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Abstract: We propose a new class of goodness-of-fit tests for the inverse Gaussian distribution based
on a characterization of the cumulative distribution function (CDF). The new tests are of weighted L2-
type depending on a tuning parameter. We develop the asymptotic theory under the null hypothesis
and under a broad class of alternative distributions. These results guarantee that the parametric
bootstrap procedure, which we employ to implement the test, is asymptotically valid and that the
whole test procedure is consistent. A comparative simulation study for finite sample sizes shows that
the new procedure is competitive to classical and recent tests, outperforming these other methods
almost uniformly over a large set of alternative distributions. The use of the newly proposed test is
illustrated with two observed data sets.

Keywords: goodness-of-fit tests; inverse gaussian distribution; parametric bootstrap; stein-type
characterization; warp-speed bootstrap

1. Introduction

The inverse Gaussian distribution (also known as the Wald distribution) was first
heuristically observed by [1], and derived by [2] as the distribution of the first passage
time of Brownian motion with drift, see [3] for a historical summary. In the statistical
literature the usual parametrization of the inverse Gaussian law IG(µ, λ), µ, λ > 0, follows
the representation of [4,5], namely the density is given by

f (x; µ, λ) =

√
λ

2πx3 exp

(
− λ(x− µ)2

2µ2x

)
, x > 0, (1)

and f (x; µ, λ) = 0 for x ≤ 0. Applications involving the inverse Gaussian family of dis-
tributions, IG = {IG(µ, λ) : µ, λ > 0}, cover topics such as stock market prices, biology,
hydrology, reliability, Lévy processes, and generalized linear models, as witnessed by the
monographs especially dedicated to this family of distributions, see [3,6,7].

The first step in serious statistical inference with this distribution is to test the fit
of data to the family IG. To be specific, let X, X1, X2, . . . be positive, independent and
identically distributed (i.i.d.) random variables defined on a common probability space
(Ω,A,P). Writing PX for the distribution of X, we intend to test the composite hypothesis

H0 : PX ∈ IG (2)

against general alternatives. This testing problem has been considered in the statistical
literature. The methods by [8,9] are based on a characterization of the IG family by an
independence property. In [10] a connection to the so-called random walk distribution
is used, and [11] proposes exact tests based on the empirical distribution function of
transformations characterizing the inverse Gaussian law, which are corrected in [12]. The
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author of [13] use a differential equation that characterizes the Laplace transform of the IG
family as well as an L2-distance test, both using the empirical Laplace transform. In [14] an
empirical version of the standardized form of the cumulant-generating function is used,
in [15] an empirical likelihood test based on densities for IG is proposed, and in [16] a
variance ratio test of fit is considered. Finally, the authors of [17] tackle the testing problem
for the generalized inverse Gaussian family exploiting the ULAN property in connection to
Le Cam theory. Although the testing problem is derived for a wider class of distributions,
it still applies for testing (2) when it is restricted to the special case p0 = − 1

2 in the authors’
notation; see Section 4 of the cited article. A comparative simulation study is provided
by [18].

It is a common approach to exploit distributional characterizations to propose goodness-of-
fit testing procedures; for an overview see [19]. As demonstrated by the list above, there are
numerous characterizations of the inverse Gaussian distribution, including characterizing
properties based on independence, constancy of regression of suitable functions on the
sum of identically distributed random variables, random continued fractions, or on the
relationship between E[X] and E[X−1]. For details, see Section 3 of [3], and Section 2.5
of [20], and for an introduction to characterizations for other distributions, see [21,22]. A
recent characterization identity is given in Example 5 of [23], which reads as follows.

Theorem 1. Let X : Ω→ (0, ∞) be a random variable with distribution function F, E[X] < ∞
and E[X−1] < ∞. Then X has the inverse Gaussian distribution IG(1, ϕ) if, and only if,

E
[

1
2

(
ϕ +

3
X
− ϕ

X2

)
min{X, t}

]
= F(t), t > 0. (3)

Note that X ∼ IG(µ, λ) if, and only if, X
µ ∼ IG(1, λ/µ) and therefore the family IG

is closed under scale transformations. Since the characterization is directly related to the
theory of Stein characterizations (for details on Stein operators, see [24]), we refer to the
corresponding characterization of the generalized inverse Gaussian distribution, as in
Theorem 3.2 of [20], and to the connection with the Stein operator for the special case
(p, a, b) = (−1/2, λ/µ2, λ), using the authors’ notation.

Our novel testing procedure is motivated by Theorem 1: We estimate both sides of (3)
by their empirical counterparts, then calculate a weighted L2-distance of the difference.
These L2-type statistics are widely used in goodness-of-fit testing; see [25]. In this spirit, we
propose the statistic

Tn = n
∫ ∞

0

∣∣∣∣∣ 1
2n

n

∑
j=1

∆n,j min{Yn,j, t} − 1
n

n

∑
j=1

1{Yn,j ≤ t}
∣∣∣∣∣
2

w(t)dt,

with ∆n,j = ϕ̂n +
3

Yn,j
− ϕ̂n

Y2
n,j

and Yn,j =
Xj
µ̂n

, where µ̂n, λ̂n, are consistent estimators of µ, λ,

respectively, and ϕ̂n = λ̂n/µ̂n. The continuous function w(t) puts positive weight on (0, ∞),
and satisfies∫ ∞

0
(t2 + 1)w(t)dt < ∞ and n

∫ ∞

0

∣∣∣w(λ̂−1
n s
)
− w(s)

∣∣∣3(w(s)
)−2 ds P−→ 0, (4)

where P−→ denotes convergence in probability (as n→ ∞). Note that when suitable weight
functions are chosen, the calculation of Tn does not require numerical integration; see
Section 5.1. In particular, we use the weights wa(t) = e−at and w̃a(t) = e−at2

, t > 0, with
a positive tuning parameter a > 0. Both satisfy the conditions in (4). A proof of this fact
is given by [26] for the first weight function, and the argument for the second weight is
very similar, so we do not discuss it here. For a discussion of the use of weight functions in
goodness-of-fit testing, see for example [27,28]. Since IG is scale invariant, the test should
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reflect this property. Thus, we only consider scale-equivariant estimators µ̂n of µ, i.e., we
have

µ̂n(βX1, . . . , βXn) = β µ̂n(X1, . . . , Xn), β > 0.

Likewise, let λ̂n be an estimator of λ which is scale-equivariant and thus ensures that
ϕ̂n is scale invariant, i.e.,

ϕ̂n(βX1, . . . , βXn) = ϕ̂n(X1, . . . , Xn), β > 0.

With this type of estimator it is straightforward to show that Tn is invariant under
scale transformations of the data, as it depends on (the scale invariant) Yn,j, j = 1, . . . , n,
and ϕ̂n only. Rejection of H0 in (2) is for large values of Tn.

The paper is structured as follows. In Section 2 we present two estimation procedures
for the parameters in the IG-family as well as asymptotic representations of the estimators
needed in the subsequent theory. Section 3 provides theoretical asymptotic results under
the null hypothesis, summarizes the behavior under contiguous alternatives, and contains
a limit result under a large class of alternative distributions. In Section 4 we explain the
implementation of the test via a parametric bootstrap procedure, and we prove consistency
of this bootstrap-based testing method. We end the article with a Monte Carlo power
study and an application to observed data examples in Section 5, and draw conclusions in
Section 6.

2. Estimation of the Parameters and Asymptotic Representations

In this section, we consider two suitable estimators which satisfy the requirement
of scale equivariance. The estimators in use are the maximum likelihood (ML) and the
moment (MO) estimators. For details of the estimation procedures, we refer to [29], Chapter
15, and [3], Chapter 6. To account for the bootstrap procedure used to obtain critical
values, we later study the asymptotic behavior of Tn under a triangular array Xn,1, . . . , Xn,n
of rowwise i.i.d. random variables, where Xn,1 ∼ IG(1, ϕn) for a sequence of positive
numbers (ϕn)n∈N with limn→∞ ϕn = ϕ > 0. Notice that in the following we assume,
without loss of generality and with respect to the scale invariance of the test statistic, that
µ = 1. We write oP(1) and OP(1) for (real-valued) random variables that converge to 0 in
probability or that are bounded in probability, respectively. For both estimation methods,
we need expansions of the form

√
n(µ̂n − 1) =

1√
n

n

∑
j=1

Ψ1(Xn,j) + εn,1,

√
n(λ̂n − ϕn) =

1√
n

n

∑
j=1

Ψ2(Xn,j, ϕn) + εn,2, (5)

where εn,j = oP(1), j = 1, 2, and Ψj are measurable functions such that the random variables
Ψ1(Xn,1) and Ψ2(Xn,1, ϕn) are centered with existing second moment, and

lim
n→∞

E
[(

Ψ1(Xn,1)
)2
]
= E

[(
Ψ1(X)

)2
]
,

lim
n→∞

E
[(

Ψ2(Xn,1, ϕn)
)2
]
= E

[(
Ψ2(X, ϕ)

)2
]
,

where X ∼ IG(1, ϕ). In principle, any other estimation method that gives scale-equivariant
estimators that allow for such asymptotic expansions can be considered as well, but we
focus on the following estimators.
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1. Maximum likelihood estimators: Standard calculations show that

µ̂n =
1
n

n

∑
j=1

Xn,j = Xn and λ̂n =

(
1
n

n

∑
j=1

(
1

Xn,j
− 1

Xn

))−1

are the ML estimators of µ and λ. The asymptotic expansions as in (5) are derived as

√
n
(
µ̂n − 1

)
=

1√
n

n

∑
j=1

(Xn,j − 1) and

√
n
(
λ̂n − ϕn

)
=

1√
n

n

∑
j=1

(
− ϕ2

n
Xn,j
− ϕ2

nXn,j + 2ϕ2
n + ϕn

)
+ oP(1).

2. Moment estimators: The moment estimators based on the first two moments of the
inverse Gaussian distribution are

µ̂n = Xn and λ̂n =
µ̂3

n
1
n ∑n

j=1 X2
n,j − µ̂2

n
,

with the same asymptotic expansion for µ̂n as in the case of ML estimation, and

√
n(λ̂n − ϕn) =

1√
n

n

∑
j=1

(
− ϕ2

nX2
n,j +

(
3ϕn + 2ϕ2

n
)
Xn,j − ϕn(2 + ϕn)

)
+ oP(1).

Remark 1. Note that if X, X1, X2, . . . are any i.i.d. positive random variables such that E
[
X +

X−1] < ∞ (and E[X2] < ∞ in the case of the moment estimators), the definitions and asymptotic
expansions above remain essentially the same, only Xn,j is replaced by Xj, and ϕn by ϕ (with ϕ
defined as below). To see that the asymptotic expansions continue to hold, notice that by the scale
invariance of our test statistic, we may assume that E[X] = 1, hence µ̂n → 1 P-almost surely (a.s.)
and Ψ1(Xj) = Xj − 1 is centered. Similarly, using that

λ̂n =

(
1
n

n

∑
j=1

(
1

Xn,j
− 1

Xn

))−1

−→
(
EX−1 − 1

)−1
=: ϕ

or λ̂n =
µ̂3

n
1
n ∑n

j=1 X2
n,j − µ̂2

n
−→

(
EX2 − 1

)−1
=: ϕ

P-a.s., as n→ ∞, for the ML or MO estimator, respectively, the corresponding expansions are
seen to remain valid with the mentioned replacements.

For the ML estimators, also note that since the IG family is a 2-parameter general exponential
family, the statistic

(
Xn, ∑n

j=1(X−1
j − X−1

n )
)

is minimal sufficient and complete. An application of

the Lehmann–Scheffé theorem shows that µ̂n and n−1
n λ̂n are uniformly minimum variance unbiased

estimators; see [3]. Note that n−1
n λ̂n is the same estimator as the one considered by [30].

Remark 2. Although we do not use Bayes estimation in this paper, some remarks and references are
in order. The authors of [31] study Bayesian estimation of the parameters of the inverse Gaussian
distribution and use Markov chain Monte Carlo techniques to implement these estimates. In [32]
some inferential results for the inverse Gaussian distribution are derived by considering a proper
prior distribution, while [33] performed Bayesian inference for the parameters of this distribution
and compared the results with the classical maximum likelihood estimators.
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3. The Limit Null Distribution, Contiguous Alternatives, and a Functional Law of
Large Numbers

This section is dedicated to asymptotic results with the goal of providing a consistency
result for our new test in a realistic setting, meaning a theoretical setting which rigorously
takes into account the parametric bootstrap procedure that needs to be applied to implement
the test. The techniques used below are similar to those used in [26] in the context of the
gamma distribution. We thus omit the details and focus on the central findings.

A suitable setting to derive asymptotic results for the test statistic is based on
L2 = L2((0, ∞), w(t)dt

)
, the Hilbert space of Borel-measurable functions g : (0, ∞) →

(0, ∞) satisfying
∫ ∞

0

(
g(t)

)2 w(t)dt < ∞. The norm in L2 is denoted by

‖g‖L2 =
( ∫ ∞

0

(
g(t)

)2 w(t)dt
)1/2

, for g ∈ L2. We consider the triangular array Xn,1, . . . , Xn,n

from Section 2. In particular, recall that Xn,1 ∼ IG(1, ϕn) with ϕn → ϕ > 0 as n→ ∞, and
define

Vn(t) =
1√
n

n

∑
j=1

[
1
2

(
λ̂n

µ̂2
n
+

3
Xn,j
− λ̂n

X2
n,j

)
min{Xn,j, t} − 1{Xn,j ≤ t}

]
,

t > 0, for one of the two types of estimators µ̂n and λ̂n as in Section 2. Note that Vn(·) is a
random element of L2, and after a simple change of variable we have

Tn =
1

µ̂n

∫ ∞

0

(
Vn(t)

)2 w
(

t
µ̂n

)
dt.

With the assumptions on the weight function in (4), it is possible to write Tn =
1

µ̂n
‖Vn‖2

L2 + oP(1) and hence express the test statistic in terms of the Hilbert space norm.
Retracing and adapting the steps from the proof of Theorem 3 of [26], applying the Hilbert
space central limit theorem for triangular arrays due to [34], and facilitating the asymptotic
representations of the estimators from (5) allows us to calculate the limit distribution of the

test statistic under the hypothesis. Writing D−→ for convergence in distribution, the specific
result reads as follows.

Theorem 2. Under the standing assumptions there exists a centered Gaussian element,W , of L2

with covariance kernel

Kϕ(s, t) = E
[
gϕ(s, X) gϕ(t, X)

]
, s, t > 0,

where

gϕ(s, x) =
1
2

(
ϕ +

3
x
− ϕ

x2

)
min{x, s} − 1{x ≤ s} − ϕΨ1(x)E

[
min{X, s}

]
+

1
2

Ψ2(x, ϕ)E
[

min{X, s}
(
1− X−2)], x, s > 0,

such that Tn
D−→ ‖W‖2

L2 , as n→ ∞.

With the limit null distribution from Theorem 2 at hand, Theorem 4 of [26] can be
adapted to obtain the asymptotic behavior of the new test under contiguous alternatives
to a fixed representative of IG. To this end, let f0 denote the density of the IG(1, ϕ)-
distribution for a fixed ϕ > 0, and let c : (0, ∞) → R be a measurable, bounded function
satisfying

∫ ∞
0 c(x) f0(x)dx = 0. Furthermore, let Zn,1, . . . , Zn,n, n ∈ N, be a triangular array

of rowwise i.i.d. random variables with Lebesgue density

fn(x) = f0(x)
(

1 +
c(x)√

n

)
, x > 0,
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where we assume n to be large enough to ensure the non-negativity of fn. The n-fold
product measure of fn(x)dx is contiguous to the n-fold product measure of f0(x)dx in
terms of [35].

Theorem 3. Under the stated assumptions, we have

Tn = Tn(Zn,1, . . . , Zn,n)
D−→
∥∥W + ζ

∥∥2
L2 , as n→ ∞,

where ζ(·) =
∫ ∞

0 gϕ(·, x) c(x) f0(x)dx, and W is the centered Gaussian element of L2 from
Theorem 2 with the function gϕ(·, ·) related to the covariance kernel ofW as in Theorem 2.

We thus conclude that our test has non-trivial power against contiguous alternatives
of the considered kind.

In the next section we explain how the test is implemented using a parametric boot-
strap procedure. We also show that Theorem 2 can be used to prove that the bootstrap is
asymptotically valid. However, we would also like to show that the bootstrap-based test is
consistent against fixed alternatives. To achieve this goal, we provide another limit result,
this time considering the setting under alternative distributions. Let X be any positive
random variable with E[X] < ∞ and E[X−1] < ∞ (and E[X2] < ∞ if moment estimators
are used), and let X1, X2, . . . be i.i.d. copies of X. We assume that either the ML or the
moment estimators are considered, and we thus have, from Remark 1 that(

µ̂n, λ̂n
)
−→ (µ, λ)

P-a.s., as n → ∞, for some µ, λ > 0 (where we can specify µ = E[X]). In view of
the scale invariance of Tn, we assume µ = E[X] = 1, and have ϕ̂n = λ̂n/µ̂n −→ λ/µ =
λ =: ϕ P-a.s., as n → ∞, where ϕ may be specified as in Remark 1. By straightforward
approximations and standard Glivenko–Cantelli arguments similar to the proof of Theorem
5 of [26], the following functional law of large numbers is obtained.

Theorem 4. As n→ ∞, we have

Tn

n
P−→ ∆ϕ =

∫ ∞

0

∣∣∣∣E[1
2

(
ϕ +

3
X
− ϕ

X2

)
min{X, t}

]
− P(X ≤ t)

∣∣∣∣2w(t)dt.

Because of Theorem 1 the limit in Theorem 4 is 0 if, and only if, X follows some inverse
Gaussian distribution IG(1, ϕ), and it is strictly greater than 0 otherwise. This result will
prove the consistency of the procedure in the next section.

4. The Bootstrap Procedure and a Consistency Result

In practice, to carry out the test at some level α ∈ (0, 1), we suggest a parametric
bootstrap procedure, as the distribution of the test statistic depends on an unknown
parameter and is very complicated. The approach is as follows. Given a sample X1, . . . , Xn
of i.i.d. positive random variables with E

[
X1 + X−1

1
]
< ∞ (and E[X2

1 ] < ∞ when moment
estimation is used), calculate Tn(X1, . . . , Xn), using for instance the explicit formulae from
Section 5.1. Additionally we calculate the estimators µ̂n(X1, . . . , Xn) and λ̂n(X1, . . . , Xn),
and put ϕ̂n(X1, . . . , Xn) = λ̂n(X1, . . . , Xn)/µ̂n(X1, . . . , Xn). Conditional on this value of
ϕ̂n, generate b samples of size n from the IG(1, ϕ̂n)-distribution, and calculate the test
statistic for each of them, with the parameters estimated from the bootstrap sample in every
instance. This yields the values T∗n,1, . . . , T∗n,b. Define the empirical distribution function

F∗n,b(t) =
1
b

b

∑
k=1

1
{

T∗n,k ≤ t
}

, t > 0,
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and the empirical (1− α)-quantile, c∗n,b(α) = F∗−1
n,b (1− α), of T∗n,1, . . . , T∗n,b. The hypothesis (2)

is rejected if Tn(X1, . . . , Xn) > c∗n,b(α). Denote by Fϕ the distribution function of ‖W‖2
L2

under the IG(1, ϕ)-distribution as in Theorem 2, where ϕ is the (almost sure) limit of ϕ̂n
which exists by Remark 1. It is straightforward to adapt the methods from [36], applying
Theorem 2, to prove that

sup
t> 0

∣∣F∗n,b(t)− Fϕ(t)
∣∣ P−→ 0, as n, b→ ∞,

and thus c∗n,b(α)
P−→ F−1

ϕ (1− α) ∈ (0, ∞), as n, b → ∞. Hence, if X1 ∼ IG(µ, λ) for some
µ, λ > 0, then

P
(
Tn(X1, . . . , Xn) > c∗n,b(α)

)
−→ α, as n, b→ ∞.

We conclude that a given level of significance is attained in the limit, as both the
sample size and the bootstrap size approach infinity. The bootstrap procedure is thus
asymptotically valid.

Now suppose that X1 from above does not follow any inverse Gaussian law. Then,
the limit ∆ϕ figuring in Theorem 4 is strictly positive. Consequently, Theorem 4 and the
results on the bootstrap critical values above imply

P
(
Tn(X1, . . . , Xn) > c∗n,b(α)

)
−→ 1, as n, b→ ∞,

i.e., our test is consistent (in the bootstrap setting) against any such alternative distribution.
We suggest using the above bootstrap procedure when the test is applied in practice. In the
extensive power approximation in the following section, the procedure becomes very de-
manding due to the high number of Monte Carlo runs. To accelerate the computations, we
employ in that simulation study the so-called warp-speed bootstrap, see [37], as explained
in Section 5.

5. Monte Carlo Study and Real Data Examples

This section compares the finite sample power performance of the newly proposed
test to that of competing tests for the inverse Gaussian distribution. Below, we consider
the computational form of our test statistic. Then, various existing goodness-of-fit tests for
the inverse Gaussian distribution are discussed. Finally, the power calculations, including
the considered alternative distributions and the warp-speed bootstrap methodology, are
detailed. Sample sizes of 30 and 50 are considered throughout.

5.1. Computational Form

We start with computationally stable representations of the test statistic for the weight
functions wa(t) = exp(−at) and w̃a(t) = exp(−at2), t > 0. For wa we define

h1,a(s, t) =



1
a3

(
2− e−as((as + 1)2 + 1

))
+ s

a2

(
e−as(as + 1)− e−at(at + 1)

)
+ st

a e−at, s ≤ t,
1
a3

(
2− e−at((at + 1)2 + 1

))
+ t

a2

(
e−at(at + 1)− e−as(as + 1)

)
+ st

a e−as, s > t,

h2,a(s, t) =

{
s
a e−at, s ≤ t,
1
a2

(
e−at(at + 1)− e−as(as + 1)

)
+ s

a e−as, s > t,
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and obtain a numerically stable version of the test statistic,

Tn,a =
1

4n

n

∑
j,k=1

(
ϕ̂n +

3
Yn,j
− ϕ̂n

Y2
n,j

)(
ϕ̂n +

3
Yn,k
− ϕ̂n

Y2
n,k

)
h1,a(Yn,j, Yn,k)

− 2

(
ϕ̂n +

3
Yn,j
− ϕ̂n

Y2
n,j

)
h2,a(Yn,j, Yn,k)

− 2

(
ϕ̂n +

3
Yn,k
− ϕ̂n

Y2
n,k

)
h2,a(Yn,k, Yn,j) +

4
a

e−a max(Yn,j ,Yn,k),

where Yn,1, . . . , Yn,n and ϕ̂n are as in Section 1. For the second weight, w̃a, define

h̃1,a(s, t) =


√

π/a3

4 − a
2

√
π
a5 Φ(−

√
2as)− s

2a e−at2
+ st

√
π
a Φ(−

√
2at), s ≤ t,

√
π/a3

4 − a
2

√
π
a5 Φ(−

√
2at)− t

2a e−as2
+ st

√
π
a Φ(−

√
2as), s > t,

h̃2,a(s, t) =

 s
√

π
a Φ(−

√
2at), s ≤ t,

1
2a
(
e−at2 − e−as2)

+ s
√

π
a Φ(−

√
2as), s > t,

where Φ denotes the distribution function of the standard normal distribution. Then we
have a numerically stable version of the corresponding test statistic, namely

T̃n,a =
1

4n

n

∑
j,k=1

(
ϕ̂n +

3
Yn,j
− ϕ̂n

Y2
n,j

)(
ϕ̂n +

3
Yn,k
− ϕ̂n

Y2
n,k

)
h̃1,a(Yn,j, Yn,k)

− 2

(
ϕ̂n +

3
Yn,j
− ϕ̂n

Y2
n,j

)
h̃2,a(Yn,j, Yn,k)

− 2

(
ϕ̂n +

3
Yn,k
− ϕ̂n

Y2
n,k

)
h̃2,a(Yn,k, Yn,j)

+ 4
√

π

a
Φ
(
−
√

2a max(Yn,j, Yn,k)
)

.

5.2. Existing Tests of Fit for the Inverse Gaussian Distribution

The set of competing tests we consider comprises several classical tests as well as more
recent tests. We choose the following procedures:

1. The Kolmogorov–Smirnov test,
3. the Anderson–Darling test,
5. a test from [16],

2. the Cramér–von Mises test,
4. two tests proposed in [13],
6. a test from [8].

Below, we briefly provide the details of these tests. The first three tests are well
known, and we only provide the computational form of the test statistic in each case. The
remaining four tests are considered in more detail. The tests by [8,16] are quite recent,
while the tests by [13] are included due to their impressive power performance in previous
empirical studies. For a recent literature overview concerning the existing tests for the
inverse Gaussian distribution, see [14].

5.2.1. Classical Tests

Let X(j) denote the jth order statistic of X1, . . . , Xn. Furthermore, let F̂(x) = F
(

x; µ̂n, λ̂n
)
,

where F is the distribution function of the inverse Gaussian distribution. For each of the
following tests, the null hypothesis is rejected for large values of the test statistic.
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1. Kolmogorov–Smirnov test: The form of the test statistic is

KS = max
(

D+, D−
)
,

where D+ = maxj= 1,...,n
( j

n − F̂(X(j))
)

and D− = maxj= 1,...,n
(

F̂(X(j))−
j−1

n
)
.

2. Cramér–von Mises test: In this case, the test statistic is

CM =
1

12n
+

n

∑
j=1

(
F̂
(
X(j)

)
− 2j− 1

2n

)2

.

3. Anderson–Darling test: The computational form of the Anderson–Darling test statistic
is

AD = −n− 1
n

n

∑
j=1

[
(2j− 1) log F̂

(
X(j)

)
+
(
2(n− j) + 1

)
log
(

1− F̂
(
X(j)

))]
.

5.2.2. Tests Proposed by Henze and Klar

In [13] two classes of tests for the inverse Gaussian distribution based on the empirical
Laplace transform are proposed. The Laplace transform of the IG(µ, λ) distribution is given

by L(t) = E
[

exp(−tX)
]
= exp

(
λ
µ

(
1−

√
1 + 2 µ2 t

λ

))
, t ≥ 0. As a result, the Laplace trans-

form of the inverse Gaussian distribution satisfies the characteristic differential equation

µ L(t) +

√
1 +

2 µ2 t
λ

L′(t) = 0, t ≥ 0, (6)

subject to the initial condition L(0) = 1. The empirical Laplace transform is Ln(t) =
n−1 ∑n

j=1 exp(−tXj). Under the assumption that X1, . . . , Xn are realized from an inverse

Gaussian distribution, (6) suggests that ε̃n(t) = µ̂n Ln(t) + L′n(t)
√

1 + 2tµ̂2
n/λ̂n is close to

zero for each value of t. The proposed class of test statistics thus is

HK(1)
n,a =

n
µ̂n

∫ ∞

0

(
ε̃n(t)

)2 exp
(
− a µ̂n t

)
dt,

where µ̂n and λ̂n denote the maximum likelihood estimates of µ and λ, respectively, and
a ≥ 0 is a tuning parameter. Due to the intractability of some of the calculations required for
the implementation of the test statistic, the authors recommend the use of the exponentially
scaled complementary error function erfce(x) = 2 exp(x2)π−1

∫ ∞
x exp(−t2)dt rather than

the distribution function of a Gaussian random variable in the value of the test statistic.
Note that erfce(x) tends to ∞ for small values of x. Furthermore, for sufficiently large
values of x, the numerical evaluation of erfce(x) breaks down, since the value of the
integral and the exponential function are calculated to be 0 and ∞, respectively, by all
standard statistical software packages. The latter difficulty can be overcome by noting
that limx→∞ erfce(x) = 0. As a result, the use of the erfce function reduces the numerical
problems encountered when implementing the tests proposed in [13] without removing
these difficulties altogether.

Letting ϕ̂n = λ̂n/µ̂n and Yn,j = Xj/µ̂n as in Section 1, and Ẑjk = ϕ̂n ·
(
Yn,j + Yn,k + a

)
,

the test statistic can be expressed in a tractable form, namely

HK(1)
n,a =

ϕ̂n

n

n

∑
j,k=1

Ẑ−1
jk ·

{
1− (Yn,j + Yn,k)

(
1 +

√
π

2Ẑjk
erfce

(√ Ẑjk

2

))
+

(
1 +

2
Ẑjk

)
Yn,j Yn,k

}
.
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The null hypothesis is rejected for large values of HK(1)
n,a . Based on the power perfor-

mance of this class of tests, the authors recommend the use of a = 0. This recommendation
is met to obtain the numerical results shown below.

Henze and Klar [13] also proposed a second, more immediate class of tests based on the
empirical Laplace transform. This second class of tests is based on the difference between
the Laplace transform of the IG

(
µ̂n, λ̂n

)
distribution (denoted by L̂) and the empirical

Laplace transform:

HK(2)
n,a = n µ̂n

∫ ∞

0

(
Ln(t)− L̂(t)

)2 exp(−a µ̂n t)dt,

for some a ≥ 0. Two distinct computational forms for the test statistic are obtained,
distinguishing the cases a = 0 and a > 0. Again, the recommended value of the tuning
parameter is a = 0. In this case, the test statistic can be expressed as

HK(2)
n,0 =

1
n

n

∑
j,k=1

Z−1
jk − 2

n

∑
j=1

Y−1
n,j

{
1−

√
π ϕ̂n

2Yn,j
erfce

(
ϕ̂1/2

n (Yn,j + 1)√
2Yn,j

)}

+ n
1 + 2ϕ̂n

4ϕ̂n
,

where Zjk = Yn,j + Yn,k. The hypothesis that the data are realized from an inverse Gaussian
distribution is rejected for large values of the test statistic.

5.2.3. The Test of Villaseñor and Gonzáles-Estrada

In [16] three goodness-of-fit tests for the inverse Gaussian distribution are introduced,
the most powerful of which is discussed below. Using the notation from the mentioned
paper, it can be shown that if X ∼ IG(µ, λ), then Z(µ) = (X − µ)2/X follows a Gamma
distribution with shape parameter 1/2 and scale parameter 2µ2/λ. A goodness-of-fit
test for the inverse Gaussian distribution can be constructed using the moment estimator
of Cov

(
X, Z(µ)

)
, where µ is estimated by µ̂n = Xn. The suggested test statistic can be

written as

VGn =

√
nλ̂n

6µ̂n

(
λ̂nS2

n

µ̂3
n
− 1
)

,

where S2
n denotes the sample variance of X1, . . . , Xn, and where λ̂n is the ML estimator of λ.

The asymptotic distribution of VGn is standard normal, and the null hypothesis is rejected
for large values of |VGn|.

5.2.4. The Test of Baringhaus and Gaigall

The following characterization of the class of inverse Gaussian distributions is pro-
vided by [38]. Let X1, X2 be positive, identically distributed random variables with finite
moments E[X2

1 ] and E[X−1
1 ]. In this case, Y = (X1 + X2)/2 and Z = (X−1

1 + X−1
2 )/2−Y−1

are independent if, and only if, X1 and X2 are inverse Gaussian. This result is the basis of
the test in [8] (where similar tests for various other distributions are also constructed) as
follows. Let f (X1, X2) and g(X1, X2) respectively denote the transformations used to obtain
Y and Z above. Consider the bivariate random vectors (Ỹi,j, Z̃i,j) =

(
f (Xi, Xj), g(Xi, Xj)

)
,

1 ≤ i, j ≤ n, i 6= j, the coordinates of which are independent if, and only if, X1, ..., Xn are
realized from an inverse Gaussian distribution. The novel testing procedure proposed
by [8] entails using the Hoeffding–Blum–Kiefer–Rosenblatt independence criterion. They
arrive at the test statistic

BGn =
n(

n(n− 1)
)5

n

∑
µ,ν=1, µ 6=ν

(
N1(µ, ν)N4(µ, ν)− N2(µ, ν)N3(µ, ν)

)2
,
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where

N1(µ, ν) =
n

∑
i,j=1, i 6=j

1
{

Ỹi,j ≤ Ỹµ,ν, Z̃i,j ≤ Z̃µ,ν

}
,

N2(µ, ν) =
n

∑
i,j=1, i 6=j

1
{

Ỹi,j ≤ Ỹµ,ν, Z̃i,j > Z̃µ,ν

}
,

N3(µ, ν) =
n

∑
i,j=1, i 6=j

1
{

Ỹi,j > Ỹµ,ν, Z̃i,j ≤ Z̃µ,ν

}
,

N4(µ, ν) =
n

∑
i,j=1, i 6=j

1
{

Ỹi,j > Ỹµ,ν, Z̃i,j > Z̃µ,ν

}
.

The hypothesis that the data are realized from an inverse Gaussian distribution is
rejected for large values of BGn.

5.3. Power Calculations

Table 1 shows the alternative distributions considered in the empirical study below.
Several of the listed distributions are investigated for various parameter values. The powers
of the tests against the inverse Gaussian distribution with mean parameter 1 and shape
parameter θ, denoted in Tables 2 and 3 by IG(θ), are also calculated for several values of θ
to evaluate the empirical size of all competing tests. For the choices of the parameters, we
very roughly align with the study by [13].

Since the null distribution of the test statistic depends on the unknown value of the
shape parameter, we use a parametric bootstrap, as explained in Section 4, to calculate
critical values for the test statistics under consideration. Given that the parametric bootstrap
is computationally demanding, we employ the warp-speed method proposed by [37] to
approximate the power of all the considered tests. We denote the number of Monte Carlo
replications by MC, and recall that this method capitalizes on the repetition inherent in the
Monte Carlo simulation to produce bootstrap replications, rather than relying on a separate
’bootstrap loop’. The procedure can be summarized as follows.

1. Obtain a sample X1, . . . , Xn from a distribution, say F, and estimate µ and λ by µ̂n

and λ̂n, respectively. Additionally, let ϕ̂n = λ̂n/µ̂n.
2. Obtain the scaled data Yn,j = Xj/µ̂n for each j = 1, . . . , n, and calculate the test

statistic, S = S(Yn,1, . . . , Yn,n), say.
3. Generate a bootstrap sample X∗1 , . . . , X∗n by independently sampling from IG(1, ϕ̂n).

Then proceed to calculate µ̂∗n = µ̂n(X∗1 , . . . , X∗n) and λ̂∗n = λ̂n(X∗1 , . . . , X∗n).
4. Scale the values in the bootstrap sample using Y∗n,j = X∗j /µ̂∗n, j = 1, . . . , n, and

determine the value of the test statistic for these scaled bootstrap values, i.e., S∗ =
S(Y∗n,1, . . . , Y∗n,n).

5. Repeat steps 1 to 4 MC times to obtain S1, . . . , SMC and S∗1 , . . . , S∗MC, where Sm denotes
the value of the test statistic calculated from the mth scaled sample data generated
in step 1, and S∗m denotes the value of the bootstrap test statistic calculated from
the single scaled bootstrap sample obtained in the mth iteration of the Monte Carlo
simulation.

6. To obtain the power approximation, reject the null hypothesis for the mth sample
whenever Sm > S∗(bMC·(1−α)c), m = 1, . . . , MC, where S∗(1) ≤ . . . ≤ S∗(MC) are the
ordered values of the statistics obtained from the bootstrap samples and b·c denotes
the floor function.
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Table 1. Alternative distributions considered.

Alternative Density Notation

Weibull θxθ−1 exp(−xθ) W(θ)

Lognormal exp
{
− 1

2
( log(x)

θ

)2
}/{

θx
√

2π
}

LN(θ)

Gamma 1
Γ(θ) xθ−1 exp(−x) Γ(θ)

Dhillon θ+1
x+1 exp

{
−
(

log(x + 1)
)θ+1

}(
log(x + 1)

)θ DH(θ)

Uniform 1
θ2−θ1

· 1
{

θ1 ≤ x ≤ θ2
}

U(θ1, θ2)

Half Cauchy 2
[
πθ
(

1 +
( x

θ

)2
)]−1

, x > 0 HC(θ)

The warp-speed methodology described above is a computationally efficient alter-
native to the classical parametric bootstrap procedure (with a separate ’bootstrap loop’)
usually employed in power calculations in the presence of a shape parameter. The latter
method is detailed and implemented in Section 5 of [13]. Extensive Monte Carlo simulations
indicate that the power estimates obtained using the two bootstrap methods provide almost
identical results for all but two of the test statistics used. The tests for which the power
estimates differ are those proposed in [13]. For these tests, the classical parametric bootstrap
approach typically provides power estimates that are higher than those obtained using
the warp-speed methodology. For the sake of consistency, the warp-speed methodology is
used for all tests throughout the simulation study.

Tables 2 and 3 show the estimated powers obtained using the warp-speed bootstrap
methodology with 50,000 replications for sample sizes 30 and 50. The entries show the
percentage of samples for which the null hypothesis was rejected, rounded to the closest
integer. Following [13], the nominal significance level α is set to 10% throughout. To ease
comparison, the highest power against each alternative distribution is printed in bold in the
tables. We divide our new tests into four categories, depending on the weight function and
estimation technique. More precisely, we implement the two weight functions wa and w̃a as
in Sections 1 and 5.1, distinguishing the resulting tests by the ’ ˜ ’-notation, and use upper
indices ML and MO to indicate the use of maximum likelihood or moment estimators,
respectively. For each of the resulting four classes, we consider three different values of
the tuning parameter, namely a = 0.1, 1, 10. Several other values were also investigated,
but due to the remarkable insensitivity of the tests regarding the tuning parameter in
most cases, we present only these three values in the numerical results. The mentioned
insensitivity is particularly noticeable for the tests that employ the moment estimators.

For comparing the power results in Tables 2 and 3, some remarks are in order. Notice
that each of the tests keeps the nominal level of 10% closely when the null hypothesis is
true. Observing the powers associated with the existing tests for the inverse Gaussian
distribution, it is clear that the power of the test by [16] is generally lower than the power
of the remaining tests. Among the three classical procedures, the Anderson–Darling test
performs best, while the HK(2)

n,0 test proposed by [13] produces the highest power among
the more recent tests.
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Table 2. Approximated powers for sample size n = 30.

Distribution KS CM AD HK(1)
n,0 HK(2)

n,0 VGn BGn T ML
n,0.1 T ML

n,1 T ML
n,10 T MO

n,0.1 T MO
n,1 T MO

n,10 T̃ ML
n,0.1 T̃ ML

n,1 T̃ ML
n,10 T̃ MO

n,0.1 T̃ MO
n,1 T̃ MO

n,10

IG(1) 10 10 10 10 10 10 10 10 10 10 12 12 13 10 10 11 12 12 12
IG(5) 10 10 10 10 10 10 10 11 10 10 11 11 11 11 10 10 11 11 11
IG(10) 10 10 10 10 10 10 10 10 11 10 11 11 11 10 10 10 10 11 11
IG(20) 10 10 10 10 10 11 10 10 10 11 10 10 10 11 11 11 10 11 10
W(1) 80 83 84 61 68 30 43 82 86 85 94 93 95 85 84 85 94 93 94

W(1.2) 73 76 77 58 64 36 48 77 80 78 91 90 92 79 79 79 90 90 91
W(1.6) 62 67 69 54 58 42 55 69 73 69 86 85 87 71 72 70 86 85 86
W(2) 55 61 63 52 54 44 61 65 67 64 82 82 83 66 67 66 82 82 83
W(3) 47 53 56 48 49 44 70 61 63 59 76 75 76 61 63 60 75 76 76

LN(0.6) 14 15 16 17 18 14 17 15 16 20 20 19 22 15 16 19 19 19 21
LN(1) 21 22 23 22 25 15 14 17 20 28 27 26 29 18 20 24 26 25 27

LN(1.4) 28 32 32 28 33 16 13 21 25 36 35 35 38 22 25 31 35 34 35
LN(2) 42 46 46 37 44 17 24 26 34 48 49 48 52 28 33 41 49 48 49
LN(3) 63 67 67 50 61 17 39 33 44 65 71 70 73 36 44 54 71 69 71
Γ(1.5) 61 65 66 53 57 36 47 63 68 68 83 82 85 66 67 68 83 82 83
Γ(2) 47 52 53 47 50 35 37 51 55 57 73 71 75 53 55 57 72 71 74

Γ(2.5) 39 42 44 41 44 31 30 43 47 50 65 64 67 44 47 50 64 63 66
Γ(5) 21 23 24 27 28 21 20 26 27 32 41 40 43 26 29 32 40 39 42

DH(1) 39 42 43 39 43 27 25 37 43 49 56 55 59 39 43 47 55 54 57
DH(1.5) 35 39 39 38 41 29 26 37 42 47 57 57 61 39 42 46 57 56 58
DH(2) 33 37 38 38 40 29 28 39 42 45 58 57 60 39 42 46 57 56 59

U(0.5, 1.5) 40 53 60 17 14 12 61 53 49 11 48 54 40 53 45 13 53 54 41
U(1, 2) 34 46 54 6 5 1 48 35 34 4 19 25 14 36 31 4 26 26 14
HC(1) 61 64 63 44 53 16 30 32 47 64 44 43 46 35 48 58 44 42 43
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Table 3. Approximated powers for sample size n = 50.

Distribution KS CM AD HK(1)
n,0 HK(2)

n,0 VGn BGn T ML
n,0.1 T ML

n,1 T ML
n,10 T MO

n,0.1 T MO
n,1 T MO

n,10 T̃ML
n,0.1 T̃ML

n,1 T̃ ML
n,10 T̃ MO

n,0.1 T̃ MO
n,1 T̃ MO

n,10

IG(1) 10 10 10 10 10 10 10 10 10 11 11 11 11 10 10 10 11 11 11
IG(5) 10 10 10 10 10 10 10 10 10 10 11 10 11 11 10 10 10 10 10

IG(10) 10 10 10 10 10 10 10 10 10 10 11 10 10 11 10 10 10 10 10
IG(20) 10 10 10 10 10 10 10 10 10 10 11 10 10 11 10 10 10 10 10
W(1) 94 96 96 79 85 36 88 96 97 96 98 98 99 97 96 96 98 98 99

W(1.2) 89 92 92 77 82 45 83 93 95 92 98 97 98 94 94 93 97 97 98
W(1.6) 81 85 86 74 77 57 77 88 90 86 96 95 96 89 89 87 96 95 96
W(2) 74 80 82 71 74 62 74 85 86 82 94 94 94 86 86 84 94 94 94
W(3) 65 73 76 68 69 63 71 82 82 78 91 90 91 82 82 79 90 90 90

LN(0.6) 16 18 18 20 21 15 12 17 18 23 21 20 23 17 18 22 20 20 21
LN(1) 26 29 30 29 33 18 17 21 26 35 28 27 31 22 26 31 28 27 28

LN(1.4) 38 42 43 39 44 19 24 27 35 47 36 35 40 29 36 41 36 34 36
LN(2) 57 62 62 52 60 18 37 36 49 63 49 48 53 41 49 56 49 48 50
LN(3) 81 84 84 68 78 18 60 48 66 82 72 71 75 56 65 74 71 71 72
Γ(1.5) 79 83 84 72 76 48 70 83 87 85 93 93 94 86 85 86 93 92 94
Γ(2) 65 71 72 64 68 48 55 70 75 75 85 85 88 73 74 75 85 84 87

Γ(2.5) 53 59 60 58 60 45 45 59 64 67 77 76 80 61 64 67 77 76 79
Γ(5) 27 31 32 38 39 30 27 36 39 43 51 50 54 36 40 44 50 49 53

DH(1) 53 58 59 54 59 34 38 51 59 66 66 64 70 55 59 63 65 63 67
DH(1.5) 48 53 54 53 56 38 39 52 58 63 69 67 73 55 58 61 68 67 71
DH(2) 46 51 53 53 56 42 41 54 58 61 71 70 74 56 58 61 71 69 73

U(0.5, 1.5) 61 76 86 29 24 30 84 80 76 15 69 76 56 80 72 18 75 76 58
U(1, 2) 51 69 80 8 7 5 71 63 60 5 30 41 19 62 56 4 40 40 19
HC(1) 77 80 80 58 68 15 49 46 68 81 39 38 40 53 69 77 39 38 39
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Turning our attention to a global comparison between the tests, we see that our newly
proposed method outperforms the existing tests in most cases considered. In fact, the
new tests produce higher powers in 17 out of 20 alternative distributions for both sample
sizes. Interestingly, the tests using the moment estimators outperform those based on the
maximum likelihood estimates. Although the choice of the weight function seems to have a
smaller influence on the power than the estimation method, the test statistics which employ
wa(t) = exp(−at) as a weight outperform those that use w̃a(t) = exp(−at2). Based on the
numerical results, we recommend for practical applications the statistic TMO

n,10 .
Figure 1 represents a snapshot of the empirical powers for various sample sizes for

5 fairly powerful tests against the Gamma and Weibull alternatives, both with parameter 2.
These powers are obtained by the warp-speed bootstrap methodology with 50,000 replica-
tions for sample sizes n = {10, 20, 30, . . . , 100}. Again, one can see that TMO

n,10 outperforms
the other 4 tests for all sample sizes considered.
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Figure 1. Empirical powers for various sample sizes against the Γ(2) (left) and the W(2) (right)

alternatives. The tests considered are KS (black line), AD (purple line), HK(2)
n,0 (green line), TML

n,10 (blue
line) and TMO

n,10 (red line).

5.4. Practical Application

We apply all tests from the simulation study in Section 5.3 to two real-world data
examples. The first data set is from [39]. It was also analyzed by [13,40] with regard to
the inverse Gaussianity hypothesis stated by [41]. The data are recalled in Table 4, where
n = 46 active repair times (in hours) for an airborne transceiver are provided. Table 5
shows the calculated value of each test statistic as well as the associated p-value. Each of
the p-values is calculated using the classical parametric bootstrap approach used in Section
5 of [13]. Observing the p-values, none of the tests rejects the null hypothesis at a nominal
significance level of 10%.
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Table 4. Repair times (in hours) for airborne transceivers.

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0
3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0
7.5 8.8 9.0 10.3 22.0 24.5

Table 5. Values of the test statistics and p-values for the repair time example.

Test Test Statistic p-Value Test Test Statistic p-Value

KS 0.0682 0.9040 TMO
46,0.1 4.0310 0.6423

CM 0.0327 0.8707 TMO
46,1 0.4870 0.6643

AD 0.2195 0.8826 TMO
46,10 0.0223 0.6641

HK(1)
46,0

0.0137 0.9409 T̃ML
46,0.1 0.0618 0.9445

HK(2)
46,0

0.0028 0.9608 T̃ML
46,1 0.0320 0.8557

VG46 0.5770 0.7115 T̃ML
46,10 0.0101 0.7923

BG46 0.0057 0.7579 T̃MO
46,0.1 1.3230 0.6479

TML
46,0.1 0.0949 0.9199 T̃MO

46,1 0.4588 0.6577
TML

46,1 0.0298 0.9073 T̃MO
46,10 0.1227 0.6399

TML
46,10 0.0020 0.8436

We also consider a second example, with data taken from [42] as analyzed by [13,43],
where the inverse Gaussian distribution as an underlying model was again suggested
by [44]. The n = 25 recorded measurements correspond to precipitation (in inches) at Jug
Bridge, Maryland. Table 6 provides the data itself, while Table 7 shows the values of the
different test statistics as well as the associated p-value for each test. In contrast to the
previous example, five of the tests reject the null hypothesis at a nominal significance level
of 10%. This casts some doubt as to whether or not the data in question were realized from
an inverse Gaussian law. Note that the p-values associated with the newly proposed tests
are substantially lower than those associated with most of the existing tests, the exception
being the test of [8].

Table 6. Precipitation (in inches) at Jug Bridge, Maryland.

1.01 1.11 1.13 1.15 1.16
1.17 1.17 1.20 1.52 1.54
1.54 1.57 1.64 1.73 1.79
2.09 2.09 2.57 2.75 2.93
3.19 3.54 3.57 5.11 5.62

Table 7. Values of the test statistics and p-values for the precipitation example.

Test Test Statistic p-Value Test Test Statistic p-Value

KS 0.0679 0.9127 TMO
25,0.1 1.9691 0.4380

CM 0.0307 0.8944 TMO
25,1 0.2903 0.4357

AD 0.2110 0.8968 TMO
25,10 0.0123 0.3350

HK(1)
25,0

0.0121 0.9482 T̃ML
25,0.1 0.3203 0.1080

HK(2)
25,0

0.0025 0.9630 T̃ML
25,1 0.1796 0.0441

VG25 0.4314 0.7209 T̃ML
25,10 0.0195 0.0584

BG25 0.0718 0.0123 T̃MO
25,0.1 0.6804 0.4321

TML
25,0.1 0.3216 0.1068 T̃MO

25,1 0.3005 0.4356
TML

25,1 0.1581 0.0632 T̃MO
25,10 0.0825 0.3315

TML
25,10 0.0029 0.0720
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6. Conclusions

Since the global power function of any nonparametric test is flat on balls of alternatives
except for alternatives coming from a finite-dimensional subspace—see [45]—it is known
that there is no uniformly most powerful test for the considered problem. Nevertheless,
the empirical powers presented above show that the newly proposed class of tests is very
powerful compared to its competitors. In particular, the new test is more powerful than
the other quite recent tests we considered, and it also outperforms the classical empirical
distribution function-based tests.

Finally, we point out some interesting open questions for further research. In view
of the data-driven method of choosing a tuning parameter proposed by [46], and refined
by [47], for location scale families, it would be beneficial for the power of the tests to
find an optimal choice of a, even though the procedures are not very sensitive to the
choice of different tuning parameters. Since the inverse Gaussian distribution is not a
location scale family, the current context does not lend itself to a simple solution. Another
interesting question is to find characterizations similar to Theorem 1 for larger classes of
distributions, i.e., supersets of IG, such as the generalized hyperbolic distributions, and
apply a methodology similar to the present one to find powerful goodness-of-fit tests.
These distributions have become popular in financial modelling and risk analysis. For
initial results on Stein characterizations of the generalized hyperbolic distribution, see [48].
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