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1 Introduction

Studies of Yukawa couplings play an important role in the verification of the mechanism
of electroweak symmetry breaking as described by the Standard Model. By now, Higgs
couplings to bottom and top quarks, as well as to tau leptons and muons, have been
measured to a precision of about twenty percent [1–6]. Within the error bars, the measured
values for all four Yukawa couplings are consistent with the Standard Model predictions.

However, the Yukawa couplings to lighter fermions have not been studied experimen-
tally. Although it is generally agreed that the Yukawa couplings of electrons and up, down
and strange quarks can be observed if and only if they deviate enormously from their Stan-
dard Model values, the situation with the charm Yukawa is not so hopeless. In fact, it
appears that with the full LHC luminosity, the charm Yukawa coupling can be measured if
its value deviates from the Standard Model expectation by an order one factor [7]. Different
observables to measure the charm Yukawa coupling at the LHC have been proposed; they
include inclusive (H → cc̄) and exclusive (H → J/ψ + γ and similar) decays of the Higgs
boson [8–10], the modifications of the Higgs transverse momentum distribution [11] in the
gg → H +X process and, finally, Higgs boson production cross section in association with
a charm jet [12]. These indirect bounds on the charm Yukawa coupling were examined, for
example, in ref. [13].
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In this paper we focus on the latter process, pp → H + jetc. At leading order in
perturbative QCD, Higgs bosons are produced in association with charm jets in the partonic
process cg → Hc. The amplitude of this process receives contributions proportional to the
charm Yukawa coupling and to an effective ggH coupling

M∼ gYukM1 + gggHM2, (1.1)

see figure 1. As a result, the pp→ H + jetc cross section contains the interference term

σHc ∼ g2
Yuk σ̃1 + g2

ggH σ̃2 + gYukgggH σ̃Int. (1.2)

It can be expected that a reliable description of Higgs boson production in association with
a charm jet can be obtained by systematically computing the different terms in eq. (1.2)
to higher orders in perturbative QCD. In fact, it is emphasized in ref. [12] that the largest
theoretical uncertainty in usingH+jetc production cross section to constrain charm Yukawa
coupling is related to perturbative QCD uncertainties so that it seems natural to compute
higher order QCD corrections to σHc in eq. (1.2).

However, pursuing this program for the interference term in eq. (1.2) is quite subtle as
we now discuss. Indeed, perturbative computations in QCD are performed with massless
incoming partons. In case of the massless charm quark that, however, has non-vanishing
Yukawa coupling to the Higgs boson, the interference term in eq. (1.2) vanishes and we
obtain

lim
mc→0

σHc ∼ g2
Yukσ̃1 + g2

ggH σ̃2. (1.3)

This happens because the Yukawa interaction flips charm’s helicity but the gluon-charm
interaction conserves it; hence, the two contributions in eq. (1.1) cannot interfere if mc = 0.
For the massive charm quark the interference does not vanish and is proportional to the
charm mass in the first power. Whether or not the interference contribution is negligible
depends on the relative magnitude of the two amplitudes in eq. (1.1). Leading-order
computations with massless quarks show that the charm-Yukawa independent amplitude
gggHM2 in eq. (1.1) is larger than the charm-Yukawa dependent one gYukM1 suggesting
that the interference may be non-negligible.

It is straightforward to calculate the interference at leading order in perturbative QCD.
Indeed, the interference requires one helicity flip on a charm line that connects initial and
final states; this flip is accomplished by a single mass insertion. This implies that one
can compute the interference of the two amplitudes using massive charm quarks, take the
mc → 0 limit and account for the first non-vanishing term proportional to mc. Since we
require a charm jet in the final state, none of the kinematic invariants of the cg → Hc

process can be small. Hence, once one power of mc is extracted, the rest of the leading-
order calculation of the interference contribution can be performed using the standard
approximation of massless (charm) quarks. Such calculation, that we describe in section 5,
shows that the leading-order interference amounts to about ten percent of the contribution
to the H + jetc cross section that is proportional to the Yukawa coupling squared.
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H H

(a) Yukawa coupling.

H

(b) Effective ggH vertex.

Figure 1. Leading-order Feynman diagrams contributing to the pp→ Hc process. We distinguish
two separate production mechanisms: one that is driven by the Yukawa coupling (left) and the
other one that requires direct coupling of Higgs to gluons (right).

Although the interference contribution is not large, it is worth thinking about it at
next-to-leading order (NLO) in perturbative QCD since there are reasons to believe that
the interference contribution is perturbatively unstable, at variance with the two other con-
tributions to pp → H + jetc cross section. Indeed, even if we require an energetic charm
jet in the final state, soft and collinear kinematic configurations lead to logarithmic sensi-
tivity of the interference to the charm mass mc. Hence, before the mc → 0 approximation
can be taken, the quasi-singular contributions proportional to logarithms of mc have to be
extracted from both real and virtual corrections to the interference part of the production
cross section.1

One may argue that, since the finite charm mass provides yet another way to reg-
ulate collinear divergences, it is to be expected that the procedure described above will
lead to a familiar picture of (quasi)-collinear factorization of QCD amplitudes. If so, all
ln(mc)-dependent terms should disappear once infrared safe cross sections and distributions
are computed using short-distance quantities, including conventional parton distribution
functions (PDFs). However, we will show that for the interference contribution this ex-
pectation is invalid and that well-known formulas that describe collinear factorization of
mass singularities are not applicable in that case. We will also show that the helicity flip
leads to an appearance of soft-quark singularities that, interestingly, make jet algorithms
logarithmically-sensitive to mc.

There are two consequences of the above discussion. First, the problem of estimating
the magnitude of the interference contribution to the production of a Higgs boson in associ-
ation with a charm jet turns into an interesting problem in perturbative QCD that borders
on such important issues as soft and collinear QCD factorization for mass power correc-
tions [17–21]. Second, a more complex pattern of this factorization, as compared to the
canonical collinear and soft cases [22], implies that NLO QCD corrections to leading-order
interference are enhanced by up to two powers of a large logarithm lnQ/mc where Q is a
typical hard scale in the process pp→ H+jetc. It would be ideal to resum these logarithms
but it is currently unknown how to do that. Therefore, the best we can do is to explicitly
compute NLO QCD corrections to the interference. Although such an approach is limited

1We note that production of Higgs bosons in association with massive (bottom) quarks has been studied
long time ago both in four- and five-flavor schemes [14–16]. Computations within the four-flavor scheme
naturally include the interference of the Yukawa and ggH contributions but leave logarithms of the heavy
quark mass unresummed. Calculations based on the five-flavor scheme naturally resum logarithms of the
heavy quark mass but do not include the interference.
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in scope, it allows us to expose logarithmically-enhanced contributions and estimate how
significant they are for phenomenology.

Finally, since our approach involves dealing with massive quarks in the initial state, one
may worry that its extension to next-to-next-to-leading (NNLO) and even higher pertur-
bative orders is problematic because, starting from NNLO, QCD corrections to processes
with massive partons in the initial state are known to be pathological, in that they are
not infra-red finite [23–34]. Luckily, such worries are unfounded. Indeed, we note that the
process studied in this paper is a result of a collision of a massive quark with a massless
gluon and it is known that in this case the offending factorization violating terms, described
e.g. in ref. [35], are absent.

Moreover, such factorization-violating effects, when present, are actually power-sup-
pressed. In fact, they will first appear in NNLO terms that scale as α2

sm
4
c/s

2×dσint
LO where

dσint
LO ∼ m2

c/s
4. However, our approach only works for terms that scale as αnsdσint

LO, n > 0,
modulo additional powers of lnmc. Therefore, even if such factorization-violation effects
were present, extension of our approach to higher perturbative orders should be possible
as long as we systematically omit power-suppressed terms.

The rest of the paper is organized as follows. In the next section we derive a relation
between MS-regulated and mass-regulated parton distribution functions at O(αs) using the
process of Higgs boson production in cc̄ annihilation. We use the established relation to
remove “conventional” collinear logarithms from NLO QCD corrections to the interference
contribution to the production of Higgs boson in association with charm jet. In section 3
we discuss factorization of mass singularities in the interference contribution to cg → Hc

process and show that it works differently as compared to the standard case [22]. In sec-
tion 4 we briefly describe the technical details of the calculation of NLO QCD corrections
to the interference contribution. In section 5 we present phenomenological results and dis-
cuss the relative importance of logarithmically-enhanced terms. We conclude in section 6.
Additional discussion of soft and collinear limits of the interference contributions as well
as some relevant soft integrals can be found in several appendices.

2 Matching parton distribution functions

Parton distribution functions are traditionally defined in the MS scheme and employ mass-
less on-shell partons. However, this is not the only option. In fact, the parton picture
employs massless partons because hadronic hard scattering processes, properly defined,
are insensitive to collinear and infra-red dynamics, up to power corrections. This implies
that it should be possible to work with any collinear regulator in a consistent way.

A possible choice of a collinear regulator is a quark mass. This choice is very natural
for our problem because, to study interference effects in the Higgs production, we have to
start with a small but non-vanishing charm quark mass.

Parton distribution functions that employ quark masses as collinear regulators are not
known phenomenologically. Hence, it becomes important for us to relate them to conven-
tional MS PDFs. We do this by requiring that “leading-twist” contributions to physical
processes should be independent of collinear regulator. We can use this fact to derive
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matching relations between parton distribution functions that are used for computations
with nearly massive and strictly massless quarks.2

To derive a relation between “massive” and “massless” PDFs, we start with the pro-
duction of a Higgs boson in an annihilation of two massive charm quarks and write the
differential cross section as

dσpp→H =
∑
ij

∫
dx1 dx2 f

(m)
i (x1)f (m)

j (x2)dσ̂(m)
ij→H+X . (2.1)

Here f (m)
i are parton distribution functions and the superscript m implies that all relevant

quantities should be computed using quark masses as collinear regulators. Also, σ̂(m)
ij→H+X

is the partonic differential cross-section. At leading order i(j) = c, c̄; at higher orders other
channels also contribute.

Calculation at leading order in αs is straightforward since the leading-order cross sec-
tion σ(m)

cc̄→H has a regular mc → 0 limit. It follows that at leading order in αs there is no
difference between f (m)

i and conventional MS parton distribution functions, i.e. f (m)
i = fMS

i .
The situation becomes more complicated at next-to-leading order where the charm

quark mass screens collinear singularities; hence, our goal is to re-write the NLO QCD
contributions to the cross section cc̄ → H + X in such a way that logarithms of mc are
extracted explicitly.

We begin by considering the process c(p1) + c̄(p2) → H + g(p3) and treating charm
quarks as massive. Kinematic regions that lead to soft and (quasi-)collinear singularities
are well understood. The behavior of matrix elements in these limits is described by con-
ventional factorization formulas [22]. We can define a hardmc-independent cross section by
subtracting the singular limits. When the subtracted terms are added back and integrated
over unresolved parts of the Hg phase space, logarithms of the charm mass appear. This
procedure is identical to methods developed to extract infrared and collinear singularities
from real emission contributions to partonic cross sections. Its application in the present
context allows us to explicitly extract logarithms of the charm mass.

To organize the calculation, we follow the nested soft-collinear subtraction scheme [37–
40] which, at next-to-leading order, is equivalent to the FKS scheme [41, 42]. We use
dimensional regularization3 to regularize soft singularities and the charm mass to regularize
the collinear ones. Using notations from ref. [37], we write the partonic cross section for
c(p1) + c̄(p2)→ H + g(p3) as

2s · dσ̂cc̄→H+g =
∫

[dg3]FLM(1c, 2c̄; 3g) ≡ 〈FLM(1c, 2c̄; 3g)〉 = 〈S3FLM(1c, 2c̄; 3g)〉

+ 〈(C31 + C32)(I − S3)FLM(1c, 2c̄; 3g)〉+ 〈(I − C31 − C32)(I − S3)FLM(1c, 2c̄; 3g)〉.
(2.2)

The key observation is that since the fully-regulated (last) term in eq. (2.2) is free of
both soft and quasi-collinear singularities, the limit mc → 0 can be safely taken there. On

2We note that a derivation of the initial condition for the electron structure function in QED was
recently presented in ref. [36]. There is a strong conceptual overlap of the discussion in that reference and
the computation reported in this section. In particular, our procedure allows us to rederive elements that
enter the structure functions in eqs. (4.121), (4.189) and (5.42) of ref. [36].

3The space-time dimension d is parametrized as d = 4− 2ε.
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the contrary, both soft and collinear subtraction terms exhibit mass singularities; these
mass singularities need to be extracted.

Consider the soft limit defined as p3 ·p1 ∼ p3 ·p2 → 0. It reads [22]

S3FLM(1c, 2c̄; 3g) ≈ g2
sCF

(
2(p1 · p2)

(p1 · p3)(p2 · p3) −
m2
c

(p1 · p3)2 −
m2
c

(p2 · p3)2

)
FLM(1c, 2c̄), (2.3)

where gs is the unrenormalized strong coupling constant.
Since the soft gluon decouples from the function FLM(1c, 2c̄) we can integrate eq. (2.3)

over the gluon phase space. We work in the center-of-mass frame of the colliding charm
partons and parametrize their energies as E1 = E2 = E. The center of mass energy squared
in the massless approximation is then s = 4E2. We also cut integrals over gluon energy at
E3 = Emax, cf. ref. [37]. Integrating eq. (2.3) over gluon phase space [dg3] and taking the
mc → 0 limit, we find

〈S3FLM(1c, 2c; 3g)〉 = −CF [αs]E−2ε
max

ε

[
2 I1m(E)− I2m(E)

]
〈FLM(1̃c, 2̃c̄)〉, (2.4)

where [αs] = g2
sΩ(d−2)/(2(2π)d−1) and Ω(d−2) is the solid angle of the (d− 2)-dimensional

space.4 The notation 1̃c(2̃c̄) implies that the corresponding four-momenta should be taken
in the massless approximation. The two integrals I1m(2m) in eq. (2.4) read

I1m(E) =
1∫
−1

d cos θ(sin2 θ)−ε

1− β cos θ ≈ −4−εΓ2(1− ε)
ε Γ(1− 2ε)

1− Γ(1 + ε)Γ(1− 2ε)
Γ(1− ε)

(
m2
c

4E2

)−ε ,
I2m(E) = m2

c

E2

1∫
−1

d cos θ(sin2 θ)−ε

(1− β cos θ)2 ≈ 2
(
m2
c

E2

)−ε
Γ(1− ε)Γ(1 + ε),

(2.5)

where β =
√

1−m2
c/E

2 and we neglected all power-suppressed terms when writing the
results.

Collinear subtraction terms contain quasi-collinear singularities. The two collinear
limits correspond to two distinct cases, p1 ·p3 ∼ m2

c → 0 and p2 ·p3 ∼ m2
c → 0. They read

C3i FLM(1c, 2c̄; 3g) = g2
s

(pi · p3)

[
Pqq(z)− CFm

2
cz

(pi · p3)

]
F

(i)
LM(1̃c, 2̃c̄; z)

z
, (2.6)

where

F
(i)
LM(1̃c, 2̃c̄; z) = δi1 FLM(z · 1̃c, 2̃c̄) + δi2 FLM(1̃c, z · 2̃c̄), (2.7)

and

Pqq(z) = CF

(
1 + z2

1− z − ε(1− z)
)

(2.8)

4The solid angle of the d-dimensional space is Ω(d) = 2πd/2/Γ
(
d/2
)
.
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is the collinear splitting function. The variable z is defined as z = (Ei − E3)/Ei with
i = 1, 2, as appropriate.

Since, when computing the collinear limits, we do not change the gluon phase space [37],
integrated collinear subtraction terms are still described by angular integrals I1m(2m) shown
in eq. (2.5). Performing the soft subtraction of the collinear-subtracted cross section,
we find

〈C31(I − S3)FLM(1c, 2c̄; 3g)〉 = [αs]E−2ε
1∫

0

dz I(E, z)
〈
FLM(z · 1̃c, 2̃c̄)

z

〉
, (2.9)

where

I(E, z) = I1m(E) P̄qq(z)− I2m(E) P̄ (m)
qq (z), (2.10)

and

P̄qq = CF

(
1 + z2

(1− z)1+2ε − ε(1− z)1−2ε + 1
ε
δ(1− z)e−2εL1

)
,

P̄ (m)
qq = CF

(
z

(1− z)1+2ε + 1
2εδ(1− z)e−2εL1

)
,

(2.11)

and L1 = ln(Emax/E). A similar expression can be written for 〈C32(I − S3)FLM(1, 2; 3)〉.
It is straightforward to combine soft and collinear contributions and to expand them

in ε. At this point, it is convenient to switch to a strong coupling constant renormalized
at the scale µ. We obtain

〈S3FLM(1, 2; 3)〉+ 〈C31(I − S3)FLM(1, 2; 3)〉+ 〈C32(I − S3)FLM(1, 2; 3)〉 =

= CF
αs(µ)

2π

{
−2Lc

ε
− L2

c + 1− 2π2

3 − 3Lc + 2Lc ln M
2
H

µ2

}
〈FLM(1, 2)〉

+ CF
αs(µ)

2π

1∫
0

dz
{[

1 + z2

1− z

]
+
Lc + (1− z)

}〈
FLM(z · 1̃c, 2̃c̄)

z
+ FLM(1̃c, z · 2̃c̄)

z

〉
,

(2.12)

where Lc = ln(M2
H/m

2
c)− 1.

To determine full NLO QCD correction to cc̄ → H cross section, we need to include
virtual corrections. They are computed in a standard way (see e.g. ref. [43] where such a
computation is reported); the result is then expanded around mc = 0. We renormalize the
Yukawa coupling in the MS scheme at the scale µ. The result reads

2s · dσ̂V = CF
αs(µ)

2π

[
2
ε
Lc + 4π2

3 + 4 + L2
c + (2Lc + 3) ln µ2

M2
H

+ 3Lc

]
〈FLM(1̃c, 2̃c̄)〉.

(2.13)
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Upon combining virtual, soft, collinear and fully-regulated terms, we obtain the fol-
lowing NLO QCD contribution to cc̄→ H +X cross section

2s · dσ̂NLO = 〈(I − C31 − C32)(I − S3)FLM(1̃c, 2̃c̄; 3g)〉

+ CF
αs(µ)

2π

(
2π2

3 + 5− 3 ln M
2
H

µ2

)〈
FLM(1̃c, 2̃c̄)

〉

+ αs(µ)
2π

2∑
i=1

1∫
0

dz
{
PAPqq (z) ln µ2

m2
c

+ P fin
qq (z)

}〈
F

(i)
LM(1̃c, 2̃c̄; z)

z

〉
,

(2.14)

where

PAP
qq = CF

[
1 + z2

1− z

]
+

and P fin
qq = CF

[
1 + z2

1− z

]
+

(
ln M

2
H

µ2 − 1
)

+ CF (1− z) . (2.15)

The first term on the right hand side of eq. (2.14) is the hard inelastic contribution; it can
be computed directly in the massless limit, mc = 0. The second term on the right hand side
of eq. (2.14) is the soft-virtual piece; it describes kinematic configuration that is equivalent
to the leading-order one. The third term in eq. (2.14) describes kinematic configurations
that are boosted relative to the leading-order ones; we note that the residual logarithmic
dependence on mc is present in these contributions only.

A similar computation for massless charm partons requires, in addition, a collinear
PDF renormalization to make the partonic cross section collinear-finite and independent
of the regularization parameter ε. The result reads

2s · dσ̂mc=0
NLO = 〈(I − C31 − C32)(I − S3)FLM(1̃c, 2̃c̄; 3g)〉

+ CF
αs(µ)

2π

[
5 + 2π2

3 − 3 ln M
2
H

µ2

]
〈FLM(1̃c, 2̃c̄)〉

+ αs(µ)
2π

2∑
i=1

1∫
0

dz P (ε)
qq (z)

〈
F

(i)
LM(1̃c, 2̃c̄; z)

z

〉
,

(2.16)

where

P (ε)
qq (z) = CF

[
1 + z2

1− z

]
+

ln M
2
H

µ2 + 2CF

[
1 + z2

1− z ln(1− z)
]

+
+ CF (1− z). (2.17)

The partonic cross sections in eqs. (2.14) and (2.16) should be convoluted with different
parton distribution functions to obtain hadronic cross sections: in case of eq. (2.16) we must
use conventional MS PDFs whereas in case when the incoming charm quarks are massive a
special set of PDFs is required. Nevertheless, since mc is just a collinear regulator, results
for short-distance hadronic cross sections should be the same, independent of whether one
starts with nearly massive or massless charm quarks. This requirement allows us to derive
a relation between the “massive” and the MS PDFs. It reads

f (m)
a = Ôab ⊗ fMS

b , (2.18)
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where

Ôab(z) = δabδ(1− z) +
(
αs
2π

)
Gab(z) + . . . . (2.19)

The computation that we just described allows us to determine the coefficient Gcc(z).
We find

Gcc(z) = − ln
(
µ2

m2
c

)
PAP
qq (z) + CF

[
1 + z2

1− z (1 + 2 ln(1− z))
]

+
. (2.20)

We can also compute “off-diagonal” coefficients Gab that involve charm quark and
gluon PDFs; they are important for removing mass singularities that arise in g → c and
c → g transitions. Computations proceed along the same lines as described above except
that we employ other partonic processes for the analysis. Namely, we derive a relation
for g → c transition by considering a cg → Hc process in a theory where only Yukawa
coupling is present and no direct ggH coupling is allowed. To derive a relation for c → g

transition, we again consider cg → Hc process but now only allow for the ggH coupling.
In both cases only (quasi)-collinear singularities are present; this simplifies the required
computations significantly. We find

Gcg(z) = − ln
(
µ2

m2
c

)
PAP
qg (z),

Ggc(z) = −
[
ln
(
µ2

m2
c

)
− 2 ln (z)− 1

]
PAP
gq (z),

(2.21)

where

PAP
qg = TR [1− 2z(1− z)] , PAP

gq = CF
1 + (1− z)2

z
. (2.22)

The results for the functions Gab(z) reported in eqs. (2.20), (2.21) are important for
the calculation of NLO QCD corrections to the interference contribution to Higgs boson
production in association with a charm jet. Indeed, as explained in the Introduction, to
access the interference, we need to start with the massive incoming charm quarks and
carefully study the massless limit. Since the charm mass serves as a collinear regulator, we
are forced to use parton distribution functions f (m)

i . We then use the relation eq. (2.18)
to express these functions through the conventional MS PDFs and, in doing so, remove
logarithms of mc that are associated with the radiation by the incoming charm quarks.
Because the interference contribution to pp → H + jetc involves a helicity flip, standard
collinear logarithms associated with initial state emissions are not the only logarithms of
the charm mass that appear in the cross section. We elaborate on this statement in the
next section.

3 Interference contributions and factorization in the quasi-collinear limit

The discussion in the previous section shows that the dependence on mc disappears from
hard cross sections provided that conventional factorization formulas for soft and quasi-
collinear singularities, eqs. (2.3), (2.6), hold true. However, since the interference con-
tribution requires a helicity flip, its soft and quasi-collinear limits are different from the
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conventional ones. As we explain below, such limits can still be described by simpler matrix
elements but these matrix elements do not always correspond to processes with reduced
multiplicities of final state particles.

To discuss and illustrate these subtleties in more detail, consider the process

c(p1) + g(p2) −→ H(pH) + c(p3) + g(p4) . (3.1)

The first point that needs to be emphasized is that, if we work with a finite charm mass,
true soft and collinear limits of the process in eq. (3.1) are, in fact, conventional. These
contributions can be extracted and combined with the virtual corrections to cg → Hc

and renormalized gluon parton distribution function giving a finite result for the partonic
cross section. Such a procedure is identical to what is usually done in NLO QCD compu-
tations [41, 42, 44] that are traditionally performed using dimensional regularization for
soft and collinear divergences. However, cancellation of “true” infrared and collinear diver-
gences does not tell us anything about non-analytic dependence of partonic cross sections
on the charm mass that we need to extract before taking the mc → 0 limit.

In this paper, we adopt a pragmatic approach and extract all the terms that are sin-
gular in the mc → 0 limit by studying interference contributions to squares of scattering
amplitudes, computed explicitly with massive charm quarks, for all relevant partonic pro-
cesses, cg → Hcg , gg → Hcc̄ , cq → Hcq , cc → Hcc , cc̄ → Hcc̄ . In that sense, we do
not attempt to develop an understanding of infrared and quasi-collinear factorization for
generic processes that involve a helicity flip. However, to illustrate main differences with
the conventional collinear factorization we discuss an emission of a collinear gluon off an
incoming charm quark in case of the interference contribution in some detail.

To this end, we consider the process in eq. (3.1) in the quasi-collinear limit p1 ·p4 ∼ m2
c .

To describe this limit, we divide the amplitude for the full process cg → Hcg into two parts

M =Msing +Mfin, (3.2)

whereMsing refers to diagrams where the gluon is emitted off the incoming quark with the
momentum p1 andMfin refers to the remaining diagrams. The first contribution (Msing)
is singular in the p1 ·p4 ∼ m2

c → 0 limit whereas the second one (Mfin) is not.
Upon squaring the amplitude, eq. (3.2), and summing over polarizations of initial and

final state particles, we obtain∑
pol
|M|2 =

∑
pol
|Msing|2 +

∑
pol

(
MsingM†fin + h.c.

)
+ . . . , (3.3)

where the ellipsis stands for contributions that are finite in the p1 ·p4 ∼ m2
c → 0 limit. We

note that the product of singular and non-singular contributions to the amplitude squared
that we retain in eq. (3.3) is known to be non-singular in the conventional quasi-collinear
limits provided that physical polarizations are used to describe the emitted gluon. As we
will show below, this is not the case for the interference contributions considered in this
paper.

To extract the quasi-collinear singularities from the square of the amplitude in eq. (3.3)
we need to analyze the quasi-collinear kinematics; for this analysis there is no difference
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between helicity-conserving and helicity-flipping contributions. Indeed, following the stan-
dard approach, we re-write the four-momentum of the incoming charm quark and the
four-momentum of the emitted gluon through massless momenta p̃1 and p2 and find

p1 =
(

1− m2
c

s

)
p̃1 +

(
m2
c

s

)
p2 +O(m4

c) , p4 = (1− z)p̃1 + yp2 + p4,⊥. (3.4)

In the above equation, s = 2p̃1 · p2 and p4,⊥ · p̃1 = p4,⊥ · p2 = 0. We use the on-shell
condition p2

4 = 0 and obtain

y = −
p2

4,⊥
(1− z)s. (3.5)

It follows that

2p1 · p4 ≈ s
(

(1− z)m
2
c

s
+ y

)
= 1

1− z
(
(1− z)2m2

c − p2
4,⊥

)
. (3.6)

We conclude that the kinematic region where p2
4,⊥ ∼ m2

c provides unsuppressed contribu-
tions to the cross section in the mc → 0 limit.

We write the singular contribution as follows

Msing = −gsta4
ici1
Âicsing

p̂1 − p̂4 +mc

2(p1 · p4) ε̂4 u(p1), (3.7)

and use the decomposition of the four-momenta p1,4 given in eq. (3.4) to obtain

Msing =
gst

a4
ici1

2(p1 · p4)Â
ic
sing

[
−2p4,⊥ · ε4

1− z + ε̂4 (mc(1− z) + p̂4,⊥ + κp̂2)
]
u(p1) . (3.8)

In eq. (3.8), we introduced a parameter κ defined as

κ = −m
2
c(1− z)
s

−
p2

4,⊥
s(1− z) . (3.9)

We note that in deriving eq. (3.8) we have used p4 · ε4 = 0 and the gauge fixing condition
p2 · ε4 = 0.

The result for the singular contribution, eq. (3.8), is generic; it does not distinguish
between helicity-conserving and helicity-flipping contributions. However, it is easy to see
that there is a difference between the two. For example, since the helicity-flipping contri-
bution requires one additional power of mc, one can convince oneself that a combination
of terms labeled as κ in eq. (3.9) may contribute to the collinear limit of the interference
but it cannot contribute to the collinear limit of the helicity-conserving amplitudes.

Hence, performing standard manipulations and paying attention to subtleties indicated
above, we obtain the contribution to the interference that is non-analytic in the mc → 0
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limit. It reads

lim
p1·p4→0

Int
[
M2(1c, 2g; 3c, 4g)

]
= g2

s

[(
Pqq(z)

(p1 · p4) −
CFm

2
c z

(p1 · p4)2

)
Int
[
|M(z1c, 2g; 3c)|2

z

]

− CFmc(1− z)
z(p1 · p4) Int

[
Tr
[
Âic(z · 1̃c, 2g; 3̃c)Âic,†(z · 1̃c, 2g; 3̃c)

]] ]

+ gsCF
(1− z)mc

2(p1 · p4) Int
[
Tr
[
p̂1Aic(z · 1̃c, 2g; 3̃c)Âic,†fin (1̃c, 2g; 3̃c, (1− z) · 1̃g)ε̂4 + h.c.

]]
.

(3.10)

It is understood that Int[. . .] extracts the interference contributions from the relevant quan-
tities; sums over colors and polarizations are implicit. The quantities A are related to
amplitudesM in the following way

M(1̃c, 2g; 3̃c) = Âi1(1̃c, 2g; 3̃c) u(p̃1), Mfin(1̃c, 2g; 3̃c, 4g) = Âi1fin(1̃c, 2g; 3̃c, 4g) u(p̃1).
(3.11)

They have to be computed in the mc = 0 limit.5

It is instructive to discuss the origin of the different terms in eq. (3.10). The first
term on the right-hand side of eq. (3.10) contains the leading-order interference multi-
plied with the standard massive collinear splitting function; this is the conventional quasi-
collinear limit applied to the interference. If only this term were present in eq. (3.10),
there would be no differences in the collinear factorization between helicity-changing and
helicity-conserving contributions.

The second and the third terms on the right-hand side of eq. (3.10) are new structures;
they appear because the required helicity flip can occur on the external charm quark lines.
To illustrate this point, we square the first equation in eq. (3.11), sum over polarizations
and find ∑

spins
|M(1c, 2g; 3c)|2 = Tr

[
(p̂1 +mc)ÂicÂic,†

]
. (3.12)

The interference requires a helicity flip that is facilitated by a single mass insertion. The
above equation shows that this mass insertion can occur either in the (p̂1 + mc) density
matrix of the external quark or “inside” the ÂÂ† term. The structure that appears in
the second term on the right hand side of eq. (3.10) originates from the mass term in the
density matrix. Once the mass term is extracted, the rest can be computed in the massless
approximation. We find

Int
[
Tr
[
(p̂3 +mc)Âic(1c, 2g; 3c)Âic,†(1c, 2g; 3c)

]]
→

mc Int
[
Tr
[
Âic(1̃c, 2g; 3̃c)Âic,†(1̃c, 2g; 3̃c)

]]
.

(3.13)

5We remind the reader that the notation ĩ implies that a light-cone four-momentum of a particle i must
be used in the computation.
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The last term on the right hand side in eq. (3.10) describes a quasi-collinear singularity
that originates from the interference of singular and regular contributions in eq. (3.3); it
is particular to the helicity-flipping case and does not appear in the conventional collinear
limits. As a consequence, this contribution still depends on the part of the reduced matrix
element of the original 2→ 3 process calculated in the strict collinear limit of the incoming
massless charm quark and the emitted gluon.

We emphasize once again that eq. (3.10) shows clear differences between conventional
factorization of quasi-collinear singularities and the factorization in case of the helicity flip.
These differences lead to a peculiar structure of the logarithms of the charm quark mass in
the interference contribution as they do not follow canonical pattern and cannot be removed
by a transition to MS parton distribution functions. In addition, we also find that the
interference contributions exhibit quasi-soft quark singularities that also lead to logarithms
of the charm mass. Although it would be interesting to understand factorization of mass
singularities in processes with the helicity flip from a more general perspective, our strategy
for now is to explicitly compute all relevant contributions within fixed-order perturbation
theory extracting all non-analytic mc-dependent terms along the way. Additional details
of our approach can be found in several appendices.

4 Technical details of the calculation

In this section we briefly describe calculation of one-loop and real emission contributions to
the interference part of the cg → Hc process. We begin with the discussion of the virtual
corrections.

We compute the relevant one-loop diagrams keeping charm-quark masses finite. We
employ the standard Passarino-Veltman reduction [45] to express the cg → Hc amplitude
in terms of one-loop scalar integrals.6 After computing the one-loop contribution to the
interference, we expand the expression around mc = 0 and keep the leading O(mc) term
in this expansion.7 The one-loop amplitudes contain ultraviolet and infrared singularities.
The ultraviolet singularities are removed by the renormalization. We closely follow the
discussion in appendix A of ref. [43] where many of the required renormalization constants
are presented. Similar to ref. [43], we renormalize the charm-quark mass in the on-shell
scheme but employ the MS renormalization for the Yukawa coupling constant. In addition
to the discussion in that reference, we require the one-loop renormalization constant of the
effective ggH vertex that we take from ref. [46]. After the ultraviolet renormalization is
performed, the cg → Hc amplitude still contains 1/ε poles of infrared origin. These poles
satisfy the Catani’s formula [47] and cancel with similar poles in real emission contributions
to the partonic cross section.

According to the discussion in section 3, factorization of quasi-collinear and quasi-soft
singularities in the interference contribution is not canonical. This implies that even if we
take the mc → 0 limit and switch to MS parton distribution functions, the NLO QCD

6We use FeynCalc [48, 49] for a cross-check of our computation.
7We employed the Package-X program [50] for numerical checks of scalar integrals and their mc → 0

expansion.
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corrections to the interference still contain logarithms of the charm mass. Since it is cur-
rently unknown how these logarithms can be resummed, we follow a pragmatic approach.
Namely, we compute relevant virtual and real emission contributions, extract from them
logarithms of the charm mass and take the mc → 0 limit once the mass logarithms have
been extracted. To accomplish this, we construct subtraction terms for the real emis-
sion contributions for soft, collinear, quasi-collinear and quasi-soft singularities by direct
inspection of the relevant matrix elements. The subtraction terms are then integrated
over unresolved real emission phase space and combined with the PDF renormalization,
including the transition from “massive” to MS PDFs, and the virtual corrections.

We emphasize that the transformation from “massive” to conventional MS parton dis-
tribution functions is important in our construction because “massive” PDFs are not known
phenomenologically and, as we have shown in section 2, the two PDFs start being different
at order O(αs). Moreover, we stress that in addition to allowing us to use well-defined
inputs in our computation, this transformation incidentally resums some logarithms of the
charm quark mass. Unfortunately, this transformation does not resum all logarithms of
the charm quark mass because of more complicated factorization pattern. This is definitely
a limitation for our approach but it is the best we can do at the moment.

The only difference with respect to the canonical procedure for NLO QCD compu-
tations is that in our case the subtraction terms are directly obtained from the squared
amplitude and are not written in terms of easily recognizable universal functions; see
section 3 and appendix A for further details. In particular, even contributions that are
enhanced by two powers of a logarithm of the charm mass, O(αs ln2(mc)), do not appear
to be proportional to the leading-order interference contribution to the cross section. As
we observed when studying the collinear limit for the interference term in section 3, the
collinear factorization formula changes implying that it is possible to flip helicity on ex-
ternal lines which leads to new structures that are not captured by conventional collinear
factorization. Since it is not known how to resum such contributions and how to asso-
ciate them with structures related to initial partons, the best we can do here is to extract
ln(mc)-dependencies for these contributions. Although this approach is limited in scope,
it allows us to expose such logarithmic terms and estimate how significant they are for
phenomenology.

5 Numerical results

To present numerical results we consider proton-proton collisions at 13 TeV. We take
MH = 125 GeV for the Higgs-boson mass and mc = 1.3 GeV for the pole mass of the charm
quark. The charm Yukawa coupling is calculated using the MS charm mass, mc(MH) =
0.81 GeV.8 We use NNPDF31_lo_as_0118 and NNPDF31_nlo_as_0118 parton distribution
functions [51, 52] for leading and next-to-leading order computations, respectively. The
value of the strong coupling constant αs is calculated using dedicated routines provided
with NNPDF sets.

8We use program RunDec [53, 54] to compute the value of the running charm quark mass.
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Figure 2. Leading-order cross sections computed for different values of the charm-jet pt-cut. We
show Yukawa-like (green) and ggH-like (orange) contributions as well as the absolute value of the
interference (blue). In the right pane the ratio of the interference and the Yukawa-like fiducial cross
section are shown.

To define jets we use standard anti-k⊥ algorithm with ∆R = 0.4; charm jets are
required to contain at least one c or c̄ quark. For numerical computations we require at
least one charm jet with pt,j > 20 GeV and |ηj | < 2.5. Moreover, we demand that the
charm parton inside the charm jet carries at least 75% of the jet’s transverse momentum.9

The latter requirement removes kinematic cases where a soft charm is clustered together
with a hard gluon into a charm jet in spite of a large angular separation between the two.
Since, as we explained earlier, our calculation is logarithmically sensitive to soft emissions
of charm quarks, defining charm jets with an additional cut on the charm quark transverse
momentum allows us to avoid jet-algorithm dependent logarithms of mc that may appear
otherwise. We note that we apply all these requirements even in the subtraction terms
where c and c̄ momenta are computed in the collinear and/or soft approximations.

We start by presenting fiducial cross sections for the three terms in eq. (1.2) separately.
Central values for all the cross sections presented below correspond to the renormalization
and factorization scales set to µF = µR = µ = MH ; subscripts and superscripts indicate
shifts in central values if µ = MH/2 and µ = 2MH are used in the calculation. At leading
order, we find

σLO
ggH = 176.6+47.6

−36.5 fb , σLO
Yuk = 21.22+1.47

−1.67 fb , σLO
Int = − 2.21+0.29

−0.31 fb , (5.1)

for the ggH-dependent cross section, the Yukawa-dependent cross section and the inter-
ference, respectively. In figure 2 we show the comparison between µ = MH cross sections
and the interference in dependence on the cut of the charm jet transverse momentum. We
observe that the ratio of the interference to the Yukawa-dependent contribution is about
ten percent for all values of the pt,j-cut.

9If more than one c or c̄ parton is clustered into a jet, we apply this requirement to the hardest of them.
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∆σNLO [ fb ] cg cq gg cc cc̄ PDF sum
const. −1.63 0.13 2.33 0.01 −0.01 0.11 0.94
L 2.23 — −6.33 −0.04 0.01 1.66 −2.47
L2 −0.06 — 2.66 0.01 −0.08 — 2.52
total 0.54 0.13 −1.34 −0.02 −0.08 1.76 1.00

Table 1. The NLO QCD corrections to the interference split according to partonic channels. The
results are given in femtobarns. The column marked “PDF” refers to the PDF-scheme change
discussed in section 2. For each partonic channel we show O(L2), O(L) and O(L0) contributions
where L = ln(MH/mc).

At next-to-leading order the fiducial cross section for the interference term becomes

σNLO
Int = − 1.024(5)+0.224

−0.144 fb . (5.2)

It follows from eqs. (5.1), (5.2) that the NLO QCD corrections decrease the absolute value
of the leading-order interference by about fifty percent. The scale uncertainty appears
to be reduced by about a factor 2. The NLO result for the interference is outside the
leading-order scale-uncertainty interval, cf. eqs. (5.1), (5.2), emphasizing the fact that the
appearance of the logarithms of the charm mass in NLO QCD corrections to the interference
makes the scale variation uncertainty of the leading-order result a very poor indicator of
the theoretical uncertainty in this case.

It is instructive to separate the NLO contributions to the interference into parts that
are independent of mc and parts that are logarithmically enhanced for all the partonic
channels. The relevant results are shown in table 1. We find that the largest contribution
at NLO comes from the gluon-gluon channel which is enhanced by the large gluon luminos-
ity. Also, the charm-gluon (cg) and the charm-quark channels (cq) provide relatively large
contributions.10 Note that the (cq) channel is free of logarithmic contributions since there
are no singular limits that involve charm quarks. Contributions related to the PDF trans-
formation do not feature the double-logarithmic part since the O(ln2mc) terms originate
exclusively from soft-collinear limits that involve c-quarks.

It follows from table 1 that double-logarithmic terms and single-logarithmic terms
provide nearly equal, but opposite in sign, contributions to the NLO QCD interference.
This cancellation between terms with different parametric dependence on mc should be
considered as an artifact but it does emphasize that studying only the leading logarithmic
O(ln2mc) contribution in this case is insufficient for phenomenology. We also note that
the O(ln2mc) term in the cg channel is quite small reflecting the fact that there is a
very strong — but incomplete — cancellation between double-logarithmic contributions to

10Here, by “quark” we mean any quark of a flavor other than c. There is a subtlety related to the b-quark
contribution because b-quarks have stronger interactions with Higgs bosons as compared to charm quarks.
Such contributions can, presumably, be dealt with using b anti-tagging. When presenting results for the
interference we decided to include contributions of bottom quarks, setting bottom Yukawa coupling to zero,
but we did check that the flavor-excitation topologies with b in the initial state change the results for (cq)
channel by about three percent only.
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(a) Higgs-boson transverse momentum.
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Figure 3. The transverse momentum and rapidity distributions of the Higgs boson calculated at
LO (blue) and NLO (red) for central scale choice. We only consider the interference contribution.
We note that the absolute value of dσInt/dpt,H is displayed in the left panel. This implies that this
distribution actually changes sign at around pt,H ∼ 150 GeV. The lower panels show ratios to the
LO interference contribution.

real and virtual corrections in this case. Finally, we emphasize that it is unclear to what
extent these various cancellations persist in higher orders; for this reason, a resummation
of charm-mass logarithms for the interference contribution is desirable.

We continue with the discussion of kinematic distributions. We focus on the transverse
momentum and the rapidity distributions of Higgs bosons in the interference contribution
to pp → Hc cross section. They are shown in figure 3. We first discuss the transverse
momentum distribution, figure 3a; when interpreting this figure it is important to recall
that the absolute value of both LO and NLO distributions is plotted there and that the LO
distribution is always negative. We observe in figure 3a that the leading-order distribution
(blue) is large and negative at small pt,H ; as pt,H increases, the distribution goes to zero.
The NLO QCD corrections affect the shape of the pt,H distribution. Indeed, a sharp edge
at pt,H = 20 GeV, present at leading order, gets smeared at NLO. At moderate values of
transverse momenta pt,H ∼ 60 GeV the K-factor is equal to one, while there is a large
O(+50%) reduction11 at pt,H ∼ 100 GeV. Second, at pt,H ∼ 150 GeV the NLO distribution
goes through zero and becomes positive for larger values of pt,H . Asymptotically, at even
higher pt,H the LO and NLO distributions appear to be equal in absolute values but
opposite in sign. Of course, all this happens at such high values of pt,H that are irrelevant
for phenomenology, but it is quite a peculiar feature nevertheless.

Compared to Higgs transverse momentum distribution, the rapidity distribution of
the Higgs boson in the interference contribution is much less volatile. Indeed, it follows
from figure 3b that the difference between leading and next-to-leading-order distributions
is well-described by a constant K-factor all the way up to |yH | ∼ 2. Beyond this value of
the rapidity, the NLO distribution goes to zero faster than the LO one.

11“Reduction” in this case means that the distribution becomes less negative.
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6 Conclusions

Production of Higgs bosons in association with charm jets at the LHC is mediated by two
distinct mechanisms, one that involves the charm Yukawa coupling and the other one that
involves an effective ggH vertex. Their interference involves a helicity flip and, for this
reason, vanishes in the limit of massless charm quarks.

Since partonic cross sections are routinely computed for massless incoming partons
and since the charm quark appears in the initial state in the main process cg → Hc, it is
interesting to understand how to circumvent the problem of having to deal with a massive
parton in the initial state and to provide reliable estimate of the interference contribution.

We have addressed this problem by studying the mc → 0 limit of the helicity-flipping
interference contribution including NLO QCD corrections. We have shown that the factor-
ization of quasi-collinear and quasi-soft singularities in this case differs from the canonical
pattern. We used explicit expressions for real and virtual matrix elements to extract log-
arithms of the charm quark mass and, having accomplished this, took the mc → 0 limit
in the remaining parts of the computation. We removed parts of the O(lnmc) contribu-
tions by expressing results through conventional MS parton distribution functions valid
for massless partons. Nevertheless, given an unconventional behavior of the interference
in quasi-soft and quasi-collinear limits, logarithms of the charm quark mass survive in the
final result for the NLO QCD corrections.

We have found that the absolute value of the leading-order interference is reduced
by about fifty percent once NLO QCD corrections are accounted for. This significant
but still “perturbatively acceptable” reduction is the result of a very strong cancellation
between terms that involve double and single logarithms of the charm quark mass. We
have observed that the NLO QCD corrections to the interference are kinematics-dependent
and may change shapes of certain kinematic distributions in a significant way.

Higgs boson production in association with a charm jet is a promising way to study
charm Yukawa coupling at the LHC [12]. The interference contribution, that is estimated
to be about 10 percent of the Yukawa contribution at leading order, could have been
perturbatively unstable given the required helicity flip and an unconventional pattern of
quasi-soft and quasi-collinear limits. We addressed this question by performing a dedicated
NLO QCD computation for the interference term and did not find a strong indication that
this might be the case. Nevertheless, the moderate size of the NLO QCD corrections is
the consequence of a very strong cancellations between double and single logarithms of the
charm mass. It is unclear if this cancellation persists in higher orders. Hence, resummation
of O(lnmc)-enhanced terms for this process is quite desirable. It would be also interesting
to compare our results with predictions for the interference computed in the three-flavor
scheme that can be extracted from refs. [14–16]. We leave such a comparison to future work.
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A Extraction of the O(ln mc)-enhanced contributions in the real correc-
tions

In this appendix we describe a procedure to extract O(lnmc) contributions to real emission
corrections. They arise because of the quasi-singular behavior of real emission amplitudes
in the soft or collinear limits involving charm quarks. The potential singularities in these
limits are regulated by the charm mass leading to an appearance of O(lnmc)-enhanced
terms when integrated over relevant phase spaces. To extract logarithms of mc, we subtract
approximate expressions from exact matrix elements that make the difference integrable
in the mc → 0 limit and integrate the subtraction terms over unresolved phase space to
explicitly extract logarithms of mc.

As an example, we consider the gluon-gluon partonic channel, i.e.

g(p1) + g(p2) −→ H(pH) + c(p3) + c̄(p4) , (A.1)

and discuss the extraction of O(lnmc) terms in detail. This channel is suitable for such
a discussion since, if the charm-quark mass is kept finite, it is free of soft and collinear
divergences. Hence, all relevant contributions can be computed numerically for small but
finite mc, and used to validate formulas where logarithms of mc have been extracted and
mc → 0 limit has been taken where appropriate.

As we already mentioned in the main text, we use the nested soft-collinear subtrac-
tion scheme which, at this order, is equivalent to the FKS subtraction scheme [41, 42].
The details of the subtraction scheme can be found in the literature [37–40] and we do
not repeat this discussion here. Nevertheless, the treatment of quasi-collinear and quasi-
soft singularities related to the emission of massive charm quarks is new and requires an
explanation.

We focus on the interference contribution between the Yukawa-like and the ggH-like
production mechanisms in the process eq. (A.1). The interference term is non-zero only
if helicity flip on the charm line occurs. Furthermore, the presence of such a helicity flip
causes the usual factorization formulas to break down and the singular limits need to be
explicitly analyzed. We note that, thanks to the symmetry of the squared amplitude for
the process in eq. (A.1) under the exchange of c and c̄, we can consider only the case where
c̄ quark becomes soft or quasi-collinear to one of the other partons. The case when both c
and c̄ become unresolved is impossible since we require a charm jet in the final state.

The quasi-singular limits which appear in this channel are related to the soft-quark
limit S4 with E4 ∼ mc and the three collinear limits C4i with i = 1, 2, 3 where (p4 ·pi) ∼ m2

c .
Performing an iterative subtraction of these singular limits, we find

〈FLM(1g, 2g; 3c, 4c̄)〉 =
3∑
i=1
〈(1− C4i)(1− S4)ω(i)

123FLM(1g, 2g; 3c, 4c̄)〉

+ 〈C4i(1− S4)ω(i)
123FLM(1g, 2g; 3c, 4c̄)〉

+ 〈S4FLM(1g, 2g; 3c, 4c̄)〉 ,

(A.2)

where the first term on the right-hand side denotes the fully-regulated contribution and
the second and third terms are the collinear and the soft integrated subtraction terms. The
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factors ω(i)
123 are the weights that describe various collinear sectors. They read

ω
(i)
123 = 1

ρ4i
·
[ 1
ρ41

+ 1
ρ42

+ 1
ρ43

]−1
, (A.3)

with ρ4i = 1 − cos θ4i. We note that, since all mc → 0 singularities are subtracted in the
fully-regulated term in eq. (A.2), the mc → 0 limit can be immediately taken there. On
the other hand, the integrated subtraction terms in the second line of eq. (A.2) require
care to capture all the O(lnmc)-terms and constants which survive the mc → 0 limit.

In the remaining part of this section, we discuss in detail the integration of the sub-
traction terms. We first focus on the soft subtraction term, i.e. the last term in eq. (A.2),
and then the integration of the collinear subtraction term, i.e. the first term in the second
line of eq. (A.2).

A.1 Integration of the soft-quark subtraction terms

Consider the soft-quark subtraction term

〈S4FLM(1g, 2g; 3c, 4c̄)〉 . (A.4)

To compute it, we need to know the behavior of the amplitude in the limit p4 ∼ mc → 0
and then integrate it over the phase space of the charm anti-quark with momentum p4.

Although, normally, soft (gluon) emissions factorize into a product of an eikonal factor
and a tree-level matrix element squared, a similar formula for soft-quark emission, relevant
for helicity-flipping processes, does not exist. Hence, we determine the soft-quark limit
of the interference by studying an explicit expression of the amplitude for the process in
eq. (A.1) in the limit p4 ∼ mc → 0. We find

S4Int
[
|M(1g, 2g; 3c, 4c̄)|2

]
∼ (2CF − CA)(p1 ·p2)

(p1 ·p4)(p2 ·p4) F12(p1, p2, p3)

+ CA(p1 ·p3)
(p1 ·p4)(m2

c + p3 ·p4) F13(p1, p2, p3)

+ CA(p2 ·p3)
(p2 ·p4)(m2

c + p3 ·p4)F23(p1, p2, p3) ,

(A.5)

where functions Fij depend on the momenta p1, p2 and p3 only. We emphasize that these
functions are different from the leading-order interference contribution. The massless limit,
mc → 0, can be now taken everywhere except for the eikonal factors and the phase-space
measure of the unresolved parton [dp4].

We write the integrated soft subtraction term as follows

〈S4FLM(1g, 2g; 3c, 4c̄)〉 = (2CF − CA)〈F12(p1, p2, p3) ·
∫ [dp4](p1 ·p2)

(p1 ·p4)(p2 ·p4)〉

+ CA〈F13(p1, p2, p3) ·
∫ [dp4](p1 ·p3)

(p1 ·p4)(m2
c + p3 ·p4)〉

+ CA〈F23(p1, p2, p3) ·
∫ [dp4](p2 ·p3)

(p2 ·p4)(m2
c + p3 ·p4)〉 ,

(A.6)
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where 〈. . .〉 denotes the phase space integration and the relevant soft integrals can be found
in appendix B. We stress that soft integrals are finite in four dimensions since they are
naturally regulated by the charm-quark mass mc.

A.2 Integration of the quasi-collinear subtraction terms

In this subsection, we discuss how to define and compute the soft-subtracted quasi-collinear
limits of the interference contribution using the process in eq. (A.1) as an example. We
focus on the sector 43 where c and c̄ become collinear to each other. The relevant quantity
reads12

〈C43(1− S4)FLM(1g, 2g; 3c, 4c̄)〉 . (A.7)

To proceed further, we split the above formula into collinear and soft-collinear terms

〈C43(1− S4)FLM(1g, 2g; 3c, 4c̄)〉 = 〈C43FLM(1g, 2g; 3c, 4c̄)〉 − 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 .
(A.8)

We first discuss the collinear subtraction term 〈C43FLM(1g, 2g; 3c, 4c̄)〉 defined as follows

〈C43FLM(1g, 2g; 3c, 4c̄)〉 =
2∑
i=1

∫
[dpH ][dp3][dp4](2π)4δ (p12 − pH − p3 − p̄4)

× 1
(p3 + p4)2

pi ·p3
pi ·p̄4

Ci(1g, 2g, 3c, 4̄c̄) .
(A.9)

In the above equation, the functions C1,2 depend on the momenta p1, p2, p3 and p̄4. The
bar over momentum p4 indicates that the relevant collinear limit has been taken, i.e.

C43p4 = (E4, β4~n3) ≡ p̄4 . (A.10)

Note that in eq. (A.10) β4 =
√

1−m2
c/E

2
4 is the velocity of c̄ and ~n3 is a unit vector

pointing in the direction of momentum ~p3. We note that in eq. (A.9) the massless limit
mc → 0 has not been taken. We also note that the functions C1,2 are regular in the
soft-quark limit, E4 → mc ∼ 0.

Our goal is to extract all O(lnmc) terms arising from eq. (A.9) and take the massless
limit after that. To do so, we add and subtract the soft limits of the functions Ci

Ci(1g, 2g, 3c, 4̄c̄) =
[
Ci(1g, 2g, 3c, 4̄c̄)− Ci,soft(1c, 2g, 3c)

]
+ Ci,soft(1c, 2g, 3c) , (A.11)

where Ci,soft(1c, 2g, 3c) = Ci(1g, 2g, 3c, 0). The above procedure splits the integral in
eq. (A.9) into two parts: the regulated integral that contains the expression in the square
bracket in eq. (A.11) and the soft part. In the regulated part, the soft divergence at E4 = 0
has been regularized. This implies that, after integrating 1/(p3 + p4)2 over the relative an-
gle between p3 and p4 and extracting logarithms of mc from this angular integral, we can

12We note that weight factors introduced in eq. (A.3) do not appear in the collinear limits.
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set mc to zero everywhere else right away. We obtain

〈C43FLM(1g, 2g; 3c, 4c̄)〉reg = 1
(2π)2

2∑
i=1

∫
[dpH ][dp3](2π)4δ (p12 − pH − p34)

∫ 1

0

z dz
1− z

[
Ci(1g, 2g, z34, (1− z)34)− Ci,soft(1c, 2g, z34)

]
×
[

ln(2E34/mc) + ln(1− z) + ln(z)
]
, (A.12)

where we have used the fact that in mc → 0 limit we can write p3 = zp34 and p̄4 = (1−z)p34
for p2

34 = 0.
We will now discuss the soft part of the collinear subtraction term. It reads

〈C43FLM(1g, 2g; 3c, 4c̄)〉soft =
2∑
i=1

∫
[dpH ][dp3][dp4](2π)4δ (p12 − pH − p3 − p̄4)

× 1
(p3 + p4)2

pi ·p3
pi ·p̄4

Ci,soft(1c, 2g, 3c) .
(A.13)

We emphasize that this term still contains soft singularity and, for this reason, the mc →
0 limit cannot be taken. However, it is convenient to combine this integral with the
soft-collinear subtraction term 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉, cf. eq. (A.8); if this is done, the
required computations simplify significantly.

The soft-collinear integrated subtraction term in sector 43 reads

〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 =
2∑
i=1

∫
[dpH ][dp3][dp4](2π)4δ (p12 − pH − p3)

× 2CAFi3(p1, p2, p3)
(p3 + p4)2

pi ·p3
pi ·p̄4

.

(A.14)

To derive this result we used the soft-limit of the interference amplitude reported in
eq. (A.5). We emphasize that, since the soft operator is present on the left hand side in
the above equation, the soft-quark momentum p4 is removed from the energy-momentum
conserving delta-function. Moreover, since

Ci,soft(1c, 2g, 3c) = 2CAFi3(p1, p2, p3) , (A.15)

the two integrals in eqs. (A.13), (A.14) appear to be the same up to the argument of the
delta-functions. We combine the two integrals and find

〈C43FLM(1g, 2g; 3c,4c̄)〉soft − 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 =

=
2∑
i=1

∫
[dpH ][dp3][dp4](2π)4

[
δ (p12 − pH − p3 − p̄4)− δ (p12 − pH − p3)

]

× 2CAFi3(p1, p2, p3)
(p3 + p4)2

pi ·p3
pi ·p̄4

. (A.16)
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To proceed further, we note that it is straightforward to integrate over directions of the
quark with momentum p4 but integration over its energy is more involved. It is convenient
to split the E4 integration into two regions by introducing an auxiliary parameter σ

1 = Θ(E4 − σ) + Θ(σ − E4) . (A.17)

We choose σ to satisfy the following inequality mc � σ � E3. For small energies, E4 <

σ � E3, we can drop the momentum p̄4 from the energy momentum conserving delta-
function which leads to[

δ (p12 − pH − p3 − p̄4)
[
Θ(E4 − σ) + Θ(σ − E4)

]
− δ (p12 − pH − p3)

]
=

=
[
δ (p12 − pH − p3 − p̄4)− δ (p12 − pH − p3)

]
Θ(E4 − σ) +O(σ/E3) .

(A.18)

This relation implies that the integrand in eq. (A.16) is non-vanishing only in the high-
energy domain where E4 > σ � mc and, therefore, the limit mc → 0 can be taken. This
leads to the following expression

〈C43FLM(1g,2g; 3c, 4c̄)〉soft − 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 =

= CA
(2π)2

2∑
i=1

∫
[dpH ][dp34](2π)4δ(p12 − pH − p34)


zmax∫
zmin

dz
1− z ln

(2E34(1− z)z
mc

) [
zθ(z)Fi3(p1, p2, zp34)− Fi3(p1, p2, p34)

]

+
zmax∫
zmin

dz
1− z ln

(
(2− z)z

)
Fi3(p1, p2, p34)

 . (A.19)

To arrive at eq. (A.19) we introduced the four-momentum p34 = p3+p̄4 and a variable z such
that p3 = zp34 in terms that contain the delta-function δ(p12 − pH − p3 − p̄4). In terms
that contain the delta-function δ(p12 − pH − p3), we set (1−z) = E4/E3, rename p3 into p34
and set σ → 0. The lower integration boundary zmin is given by zmin = 1−Emax/E34 < 0.

In total, the integrated collinear term 〈C43(1−S4)FLM(1g, 2g; 3c, 4c̄)〉 is given by a sum
of expressions in eqs. (A.12), (A.19). We describe a numerical check of validity of this
result in the following section.

A.3 Numerical checks

Since the cross section of the gluon-gluon channel, eq. (A.1), is finite as long as we keep
the non-zero charm mass, analytical results derived in the previous section can be checked
numerically by computing σgg→Hcc̄ explicitly for small values of the charm mass without
any approximation.

The comparison is shown in figure 4. We use fiducial cuts described in the main text
and compare hadronic contributions to the interference for gg partonic channel computed in
two different ways. Green points (rectangles) show the results of the computation without
any approximation, i.e. by directly integrating the matrix element squared. Blue points
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Figure 4. The cross section of the gg → Hcc̄ process calculated by a direct integration of the
matrix element with non-zero charm-quark mass, σreal (green rectangles), and reconstructed using
procedure described in previous subsections, σrec (blue circles). We employ the same parameters
and kinematic constraints as in the main text.

(circles) show the results of the computation that relies on the expansion around mc → 0
limit, as described in previous subsections. The two results should agree for small values
of mc. The upper panel of figure 4 shows the absolute values of the interference cross
section in the gg partonic channel obtained with the two methods, while their difference is
shown in the lower panel. We see a better and better agreement between the two results
as we mover to smaller and smaller values of the charm-quark mass. This indicates that
the mc-dependence of the interference contribution is properly reconstructed.

B Soft-quark integrals

In this section we list integrals that are required for the integrated soft-quark subtraction
terms. We need a number of integrals depending on the type and configuration of the
emitters pa and pb as well as the propagator appearing in the eikonal factor.

We note that we are interested only in the terms that contain logarithms of the charm-
quark mass and constant terms, but we drop all power-suppressed terms which vanish in
the mc → 0 limit. All integrals are computed in d = 4 dimensions since all singularities
are naturally regulated by the charm-quark mass.

The phase-space measure for a massive-quark emission, p2
4 = m2

c , reads

[dp4] = k2
4dk4
2E4

dΩ(3)

(2π)3 Θ(Emax − E4)Θ(E4 −mc) , (B.1)
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where k4 is the length of ~p4 momentum, dΩ(3) denotes angular integration and Emax is the
usual energy cutoff of the nested soft-collinear subtraction scheme. In the remaining part
of this section, we list soft-quark integrals that are needed to obtain integrated soft-quark
subtraction terms, see section A.1 for details.13

Two massless emitters: two emitters a, b have four-momenta pa = Ea(1, ~na) and pb =
Eb(1, ~nb), respectively. Both four-momenta are light-like p2

a = p2
b = 0. Vectors ~na and ~nb

describe direction of flight of the emitters; we refer to the opening angle between ~na and
~nb as θab.

The soft integral reads

∫ [dp4](pa ·pb)
(pa ·p4)(pb ·p4) = 1

(2π)2

[
ln2(2sabEmax/mc)−

π2

12 + 1
2Li2(c2

ab)
]
, (B.2)

where we used sab = sin(θab/2) and cab = cos(θab/2).

One massive and one massless emitters: two emitters a, b have four-momenta pa =
Ea(1, ~na) and pb = Eb(1, βb~nb), respectively. They satisfy p2

a = 0 and p2
b = m2

c . We refer
to the opening angle between ~na and ~nb as θab. We require three soft integrals of this type

∫ [dp4](pa ·pb)
(pa ·p4)(m2

c + pb ·p4) = 1
(2π)2

[
ln2(2sabEmax/mc)−

π2

12

+ Li2(−Emax/Eb) + 1
2Li2(c2

ab)
]
,

∫ [dp4](pa ·pb)
(pa ·p4)(pb ·p4) = 1

(2π)2

[
ln2(2sabEmax/mc) + 1

4Li2(−Emax
2/E2

b )

−π
2

12 + 1
2Li2(c2

ab)
]
,

∫ [dp4](pa ·pb)
(pa ·p4)(m2

c − pb ·p4) = 1
(2π)2

[
− ln2(2sabEmax/mc) + Li2(1− Emax/Eb)

−1
2Li2(c2

ab) + ln(Emax/Eb) ln(Emax/Eb − 1)− π2

12

]
,

(B.3)

where we used sab = sin(θab/2) and cab = cos(θab/2).

Two massive emitters: two emitters a, b have four-momenta pa = Ea(1, βa~na) and
pb = Eb(1, βb~nb), respectively. They satisfy p2

a = p2
b = m2

c . We refer to the opening angle

13Similar expressions to those in section A.1 can be derived for other partonic channels featuring soft-
quark singularities, i.e. cc and cc̄.
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between ~na and ~nb as θab. In this case, we use Emax = Ea. We find∫ [dp4](pa ·pb)
(m2

c − pa ·p4)(m2
c + pb ·p4) = 1

(2π)2

[
− ln2(2sabEmax/mc)−

π2

12

− 1
2Li2(c2

ab)− Li2(−Emax/Eb)
]
,

∫ [dp4](pa ·pb)
(m2

c − pa ·p4)(m2
c − pb ·p4) = 1

(2π)2

[
ln2(2Emax/mc) + π2

4

]
,

(B.4)

where we used sab = sin(θab/2) and cab = cos(θab/2).
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any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of H → bb̄ decays and V H production with the ATLAS
detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

[2] CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121
(2018) 121801 [arXiv:1808.08242] [INSPIRE].

[3] ATLAS collaboration, Cross-section measurements of the Higgs boson decaying into a pair
of τ -leptons in proton-proton collisions at

√
s = 13TeV with the ATLAS detector, Phys. Rev.

D 99 (2019) 072001 [arXiv:1811.08856] [INSPIRE].

[4] CMS collaboration, Search for the associated production of the Higgs boson and a vector
boson in proton-proton collisions at

√
s = 13TeV via Higgs boson decays to τ leptons, JHEP

06 (2019) 093 [arXiv:1809.03590] [INSPIRE].

[5] ATLAS collaboration, A search for the dimuon decay of the Standard Model Higgs boson
with the ATLAS detector, Phys. Lett. B 812 (2021) 135980 [arXiv:2007.07830] [INSPIRE].

[6] CMS collaboration, Search for the Higgs boson decaying to two muons in proton-proton
collisions at

√
s = 13TeV, Phys. Rev. Lett. 122 (2019) 021801 [arXiv:1807.06325]

[INSPIRE].

[7] G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson
coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].

[8] A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window
onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722]
[INSPIRE].

[9] T. Modak and R. Srivastava, Probing anomalous Higgs couplings in H → ZV decays, Mod.
Phys. Lett. A 32 (2017) 1750004 [arXiv:1411.2210] [INSPIRE].

[10] M. König and M. Neubert, Exclusive Radiative Higgs Decays as Probes of Light-Quark
Yukawa Couplings, JHEP 08 (2015) 012 [arXiv:1505.03870] [INSPIRE].

[11] F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining Light-Quark Yukawa Couplings
from Higgs Distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2018.09.013
https://arxiv.org/abs/1808.08238
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08238
https://doi.org/10.1103/PhysRevLett.121.121801
https://doi.org/10.1103/PhysRevLett.121.121801
https://arxiv.org/abs/1808.08242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08242
https://doi.org/10.1103/PhysRevD.99.072001
https://doi.org/10.1103/PhysRevD.99.072001
https://arxiv.org/abs/1811.08856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08856
https://doi.org/10.1007/JHEP06(2019)093
https://doi.org/10.1007/JHEP06(2019)093
https://arxiv.org/abs/1809.03590
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.03590
https://doi.org/10.1016/j.physletb.2020.135980
https://arxiv.org/abs/2007.07830
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.07830
https://doi.org/10.1103/PhysRevLett.122.021801
https://arxiv.org/abs/1807.06325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06325
https://doi.org/10.1103/PhysRevD.93.013001
https://arxiv.org/abs/1505.06689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.06689
https://doi.org/10.1103/PhysRevLett.114.101802
https://arxiv.org/abs/1406.1722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.1722
https://doi.org/10.1142/S0217732317500043
https://doi.org/10.1142/S0217732317500043
https://arxiv.org/abs/1411.2210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2210
https://doi.org/10.1007/JHEP08(2015)012
https://arxiv.org/abs/1505.03870
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.03870
https://doi.org/10.1103/PhysRevLett.118.121801
https://arxiv.org/abs/1606.09253
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.09253


J
H
E
P
0
6
(
2
0
2
1
)
1
0
7

[12] I. Brivio, F. Goertz and G. Isidori, Probing the Charm Quark Yukawa Coupling in
Higgs + Charm Production, Phys. Rev. Lett. 115 (2015) 211801 [arXiv:1507.02916]
[INSPIRE].

[13] N.M. Coyle, C.E.M. Wagner and V. Wei, Bounding the charm Yukawa coupling, Phys. Rev.
D 100 (2019) 073013 [arXiv:1905.09360] [INSPIRE].

[14] S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron
and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].

[15] S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with
bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067]
[INSPIRE].

[16] S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Higgs boson production with one
bottom quark jet at hadron colliders, Phys. Rev. Lett. 94 (2005) 031802 [hep-ph/0408077]
[INSPIRE].

[17] A.A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation,
Phys. Lett. B 745 (2015) 69 [Erratum ibid. 751 (2015) 596] [Erratum ibid. 771 (2017) 633]
[arXiv:1412.0671] [INSPIRE].

[18] K. Melnikov and A. Penin, On the light quark mass effects in Higgs boson production in
gluon fusion, JHEP 05 (2016) 172 [arXiv:1602.09020] [INSPIRE].

[19] Z.L. Liu and M. Neubert, Factorization at subleading power and endpoint-divergent
convolutions in h→ γγ decay, JHEP 04 (2020) 033 [arXiv:1912.08818] [INSPIRE].

[20] Z.L. Liu, B. Mecaj, M. Neubert and X. Wang, Factorization at subleading power and
endpoint divergences in h→ γγ decay. Part II. Renormalization and scale evolution, JHEP
01 (2021) 077 [arXiv:2009.06779] [INSPIRE].

[21] E. Laenen, J. Sinninghe Damsté, L. Vernazza, W. Waalewijn and L. Zoppi, Towards all-order
factorization of QED amplitudes at next-to-leading power, Phys. Rev. D 103 (2021) 034022
[arXiv:2008.01736] [INSPIRE].

[22] S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY
QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222]
[INSPIRE].

[23] R. Doria, J. Frenkel and J.C. Taylor, Counter Example to NonAbelian Bloch-Nordsieck
Theorem, Nucl. Phys. B 168 (1980) 93 [INSPIRE].

[24] C. Di’Lieto, S. Gendron, I.G. Halliday and C.T. Sachrajda, A Counter Example to the
Bloch-Nordsieck Theorem in NonAbelian Gauge Theories, Nucl. Phys. B 183 (1981) 223
[INSPIRE].

[25] J. Frenkel, J.G.M. Gatheral and J.C. Taylor, Quark-antiquark annihilation is infrared safe at
high-energy to all orders, Nucl. Phys. B 233 (1984) 307 [INSPIRE].

[26] S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD
coherent state, Nucl. Phys. B 264 (1986) 588 [INSPIRE].

[27] S. Catani, Violation of the Bloch-Nordsieck Mechanism in General NonAbelian Theories and
SUSY QCD, Z. Phys. C 37 (1988) 357 [INSPIRE].

[28] A. Andrasi, M. Day, R. Doria, J. Frenkel and J.C. Taylor, Soft Divergences in Perturbative
QCD, Nucl. Phys. B 182 (1981) 104 [INSPIRE].

– 27 –

https://doi.org/10.1103/PhysRevLett.115.211801
https://arxiv.org/abs/1507.02916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.02916
https://doi.org/10.1103/PhysRevD.100.073013
https://doi.org/10.1103/PhysRevD.100.073013
https://arxiv.org/abs/1905.09360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09360
https://doi.org/10.1103/PhysRevD.70.074010
https://arxiv.org/abs/hep-ph/0309204
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0309204
https://doi.org/10.1103/PhysRevD.69.074027
https://arxiv.org/abs/hep-ph/0311067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0311067
https://doi.org/10.1103/PhysRevLett.94.031802
https://arxiv.org/abs/hep-ph/0408077
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0408077
https://doi.org/10.1016/j.physletb.2015.04.036
https://arxiv.org/abs/1412.0671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.0671
https://doi.org/10.1007/JHEP05(2016)172
https://arxiv.org/abs/1602.09020
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.09020
https://doi.org/10.1007/JHEP04(2020)033
https://arxiv.org/abs/1912.08818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.08818
https://doi.org/10.1007/JHEP01(2021)077
https://doi.org/10.1007/JHEP01(2021)077
https://arxiv.org/abs/2009.06779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.06779
https://doi.org/10.1103/PhysRevD.103.034022
https://arxiv.org/abs/2008.01736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01736
https://doi.org/10.1016/S0370-2693(01)00065-X
https://arxiv.org/abs/hep-ph/0011222
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011222
https://doi.org/10.1016/0550-3213(80)90278-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB168%2C93%22
https://doi.org/10.1016/0550-3213(81)90554-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB183%2C223%22
https://doi.org/10.1016/0550-3213(84)90418-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB233%2C307%22
https://doi.org/10.1016/0550-3213(86)90500-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB264%2C588%22
https://doi.org/10.1007/BF01578128
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC37%2C357%22
https://doi.org/10.1016/0550-3213(81)90460-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB182%2C104%22


J
H
E
P
0
6
(
2
0
2
1
)
1
0
7

[29] C.A. Nelson, Avoidance of counter-example to non-Abelian Bloch-Nordsieck conjecture by
using coherent state approach, Nucl. Phys. B 186 (1981) 187.

[30] I. Ito, Cancellation of Infrared Divergence and Initial Degenerate State in QCD, Prog. Theor.
Phys. 65 (1981) 1466 [INSPIRE].

[31] N. Yoshida, Diagrammatical Display of the Counter Example to NonAbelian Bloch-Nordsieck
Conjecture, Prog. Theor. Phys. 66 (1981) 269 [INSPIRE].

[32] N. Yoshida, Cancellation of the infrared singularity through the unitarity relation, Prog.
Theor. Phys. 66 (1981) 1803 [INSPIRE].

[33] T. Muta and C.A. Nelson, Role of Quark-Gluon Degenerate States in Perturbative QCD,
Phys. Rev. D 25 (1982) 2222 [INSPIRE].

[34] B.F.L. Ward, Quark masses and resummation in precision QCD theory, Phys. Rev. D 78
(2008) 056001 [arXiv:0707.2101] [INSPIRE].

[35] F. Caola, K. Melnikov, D. Napoletano and L. Tancredi, Noncancellation of infrared
singularities in collisions of massive quarks, Phys. Rev. D 103 (2021) 054013
[arXiv:2011.04701] [INSPIRE].

[36] S. Frixione, Initial conditions for electron and photon structure and fragmentation functions,
JHEP 11 (2019) 158 [arXiv:1909.03886] [INSPIRE].

[37] F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD
computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

[38] F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO
QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79 (2019) 386
[arXiv:1902.02081] [INSPIRE].

[39] F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and
qq̄ final states at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys.
J. C 79 (2019) 1013 [arXiv:1907.05398] [INSPIRE].

[40] K. Asteriadis, F. Caola, K. Melnikov and R. Röntsch, Analytic results for deep-inelastic
scattering at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C
80 (2020) 8 [arXiv:1910.13761] [INSPIRE].

[41] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl.
Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

[42] S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295
[hep-ph/9706545] [INSPIRE].

[43] A. Behring and W. Bizoń, Higgs decay into massive b-quarks at NNLO QCD in the nested
soft-collinear subtraction scheme, JHEP 01 (2020) 189 [arXiv:1911.11524] [INSPIRE].

[44] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323]
[INSPIRE].

[45] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ−

in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

[46] R. Mondini, U. Schubert and C. Williams, Top-induced contributions to H → bb̄ and H → cc̄

at O(α3
s), JHEP 12 (2020) 058 [arXiv:2006.03563] [INSPIRE].

– 28 –

https://doi.org/10.1016/0550-3213(81)90099-7
https://doi.org/10.1143/PTP.65.1466
https://doi.org/10.1143/PTP.65.1466
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C65%2C1466%22
https://doi.org/10.1143/PTP.66.269
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C66%2C269%22
https://doi.org/10.1143/PTP.66.1803
https://doi.org/10.1143/PTP.66.1803
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C66%2C1803%22
https://doi.org/10.1103/PhysRevD.25.2222
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD25%2C2222%22
https://doi.org/10.1103/PhysRevD.78.056001
https://doi.org/10.1103/PhysRevD.78.056001
https://arxiv.org/abs/0707.2101
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD78%2C056001%22
https://doi.org/10.1103/PhysRevD.103.054013
https://arxiv.org/abs/2011.04701
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.04701
https://doi.org/10.1007/JHEP11(2019)158
https://arxiv.org/abs/1909.03886
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1911%2C158%22%20and%20year%3D2019
https://doi.org/10.1140/epjc/s10052-017-4774-0
https://arxiv.org/abs/1702.01352
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.01352
https://doi.org/10.1140/epjc/s10052-019-6880-7
https://arxiv.org/abs/1902.02081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.02081
https://doi.org/10.1140/epjc/s10052-019-7505-x
https://doi.org/10.1140/epjc/s10052-019-7505-x
https://arxiv.org/abs/1907.05398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05398
https://doi.org/10.1140/epjc/s10052-019-7567-9
https://doi.org/10.1140/epjc/s10052-019-7567-9
https://arxiv.org/abs/1910.13761
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13761
https://doi.org/10.1016/0550-3213(96)00110-1
https://doi.org/10.1016/0550-3213(96)00110-1
https://arxiv.org/abs/hep-ph/9512328
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9512328
https://doi.org/10.1016/S0550-3213(97)00574-9
https://arxiv.org/abs/hep-ph/9706545
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9706545
https://doi.org/10.1007/JHEP01(2020)189
https://arxiv.org/abs/1911.11524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11524
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9605323
https://doi.org/10.1016/0550-3213(79)90234-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB160%2C151%22
https://doi.org/10.1007/JHEP12(2020)058
https://arxiv.org/abs/2006.03563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03563


J
H
E
P
0
6
(
2
0
2
1
)
1
0
7

[47] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427
(1998) 161 [hep-ph/9802439] [INSPIRE].

[48] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of
Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

[49] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements,
Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

[50] H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop
integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

[51] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.
C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

[52] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.
C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

[53] K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: A Mathematica package for
running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.
133 (2000) 43 [hep-ph/0004189] [INSPIRE].

[54] F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys.
Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

– 29 –

https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9802439
https://doi.org/10.1016/0010-4655(91)90130-D
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C64%2C345%22
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04407
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.01469
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7420
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00428
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://arxiv.org/abs/hep-ph/0004189
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004189
https://doi.org/10.1016/j.cpc.2017.11.014
https://doi.org/10.1016/j.cpc.2017.11.014
https://arxiv.org/abs/1703.03751
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03751

	Introduction
	Matching parton distribution functions
	Interference contributions and factorization in the quasi-collinear limit
	Technical details of the calculation
	Numerical results
	Conclusions
	Extraction of the O(ln m(c))-enhanced contributions in the real corrections
	Integration of the soft-quark subtraction terms
	Integration of the quasi-collinear subtraction terms
	Numerical checks

	Soft-quark integrals

