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Abstract: This paper presents results of an experimental investigation on pressure drop and heat trans-
fer for a wide range of Reynolds and Prandtl numbers ranging from 8 < Pr < 60 and 40 < Re < 3500,
for flat tubes without and with passive inserts. For three different kinds of passive insert designs,
the impact on heat and momentum transfer due to coaction of the total set of passive inserts with
different shape and amount was investigated. Experimental results were analyzed regarding two
main aspects: Heat transfer mechanisms and pressure drop induced by friction and form drag forces
due to the presence of different shapes. After heat and momentum transfer mechanisms for each
passive insert design were analyzed, heat transfer and pressure drop enhancement were compared to
each other, leading to an efficiency discussion. Different concepts for efficiency evaluation, which are
cited in literature, were applied to the presented experimental data. Pros and cons of the different
concepts are discussed. Finally, we propose an equation for evaluation of total performance, which
fully respects the energetic and exergetic aspects of heat transfer and pressure drop enhancement.

Keywords: heat transfer coefficient; pressure drop; flat tubes; passive inserts; energy; exergy;
momentum and heat transfer; efficiency

1. Introduction

Numerous investigations on heat and momentum transfer with passive inserts in tubes
and pipes have been published in the past. Many of them deal with the influence of the
shape or the arrangement of single passive inserts inside the channels, using experimental
or numeric methods. Most of those investigations are focused on the fully turbulent flow
regime, as the Reynolds number is higher than Re > 10,000 [1–4]. Various geometrical
shapes of passive inserts have been investigated in the past. From so called “dimples”,
which are primarily designed to stop the formation or realize a reformation of the boundary
layers [5], to passive inserts such as pins, which will induce flow detachment and turbulence
downstream [6–9]. Such “pins” are columns with arbitrary cross sectional shape such as
circle, oval, drop, or diamond, with an insert height to channel height ratio of one, meaning
that the cylindrical passive insert stretches from bottom to top of the channel. Other types
of passive inserts, which are mainly used for minimizing the thermal boundary layer, are
characterized by a lower insert height to channel height ratio.

Their geometrical shape is often designed in order to realize a short reattachment
length enhancing the heat transfer [10]. Dewan et al. [11] reviewed over 100 publications
dealing with heat transfer enhancement using passive inserts with various geometrical
shape and arrangement inside different kinds of channels. The vast majority were inves-
tigated for air or water flow, which correlates to Prandtl numbers Pr < 7. Significantly
fewer investigations have been performed for heat transfer enhancement with passive
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inserts for coolant fluids such as water–glycol mixtures or different kinds of oil with Pr > 7.
In addition, most of the investigations published so far have been performed for fully
turbulent flow.

Passive inserts used in air or gas flow are mainly designed for heat transfer enhance-
ment in turbulent flow regime since most industrial heat exchanger applications operate in
this. Nonetheless, the situation may be different for industrial heat exchanger applications
using coolant fluids or oils. In addition to their typically higher Prandtl number, which
results from higher viscosity and density, the Reynolds number is significantly lower in
industrial applications, i.e., in heater core or radiator. In addition, for fluids with Pr > 7
(increased viscosity), the induced pressure drop, which comes along with heat transfer
enhancement, becomes more important, as the pumping power or energy consumption
over time will increase significantly more compared with fluids with Pr < 7. Consequently,
an optimum shape of passive inserts used for air or pure water flow may be designed
completely differently as for fluids with higher Prandtl number. For the latter, it may be
even efficient to first induce turbulence, which may not be present without passive inserts
for Re < 10,000.

As published data are sparse for the use of passive inserts for Pr > 7 and Re < 4000,
this contribution is specifically focused of the influence of passive inserts on heat and
momentum transfer in this Prandtl and Reynolds number range. It was the aim of this
investigation to elaborate the heat transfer mechanisms, which are present with and without
passive inserts. Pressure drop was analyzed simultaneously in order to gain insight in the
different mechanisms behind it, such as surface shear stress or from local pressure gradients
in the wake of inserts. This contribution is focused on flat tubes. They are widely used in
industry with and without passive inserts for flat tube heat exchangers, such as the heater
core in cabin or room heating systems, low temperature radiators, or other heat exchangers
used especially in the automotive industry.

The operating conditions were set such as to achieve Prandtl and Reynolds number
ranges 8 < Pr < 60 and 40 < Re < 3500. Based on 434 data points analysis on the influence
of three different passive insert types on pressure drop, heat transfer, and flow regime
boundaries are presented. The increase in form and friction drag pressure drop is compared
to the increase in heat transfer, resulting from induced turbulences, forcing a reformation
of boundary layers and increasing the heat transferring surface. The contradicting goals of
minimizing the increase in pressure drop while increasing heat transfer significantly are
finally analyzed using available and extended criteria to rate the efficiency of passive inserts.

In this contribution, we focus on the situation with a set of passive inserts inside a flat
tube. In contrast with many other investigations dealing with passive inserts, we do not
compare the impact of single passive inserts with different shape but same height, length,
etc., or vice versa, and we do not investigate the local phenomena around one single passive
insert. Instead, we discuss the impact of the co-action of the total set of passive inserts used
in one flat tube. In addition, we want to keep either heat transfer or pressure drop constant
throughout the variations of the inserts, which is in line with the situation in most practical
applications. An example for this is an upper limit in the allowable pressure drop due to,
e.g., pump capacity. At the same time this is a suitable way to enable comparisons of the
effects of different insert shape and arrangement over a wide range of Re and Pr.

Since the testing infrastructure has already been used for determination of heat transfer
and pressure drop data for other purposes, some of the following chapters, which are
labeled respectively, have already been described in other publications of the authors. This
is why we thoroughly reference and indent these text passages in the following to avoid
self-plagiarism.

2. Methods

We described the methods in a previous publication:
Heat transfer coefficients were determined in this investigation by cooling down a

hot liquid flow towards a cold one in a parallel flow arrangement. The test facility used
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was exactly the same as described in [12–15]. For technical details, the reader is referred to
one of these publications. Figure 1 shows the process flow diagram for the hot flow side of
the experimental setup, including the test section itself (reproduced with permission from
Section 2, page 3 in [16], published by Elsevier 2021).

Figure 1. Overview of publications dealing with passive inserts classified into Reynolds and Prandtl
number range.

2.1. Test Section

We also described the first part of the following chapter test section in a previous
publication:

A hot flow was cooled down in the measuring channel. This test rig was designed to
test different pipe geometries with different heat flow directions (heated and cooled flow
inside the circular pipe measuring channel, see Bertsche et al. [14,15]). A heat exchanger-
like approach was chosen instead of, e.g., an electrically heated pipe, which is described
in the following. This easily allows mimicking heat exchanger conditions and realizing a
thermal boundary condition close to constant wall temperature. The test section consisted
of seven geometrically identical channels which were formed by eight aluminum half-shells
(see Figures 2–4). This arrangement was chosen to ensure the desired thermal boundary
condition and checked using numerical calculations. For the exact positioning (x,y) of
two half shells onto each other, dowel pins were used to ensure a “perfect” flat tube.

Figure 2. Process flow diagram of the test facility: 1, thermostat; 2, gear pump; 3, inlet section; 4, test
section; 5, cold co-current flow to develop thermal boundary condition desired. Reproduced with
permission from [16], published by Elsevier 2021.

High-precision milling was used to secure perfect contours of the flat tube and a
smooth surface quality with a resulting peak-to-trough roughness height of k = 1.3 µm.
According to [17] and the investigated Reynolds number range, the assumption of a
technically smooth pipe was therefore valid. The length of the aluminum half shells was
220 mm, its width was 52 mm, and the hydraulic diameter of the flat tube was 2.1 mm with
a height to width ratio of the flat tube h/w = 0.075. The aluminum half shell contained the
contour of two flat tube channels with 14.7 mm in width, 1.12 mm in height and 220 mm in
length. The thickness of the half shells, i.e., the distance between the hot and cold channels
was 28 mm. The channel in the center was the measuring channel with a cross-section area
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Ac and a hydraulic diameter to length ratio of 0.01. The channels above and below were
necessary for homogeneously cooling the measuring channel. The neighboring “secondary”
hot channels of the two “primary” cold channels below and above the measuring channel
provided homogeneous conditions for those “primary” cold channels, etc. In total, seven
flat tube channels were subject to alternate hot (temperature Thot,in) and cold (temperature
Tcold,in) flow. Due to this arrangement, the thermal boundary condition at the flat tube’s
wetted surface was close to a constant wall temperature (uniform wall temperature). This
was checked by nine thermocouples, which were used to determine the homogeneous
temperature inside the aluminum shell in the drilled holes, albeit only three are indicated
in Figure 3 on the right.

Figure 3. Test section and supply pipes without insulation (flow direction from left to right); access
points for temperature and pressure sensors are marked in red and blue respectively. Reproduced
with permission from [16], published by Elsevier 2021.

Figure 4. Test section with eight stacked aluminum half shells and supply pipes (a) and enlarged view
of one of the half-shells (b) (for clarity, only three of the seven supply pipes are shown). Reproduced
with permission from [16], published by Elsevier 2021.

The whole setup including supply pipes and a half-shell stack was wrapped in ther-
mally insulating material. Sheath resistance thermometers at the inlet and outlet were used
to determine the averaged fluid temperatures Thot,in and Thot,out. Homogeneity of the inlet
temperature was ensured using mixing elements in the supply line and at the outlet. In
addition, two sensors were placed side by side with respect to the mixing effect of the
sudden cross section expansion at the end of the measurement channel and at the start
of the measurement channel to account for the changed cross section of the supply pipes.
The signals of the parallel sensors were arithmetically averaged. Pressure drop sensors
were used in order to determine the pressure drop over the measuring channel. One of
the eight aluminum half shells, which was used to investigate the flow in flat tube with
passive inserts is shown in Figure 4. As one flat tube consisted of two identical separate
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channels, a separating wall is shown in the middle of the channel, as it is also presented in
Figure 3 for the flat tube without passive inserts (reproduced with permission from Section
2.1, pages 3–4 in [16], published by Elsevier 2021).

In addition to a flat tube channel without passive inserts, two other test sections with
passive inserts have been used, which are both shown in Figure 4. On the left side, one
aluminum shell with the contour of a flat tube with 132 bump-like shaped passive inserts as
typically used in industry and called there “winglets” is shown. A detailed investigation on
heat transfer enhancement and mechanisms with this kind of passive inserts was published
by Forooghi et al. [18]. The flat tube on the right of Figure 4 is equipped with 35 cylindrical
pins with a diameter of d = 0.6 mm.

The detailed geometry of the passive inserts is presented in Figures 5 and 6. The
left sides in Figures 5 and 6 show a short section of the whole flat tube with 2 out of the
33 identical winglet rows and one out of the seven periodic pin patterns. One complete
channel is shown in a perspective view on the right sides in Figures 5 and 6. It should be
noted that the number of pins in the channel shown in Figure 6 is significantly smaller than
that of the winglets in the tube according to Figure 5. The reason for this is that the pin
channel is the result of a design process aiming at similar heat transfer at reduced pressure
drop compared with the winglet channel over the whole Pr and Re range investigated, as
is discussed in Sections 3 and 4.

Figure 5. Aluminum half shells with passive inserts. (a): Contour of flat tube within aluminum shell
with passive inserts used in automotive industry (reproduced with permission from [16], published
by Elsevier 2021). (b): Contour of flat tube within aluminum shell with cylindrical pins with d = 0.6 mm.

Figure 6. Flat tube with passive inserts (“winglets”) used in automotive industry for flat tube heat
exchangers. (a): Detailed geometry of passive inserts. b/a = 2; c/d = 0.6. The ratio of the insert height
to channels height is 0.325. (b): Left channel of the corresponding flat tube with l = 220 mm length
and passive inserts used in automotive industry. Reproduced with permission from [16], published
by Elsevier 2021.

A third kind of passive insert type was investigated, which consisted of several wave-
shaped bumps stretching over the whole width of the channel. Every bump was placed
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transverse to the flow direction, as shown in Figure 7 on the right. Alternately one of those
bumps, with a cross sectional shape, as shown in Figure 8, was turned into the channel,
forcing a decrease in cross section, followed by another wave-shaped bump, which was
turned outside the channel, enlarging the cross section of the flat tube locally. The bumps
at the top were displaced compared with the ones at the bottom to realize a constant cross
section of the flat tube over the entire flat tube length. Table 1 shows the geometrical
parameters, which describe the wave-shape as well as the arrangement of all those passive
inserts inside the flat tube channel.

Figure 7. Flat tube with cylindrical pins. (a): Detailed geometry of passive inserts. Pin diameter
d = 0.6 mm, e = 16.3 mm, f = 5.4 mm. (b): Flat tube with l = 220 mm length and passive inserts.

Figure 8. Entire flat tube (a) and parts of the flat tube with wave-shapes bumps in top (b) and side
view (c).

The questions to be answered were, which flow modifications or phenomena are
induced by the three different passive insert types and in what way do they affect heat
transfer and pressure drop? The bulk and boundary layers will be influences in different
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ways with the present passive inserts, which is why on the one hand we considered different
portions of heat transfer realized by minimizing boundary layer thickness and inducing
turbulence in core flow and on the other hand pressure drop induced by friction and drag
forces. To this end, particularly the ratio between friction and form drag induced by the
three different passive insert types is discussed.

Table 1. Geometrical parameters for wave-shaped bumps inside the flat tube channel.

Parameter Value

Number of bumps/- 168
t/h/- 0.12
p/h/- 11.6
γ1/- 16◦

2.2. Hydrodynamic Inlet Boundary Condition

Since the test section was used in a previous publication, the hydrodynamic inlet
boundary condition was described in a previous publication:

The pressure drop, the hydrodynamic entry length, and the transition point between
the different flow regimes (laminar, transitional, and turbulent flow regime) strongly
depend on the inlet condition, as thoroughly investigated by Ghajar and Tam [19–21] and—
to a lesser extent though—also depend on the surface roughness. The inlet configuration
chosen in the present work was named “square edged” by Ghajar and Tam [21] and is
realized by a sharp step geometry directly at the inlet of the flat tube measurement channel
(see Figure 9) with a step height to flat tube characteristic length of 0.21. This kind of inlet
configuration is typical for the vast wealth of existing data and typical for heat exchangers
in general.

Figure 9. Geometrical shape of the wave-shaped bump, cross section at an angle of 90 degrees to flow
direction.

The supply pipes (see Figure 3) expand gradually into a wide channel with a flat tube
cross section (inlet chamber) before abruptly experiencing a step jump into the measurement
pipe. The supply pipe contracts with a very small contraction ratio to avoid or minimize
recirculation and detachment zones. It is followed by an inlet chamber or smoothing section
to secure reproducible hydrodynamic inlet conditions for all investigated flow rates or
temperature levels.

As indicated in Figure 3, a flat tube channel form is present for the smoothing section,
because this test facility was originally designed to work for flat tubes, as commonly used
in compact heat exchangers for automotive applications. Therefore, a minimum of pressure
drop occurs at the inlet section using a flat tube as test channel geometry. However, we
calculated this additional pressure drop using available correlations from the literature [22]
and subtracted it from the measured overall pressure drop to obtain a corrected value for the
flat tube channel only. The influence of surface roughness on transition can be neglected,
since the present peak-to-trough roughness height was calculated to k = 1.3 µm using
Nikuradse’s laws of flow in rough pipes (reproduced with permission from Section 2.2,
pages 4–5 in [16], published by Elsevier 2021).

2.3. Thermal Boundary Condition

We described the thermal boundary condition in a previous publication:
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A co-current flow condition with separately adjustable hot and cold flow rates was
realized in combination with a symmetric arrangement of the flat tube channels. Once the
same heat transfer conditions, including similar values of the heat transfer coefficients, were
present in the hot and the cold flow flat tubes, a homogeneous temperature distribution
in the symmetry plane of the aluminum shells (see Tplane in Figure 10) was established.
This provided an excellent option for evaluating the heat transfer coefficients (see Section 3)
when slightly adjusting the mass flow rates in the primary heating pipes next to the
measuring one.

Figure 10. Cross-sectional view of the supply pipe and the beginning of the flat tube measuring
channel. Reproduced with permission from [16], published by Elsevier 2021.

Although a non-homogeneous wall temperature was present at the heat transfer
surface, the temperature difference in the flat tube measurement channel was 10 times the
change in temperature at the heat transferring wall along the flat tube in flow direction.
Thus, the heat transfer coefficients determined can be compared with correlations valid for
uniform wall temperature conditions.

The Prandtl number was evaluated with the arithmetic mean of inlet and outlet
temperature values. In order to achieve constant Pr-numbers over a wide range of varied
Re, the inlet temperature was slightly adjusted with changing Re. In this way, a maximum
variation of the Prandtl number of Pr ± 1 could be achieved. The ratio (Pr/PrW)0.11 was
determined for all the following heat transfer data with values of (Pr/PrW)0.11 < 1.01. The
Reynolds number was determined using the characteristic length of the flat tube.

The temperature difference along the flat tube was chosen to be small enough to
achieve quasi-isothermal conditions, which in turn enabled the use of constant thermo-
physical properties in the evaluation procedure. However, these small temperature differ-
ences also applied to the evaluation of the heat transfer coefficients. Obviously, the accuracy
of this evaluation would improve with increasing temperature differences. Therefore, a
compromise between both requirements was sought based on a careful uncertainty analysis
following the guide for determination of uncertainty in measurement (GUM) [23]. For
further details concerning the measurement uncertainty and reproducibility, the reader is
referred to one of the following publications [12–16] (reproduced with permission from
Section 2.3, pages 5–6 in [16], published by Elsevier 2021).

The uncertainty of all measuring devices and the subsequent uncertainties of the target
values Nusselt number and pressure drop are listed in Table 2.
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Table 2. Uncertainty of all measuring devices and resulting uncertainties of target values heat transfer
and pressure drop.

Measurement Device Uncertainty

Resistance thermometer Pt100 with data logger: NI9213 (National Instruments) ∆T ≤ ±0.023 K

Thermocouple Typ K with data logger: NI9203 (National Instruments) and external
reference temperature ∆T ≤ ±0.14 K

Coriolis mass flow meter CMFS015M with evaluation electronics MVD 2500D
(Emerson Process Management) ∆

.
M ≤ ±0.05 %

Target Values Uncertainty

Nusselt number/- ∆Nu ≤ ±12%

Pressure drop/mbar ∆p ≤ ±8.5%

In order to validate setup and procedure, comprehensive experimental results were
determined for cylindrical pipe flow at the same test facility and compared with the
literature in [12,14,15] showing an excellent match to the literature. Thus, the test facility
and the data processing can be considered as validated. The results for the flat tube flow
are compared to literature in addition to that; please see Section 4.

3. Evaluation Procedure

We described the evaluation procedure in a previous publication:

3.1. Determination of Heat Transfer Coefficients from Measured Data

Equation (1) was used for the calculation of the Nusselt number, which was calculated
from the measured values of the inlet temperature, Thot,in, the outlet temperature, Thot,out,
and the temperature in the planes between the flat tube measuring channel and its direct
neighbors, Tplane, as well as the mass flow rate,

.
M, of the cold flow.

Nu =
α·dh
λ

=
dh

A·λ ·

 2
.

M·cp· ln
Thot,in−Tplane
Thot,out−Tplane

− RAl


−1

(1)

RAl =
1

2π·L·λAl
·arcosh

(
2·e
dh

)
(2)

Figure 11 shows the system boundary for determining the Nusselt number Nu from
an energy balance. The heat is transferred from the neighboring hot fluids across the flat
tube walls through the planes of homogeneous temperature distribution, Tplane = const in
the aluminum shells and finally across the heat-transferring surface, A, to the cold flat tube
measuring channel. The heat transfer resistance of the aluminum shell RAl was determined
using Equation (3) taken from [24] and depends on the geometry of the aluminum shell,
i.e., the distance of pipe center to isothermal plane (Tplane), e, the hydraulic diameter, dh
and length, l as well as the heat conductivity λAl of the aluminum. A detailed derivation of
Equation (1) is presented in [15].

3.2. Determination of Friction Factor from Measured Data

The pressure drop, ∆p, along the measuring channel was determined as described
in [15]. To express the friction factor ξ we used the Darcy friction factor fD, which is
determined with the total pressure drop of the flat tube.

fD =
∆p
L
·2·dh

ρ·u2 (3)

The mean flow velocity was determined from the mass flow,
.

M, and density, ρ, mea-
sured in the coriolis mass flow meter. Since pressure drop in flat tubes without and with
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passive inserts will be induced by friction and form drag forces, the pressure drop can be
separated in so-called form drag pressure drop dpfo/dx and friction drag pressure drop
dpfr/dx. The friction fraction xfr represents the fraction of the friction drag pressure drop
dpfr/dx on the measured total pressure drop dpfr/dx + dpfo/dx. In order to allow a com-
parison of both, form pressure drop and friction pressure drop fraction on the total pressure
drop of flat tube without and with passive inserts, an approach by Della Torre et al. [25]
was used.

Figure 11. Schematic drawing of the test section with the flow in the hot and cold flat tubes marked
in red and blue, the symmetry plane Tplane between the flat tubes marked in green, and the system
boundary for deriving Equation (1). Reproduced with permission from [16], published by Elsevier 2021.

∆pfr ∝
Ffr
A

=
6π·η·u·dh

A
(4)

∆pfo ∝
Ffo
A

=
0.5·ρu2·Ac·cw

A
(5)

∆p = ∆pfr + ∆pfo (6)

Since the friction pressure drop ∆pfr is proportional to the velocity u and the form
pressure drop ∆pfo to the square of the velocity u, Equation (15) was assumed for the total
pressure drop with the constants D1 and E1. The Hagen number, Hg, was used in addition
to the friction factor to express the pressure drop in dimensionless form using Equation (8).

∆p = D1·Re + E1·Re2 (7)

Hg =
∆p
L
· dh

3

ρ·ν2 =
fD

2
·Re2 (8)
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Consequently, it is possible to compare the two parts—friction and form drag—on the
total pressure drop by the quantity of the two constants D (measure for friction drag) and E
(measure for form drag) in Equation (9), which results from Equation (7).

Hg
Re

= D + E·Re (9)

By plotting Hg/Re vs Re, the axis intercept D becomes a measure for the friction drag,
and the slope E becomes a measure for the form drag. In addition, the change in slope for
higher Reynolds numbers indicates a change in flow regime boundary, which is the end of
the laminar flow regime [25] (reproduced with permission from Section 3, pages 6–7 in [16],
published by Elsevier 2021).

4. Results and Discussion

Experimental data for heat transfer coefficients and pressure drop were determined
for a Reynolds number range between 40 < Re < 3500 and Prandtl numbers between
8 < Pr < 60. The test fluid was a water–glycol mixture with a mass fraction of water of
xm = 0.477. Table 3 shows the parameter combinations during the experiments in flat
tubes with and without passive inserts and the number of data points determined for
each of them. These conditions are typical for the liquid side of single-phase flat tube heat
exchangers in automotive applications.

Table 3. Amount of test data for specific Prandtl and Reynolds number ranges.

Pr Re Flat Tube without
Passive Inserts

Flat Tube with
“Winglets”

Flat Tube with
Cylindrical Pins

Flat Tube with
Wave-Shaped Bumps

8 200–3500 27 9 17 9
11 150–2700 22 13 0 0
13 190–2000 9 9 15 9
15 170–1600 11 11 0 0
17 150–1500 8 9 14 9
22 120–1300 8 9 9 9
26 90–1500 13 10 22 9
32 75–800 9 9 11 9
36 70–750 8 9 30 9
40 50–650 8 9 15 0
50 45–500 0 9 0 0
60 40–400 0 9 0 0

Total 123 115 133 63

In the following subsections, we discuss the results along the following order: First
in Section 4.1, experimental data for flat tube flow without passive inserts is compared
with appropriate literature data in order to further validate the experimental procedure.
Second, in Section 4.2, the heat transferring surface and the specific surface, which is
the heat transferring surface per fluid volume of all flat tube channels with and without
passive inserts are compared. Heat transfer and pressure drop for flat tube flow with
three different types of passive inserts are presented in Section 4.3. Here, the influence
of passive inserts on the flow regime boundary and on the pressure drop as well as on
the heat transfer mechanisms are analyzed. Finally, we discuss the trade-off between heat
transfer enhancement and pressure drop increase with the help of an efficiency assessment,
for which we used an energetic and an exergetical analysis presented in Section 4.4.

4.1. Validation for Flat Tube without Passive Inserts

The detailed validation for heat and momentum transfer inside a flat tube without
passive inserts is shown in Bertsche et al. [16]. In the following we sum up the most
important points. For further details, the reader is referred to Bertsche et al. [16].
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4.1.1. Heat Transfer

Based on a correlation for calculation of heat transfer in flat tubes without passive
inserts for laminar flow proposed by Garimella et al. [26], we compared our results for flat
tube without passive inserts for laminar flow with this correlation. In order to apply this
correlation, it is required to know the Nusselt number Nufd for a fully developed laminar
flow under the present thermal boundary condition of uniform wall temperature (UWT).
Therefore, we used a correlation proposed by Shah and Bhatti [27] for flat tubes. A total
of 81% of all data shown in [16] were predicted by the correlation of Garimella et al. [26],
within the experimental error.

4.1.2. Pressure Drop

Using a correlation, which was also proposed by Shah and Bhatti [27], for calcula-
tion of the Darcy friction factor for laminar flow in flat tubes, we proved that 90% of all
experimental data were within the measurement accuracy.

4.2. Geometrical Analysis of Flat Tube Channels with and without Passive Inserts

In order to evaluate the different heat transfer mechanisms and the influence of passive
inserts on pressure drop, boundary layer, and bulk flow, the heat transferring surface A
and the specific surface SV, are listed in Table 4 for all flat tube channels. The passive
inserts investigated here only increased the heat transferring surface by 0.8% to 1.1%. The
specific surface of the flat tube with “winglets” was increased by 5.8%, which is in contrast
to the 1.1% increase with cylindrical pins. The reason lies in the internal fluid volume,
which is decreased much further than when using pins in the designs considered here
(see Section 2.1 for background on that). Using wave-shaped bumps, which grow “inside”
and “outside” the flat tube, the inner volume was equivalent to the volume of the flat tube
without passive inserts, but the heat transfer surface was increased by 2.1%, causing a
specific surface increase of 3.6%.

Table 4. Heat transfer surface A and specific surface for flat tube channels with and without passive
inserts.

Flat Tube Channel A/m2 (Aw − Aw/o)/Aw/o/% SV/m2/m3 SV/%

w/o passive inserts 6.75 × 10−3 - 1907 -
w/“winglets” 6.82 × 10−3 1.0 2018 5.8

w/cylindrical pins 6.80 × 10−3 0.7 1928 1.1
w/wave-shaped bumps 6.90 × 10−3 2.2 1976 3.6

4.3. Heat and Momentum Transfer without and with Passive Inserts

Passive inserts as described in Figures 5–7 cause an increase in pressure drop as well
as in heat transfer. The corresponding results are shown in Figures 12 and 13. Heat transfer
for flat tube with “winglets” and cylindrical pins was increased approximately in the
same range. It should be noted again that this was the result of the specific design of the
pin arrangement and not a general feature of pins as passive inserts. A quite different
behavior was shown for the flat tube with wave-shaped bumps. Heat transfer was enhanced
particularly for high Reynolds numbers, whereas pressure drop was already exceeding that
of pin and winglet channels for low Reynolds numbers.

Since the passive inserts increase the heat transferring surface by approximately 2%,
this would only result in a heat transfer enhancement of <3%. Thus, there must be other
heat transfer mechanisms that are responsible for a heat transfer enhancement of up to
200% for both passive inserts. Nonetheless, before discussing potential reasons, an analysis
of pressure drop is provided.
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Figure 12. Heat transfer results for flat tube without passive inserts as well as with “winglets”,
cylindrical pins, and wave-shaped bumps.

Figure 13. Pressure drop results for flat tube without passive inserts as well as with “winglets”,
cylindrical pins, and wave-shaped bumps.

4.3.1. Friction and Form Drag Analysis

The so called “winglets”, with their low insert height (height to channels height of
0.325), mainly influence the near wall region, rather than the core flow within the flat tube.
Therefore, the drag forces, which arise from pressure differences over the passive inserts
surface (see value for C with passive inserts in Table 5) increased compared with a flat tube
without passive inserts, but must be lower compared to the pins, with their insert height
which is equal to the flat tube height. With their form, “winglets” will mainly influence
the flow in near wall region, increasing shear stress, resulting in an increase in friction
pressure loss and consequently disturbing the formation of hydrodynamic and thermal
boundary layer. In contrast to the situation in the flat tube channel without passive inserts,
where the boundary layer formation starts from the inlet of the channel, with “winglets”,
the formation of boundary layer is continuously disturbed in flow direction and has to
reform again.
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Table 5. Measures (slope C and axis intercept B from Hg/Re vs Re plot) for friction B and form C
drag pressure drop.

Flat Tube Channel Axis Intercept B in Hg/Re vs. Re Plot
(Measure for Friction Drag Pressure Drop)

Slope C in Hg/Re vs. Re Plot
(Measure for Form Drag Pressure Drop)

w/o passive inserts 120 0.0048
w/“winglets” 150 0.0200

w/cylindrical pins 138 0.0430
w/wave-shaped bumps 185 0.0200

Using pins, the form drag pressure drop was significantly enhanced because the core
flow with high local velocity components in flow direction was disturbed by the cylindrical
pin inserts. Consequently, high local pressure differences arose around the pin surface,
resulting in higher form drag pressure drop compared with non-pin inserts like “winglets”
even in a design with just 35 cylindrical pins compared with 132 “winglets”.

It is known from other publications [6–9] that pins are used to induce transient flow
structures, such as the Karman vortex street and turbulence. In most of the investigations
dealing with pin or pin fin structures as passive inserts in different kinds of tubes or
channels a turbulent air flow is used. This results in an optimized pin fin design and in a
pin fin arrangement in the channel, which could not be transferred to the present situation
in flat tube channels with a liquid coolant fluid with a significantly higher Prandtl number
and at lower Reynolds numbers, leading to a purely laminar flow in the corresponding
flat tube channel without passive inserts. At this stage it must be stated that the available
results and design suggestions from the literature [7–9,28,29] for an optimized pin fin
structure cannot be used for flat tube heat exchangers since the pressure drop would be far
too high, as too many pin inserts would be used.

This finding confirmed that no suitable insight in using pins in flat tube channels for
the present Prandtl and Reynolds number range under the boundary condition of moderate
pressure drop increase was available. Since the increased Prandtl number 8 < Pr < 60 was
caused primarily by an increased viscosity, the pressure drop also increased, which forced
engineers to spend fewer pins inside the channel to enable the already used coolant pumps,
i.e., in automotive industry, to pump the flow.

However, the development of the flat tube channel with cylindrical pins is not part
of this contribution, yet the background and why exactly this geometry and arrangement
were chosen shall be briefly illuminated.

Using wave-shaped bumps, the friction pressure drop was increased significantly, see
C value in Table 5, because of the huge amount of inserted bumps with a very small insert
height. The small insert height was exactly the reason why the form drag pressure drop was
not significantly increased but instead matched the level of the “winglets” inserts. Because
of the low velocity components in the near wall region, where the peak of the wave-shaped
bumps is located, quite low pressure differences at the bump surfaces were present. It
should be noted that the amount of bumps was chosen so as to create a comparable pressure
drop level over all Reynolds and Prandtl numbers and the same total pressure drop as with
the flat tube channel with “winglets”. This provides a good foundation for a discussion of
potential reasons for the characteristic differences in heat transfer and pressure drop as an
effect of the different passive inserts.

4.3.2. Flow Regime Boundary and Heat Transfer Mechanism Analysis

Pressure drop results are presented in Figure 13 using the dimensionless numbers
Hagen, Hg, and Reynolds number, Re. The heat transfer results with Nusselt number Nu
and Reynolds number Re are presented in Figure 12.

Since we have already presented results for heat transfer and pressure drop for the two
channels without and with winglets as passive inserts, we have shortened the following
explanations to the most relevant topics for the extended investigation within this contri-
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bution, focusing on two other passive inserts and the efficiency assessment of all types of
passive inserts. The following results were determined for:

- Flat tube without passive inserts:

# End of laminar flow regime occurring at Recrit = 2800, indicated by the change
in the slope for pressure drop results ∆(Hg/Re)/∆Re, presented in Figure 13.

# Confirmation of change in slope for heat transfer results ∆Nu/∆Re at Recrit = 2800
in Figure 12.

- Flat tube with winglets:

# End of laminar flow regime occurring at Recrit = 1500, indicated by the change
in the slope for pressure drop results ∆(Hg/Re)/∆Re, presented in Figure 13.

# Therefore, for Re > 1500 we assume that flow separation and local turbulences
at the surface of the passive inserts are induced, which changes the character
of the flow from laminar to turbulent.

# These experimental results are confirmed by a numerical investigation with
the exact same flat tube channel with winglets by Forooghi et al. [18], who
concluded the following:
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in Figure 12.

For flat tube with pins and wave-shaped bumps, the results are explained in detail as
follows, with more explanations, starting with the flat tubes with cylindrical pins.

Due to the Reynolds number range investigated, in the flat tube without passive inserts
only laminar flow conditions were present, whereas laminar and transitional flow condi-
tions were present with passive inserts. With pin inserts, two characteristic changes in the
slope ∆(Hg/Re)/∆Re for pressure drop results existed for Recrit,1 = 550 and Recrit,2 = 1200.
With the assumption of an analogy to flow around a single cylinder according to Schlicht-
ing’s “boundary layer theory” [30], the first change in slope must indicate the end of the
laminar flow regime with no flow separation, with a fixed pair of symmetric vortices
directly downstream of the pin, or with laminar vortex street downstream of the pin. Fol-
lowing the assumption of an analogy to flow around a single cylinder [30], the laminar flow
regime boundary was expected to occur for Rep < 150, which corresponded to Refl = 525,
see Table 6. The indices p and fl reflect the characteristic length calculated either using the
pin diameter “p” or the hydraulic diameter of the flat tube “fl” without passive inserts,
which was used for calculating the Reynolds number. Since the cylindric diameter is
typically used for the flow around a cylinder, for Rep, the pin diameter of d = 0.6 mm was
used. For Refl the flat tube hydraulic diameter was used as the characteristic length in order
to calculate the Reynolds number, which was dh = 2.08 mm.

Table 6. Flow regime boundary for flow around single cylinder [30] compared with flow regime
boundaries in flat tube with cylindrical pins determined from experiment.

Flow Regime According to [30] Rep Taken from [30] Refl Calculated from Rep [30] Refl Determined from Exp. Data, see
Figures 11 and 12

Laminar flow <150 <522 <550
Transition to turbulence 150 < Rep < 350 522 < Refl < 1225 550 < Refl < 1200

Fully turbulent flow Rep > 400 Refl > 1225 Refl > 1200

The subsequent flow regime, which was expected to occur for 150 < Rep < 350 [30],
which corresponded to 525 < Refl < 1225, was characterized by transition to turbulence
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in the vortex downstream of the pin and an increase in pressure drop and heat transfer
due to local pressure differences and enhanced convective exchange of heat inside the flat
tube, which occurred for 550 < Recrit,2 < 1200. For Reynolds numbers Re > 1200 the vortex
street became fully turbulent, which caused a further increase in pressure drop, while it
was of course also further reducing the thermal boundary layer, which enhanced the heat
transfer significantly.

Using wave-shaped bumps, the heat transfer enhancement was quite low for Reynolds
numbers Re < 1000. The small insert height did not affect the core flow; thus, no turbulence
was induced. In addition, the formation of the boundary layer was also not affected for
Re < 1000 since the Nusselt numbers were comparable with the flat tube without passive
inserts, but the pressure drop was significantly increased for Re < 1000 since the entire
amount of wave-shaped bumps seemed to effectuate a flow situation in a flat tube channel
with reduced channel height. A significant heat transfer enhancement was present for
Reynolds numbers Re > 2000, which was indicated by a change in the slope ∆(Hg/Re)/∆Re
and ∆Nu/∆Re. It seems, that turbulence directly in the boundary layer was induced, which
significantly reduced the thermal boundary layer thickness.

4.4. Efficiency Assessment

Since there are different methods for performing an efficiency assessment available
in the literature, we want to summarize the most frequently used ones and compare
the different approaches. As long as either pressure drop or heat transfer of several flat
tubes with passive inserts stay in the same range, the efficiency can simply be rated by
the difference between the other quantity. Since in most cases, especially when a broad
parameter range is investigated, this is not true, the efficiency of different passive inserts
has to be evaluated in another way. Both heat transfer, with finite temperature difference,
and pressure drop, due to friction and form drag forces, produce exergetic losses. Because
of occurring irreversibilities, despite an energy balance, it may also be useful to use entropy
balance for efficiency assessment.

4.4.1. Energetic Evaluation

When focusing on energy aspects, a first possible approach to rate efficiency is to
compare the heat transfer expressed, e.g., by the Nusselt number, with the pressure drop in
one diagram. Figure 14 shows the data for all three flat tube channels discussed before for
a Prandtl number of Pr = 13.

Figure 14. Efficiency in terms of Nusselt number Nu vs. pressure drop ∆p for Pr = 13.

The results for the flat tube with cylindrical pins and the flat tube with “winglets” are
quite similar. For low Reynolds number, the Nusselt number was slightly higher when
using “winglets”, while the pin tube showed highest values above approximately 50 mbar.
Overall, the heat transfer increase with pressure drop was largest for the pin tube. The flat
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tube with wave-shapes bumps showed lower Nusselt numbers with similar pressure drop,
which allowed rating this flat tube as being less efficient for Pr = 13 compared with the
flat tube with “winglets” and the one with pins. Since the Reynolds number is not directly
shown within Figure 13, the plot Nu vs Re shown in Figure 12 is helpful for interpretation
concerning different underlaying flow regimes, since the Reynolds number is present
within the diagram. However, no direct evaluation of “efficiency” in terms of heat transfer
vs pressure drop is possible by plotting the results as shown in Figure 12. In order to help
understanding the interpretation of the results in Figure 14, the additional information
of Reynolds number shown in Figure 12 may help for energetic analysis interpretation.
However, at this stage it is clear, that a more pleasant way plotting and interpreting the
results would be helpful.

Another option to directly compare the increase in pressure drop and heat transfer
enhancement of the flat tubes with different passive inserts with the flat tube channel
without passive inserts is the thermal enhancement factor TEF, see Equation (10) [31,32].
For this, the quotient from Nusselt number with and without passive inserts is divided by
the third root of the quotient from friction factor with and without passive inserts.

TEF =
Nuw/Nuw/0

(fw/fw/0)
1/3 (10)

The results for the thermal enhancement factor for the flat tube with passive inserts
are shown in Figure 15 for a Prandtl number of Pr = 13, like before. The lowest TEF is
presented for the wave-shaped bumps. For Reynolds numbers Re < 1000, the highest TEF
is presented when using “winglets”, but for Re > 1000, the situation changes, as higher
TEF values for the use of cylindrical pins are present. Qualitatively, the results of an
analysis according to Figures 13 and 15 are similar. If the total pressure drop is limited
to a certain level, which is true for many practical applications, it is recommended to use
an efficiency comparison as shown in Figure 13. Using the TEF, the total pressure drop
is not presented, yet the corresponding Reynolds numbers are shown, which makes the
TEF a suitable efficiency criterion for scientific investigations on passive inserts affecting,
e.g., flow regime boundaries. The lowest TEF is shown for the wave-shaped bumps since
within the experiments for Pr = 13, which were performed for Re < 2000, no turbulence was
induced by the wave-shaped bumps. Since for a Prandtl number of Pr = 13 an increased
fluid viscosity was present (compared with lower Prandtl numbers), it was not possible to
investigate higher Reynolds numbers than Re = 2000 with the used fluid pumps.

Figure 15. Efficiency in terms of thermal enhancement factor TEF for Pr = 13.

Following the ideas of Fan et al. [33], the quotient of the Nusselt number with passive
inserts Nuw and without passive inserts Nuw/o is plotted against the quotient of the
respective dimensionless pressure drop fw and fw/o. This graphic representation is called a
performance evaluation plot (PEP) and shown in Figure 16. According to Fan et al. [33],
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this allows a cost–benefit analysis based on the distinction between increase in pumping
power P, pressure drop ∆p enhancement, or increase in friction factor f if the following
boundary conditions are met:

• Quasi-local test conditions are required, enabling the use of constant physical properties;
• The heat transferring surface of the channel without passive inserts is used for the

calculation of heat transfer of all flat tubes with passive inserts;
• For the calculation of the Reynolds number, the characteristic length of the flat tube

without passive inserts is used.

Figure 16. Efficiency in terms of performance evaluation plot (PEP) for Pr = 13.

These points can be considered as fulfilled for the experiments presented in this
contribution. The correlation between the increase in pumping power, Pw/Pw/o, the
increase in pressure drop, ∆pw/∆pw/o, and the increase in friction factor, fw/fw/o, are
included as dashed lines in Figure 15. The correlation between the heat flow enhancement
.

Qw/
.

Qw/o and friction factor enhancement fw/fw/o is also presented as a bisecting line. A
detailed derivation of the correlations is presented in [33].

In all areas 1–4, the heat transfer using passive inserts was increased. In area 1, the
heat transfer was increased without energy savings, as the heat flow increase was lower
than the increase in pumping power. Area 1 and 2 are separated by the line, which indicates
the same increase in heat transfer and pumping power. In area 2 the increase in heat
transfer exceeded the enhanced pumping power. In area 3, the increase in heat flow even
exceeded the increase in pressure drop. In the most efficient area 4, the heat transfer
enhancement exceeded the increase in friction factor. For Reynolds numbers Re < 300, no
increase in heat transfer is presented for the use of cylindrical pins, as already presented
in Figure 14 with TEF < 1. Flat tube with cylindrical pins seems to be very efficient for
Re > 300 since for Re > 550 turbulent structures behind the pins are induced mainly in
the flow direction rather than crosswise to the flow direction, which allows a minimum
increase in pressure drop, while convective heat transfer is still enhanced. In contrast with
that, using “winglets”, which mainly force a reformation of boundary layers rather than
inducing turbulence, always operate in the most efficient regime.

The efficiency using wave-shaped bumps was enhanced with increasing Reynolds
numbers. In contrast to pins and “winglets”, the most efficient area 4 in the performance
evaluation plot is not reached. With increasing Reynolds number, first, the increase in
heat transferring surface of 2.1% affects the increase in efficiency since in the near-wall
region, for low Reynolds numbers, low velocity components are present, which causes a
minimum pressure drop increase. Further increasing the Reynolds number, higher velocity
components arise in near-wall region, which disturb the formation of the boundary layer,
resulting in a further efficiency enhancement, ranging from area 1 over 2 to 3.
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Compared with the plots for rating the efficiency, which are shown in Figures 14 and 15,
the PEP allows the effect of the different insert types along four efficiency areas to be
rated. It is also possible to account for a maximum pressure drop restriction with the PEP.
Therefore, it is recommended to use the PEP for practical application, as it provides a lot of
added relevant information.

4.4.2. Energetic and Exergetic Evaluation

Bejan [34,35] developed a method to evaluate the efficiency based on entropy produc-
tion or rather based on the minimization of irreversibilities. In its original form however,
this method does not account for the heat transfer enhancement, nor pressure drop in-
crease, which hinders its application for rating the efficiency of passive inserts used for
heat exchangers. This fact has also been recognized by Zimparov and Vulchanov [36],
who used Bejan’s [34,35] method to extend the performance evaluation plot, proposed
by Fan [33]. Zimparov [37] further extended this method in order to also account for
different thermal boundary conditions (UWT and UWH—uniform wall heat flux) and for
changing fluid temperature. Similar analyses have also been published by Prasad and
Shen [38] and Hesselgreaves [39]. Following the derivation described above, we thoroughly
investigate and apply the energetic and exergetic evaluation proposed by Zimparov [37] in
this contribution.

The idea behind this method is to use the first and second law of thermodynamics
and balance a differential volume element of the flat tube channel. A detailed derivation
for the channel geometry used in this contribution can be found in Appendix A. Finally,
Equation (11) for the total entropy production due to heat flow and pressure drop is derived.
This equation can be divided in the part of entropy production due to heat flow

.
Sgen,Nu and

the one due to pressure drop
.
Sgen,∆p. For comparing the entropy production of a flat tube

without and with passive inserts, the entropy enhancement factor NS, see Equation (13),
is used.

.
Sgen =

.
Q·Tw − Tout

Tin·Tout
+

2·(U/Ac)
2

dh
·

.
M

3
·f

ρ2 ·
L

Tw
(11)

.
Sgen =

.
Sgen,Nu +

.
Sgen,∆p (12)

NS =

.
Sgen, w
.
Sgen,w/o

(13)

In order to finally realize an energetic and exergetic evaluation, Zimparov [36] suggests
comparing the quotient of NS, which described the difference in entropy production with
Nuw/Nuw/o, which described the energetic enhancement in heat transfer, see Figure 17.
The smaller this value, the fewer irreversibilities are produced, or rather the less entropy
is produced per increase in heat transfer. In addition, a high increase in Nusselt number
when using passive inserts also causes a small value for NS/(Nuw/Nuw/o). Consequently,
the most effective flat tube with passive inserts is represented in Figure 17 with the small-
est values.

For Reynolds numbers Re < 800, the flat tube with winglets was the most effective flat
tube for Pr = 13. Here the pressure drop increase for flat tubes with cylindrical pins for low
Reynolds numbers was significantly higher compared with the one using winglets. The
pins first started to induce heat transfer enhancing mechanisms, as described above, for Re
> 550, so that their NS/(Nuw/Nuw/o)-ratio was lowest there.
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Figure 17. Extended efficiency criterion PEC according to Zimparov [37] for Pr = 13.

However, the results presented in Figure 17 for the extended PEP, which he called
PEC do not differ significantly from the results presented in Figure 15 for the thermal
enhancement factor TEF, indicating that the entropy production due to heat transfer and
pressure drop NS is quite similar for all three types of flat tube with passive inserts. Which
part of entropy production, either due to heat transfer or pressure drop, plays the main role
for each passive insert is not presented here in a separate diagram, but can be calculated
from Equations (11) and (12) since here, we want to focus overall efficiency.

HTP =

( .
Sgen,Nu,w

.
Sgen,Nu,w/o

)
/
(

Nuw

Nuw/o

)
(14)

PDP =

( .
Sgen,∆p,w

.
Sgen,∆p,w/o

)
·
(

fw

fw/o

)
(15)

TP = 1/(HTP·PDP) (16)

In order to obtain a full picture of efficiency evaluation, we suggest to also take the
entropy production due to pressure drop into account, which allows us to better distinguish
between the contribution of heat transfer and pressure drop using the values for HTP and
PDP from Equations (14) and (15). We name HTP as “heat transfer performance” and
PDP as “pressure drop performance”. As for high efficiency, HTP and PDP, both become
small values, so we used the inverse of the product of the heat transfer performance HTP
and pressure drop performance PDP according to Equation (16) in order to indicate high
efficiency with high values, and we are calling this quantity total efficiency.

Figure 18 shows all three numbers as a function of Re. The lowest value for HTP,
which corresponds to a significant increase in Nusselt number and simultaneously low
increase in entropy production when using passive inserts, results for Reynolds numbers
below Re = 900 for winglets and above Re = 900 for cylindrical pins. Because for Reynolds
numbers above Re = 900, turbulent structures in flow direction are induced by the cylin-
drical pins, the Nusselt number increases significantly due to an increase in convective
heat transfer, while pressure drop is also increased, but the highest value for PDP is shown
exactly around Re = 900, when turbulence is induced.

It must be stated that we use here Re = 800 as the mean value for the range of
550 < Re < 1200, which has been determined as the range in which turbulence is induced by
cylindrical pins. In addition, the effect on heat transfer performance as well as pressure drop
performance in Figure 17 is clearly visible in this range, especially at Re = 900. The lowest
values for pressure drop performance PDP, which means the lowest pressure drop increase
and simultaneously the lowest entropy production due to pressure drop is presented for
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the flat tube with “winglets”. Although wave-shaped bumps and pins are quite different
in their effects and flow characteristics, the pressure drop performance is quite similar.
The difference between the different flat tube types in total efficiency originates from
the differences in heat transfer performance, where the wave-shaped bumps show less
performance. For Re > 1000, the flat tube with cylindrical pins shows the highest total
efficiency. Thus, for a Prandtl number of Pr = 13, it seems to be more effective for flat
tube flow to induce streamwise vortices and turbulence in flat tubes, rather than using
“winglets”, which mainly destruct and reform the boundary layer [18]. It must be stated
again here that both flat tube types were developed in order to realize the same heat transfer
level, so the results should not be generalized.

Figure 18. Heat transfer performance (HTP) and pressure drop performance (PDP) as well as total
performance (TP) criterion for the tubes investigated in this contribution for Pr = 13.

Since the flat tube with “winglets” and that with wave-shaped bumps show the same
form drag pressure drop, the difference in pressure drop performance PDP must be due to
the differences in friction drag, which is higher for the wave-shaped bumps.

In summary, this newly proposed efficiency criterion, which fully accounts for ener-
getic and exergetic evaluation, allows comparison of the different effects on heat transfer
mechanisms and pressure drop, which are inducing turbulence, destructing the boundary
layer, and inducing local pressure differences or shear stress, causing form and friction drag,
respectively. However, the most application-oriented efficiency criterion seems to remain
the performance evaluation plot since different areas of efficiency are directly indicated here.
Maximum pressure drop restrictions are also very easy to track. On the other hand, this cri-
terion does not allow analysis of the mechanisms of heat and momentum transfer, which are
induced by the passive inserts. Plotting the total performance TP according to Equation (16)
enables determination of the critical Reynolds numbers. For the flat tube with “winglets”, a
significant increase is visible for Re > Recrit = 1500, confirming the critical Reynolds number
of the flat tube with “winglets”. In addition, also the second critical Reynolds number for
the flat tube with cylindrical pins can be confirmed to Recrit,1 = 1200. Since only two data
points for Re < 500 are shown for Pr = 13, it is not possible to finally judge the first critical
Reynolds number, which should be found for Recrit,2 = 550. Consequently, this criterion
could be the means of choice for scientific and academic studies on passive heat transfer
enhancement, evaluating the efficiency with respect to heat transfer and pressure drop
enhancement, because it fully covers energetic and exergetic consideration of heat transfer
and pressure drop.

5. Conclusions

Experiments were performed for a wide range of Reynolds and Prandtl numbers
ranging from 8 < Pr < 60 and 40 < Re < 3500, for flat tubes without and with three different
kind of passive inserts. The following points were understood for flat tube flow without
and with passive inserts.
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Without passive inserts:

• Pressure drop is mainly induced by friction drag forces. The form drag forces con-
tribute to a significantly minor part on the total pressure drop.

• Laminar flow is present for Reynolds numbers Re < 2800.

With “winglets”:

• Passive inserts mainly destruct and reform the boundary layer, and form drag and
friction pressure drop are increased; however, pressure drop is mainly induced by
friction forces.

• Laminar flow is present for Reynolds numbers Re < 1500. Turbulence is induced for
Re > 1500.

• “Destruction and reformation of the boundary layer has shown to be the main heat
transfer enhancement mechanism due to passive inserts. This mechanism is equally in
action in both laminar and turbulent regimes.” [18]

With “cylindrical pins”:

• Passive inserts mainly reduce the critical Reynolds number, inducing turbulence
at lower Reynolds numbers, as when using the other passive inserts, which have
been investigated in this contribution. Turbulence is induced inside the core flow
downstream of the pins for Re > 550.

• Form drag and friction pressure drop are increased; however, pressure drop is mainly
induced by form drag forces, arising from local pressure differences.

With “wave-shaped bumps”:

• Passive inserts mainly destruct and reform the boundary layer, and form drag and
friction pressure drop are increased; however, pressure drop is mainly induced by
friction forces.

• Turbulence is induced in the near-wall region, which significantly enhances the heat
transfer for Re > 2000. Since in near-wall region relatively low velocity components
are present, turbulence is induced not before Recrit = 2000 is reached.

Based on the experimental results for heat transfer and pressure drop, different meth-
ods for efficiency assessment cited in literature were reviewed and discussed. Best pressure
drop performance was calculated with winglets. Best heat transfer performance was calcu-
lated for cylindrical pins for Re > 1000 and for winglets for Re < 1000. Consequently, the
total performance was best for cylindrical pins for Re < 1000 and for winglets for Re < 1000.
The proposed concept for rating the efficiency, the “total performance”, fully respects the
energetic and exergetic aspects of heat transfer and pressure drop enhancement.
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Nomenclature

Latin symbols
A Heat transfer surface (m2)
AC Cross section of the measuring channel (m2)
a,b,c,d,e,f Geometrical distances (m)
B, C, B1, C1 Constant value (—)
cp Specific heat capacity (J kg−1 K−1)
cw Drag coefficient (—)
d, dh Diameter (m), hydraulic diameter (m)
fD Darcy friction factor (—)
Ffo, Ffr Flow forces due to form drag, due to friction drag (N)
h Height of the flat tube channel (m)
k Peak-to-trough roughness height (m)
kA Heat transmission coefficient (W K−1)
L Length (m)
.

M Mass flow (kg s−1)
n Normal direction (m)
p/h Pitch-to-height ratio of passive inserts (—)
p, ∆p Pressure (bar), pressure drop (bar)
.

Q,
.
q Heat flow (W), Heat flow density (W m−2)

R Heat transfer resistance (K W−1)
t/h Depth-to-height ratio of passive inserts (—)
T, ∆T Temperature (◦C), temperature difference (K)
u Mean flow velocity (m s−1)
V Fluid volume inside flat tube (m3)
xm Mass fraction (—)
Greek symbols
α Heat transfer coefficient (W m−2 K−1)
η Dynamic viscosity (kg m−1 s−1)
λ Thermal conductivity (W m−1 K−1)
υ Kinematic viscosity (m2 s−1)
ρ Density (kg m−3)
τ Shear stress (N m−2)
Subscripts
Al Aluminum
crit Indication of boundary between flow regimes
cold Cold flow
d Pin diameter
fl Flat tube
hot Hot flow
in Inlet
lam Laminar
out Outlet
plane Plane in the aluminum shell
turb Turbulent
UWT Uniform wall temperature
w Wall
Dimensionless numbers
Nu = α·dh

λ Nusselt number (—)
Re = u·dh

υ Reynolds number (—)
Pr = η·cp

λ Prandtl number (—)

Hg =
∆p
∆l ·

dh
3

ρ·υ2 Hagen number (—)
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Appendix A

With differential balancing energy (Equation (A1)) and exergy (Equation (A2)) inside
the flat tube, the equation for the extended Performance Evaluation Criteria is derived in
the following.

− α·(Tw − T)·U·dy = ρ·cp·u·Ac·dT (A1)

d
.
Sgen +

d
.

Q
Tw

=
.

M·ds (A2)

Integrating Equation (A1) along the flat tube results in Equation (4) with the Stanton
number St. ∫ y=y

y=0
−α·(Tw − T)·U·dy =

∫ T=T

T=Tin

ρ·cp·u·Ac·dT (A3)

Tw − T = (Tw − Tin)· exp
{
−St· U

Ac
·y
}

(A4)

St =
Nu

Re·Pr
=

α

ρ·cp·u
(A5)

Further, assuming an incompressible fluid
(
dH = cpdT

)
and using the following

thermodynamic relations (T·ds = dH−V·dp) and
(

dQ =
.

M·dH
)

, Equation (A2) is trans-
formed to Equation (A6).

d
.
Sgen

dy
=

.
Mcp·

Tw − T
T·Tw

·dT
dy

+

.
M
ρ·T ·

(
−dp

dy

)
(A6)

Substituting Tw = T(y) + ∆T(y) and τT = ∆T/T, we obtain Equations (A7) and (A8).

d
.
Sgen

dy
=

.
Mcp·

∆T
T·(T + ∆T)

·dT
dy

+

.
M
ρ·T ·

(
−dp

dy

)
(A7)

d
.
Sgen

dy
=

.
Mcp·

∆T
T2·(1 + τT)

·dT
dy

+

.
M
ρ·T ·

(
−dp

dy

)
(A8)

Due to the present quasi-local test conditions, one has τT � 1 and Equation (A9).

d
.
Sgen

dy
=

.
Mcp·

∆T
T2 ·

dT
dy

+

.
M
ρ·T ·

(
−dp

dy

)
(A9)

Replacing the bulk temperature T(y) in Equation (A9) with Equation (A4), using
Equations (A10) and (A11), and integrating the resulting equation over the entire flat tube
length results in Equation (A12).

dp
dy

= 2·f·ρ· u
dh

(A10)

u =
M

Ac·ρ
(A11)

.
Sgen =

.
Mcp·( −

(Tw−Tin)· exp{−St· U
Ac ·L}

Tw−(Tw−Tin)· exp{−St· U
Ac ·L}

+ (Tw−Tin)
Tw−(Tw−Tin)

− ln
Tw−(Tw−Tin)· exp{−St· U

Ac ·L}
Tw−(Tw−Tin)

)
+

2· U
Ac

dh
·

.
M

3
·f

ρ2

·
[
− 1

St· U
Ac ·Tw

·
(

ln Tin
Tout
− St· U

Ac
·L
)]

(A12)
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With the following equations (Equations (A13)–(A15)) the final equation results for
the entropy production in Equation (A16), which is equal to Equation (11) used in this con-
tribution. .

Q =
.

M cp·(Tin − Tout) (A13)

ln
Tin

Tout
= ln

(
1 +

Tout − Tin

Tin

)
∼=

Tout − Tin

Tin
(A14)

1
St· U

Ac
·L
·Tout − Tin

Tin
=

Tw − Tm

Tout − Tin
·Tout − Tin

Tin
=

Tw − Tm

Tin
� 1 (A15)

.
Sgen =

.
Q·Tw − Tout

Tin·Tout
+

2·(U/Ac)
2

dh
·

.
M

3
·f

ρ2 ·
L

Tw
(A16)

References
1. Lau, S.C.; Kukreja, R.T.; McMillin, R.D. Effects of V-shaped rib arrays on turbulent heat transfer and friction of fully developed

flow in a square channel. Int. J. Heat Mass Transf. 1991, 34, 1605–1616. [CrossRef]
2. Han, J.C.; Zhang, Y.M. High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Int. J. Heat

Mass Transf. 1992, 35, 513–523. [CrossRef]
3. Kumar, S.; Saini, R. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renew. Energy

2009, 34, 1285–1291. [CrossRef]
4. Chung, H.; Park, J.; Park, S.S.; Choi, S.M.; Rhee, D.-H.; Cho, H.H. Augmented heat transfer with intersecting rib in rectangular

channels having different aspect ratios. Int. J. Heat Mass Transf. 2015, 88, 357–367. [CrossRef]
5. Turnow, J.; Kornev, N.; Isaev, S.; Hassel, E. Vortex mechanism of heat transfer enhancement in a channel with spherical and oval

dimples. Int. J. Heat Mass Transf. 2011, 47, 301–313. [CrossRef]
6. Peng, Y. Heat Transfer and Friction Loss Characteristics of Pin Fin Cooling Configurations. J. Eng. Gas Turbines Power 1984, 106,

246–251. [CrossRef]
7. Armstrong, J.; Winstanley, D. A review of staggered array pin fin heat transfer for turbine cooling applications. ASME J. Turbomach.

1988, 110, 94–103. [CrossRef]
8. Metzger, D.E.; Berry, R.A.; Bronson, J.P. Developing heat transfer in rectangular ducts with staggered arrays of short pin fins.

ASME J. Heat Transf. 1982, 104, 700–706. [CrossRef]
9. Wang, F.; Zhang, J.; Wang, S. Investigation on flow and heat transfer characteristics in rectangular ducts with drop-shaped

pin-fins. Propuls. Power Res. 2012, 1, 64–70. [CrossRef]
10. Wongcharee, K.; Changcharoen, W.; Eiamsa-ard, S. Numerical investigation of flow friction and heat transfer in a channel with

various shaped ribs mounted on two opposite ribbed walls. Int. J. Chem. React. Eng. 2011, 9, A26. [CrossRef]
11. Dewan, A.; Mahanta, P.; Raju, K.S.; Kumar, P.S. Review of passive heat transfer augmentation techniques. Proc. Inst. Mech. Eng.

Part A J. Power Energy 2004, 218, 509–527. [CrossRef]
12. Bertsche, D.; Knipper, P.; Dietrich, B.; Wetzel, T. The Generalized Lévêque Equation and its application to circular pipe flow. Int. J.

Heat Mass Transf. 2015, 90, 1255–1265. [CrossRef]
13. Bertsche, D.; Wetzel, T. Experimental set-up for investigation of passive heat transfer augmentation in water-air heat exchangers. In

Proceedings of the 8th World Congress on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Lisbon, Portugal,
16–20 June 2013.

14. Bertsche, D.; Knipper, P.; Wetzel, T. Experimental investigation on heat transfer in laminar, transitional and turbulent circular
pipe flow. Int. J. Heat Mass Transf. 2016, 95, 1008–1018. [CrossRef]

15. Bertsche, D.; Knipper, P.; Kapfer, K.; Wetzel, T. Experimental investigation on heat transfer in laminar, transitional and turbulent
circular pipe flow with respect to flow regime boundaries. Int. J. Heat Mass Transf. 2019, 145, 118746. [CrossRef]

16. Bertsche, D.; Meinicke, S.; Knipper, P.; Dubil, K.; Wetzel, T. The Generalized Lévêque Equation and its application to flat tubes
without and with passive inserts. Int. J. Heat Mass Transf. 2021, 171, 121053. [CrossRef]

17. Herwig, H. Wärmeübertragung: Physikalische Grundlagen, 3. Erweiterte und Überarbeitete Auflage; Springer: Wiesbaden, Germany, 2014.
18. Forooghi, P.; Flory, M.; Bertsche, D.; Wetzel, T.; Frohnapfel, B. Heat transfer enhancement on the liquid side of an industrially

designed flat-tube heat exchanger with passive inserts–Numerical investigation. Appl. Therm. Eng. 2017, 123, 573–583. [CrossRef]
19. Ghajar, A.J.; Madon, K.F. Pressure drop measurements in the transition region for a cylindrical tube with three different inlet

configurations. Exp. Therm. Fluid Sci. 1992, 5, 129–135. [CrossRef]
20. Ghajar, A.J.; Tam, L.M. Flow regime map for a horizontal pipe with uniform wall heat flux and three inlet configurations.

Exp. Therm. Fluid Sci. 1995, 10, 287–297. [CrossRef]
21. Ghajar, A.J.; Tam, L.M. Heat transfer measurements and correlations in the transition region for a cylindrical tube with three

different inlet configurations. Exp. Therm. Fluid Sci. 1994, 8, 79–90. [CrossRef]
22. Kast, W. Pressure Drop in Single Phase Flow, VDI Heat Atlas, 2nd ed.; Springer Verlag: Berlin/Heidelberg, Germany, 2010; Chapter Lac 1–6.

http://doi.org/10.1016/0017-9310(91)90140-A
http://doi.org/10.1016/0017-9310(92)90286-2
http://doi.org/10.1016/j.renene.2008.09.015
http://doi.org/10.1016/j.ijheatmasstransfer.2015.04.033
http://doi.org/10.1007/s00231-010-0720-5
http://doi.org/10.1115/1.3239544
http://doi.org/10.1115/1.3262173
http://doi.org/10.1115/1.3245188
http://doi.org/10.1016/j.jppr.2012.10.003
http://doi.org/10.1515/1542-6580.2560
http://doi.org/10.1243/0957650042456953
http://doi.org/10.1016/j.ijheatmasstransfer.2015.06.083
http://doi.org/10.1016/j.ijheatmasstransfer.2016.01.009
http://doi.org/10.1016/j.ijheatmasstransfer.2019.118746
http://doi.org/10.1016/j.ijheatmasstransfer.2021.121053
http://doi.org/10.1016/j.applthermaleng.2017.05.144
http://doi.org/10.1016/0894-1777(92)90062-A
http://doi.org/10.1016/0894-1777(94)00107-J
http://doi.org/10.1016/0894-1777(94)90075-2


Fluids 2022, 7, 53 26 of 26

23. ISO/IEC GUIDE 98-3:2008; Uncertainty of Measurement–Part 3: Guide to the Expression of Uncertainty in Measurement
(GUM:1995). ISO/IEC: Geneva, Switzerland, 2008.

24. Baehr, H.D.; Stephan, K. Wärme-und Stoffübertragung; Springer: Berlin, Germany, 2010; Chapter 2.2.5.1; pp. 154–161.
25. Della, A.; Torre, G.; Montenegro, G.R.; Tabor, M.; Wears, L. CFD characterization of flow regimes inside open cell foam substrates.

Int. J. Heat Fluid Flow 2014, 50, 72–82. [CrossRef]
26. Garimella, S.; Dowling, W.J.; Van Der Veen, M.; Killion, J.D. The effect of simultaneously developing flow on heat transfer in

rectangular tubes. Heat Transf. Eng. 2001, 22, 12–25. [CrossRef]
27. Shah, R.K.; Bhatti, M.S. Laminar Convective Heat Transfer in Ducts. In Handbook of Single-Phase Convective Heat Transfer; Kakac, S.,

Shah, R.K., Eds.; Wiley: New York, NY, USA, 1987; pp. 3.1–3.137.
28. VanFossen, G.J. Staggered Arrays of Short Pin. J. Eng. Gas Turbines Power 1982, 104, 268–274. [CrossRef]
29. Moon, M.A.; Kim, K.Y. Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel. Int. J. Heat Mass Transf.

2014, 72, 148–162. [CrossRef]
30. Schlichting, H.; Gersten, K. Boundary Layer Theory, 10th ed.; Springer: Berlin/Heidelberg, Germany, 2006.
31. Wang, G.L.; Yang, D.W.; Wang, Y.D.; Niu, X.; Zhao, L.; Ding, G. Heat Transfer and Friction Characteristics of the Microfluidic

Heat Sink with Variously-Shaped Ribs for Chip Cooling. Sensors 2015, 15, 9547–9562. [CrossRef]
32. Park, J.S.; Han, J.C.; Huang, Y.; Ou, S.; Boyle, R.J. Heat transfer performance comparisons of five different rectangular channels

with parallel angled ribs. Int. J. Heat Mass Transf. 1992, 35, 2891–2903. [CrossRef]
33. Fan, J.F.; Ding, W.K.; Zhang, J.F.; He, Y.L.; Tao, W.Q. A performance evaluation plot of enhanced heat transfer techniques oriented

for energysaving. Int. J. Heat Mass Transf. 2009, 52, 33–44. [CrossRef]
34. Bejan, A. Entropy Generation Through Heat and Fluid Flow; CRC Press: New York, NY, USA, 1982.
35. Bejan, A. Entropy Generation Minimisation; Wiley: New York, NY, USA, 1996.
36. Zimparov, V.D.; Vulchanov, N.L. Performance evaluation criteria for enhanced heat transfer surfaces. Int. J. Heat Mass Transf.

1994, 37, 1807–1816. [CrossRef]
37. Zimparov, V.D. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with

constant wall temperature. Int. J. Heat Mass Transf. 2000, 43, 3137–3155. [CrossRef]
38. Prasad, R.C.; Shen, J. Performance evaluation of convective heat transfer enhancement devices using exergy analysis. Int. J. Heat

Mass Transf. 1993, 36, 4193–4197. [CrossRef]
39. Hesselgreaves, J.E. Rationalisation of second law analysis of heat exchangers. Int. J. Heat Mass Transf. 2000, 43, 4189–4204. [CrossRef]

http://doi.org/10.1016/j.ijheatfluidflow.2014.05.005
http://doi.org/10.1080/014576301317048406
http://doi.org/10.1115/1.3227275
http://doi.org/10.1016/j.ijheatmasstransfer.2013.12.085
http://doi.org/10.3390/s150409547
http://doi.org/10.1016/0017-9310(92)90309-G
http://doi.org/10.1016/j.ijheatmasstransfer.2008.07.006
http://doi.org/10.1016/0017-9310(94)90069-8
http://doi.org/10.1016/S0017-9310(99)00317-8
http://doi.org/10.1016/0017-9310(93)90081-G
http://doi.org/10.1016/S0017-9310(99)00364-6

	Introduction 
	Methods 
	Test Section 
	Hydrodynamic Inlet Boundary Condition 
	Thermal Boundary Condition 

	Evaluation Procedure 
	Determination of Heat Transfer Coefficients from Measured Data 
	Determination of Friction Factor from Measured Data 

	Results and Discussion 
	Validation for Flat Tube without Passive Inserts 
	Heat Transfer 
	Pressure Drop 

	Geometrical Analysis of Flat Tube Channels with and without Passive Inserts 
	Heat and Momentum Transfer without and with Passive Inserts 
	Friction and Form Drag Analysis 
	Flow Regime Boundary and Heat Transfer Mechanism Analysis 

	Efficiency Assessment 
	Energetic Evaluation 
	Energetic and Exergetic Evaluation 


	Conclusions 
	Appendix A
	References

