compo-
nent geometry as input and directly estimates optimal process
parameters (output). The range of considered geometries is delib-
erately simplified to cuboid boxes to facilitate engineering inter-
pretation. Algorithm training takes place on an FE-simulation
environment.
11
Two aspects became evident during hyperparameter tuning.
First, data augmentation can be used to improve training perfor-
mance. Second, a finite number of training geometries introduces
sufficient information to train P – a necessary precondition for
algorithm generalisability. After deployment on FE-simulations,
the results hint that P gives useful parameter estimations for
geometries inside and – to a certain degree – outside the training
geometry class. This implies that the proposed approach is gener-
ally capable of extracting process ‘‘knowledge” from supplied pro-
cess samples and applying it in new situations.

Further development is still envisaged. One important issue
addresses the set of training geometries G. Presumably, P’s appli-
cability shrinks with growing dissimilarity to training situations.
On top of a profound criterion for validity limits, improvements
on the generalisation capabilities are desirable. To this end, trans-
fer learning has proven a data-efficient option[64]. Another option
is to study the effect of different classes of training geometries G
and identify, which geometry characteristics introduce most infor-
mation for maximal generalisability [65]. A second aspect concerns
component-specific algorithm refinement. Although generally rea-
sonable, the parameter estimations are not strictly optimal (cf. Sec-
tion 3.2). Thus, a follow-up study may evaluate whether – and if so
how fast – P converges to the actual optimum upon component-
specific continuation of training.

Overall, numerical process simulation combined with ML-
techniques appears a viable option to facilitate virtual engineering
at early stages of product development.
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Appendix A

A.1. Derivation of the substitute function usub

The top of Fig. 15 shows ufemðpÞ for two geometries g1 and g2.
The ochre-shaded areas demarcate the plan view dimensions of
g1;2. By comparing the two contour plots a relation between geom-
etry dimensions (grey marker) and process optimum (blue marker)
becomes apparent. More specifically, an approximately constant
offset Dp� (black arrow) between both is observed. Analogous anal-
yses with additional geometries confirm the correlation.

This observation also aligns with the experimental and numer-
ical findings in [44,16]. They report optimal positions of blank
holders just next to doubly-curved areas, such as corners. Restrain-
ing forces at these positions counteract the material flow into the
shear zone and thereby reduce shear deformation.



Fig. 15. Juxtaposed objective functions for two different geometries g1 and g2 obtained from FE process simulations ufem (top) and the devised substitute function usub

(bottom) for temporary replacement of ufem during hyperparameter studies.
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This offset is used to construct an analytical function for the
forming result usubðpÞjg as a temporary substitute for expensive

simulations ufemjg , cf. Eq. 3. The exponents in Eq. 8 are given as

a1;2jg ¼ aðp1;2Þjg ¼ � p1;2�~p1;2 jg
5

� �2

b1;2jg ¼ bðp1;2Þjg ¼ � p1;2�p�1;2 jg
5

� �2
:

ð8Þ

Therein ~p1jg ¼ wg and ~p2jg ¼ lg denote the worst and
p�
1jg ¼ wg � Dp1� and p�

2jg ¼ lg � Dp2� the optimal positions (green
marker) per geometry g with Dp1;2� ¼ 30 mm. For comparison of

with ufem contour plots of usub are given at the bottom of Fig. 15.

A.2. Calculation of the gradient rhq

The gradient rhq in Eq. 7 is obtained as follows: Following the
chain rule from calculus it can be cast as

rhq ¼ rp q 	 rhp: ð9Þ
Therein, the first factor rp q is the gradient of the critic lML

aux w.r.t.

process parameters p ¼ ðp1;p2; . . .ÞT, i.e.

rp q ¼ @q
@p1

;
@q
@p2

; . . .

� �T

¼ @lML
aux

@p1
;
@lML

aux

@p2
; . . .

� �T

ð10Þ

and the second factor rh p is the Jacobian of the actor lML
2 whose jl-

th entry is the partial derivative of the j-th process parameter pj w.r.

t. the l-th actor parameter hML
2 l :
12
@pj

@hML
2 l

¼ @lML
2 j

@hML
2 l

ð11Þ

As discussed in [66], Eq. 9 is a policy gradient, i.e. its repeated appli-
cation yields a policy which optimally solves an MDP.
Data availability

The raw and processed data required to reproduce these find-
ings cannot be shared at this time as the data also forms part of
an ongoing study.
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