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A B S T R A C T

We present a holistic multiscale approach for constructing anisotropic criteria describing the macroscopic
failure of sheet molding compound composites based on full-field simulations of microscale damage evolution.
We use an anisotropic damage model on the microscale that directly operates on the compliance tensor,
captures matrix and bundle damage via dedicated stress-based damage criteria and allows for a comparison
of simulation and experimental results. To identify the damage material-parameters used in the non-linear
and time-consuming full-field simulations, we utilize Bayesian optimization with Gaussian processes. We
validate the full-field predictions on the microscale and subsequently identify macroscopic failure criteria
based on distributions taken from experimental findings. We propose failure surfaces in stress space and
stiffness-reduction triggered failure surfaces to cover both a structural analysis and a design process perspective.
1. Introduction

1.1. State of the art

Typically, sheet molding compound (SMC) composites are com-
posed of a thermoset resin, reinforced by long chopped carbon or
glass fibers, and further additives and fillers [1–3]. The compression
molding manufacturing process allows for producing components at
comparatively low costs while offering a high freedom in design [4].
SMC composites provide a high strength-to-weight ratio [5,6], making
them ideally suited for lightweight applications.

The manufacturing process of SMC leads to a characteristic mi-
crostructure where fibers are almost aligned in bundles [7–9]. Com-
bining glass and carbon fiber bundles [10–12] permits applying SMC
composites as load-bearing structural components. A modern unsatu-
rated polyester polyurethane hybrid (UPPH) resin without fillers allows
to manufacture SMC composites with discontinuous glass fiber bun-
dles and local continuous carbon fiber patch reinforcements within a
simultaneous co-molding process [13,14].

The increased use of SMC composites fosters the development of
accurate mechanical models [14,15]. Experimental investigations of
the microstructure [9,16,17], the effective elastic behavior in a quasi-
static [18,19] and dynamical setting [20–22] were performed. In-situ
testing using micro-computed tomography (𝜇CT) sheds light on the
underlying damage mechanisms [1,23,24] and microcrack distribu-
tions [25,26].

∗ Corresponding author.
E-mail address: thomas.boehlke@kit.edu (T. Böhlke).

The influence of temperature, especially with an eye towards the
glass transition of the polymer resin, was analyzed by Kehrer et al. [22]
for the elastic regime. Meyer, Hohberg and co-workers studied the
flow and curing behavior during the manufacturing process [8,27]. The
behavior of SMC composites under fatigue loading was studied by Larbi
et al. [28] and Bartkowiak et al. [29,30]. Investigations on the struc-
tural behavior of SMC composites under combined stress states were
performed via dedicated cruciform specimens [31–33]. Non-destructive
measurement techniques were developed for quantifying manufactur-
ing uncertainties and hence the quality of SMC composite parts [34–
36].

Further focus of recent research on SMC composites is devoted to
damage and failure. Fitoussi et al. [37,38] presented approaches for
predicting anisotropic damage evolution based on multilocal criteria,
also at high strain rate [39]. Matrix degradation and interface de-
cohesion, two major damage mechanisms in SMC composites, were
analyzed and modeled by Meraghni and co-workers [40,41] and im-
plemented in a micromechanical framework [42]. A similar approach
for predicting the non-linear behavior of SMC composites was proposed
by Baptiste [43]. Dedicated models were developed that account for
the multiscale and anisotropic nature of SMC composites [44,45],
taking into account reliability [46], inclusion distributions [47,48],
humidity [23] or dynamical behavior [49].
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Most micromechanics models are based on mean-field methods [50–
52], e. g., taking into account a numerically computed Eshelby’s ten-
sor [53], an evaluation of inclusion stresses [54], a Weibull probability
density for the interface strength [55] or a mixture of glass and carbon
fibers [11]. Computational homogenization techniques [56] were used
for studying the effective elastic behavior of SMC composites [57,58].

Typically, continuum damage mechanics is based on a so-called
damage variable which describes the current state of damage within
the material [59,60]. The damage variable is governed by an evolution
equation, reflecting the progressive degradation of the material. The
damage variable can be scalar, vectorial or tensorial, and is typically
abstract, i. e., it does not directly mimic the underlying physics. A scalar
variable is proposed to model neat epoxy resin [61], unidirectionally
aligned composites [62] or composite laminae [63], vectorial variables
are used in the context of composite fabrics [64] or laminates [65].
To capture the damage evolution of a fully anisotropic material, at
least a fourth-order tensor damage variable is needed [60,66]. Selecting
the compliance as the primary damage variable [67–69] provides an
observable quantity which furthermore enables a direct comparison
with experimental findings.

SMC composites typically show an elasto-damageable behavior that
is driven by anisotropic damage evolution [20,31] and eventually
ends in abrupt failure. Damage evolution on the microscale induces
an effective stress–strain relationship characterized by a hardening,
rather than a softening, regime [12,18]. Hence, no localization occurs
prior to a specific loading point right before total failure of the SMC
composite [15,40].

1.2. Contributions and organization of this article

In this work, we introduce a methodology for identifying anisotropic
failure surfaces to be used in component-scale simulations based on
computational micromechanics. The presented multiscale approach al-
lows for a scale-transition of full-field damage evolution within ma-
trix and fiber bundles to an experimentally supported identification
of application-based failure criteria for the SMC composite on the
macroscale.

With the desire to apply SMC composites as load-bearing structural
components in mind, we start this work by analyzing experimental
investigations as well as simulation-based studies published by different
research groups. We give a brief overview of the considered SMC
composite and a set of representative experimental investigations on
neat UPPH and SMC composite specimens in Section 2. An analysis of
𝜇CT-based in-situ experiments offers further insight into the behavior
of SMC composites during loading.

To represent the anisotropic elasto-damageable behavior of SMC
composites [18,20,31], we choose a modular anisotropic damage model
which is formulated in the setting of generalized standard materi-
als [69] and utilizes a convex dissipation potential [70,71]. This frame-
work relies upon modular damage-activation functions and stress ex-
traction tensors, fulfills Wulfinghoff’s damage growth criterion [72]
and ensures a well-posed model precluding localization. We provide
an overview of the model and the associated set of parameters in
Section 3. To capture the anisotropic damage in the SMC composite
fiber bundles, we develop a set of extraction tensors motivated by
Puck’s theory [73,74] and maximum stress states. To model the UPPH
matrix behavior, we introduce an extraction tensor accounting for
damage due to dilatation.

We identify all associated damage parameters via a Bayesian opti-
mization approach with Gaussian regression, as presented in Section 4.
Using an anisotropic kernel function and parallel executions of FFT-
based full-field computational homogenization [56] simulations, we are
able to unambiguously identify damage parameter sets for the SMC
composite in Section 5.

In Section 6, we analyze our full-field damage predictions and
2

compare the results with 𝜇CT scans provided by Schöttl et al. [25,26].
Furthermore, we compute three-dimensional, effective failure surfaces
for the SMC composite, using failure criteria based on failure distri-
butions evaluated in the experimental investigations, see Section 2.
Hence, we provide both full-field damage evolution in SMC composites
on the microscale as well as macroscopic failure surfaces for different
failure criteria taking the anisotropic and heterogeneous microstructure
of SMC composites into account. These micromechanics-based failure
surfaces are formulated in stress space to be used in a structural
analysis [15], as well as via residual stiffnesses to be used in a design
(optimization) process [75]. Our presented multiscale approach helps
paving the way for an application-based anisotropic damage and failure
evaluation of SMC composites on component scale level.

1.3. Notation

We follow a direct tensor notation throughout this work. We de-
note vectors and second-order tensors by lower case and upper case
bold letters, respectively (e. g., 𝒂 and 𝑨), and fourth-order tensors
by, e. g., A,B. The transposition of a vector and second-order ten-
sor reads 𝒂𝖳 and 𝑨𝖳. We denote the linear mappings induced by
econd-order and fourth-order tensors as 𝒂 = 𝑪𝒃 and 𝑨 = C[𝑩], respec-
ively. We write the composition of two second-order or two fourth-
rder tensors by 𝑨𝑩 and AB, and the Frobenius inner product by
⋅ 𝑩 = tr(𝑨𝑩𝖳). The tensor product is symbolized by ⊗ and its sym-

metrized version ⊗𝖲 is defined via 𝒂⊗𝖲 𝒃 = (𝒂⊗ 𝒃 + 𝒃⊗ 𝒂) ∕2. We use
he abbreviation 𝒂⊗𝑛 = 𝒂⊗ 𝒂⋯⊗ 𝒂 (𝑛 repetitions of 𝒂). The material

time derivative of a quantity 𝑤 is expressed as 𝑤̇ = D𝑤∕D𝑡. The unit
sphere in R3 reads 𝑆2. Generally, we use a {𝒆1, 𝒆2, 𝒆3} Cartesian co-
ordinate system on the (local) microscale and a {𝒆𝑥, 𝒆𝑦, 𝒆𝑧} Cartesian
coordinate system on the (effective) macroscale. Details on further
spaces of interest, domains of definition and corresponding explicit
expressions are given upon their first appearance.

2. Sheet molding compound (SMC) composites

2.1. Microstructure of SMC composites

We consider an SMC composite comprised of an unsaturated
polyester polyurethane hybrid (UPPH) resin [3], reinforced by glass
fibers. The SMC composite is specifically designed to be used for the
manufacturing of structural, load-bearing components. The matrix was
developed to possess a stable bi-stage state allowing for a co-molding
of glass and carbon fibers [13]. No fillers are added to the composite.
The compression molding process leads to a fiber bundle microstructure
of the SMC composite [1,76,77], where each bundle of fibers remains
intact with an approximately unidirectional orientation of the fibers
within a bundle. Dedicated algorithms [9,25,78] reveal the fiber bundle
structure on 𝜇CT images, see Fig. 1. Similar microstructure characteris-
tics are observed for mesostructure analysis via optical microscopy on
polished SMC composite sample surfaces [19,79] and accounted for in
hierarchical approaches [11,20].

The linear elastic properties of the UPPH matrix and fibers are
listed in Table 1. To derive the properties of a fiber bundle, we imple-
mented two different approaches, numerical full-field homogenization
of a representative bundle [80], as well as mean-field Mori–Tanaka
homogenization [51,54]. Both approaches lead to approximately the
same transversely isotropic stiffness properties that are listed in Table 1,
where ‘‘L’’ and ‘‘T’’ refer to longitudinal and transverse, respectively.
Measurements and comparisons of the effective elastic properties of

SMC composites were performed by Trauth et al. [12].
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Fig. 1. Real fiber bundle microstructure of an SMC composite as investigated by Schöttl et al. [9,25] and generated microstructure [58].
Table 1
Material properties for the considered SMC composite.

E-glass fibers [22] UPPH matrix [22] Fiber bundles [58]

𝐸F,iso = 72 GPa 𝐸M,iso = 3.4 GPa 𝐸B,L = 37.73 GPa
𝐸B,T = 10.33 GPa

𝜈F,iso = 0.22 𝜈M,iso = 0.385 𝜈B,TT = 0.477
𝜈B,LT = 0.292

𝐺F,iso = 29.51 GPa 𝐺M,iso = 1.23 GPa 𝐺B,TT = 3.58 GPa
𝐺B,LT = 3.64 GPa

Fig. 2. Neat UPPH bone specimens loaded in different directions (with courtesy of
M. Bartkowiak and A. Trauth, Institute for Applied Materials – Materials Science and
Engineering) in analogy to investigations by Kehrer et al. [22].

2.2. Experimental investigations

2.2.1. Neat UPPH
Specimens oriented in different directions were cut from manufac-

tured neat UPPH sheets and tested uniaxially. The resulting stress–
strain curves, as well as the shape of the specimens, are shown in Fig. 2.
The measured Young’s moduli, according to DIN EN ISO 527-4 [81],
coincide with the Young’s moduli measured by Kehrer et al. [22],
as shown in the histogram Fig. 3(a). The computed mean value for
the considered experiments is 3.38 GPa with a standard deviation
of 0.06 GPa. Furthermore, the non-linear regime up to failure is vis-
ible. As the structural behavior of the different specimens cannot be
distinguished, it is reasonable to use an isotropic model for UPPH.
The ultimate strength, i. e., the stress at failure, has an average value
of 52.6 MPa with a standard deviation of 5.5 MPa, see Fig. 3(b). The
bandwidth of values for the ultimate strength, also accounting for
the different orientations, are highlighted as horizontal coloring in
Fig. 2. Assuming a pure elasto-damageable behavior, we determined the
Young’s moduli at failure as a measure of stiffness reduction (or damage
evolution) via ▵ 𝜎∕ ▵ 𝜀, see Fig. 3(c). The mean of all Young’s moduli
at failure is 3.01 GPa with a standard deviation of 0.08 GPa. Relating the
3

Young’s moduli at failure to the corresponding initial Young’s moduli
we get the stiffness reduction shown in Fig. 3(d). On average, this
reduction is 10.67% with a standard deviation of 3.19%.

2.2.2. SMC composite
For our SMC composite, we follow a similar procedure to the

investigations on neat UPPH specimens. Based on previously conducted
experimental investigations in terms of dynamic mechanical analy-
sis [22,82], as well as loading and unloading scenarios, conceivably
coupled to acoustic emission analysis [12,18,77], we know damage to
be the predominant mechanism in the considered high performance
SMC composite. Hence, we neglect viscous and plastic effects and focus
on the analysis of uniaxial tensile tests to evaluate the onset of damage.
Therefore, specimens with different orientations were cut from manu-
factured SMC composite sheets with a fiber volume fraction of 25%.
These sheets were produced in a two-dimensional compression molding
flow-process where the bi-staged sheets are placed in the middle of the
tool. Four different specimen geometries were used, see Fig. 4 – two
rectangular specimens (types A and B) and two bone specimens (types
C and D) with widths of 15 mm and 30 mm, respectively.

Fig. 5(a) shows the measured Young’s moduli corresponding to
the stress–strain curves in Fig. 4. These Young’s moduli have a mean
of 11.85 GPa with a standard deviation of 1.92 GPa, and confirm
the moduli measured by Trauth, Kehrer and co-workers [18,22]. The
measured ultimate strength has a mean of 144.78 MPa and a standard
deviation of 15.15 MPa, as shown in Fig. 5(b). The total bandwidth
of the ultimate strength is highlighted in Fig. 4. The histogram and
normal distribution of the damaged (reduced) Young’s moduli at failure
are shown in Fig. 5(c). On average, the damaged Young’s moduli take
a value of 8.85 GPa with a standard deviation of 0.94 GPa. The aver-
age stiffness reduction at failure is 23.67% with a standard deviation
of 12.79%, as shown in Fig. 5(d).

2.2.3. In-situ 𝜇CT scan analysis
In addition to pre-processing 𝜇CT scans on unscathed specimens,

also in-situ 𝜇CT scans were performed by Schöttl et al. [25,26]. Snap-
shots of a specimen loaded vertically in such an in-situ experiment,
aiming mainly at damage evolution and microcrack segmentation, are
shown in Fig. 6. The characteristic fiber bundle microstructure is clearly
visible in the 𝜇CT scan shown in Fig. 6(a). Cyclic loading with increased
loading steps and in-between holding times for 𝜇CT scan analysis
evoke a relatively stable damage evolution within the material due
to microcrack propagation and hence allow for damage detection via
scanning [25]. The investigations show matrix damage perpendicular
to the loading direction to be the primary damage mechanism [18,25].
Microcracks initiate at rims of matrix-rich areas – mainly at the edge or
at fiber bundle interfaces – and progress through the material, diverted
by bundles [26]. Depending on the orientation of individual bundles
and hence the associated local stress state, microcracks either follow
the principal bundle direction or run through it. Increasing the loading
level leads to a higher microcrack density and a wider spread, until
eventually total macroscopic failure is inevitable, see Figs. 6(c) and
6(d). Fiber or bundle breakage is hardly observed and partially occurs
at the point of macroscopic failure [40,83].



Composite Structures 288 (2022) 115322

4

J. Görthofer et al.

Fig. 3. Analysis of the neat UPPH bone specimens shown in Fig. 2.

Fig. 4. SMC composite specimens of different geometry types, loaded in different directions, investigated by Trauth, Bartkowiak and co-workers [12,18].

Fig. 5. Analysis of the SMC composite specimens shown in Fig. 4.

Fig. 6. Snapshots of an in-situ SMC composite specimen for different loading steps in vertical direction showing the evolution of microcracks, as investigated by Schöttl et al. [25,26].
All shown snapshots are published under CC BY 4.0 license in [26].
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3. A modular framework to describe anisotropic damage based on
extraction tensors

3.1. A compliance-based anisotropic damage model

To describe damage evolution within the SMC composite, we im-
plement a corresponding model [69] formulated in the framework of
generalized standard materials (GSM) [70]. The modular nature of the
model allows for an effortless employment to describe both damage
within the matrix and the fiber bundles, based on associated extraction
tensors. In the following, we briefly recall the most important aspects
of the damage model [69].

The first potential in the GSM framework is the free energy in terms
of a Hookean elastic energy and an energy related to the progressive
damage

𝑤 ∶ Sym(𝑑) × 𝑑 ×R𝑀 → R, (𝜺, S, 𝑞) ↦ 1
2
𝜺 ⋅ S−1 [𝜺]

+
𝑀
∑

𝑖=1

𝐻𝑖
𝑚𝑖 + 1

𝑞𝑚𝑖+1
𝑖 , 𝑚𝑖 > 0. (3.1)

The former is jointly convex in the strain 𝜺 and the compliance S and
nfinitely often differentiable. The latter is introduced as a power-law
ardening type in terms of 𝑀 different damage variables 𝑞𝑖, hardening
arameters 𝐻𝑖 and exponents 𝑚𝑖 and hence is convex and continu-
usly differentiable. The space of symmetric 𝑑 × 𝑑 infinitesimal strain
ensors 𝜺 is Sym(𝑑) (with 𝑑 being the dimension, i. e., 𝑑 ∈ [2, 3]), the
ompliance tensors are S ∈ 𝑑 = {S ∈ Sym(Sym(𝑑)) | 𝝉 ⋅ S [𝝉] > 0 for all
∈ Sym(𝑑)∖{0}}, and the damage variables 𝑞 ∈ R𝑀 are 𝑀 scalars in

eal space. A more detailed discussion can be found in [69].
The second potential in the GSM framework is the force potential

∗(T, 𝛽) =
{

0, 𝜙𝑖(T, 𝛽) ≤ 0 for all 𝑖 = 1,… ,𝑀,
+∞, otherwise, (3.2)

hich we introduce via 𝑀 convex and continuously differentiable
amage-activation functions

𝑖 ∶ Sym(Sym(𝑑))×R → R, (T, 𝛽𝑖) ↦ 2T⋅B2
𝑖 −𝜎20,𝑖+𝐻𝑖𝛽𝑖, 𝑖 = 1,… ,𝑀.

(3.3)

ach damage-activation function is formulated in terms of the conju-
ate driving forces T ∈ Sym(Sym(𝑑)) for the compliance and 𝛽𝑖 ∈ R for
he damage variables, respectively. Furthermore, a fourth-order extrac-
ion tensor B𝑖 ∈ 𝐿(Sym(𝑑)) and a damage-activation threshold 𝜎0,𝑖 are
ntroduced per damage-activation function 𝜙𝑖. As the driving forces are
iven by their potential-based relations T = 1

2𝝈 ⊗ 𝝈 and 𝛽𝑖 = −𝐻𝑖𝑞
𝑚𝑖
𝑖 ,

e simplify the damage-activation functions 𝜙𝑖 in terms of the stress 𝝈
nd the damage variables 𝑞𝑖 as

𝑖 ∶ Sym(𝑑) ×R → R, (𝝈, 𝑞𝑖) ↦ ‖B𝑖 [𝝈] ‖2 −𝜎20,𝑖 −𝐻2
𝑖 𝑞

𝑚𝑖
𝑖 , 𝑖 = 1,… ,𝑀.

(3.4)

Biot’s dual equation [84] in the context of the introduced poten-
ials (3.1) and (3.2) yields the evolution equations for the internal
ariables S and 𝑞, where the consistency parameters need to obey the

classical Karush–Kuhn–Tucker (KKT) conditions [85,86]. With a little
work, we eliminate the consistency parameters and reformulate the
equations, s. t. we compute the compliance at time 𝑡 as

S(𝑡) = S0 + 2
𝑀
∑

𝑖=1

𝑞𝑖(𝑡)
𝐻𝑖

B2
𝑖 , (3.5)

where S0 = S(0) is the initial compliance. The associated KKT conditions
referring to the simplified damage-activation functions 𝑓𝑖 and damage
variables 𝑞𝑖 read

𝑓 (𝝈, 𝑞 ) ≤ 0, 𝑞̇ ≥ 0, 𝑞̇ 𝑓 (𝝈, 𝑞 ) = 0, 𝑖 = 1,… ,𝑀. (3.6)
5

𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
3.2. Influence of the model parameters

The model is able to describe progressive, fully anisotropic dam-
age of any (anisotropic) initial stiffness C0 = S−10 via any number of
damage-activation functions (3.4). Each damage-activation function 𝑓𝑖
involves three parameters, a damage-activation threshold 𝜎0,𝑖, a hard-
ening parameter 𝐻𝑖 and a power-law exponent 𝑚𝑖. As the squared
norm of the extracted stress ‖B𝑖 [𝝈] ‖2 reaches 𝜎20,𝑖, damage evolution
is triggered, and the damage variable 𝑞𝑖 increases. The damage evo-
lution and hence the non-linear hardening-type stress–strain relation
are governed by 𝐻𝑖 and 𝑚𝑖. The influence of the parameters on the
predicted stress–strain relations is shown in Fig. 7 as an example. Here,
a single damage-activation function 𝑓 to describe damage in loading
direction, in analogy to Govindjee et al. [87], is used. We choose the
set of damage parameters as 𝜎0 = 30 MPa, 𝐻 = 130 MPa and 𝑚 = 1
for reference. For each study shown in Fig. 7, we vary one of these
parameters and keep the others constant.

Increasing the damage-activation threshold 𝜎0 retards the damage
initiation and increases the elastic region, see Fig. 7(a). The hardening
parameter 𝐻 and the power-law exponent 𝑚 have an opposing influ-
ence on the damage region, as we observe when comparing Figs. 7(b)
and 7(c). Whereas an increase of 𝐻 increases the hardening-type
behavior, an increase of 𝑚 decreases the hardening.

3.3. Extraction tensors accounting for dilatation and distortion

3.3.1. Spherical stress state
To model damage induced by dilatation, i. e. due to spherical stress

states, the corresponding extraction tensor B is the spherical projec-
tor P1, well-known from linear elasticity

B = P1 =
1
3
𝑰 ⊗ 𝑰 . (3.7)

ue to its characteristic P1 [𝝈] = 𝝈◦, the extracted stresses of the defined
damage-activation functions (3.4) read

‖B [𝝈] ‖2 = ‖𝝈◦
‖

2. (3.8)

.3.2. Deviatoric stress state
In analogy to spherical stress states, we model damage induced by

istortion, i. e. by deviatoric stress states, via an extraction tensor B of
he form

= P2 = I𝖲 − P1. (3.9)

ue to the characteristic of the deviatoric projector P2 [𝝈] = 𝝈′, the
orresponding extracted stresses are

B [𝝈] ‖2 = ‖𝝈′
‖

2. (3.10)

.4. Puck-type extraction tensors accounting for maximum stresses

.4.1. Basic idea
Motivated by the basic stress states present in laminates, as inves-

igated by Puck et al. [73,74], we define extraction tensors to account
or damage due to normal as well as shear loading, both in fiber
undle direction and perpendicular to it. Let {𝒆1, 𝒆2, 𝒆3} be a Cartesian

coordinate system, where 𝒆1 corresponds to the alignment direction
of the fibers, see Fig. 8. Then the stress tensor 𝝈 admits the block
decomposition

𝝈 =
⎛

⎜

⎜

⎝

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

⎞

⎟

⎟

⎠

. (3.11)

The stress in fiber direction is given by 𝜎11, the lower right block
describes the transverse stresses in the plane orthogonal to the fiber
direction, and (𝜎12, 𝜎13) are the remaining shear stresses in longitudinal
fiber bundle direction. Given the basic stress state in a fiber bundle (see
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Fig. 7. Influence of the model parameters 𝜎0, 𝐻 and 𝑚 on the predicted stress–strain relation.
Fig. 8. Schematic of a fiber bundle with local coordinate system {𝒆1 , 𝒆2 , 𝒆3}.

Eq. (3.11)), the traction vector 𝒕 in an arbitrary direction 𝒏 is 𝒕 = 𝝈𝒏. To
account for the maximum stresses in terms of a Puck-type setting, we
need to maximize specific (extracted) stresses over certain directions
using the pencil-glide approach [88,89]. We distinguish four different
loading scenarios that yield four associated extraction tensors.

3.4.2. Normal loading in fiber direction
The traction vector pointing in fiber direction 𝒆1 is

𝒕1 =
(

𝒆1 ⋅ 𝝈𝒆1
)

𝒆1, (3.12)

with the scalar stress

𝑡1 = 𝒆1 ⋅ 𝝈𝒆1 = 𝜎11. (3.13)

This stress is unambiguously defined by the given bundle direction 𝒆1.
The extraction tensor capturing normal loading in fiber direction is

B = 𝒆⊗4
1 . (3.14)

Accordingly, the extracted stress reads

‖B [𝝈] ‖2 = 𝜎211. (3.15)

3.4.3. Normal loading perpendicular to fiber direction
An arbitrary traction vector perpendicular to the fiber direction is

given via the direction 𝑆2 ∋ 𝒌 ⟂ 𝒆1, where 𝑆2 = {𝒙 ∈ R3 ∣ ‖𝒙‖ = 1}, as

𝒕𝜎 = (𝒌 ⋅ 𝝈𝒌)𝒌. (3.16)

We need to maximize the normal stress pointing into direction 𝒌

𝑡𝜎 = 𝒌 ⋅ 𝝈𝒌, (3.17)

over all admissible directions

𝑡max
𝜎 = max

𝒌⟂𝒆1
𝒌 ⋅ 𝝈𝒌. (3.18)

Hence, 𝑡max
𝜎 is the maximum principal stress of the stress state on

the 𝒆1-plane. This stress state is described by

𝝈 = 𝜎 𝒆 ⊗ 𝒆 , 𝑖, 𝑗 = 2, 3, (3.19)
6

𝜎 𝑖𝑗 𝑖 𝑗
with the corresponding principal stresses

𝜆2,3 =
𝜎22 + 𝜎33

2
±

√

(𝜎22 − 𝜎33
2

)2
+ 𝜎223. (3.20)

Following the classical convention for principal stresses 𝜆2 > 𝜆3, we get

𝑡max
𝜎 = 𝜆2. (3.21)

We derive the associated extraction tensor and the
damage-activation function via the condition

‖B [𝝈] ‖2
!
=
(

𝑡max
𝜎

)2 . (3.22)

While this condition (3.22) does not allow for an explicit closed-form
description of the associated extraction tensor, the extracted stresses
are given via

‖B [𝝈] ‖2 =

(

𝜎22 + 𝜎33
2

+

√

(𝜎22 − 𝜎33
2

)2
+ 𝜎223

)2

. (3.23)

Based on the procedures and results for the alternate loading sce-
narios (see Sections 3.4.4 and 3.4.5), as well as extraction tensors
formulated in an average stress manner [69], we postulate a damage
extraction tensor for normal loading perpendicular to the fiber direction
of the form

B =

√

2
2

(

𝒆⊗2
2 + 𝒆⊗2

3

)⊗2
+

√

2
4

(

𝒆⊗2
2 − 𝒆⊗2

3

)⊗2
+
(

𝒆2 ⊗𝖲 𝒆3
)⊗2 . (3.24)

The associated extracted stress therefore reads

‖B [𝝈] ‖2 = 1
4
(

5𝜎222 + 5𝜎233 + 6𝜎22𝜎33 + 4𝜎223
)

. (3.25)

3.4.4. Shear loading perpendicular to fiber direction
In order to evaluate the stress state due to shear loading perpendic-

ular to the fiber direction, we need to consider the shear part of the
traction vector, namely

𝒕𝜏 = 𝝈𝒌 − (𝒌 ⋅ 𝝈𝒌)𝒌. (3.26)

We decompose the shear traction vector into shear stresses perpendic-
ular and parallel to the fiber direction

𝒕𝜏 = 𝒕𝜏⟂ + 𝒕𝜏∥. (3.27)

The shear traction vector parallel to the fiber direction is

𝒕𝜏∥ =
(

𝒆1 ⋅ 𝒕𝜏
)

𝒆1 =
(

𝒆1 ⋅ 𝝈𝒌
)

𝒆1, (3.28)

and, analogously, the shear traction vector perpendicular to the fiber
direction is

𝒕𝜏⟂ = 𝝈𝒌 − (𝒌 ⋅ 𝝈𝒌)𝒌
⏟⏞⏞⏟⏞⏞⏟

−
(

𝒆1 ⋅ 𝝈𝒌
)

𝒆1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝒕𝜎 𝒕𝜏∥
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=
(

𝑰 − 𝒌⊗ 𝒌 − 𝒆1 ⊗ 𝒆1
)

𝝈𝒌 (3.29)

= (𝒎 ⋅ 𝝈𝒌)𝒎, (3.30)

where 𝑆2 ∋ 𝒎 ⟂ 𝒌 ⟂ 𝒆1 and 𝒎 ⟂ 𝒆1. The sought scalar shear stress is
iven as

𝜏⟂ = 𝒎 ⋅ 𝝈𝒌, (3.31)

which we need to maximize over all admissible directions 𝒎 ⟂ 𝒌 ⟂ 𝒆1
max
𝜏⟂ = max

𝒎⟂𝒌⟂𝒆1
𝒎 ⋅ 𝝈𝒌. (3.32)

Note that the directions 𝒎 and 𝒌 are not independent. For a given
bundle direction 𝒆1, we express 𝒎 as a function of 𝒌 via the condition
𝑰 = 𝒎⊗𝒎 + 𝒌⊗ 𝒌 + 𝒆1 ⊗ 𝒆1. Using this relation we get the expression

𝑡max
𝜏⟂ = max

𝒌⟂𝒆1

√

‖𝝈𝒌‖2 − (𝒌 ⋅ 𝝈𝒌)2 −
(

𝒆1 ⋅ 𝝈𝒌
)2, (3.33)

involving only a single unknown unit vector 𝒌. Analogously to normal
loading perpendicular to the fiber direction, 𝑡max

𝜏⟂ is the maximum shear
tress on the plane defined by the bundle direction 𝒆1. In accordance
ith principal stresses computed for the case above, the maximum

hear stress is

max
𝜏⟂ =

|𝜆2 − 𝜆3|
2

=

√

(𝜎22 − 𝜎33
2

)2
+ 𝜎223. (3.34)

The associated extraction tensor and the damage-activation function
re computed via the condition

B [𝝈] ‖2
!
=
(

𝑡max
𝜏⟂

)2 , (3.35)

which is ensured, provided

B2 [𝝈]
!
=

𝜎22 − 𝜎33
4

(

𝒆⊗2
2 − 𝒆⊗2

3

)

+ 𝜎23
(

𝒆2 ⊗𝖲 𝒆3
)

(3.36)

holds. Evaluating this condition yields an explicit form of the extraction
tensor

B =

√

2
4

(

𝒆⊗2
2 − 𝒆⊗2

3

)⊗2
+
(

𝒆2 ⊗𝖲 𝒆3
)⊗2 , (3.37)

and the corresponding extracted stress

‖B [𝝈] ‖2 = 1
4
(

𝜎222 + 𝜎233 − 2𝜎22𝜎33 + 4𝜎223
)

. (3.38)

3.4.5. Shear loading in fiber direction
We account for the maximum stress due to shear loading in fiber

direction via the corresponding shear traction vector (3.28)

𝒕𝜏∥ =
(

𝒆1 ⋅ 𝝈𝒌
)

𝒆1 = 𝑡𝜏∥𝒆1. (3.39)

We maximize the associated shear stress over all admissible direc-
tions 𝒌 ⟂ 𝒆1

𝑡max
𝜏∥ = max

𝒌⟂𝒆1
𝒆1 ⋅ 𝝈𝒌, (3.40)

i. e. we search the normal direction 𝒌 that points into direction of the
maximum stress [88,89]. As the stress is symmetric 𝝈𝖳 = 𝝈, the relation

𝑡𝜏∥ = 𝒆1 ⋅ 𝝈𝒌 = 𝒌 ⋅ 𝝈𝒆1 (3.41)

holds. We define a corresponding projector 𝑷 𝑘 with the characteris-
tics 𝑷 𝑘𝒌 = 𝒌 and 𝑷 𝖳

𝑘 = 𝑷 𝑘 as

𝑷 𝑘 = 𝑰 − 𝒆1 ⊗ 𝒆1. (3.42)

Application of this projector to the stress state yields

𝑡𝜏∥ = 𝒌 ⋅ 𝝈𝒆1 = 𝑷 𝑘𝒌 ⋅ 𝝈𝒆1 = 𝒌 ⋅ 𝑷 𝑘𝝈𝒆1 = 𝒌 ⋅
(

𝜎12𝒆2 + 𝜎13𝒆3
)

. (3.43)

The shear stress is maximized whenever

𝒌
!
=

𝑷 𝑘𝝈𝒆1 (3.44)
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‖𝑷 𝑘𝝈𝒆1‖
holds, yielding

𝑡max
𝜏∥ =

𝑷 𝑘𝝈𝒆1
‖𝑷 𝑘𝝈𝒆1‖

⋅ 𝑷 𝑘𝝈𝒆1 = ‖𝑷 𝑘𝝈𝒆1‖ =
√

𝜎212 + 𝜎213. (3.45)

The essential relation

‖B [𝝈] ‖2
!
=
(

𝑡max
𝜏∥

)2
, (3.46)

holds, if

B2 [𝝈]
!
= 𝜎12

(

𝒆1 ⊗𝖲 𝒆2
)

+ 𝜎13
(

𝒆1 ⊗𝖲 𝒆3
)

. (3.47)

valuating this relation gives an explicit form for the associated extrac-
ion tensor

=
(

𝒆1 ⊗𝖲 𝒆2
)⊗2 +

(

𝒆1 ⊗𝖲 𝒆3
)⊗2 , (3.48)

nd the corresponding extracted stress

B [𝝈] ‖2 = 𝜎212 + 𝜎213. (3.49)

. Bayesian optimization process

The presented framework takes damage parameters into account
see Sections 3.1 and 3.2), which need to be identified to describe the
lasto-damageable behavior of our SMC composite properly. The model
nd its parameters serve as input for the FFT-based full-field homog-
nization computed with our in-house code homKIT (see Fig. 9 and
ection 5.1 for further information). The stress–strain response com-
uted by homKIT is compared to the experimental results discussed
n Section 2.2 via a corresponding error measure, yielding an opti-
ization problem for the identification of proper damage parameters.
e choose a Bayesian optimization approach [90,91], as our problem

t hand involves an objective function that is expensive to evaluate
each call involves a full-field homogenization on a three-dimensional
oxel image) and derivatives that are not easily calculated. Similar
onditions hold for, e. g., ductile phase-field fracture [92]. Bayesian
ptimization uses a surrogate model of the actual problem accounting
or probabilities and uncertainties based on Bayesian statistics [93].

We describe the problem in terms of an abstract cost function

∶  → R, 𝑝 ↦ 𝑐(𝑝), (4.1)

ombining the full-field homogenization based on a parameter set
∈  ⊂ R𝑏, and the error measure. The feasible domain  for the
arameter set 𝑝 represents the parameter ranges and is frequently
hosen as hyper-rectangle with 𝑝 ∈  ⊂ R𝑏 ∶ 𝑙𝑖 ≤ 𝑝𝑖 ≤ 𝑢𝑖, 𝑖 = 1,… , 𝑏, for
calar lower and upper bounds 𝑙𝑖 and 𝑢𝑖. We seek a minimizer 𝑝 of the
ost function

(𝑝) → min
𝑝∈⊂R𝑏

. (4.2)

In general, we do not know the (continuous) cost function, but
nly a certain amount of discrete values for parameter sets
1∶𝑟 =

(

𝑝1,… , 𝑝𝑟
)

∈ 𝑟, which we assemble in a vector
1∶𝑟 =

[

𝑐(𝑝1),… , 𝑐(𝑝𝑟)
]𝖳 ∈ R𝑟. The cost function values for the remain-

der of parameter sets are uncertain, yielding an infinite number of
possible cost functions. Hence, we use a surrogate cost function model
based on Gaussian process regression [94] to account for the uncer-
tainty within the Bayesian optimization procedure. We assume all
possible cost function values to be distributed normally

𝑐(𝑝) ∼  (𝑚(𝑝), 𝐾(𝑝, 𝑝′)) for all 𝑝 ∈ , (4.3)

with a mean 𝑚 ∶  → R and a kernel (covariance) 𝑘 ∶  × → R.
The kernel 𝑘 defines the correlations of two parameter sets 𝑝 and 𝑝′.
Condition (4.3) has to hold for all parameter sets 𝑝 ∈  yielding
a normal distribution of all cost functions. Therefore, given the al-
ready known parameter sets 𝑝1∶𝑟 with associated cost function val-
ues 𝑐1∶𝑟, all possible (surrogate) cost functions have to be drawn ac-

cording to the multivariate normal distribution (4.3) with the mean
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Fig. 9. Simplified schematic workflow of parameter identification routine.
vector 𝑚1∶𝑟 =
[

𝑚(𝑝1),… , 𝑚(𝑝𝑟)
]𝖳 ∈ R𝑟 and the covariance matrix

𝐾1∶𝑟,1∶𝑟 =
⎡

⎢

⎢

⎣

𝑘(𝑝1, 𝑝1) … 𝑘(𝑝1, 𝑝𝑟)
⋮ ⋱ ⋮

𝑘(𝑝𝑟, 𝑝1) … 𝑘(𝑝𝑟, 𝑝𝑟)

⎤

⎥

⎥

⎦

∈ R𝑟×𝑟. (4.4)

The multivariate normal distribution (4.3) has to hold for any new
parameter set 𝑝𝑟+1, as well. Hence, the joint distribution based on all
parameter sets – known and new – (𝑝1∶𝑟, 𝑝𝑟+1) follows a multivariate
normal distribution that reads
[

𝑐1∶𝑟
𝑐(𝑝𝑟+1)

]

∼ 

(

0,

[

𝐾1∶𝑟,1∶𝑟 𝐾1∶𝑟,𝑟+1
𝐾𝖳

1∶𝑟,𝑟+1 𝑘(𝑝𝑟+1, 𝑝𝑟+1)

])

, (4.5)

with the kernel evaluations 𝐾1∶𝑟,𝑟+1 =
[

𝑘(𝑝1, 𝑝𝑟+1),… , 𝑘(𝑝𝑟, 𝑝𝑟+1)
]𝖳 and

𝑘(𝑝𝑟+1, 𝑝𝑟+1). For convenience we assume the mean to be zero
𝑚1∶𝑟 ≡ 0 [95].

Consequently, the (conditional) posterior probability distribution
of the cost function 𝑐(𝑝𝑟+1) for the new parameter set 𝑝𝑟+1, given the
already known 𝑐1∶𝑟, is computed as

𝑐(𝑝𝑟+1) ∣ 𝑐1∶𝑟 = 
(

𝑚̃(𝑝𝑟+1), 𝑣2(𝑝𝑟+1)
)

(4.6)

with a posterior mean 𝑚̃(𝑝𝑟+1) and a posterior variance 𝑣2(𝑝𝑟+1). Here,
the Sherman–Morrison–Woodbury formula [96] can be utilized [94]
and yields

𝑚̃(𝑝𝑟+1) = 𝐾𝖳
1∶𝑟,𝑟+1𝐾

−1
1∶𝑟,1∶𝑟𝑐1∶𝑟, (4.7)

𝑣2(𝑝𝑟+1) = 𝑘(𝑝𝑟+1, 𝑝𝑟+1) −𝐾𝖳
1∶𝑟,𝑟+1𝐾

−1
1∶𝑟,1∶𝑟𝐾

𝖳
1∶𝑟,𝑟+1. (4.8)

The posterior mean 𝑚̃(𝑝𝑟+1) is estimated on the given, known data 𝑐1∶𝑟
weighted by the kernel. The posterior variance 𝑣2(𝑝𝑟+1) is given by
the prior covariance which is corrected by a term that takes the
known correlations into account. The posterior mean approximates the
actual cost function and is updated and improved with each evaluated
parameter set 𝑝𝑟+1. For an infinity number of evaluations 𝑟 → ∞, we
recapture the actual (deterministic) cost function.

As we know the different parameters of the different damage-
activation functions to have different levels of relevance on the
anisotropic behavior of our SMC composite, we use the Màtern 5/2
kernel [97]

𝑘(𝑝, 𝑝′) = 𝛾2𝑝
(

1 +
√

5 𝛿
(

𝑝, 𝑝′
)

+ 5
3
𝛿
(

𝑝, 𝑝′
)2
)

exp
(

−
√

5 𝛿
(

𝑝, 𝑝′
)

)

(4.9)

with an anisotropic distance function 𝛿
(

𝑝, 𝑝′
)

between parameter sets
𝑝 and 𝑝′

𝛿
(

𝑝, 𝑝′
)

=

√

√

√

√

𝑏
∑

𝑖=1

(

𝑝𝑖 − 𝑝′𝑖
)2

𝛼2𝑖
. (4.10)

The Màtern 5/2 kernel (4.9) is not restricted to smooth cost functions.
Each of the hyperparameters

(

𝛼1,… , 𝛼𝑏
)

is determined to represent the
relevance of its associated damage parameter. The hyperparameter 𝛾2𝑝
controls the width of the kernel, i. e., the general level of correla-
tion between two parameter sets. For a more detailed discussion on
8

kernel functions, the reader is referred to the book of Williams and
Rasmussen [94].

For each evaluation, we want to choose a new parameter set 𝑝𝑟+1
that is closer to the sought minimum of the cost function. Hence, a
promising parameter set 𝑝𝑟+1 has a large improvement ⟨𝑐(𝑝∗) − 𝑐(𝑝𝑟+1)⟩
w. r. t. the currently best parameter set 𝑝∗ = argmin𝑖≤𝑟𝑐(𝑝𝑖). As we do
not know 𝑐(𝑝𝑟+1) beforehand, we take the expected value  of the
improvement given all already known evaluations 𝑐1∶𝑟 and maximize
it, yielding

𝑝𝑟+1 = argmaxEI(𝑝), (4.11)

with the ‘‘expected improvement’’ (EI) acquisition function [98,99]

EI(𝑝) = 
(

⟨𝑐(𝑝∗) − 𝑐(𝑝)⟩ ∣ 𝑐1∶𝑟
)

(4.12)

and Macaulay brackets ⟨⋅⟩ = max (0, ⋅). We evaluate (4.12) in closed
form [99] and arrive at

EI(𝑝) = ⟨▵ 𝑐(𝑝)⟩ + 𝑣(𝑝) PDF
(

▵ 𝑐(𝑝)
𝑣(𝑝)

)

− | ▵ 𝑐(𝑝)|CDF
(

▵ 𝑐(𝑝)
𝑣(𝑝)

)

(4.13)

with the probability and cumulative density functions PDF and CDF.
The expected difference is defined as ▵ 𝑐(𝑝) = 𝑐(𝑝∗) − 𝑚̃(𝑝) − 𝜉, including
a shift-parameter 𝜉 that helps controlling the exploration and exploita-
tion trade-off [99]. This trade-off between choosing (new) parameter
sets with a high uncertainty (high 𝑣(𝑝)) or a high expected quality
(high ▵ 𝑐(𝑝)) is the elementary part of all acquisition functions.

To initialize a certain number of cost function values for the opti-
mization process, we use a Latin-Hypercube sampling approach [100]
for the parameter sets within our hyper-rectangular domain . The
Bayesian optimization process is stopped after a given amount of
iterations and the parameter set 𝑝∗ yielding the smallest cost function
value 𝑐(𝑝∗) is considered as the optimal choice. The variance, or the
associated confidence interval, respectively, gives information about
quality and certainty of the found optimum.

5. Identification of damage parameters in SMC composites

5.1. Computational setup

We integrated the proposed damage model as a user-defined subrou-
tine in our in-house OpenMP-parallel FFT-based computational homog-
enization code written in Python 3.7 with Cython extensions [101] and
FFTW [102] bindings, as described by Schneider [103] (homKIT, see
Fig. 9). We use the Moulinec–Suquet discretization [80] and a Newton-
CG scheme to solve the ensuing nonlinear systems of equations [104,
105]. We implemented the Bayesian optimization procedure in combi-
nation with the kernel evaluations and the error measure in terms of a
Python 3.7 code, incorporating GPyOpt [106] (fitKIT, see Fig. 9). We
executed the optimization iterations in parallel, using a batch sampling
as introduced by Thompson [107]. For the computations we used either
6–12 threads on a desktop computer with 32 GB RAM and an Intel i7-
8700K CPU with 6 cores and a clock rate of 3.7 GHz, or a workstation
with two AMD EPYC 7642 with 48 physical cores each, enabled SMT
and 1024 GB of DRAM.
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Fig. 10. Example of generated unit cells. Coloring indicates bundle orientation. Matrix is hidden.
Table 2
Extraction tensors and parameters used for modeling the behavior of SMC
composites.

Type B 𝜎0 in MPa H in MPa

UPPH Section 3.3.1 (3.7) [5, 50] [ 50, 400]

Bundle Section 3.4.3 (3.24) [5, 40] [100, 700]
Section 3.4.5 (3.48) [5, 40] [ 50, 400]

5.2. Definition of the parameter set to be identified

To capture matrix and bundle damage, the dominant mechanisms
in SMC composites [18,20,31], we utilize the following three damage-
activation functions (3.4). Matrix damage evolution due to normal
loading in terms of dilatation is captured via a damage-activation
function in combination with an extraction tensor of type (3.7). Bundle
damage in transverse and longitudinal direction, accounting for nor-
mal and shear stresses, is described via damage-activation functions
in combination with extraction tensors of types (3.24) and (3.48),
respectively.

Each damage-activation function comes with three parameters (𝜎0,
𝐻 , 𝑚), as discussed in Section 3.2. We know the power-law exponent 𝑚
to have a contrary influence on the non-linear regime compared to the
hardening parameter 𝐻 . To describe the behavior of SMC composites,
we assume a linear damage hardening evolution and hence set the
power-law exponent to 𝑚 = 1 for each damage-activation function. This
leaves us with six parameters to be identified adequately in order to fit
the predicted behavior of our model to the experimental observations.
A summary of the applied extraction tensors, the associated parameters
and their allowed ranges for the optimization process is given in
Table 2.

5.3. Study on SMC composite microstructures

We utilize the Bayesian optimization presented in Section 4 to iden-
tify the damage parameters for our SMC composite, see Table 2. We ran
our optimization with 300 initial hypercube samplings and subsequent
3000 iterations, computed in 250 batches with 12 parallel executions
on 8 threads each. We update the surrogate model and hence the ac-
quisition function after the computation of each batch. The underlying
microstructure is a generated unit cell [58], as shown in Fig. 10(a),
with a fiber volume fraction of 25% and a planar isotropic orientation,
matching the conditions of the specimens discussed in Section 2.2.
Using the introduced microstructure generation approach [58], we
transfer our results to SMC composite unit cells with different orienta-
tions, see Fig. 10 and Section 6. Therefore, we generated additional unit
cells with fiber bundles oriented in 𝒆𝑥-direction to a higher extent and
unit cells with a pure unidirectional bundle alignment in 𝒆𝑥-direction,
see Figs. 10(b) and 10(c). The associated fiber orientation tensors of
second-order [108] are given in the captions.
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Table 3
Extraction tensors and identified parameters used to capture the behavior of SMC
composites.

Type B 𝜎0 in MPa s in % H in MPa s in %

UPPH Section 3.3.1 (3.7) 43.99 24 177.84 3

Bundle Section 3.4.3 (3.24) 29.36 11 381.64 4
Section 3.4.5 (3.48) 28.60 51 123.81 7

We use a least square ansatz for the cost function value regarding a
parameter set 𝑝

𝑐(𝑝) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝜎exp
𝑖 − 𝜎sim

𝑖 (𝑝)
)2 (5.1)

comparing the difference of the experimentally measured and the pre-
dicted stress–strain curves. We evaluate the measures stress 𝜎exp

𝑖 and
the computed stress 𝜎sim

𝑖 (𝑝) for 𝑁 given strain values. The cost function
values 𝑐(𝑝) of the 300 initial samples and the best result per batch for
the subsequent iterations are shown in Fig. 11. The lighter areas mark
the 95% confidence interval for each result. We observe a high variation
in the cost function values for the 300 initial sampling iterations, as
we raster the complete hyper-rectangular parameter space. In a sense,
we maximize the exploitation and minimize the expectation in our
discussed trade-off (see Section 4), to gain as much knowledge about
the cost function behavior as possible during initialization.

In the following 1400 iterations the variation of the cost function
decreases, but nonetheless remains relatively high, see Figs. 11(a) and
11(b). As the behavior of the cost function is governed by six parame-
ters, the individual influences need to be explored, which is responsible
for this prolonged variation with its quite large confidence interval.
After about a total of 1700 iterations, a possible optimum is found with a
cost function value of approximately 0.45 MPa and a small confidence
interval of the order of ±0.01 MPa, see Fig. 11(b). For the remainder
of the optimization process, the variation of the best cost function
value per batch is negligibly small with an associated small confidence
interval, see Fig. 11(c). Hence, we can assume the best overall cost
function value of about 0.44 MPa (which is 0.33% of the mean ultimate
strength) to be reasonably close to the actual optimum. The correspond-
ing values of the best parameter set to describe damage evolution in
our SMC composite are listed in Table 3. Furthermore, the sensitivity 𝑠
of each parameter in terms of its associated hyperparameter related to
all hyperparameters is added. In general, the identified optimum of the
cost function shows a higher sensitivity w. r. t. the damage-activation
threshold 𝜎0 compared to the hardening parameter 𝐻 .

A comparison of the experimentally measured stress–strain curve
(see Section 2.2, cf. Fig. 4) and the computed stress–strain curve is
given in Fig. 12. These curves, representing the macroscopic structural
behavior of our SMC composite, are in good agreement. With our
defined damage cases, the corresponding damage-activation functions,
extraction tensors and identified parameters at hand, we can predict
the macroscopic behavior of the SMC composite unit cell accurately.
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Fig. 11. Best value per batch of the cost function 𝑐(𝑝) over iterations.
Fig. 12. Comparison of effective stress–strain curves.

6. Identification of macroscopic failure surfaces for SMC compos-
ites

6.1. Full-field damage evolution

The introduced damage cases and identified parameters do not
only allow for the prediction of the macroscopic stress–strain behavior,
but also help us to evaluate the evolution and full-field distribution
of damage on the microscale. With damage in terms of microcrack
evolution [25,26] in mind, we analyze the predicted damage in the
UPPH matrix. The evolution of damage over different loading steps is
shown in Fig. 13. In analogy to the discussed experiments, we consider
a slice of a planar isotropic microstructure that is loaded in vertical
direction. Damage in the matrix mainly initiates at the rims of matrix
rich regions at bundle edges and corners, see Figs. 13(a) and 13(b).
With increasing loading level, on the one hand the damage level of
existing damaged regions increases and expands, and on the other hand
additional damaged areas arise, see Figs. 13(c) and 13(d). At a certain
loading level, a large share of the matrix is damaged, i. e., the density
of microcracks is relatively high, compare Fig. 6(d). Correspondingly,
bundle damage evolves as the matrix damage increases. The sum of
all these types of damage, matrix damage followed by bundle damage,
eventually accumulates to macroscopic failure of the SMC composite.
The full-field distribution of bundle damage is discussed in Appendix.

Our presented framework allows for the generation and compu-
tation of microstructures with orientations deviating from the planar
isotropic state. The distribution of the predicted damage in the UPPH
matrix due to a loading of 2.5% strain in 𝒆𝑥-direction is shown in
Fig. 14. Basically, we observe a larger distribution of matrix damage
for the planar isotropic orientation in comparison to orientations with a
10
preferred alignment in loading direction. The less bundles are oriented
in loading direction, the less these bundles can bear the applied loading.
Consequently, the loading level in the matrix is higher and so is the
general damage level. Occurring damage is distributed in the transition
areas between bundles at the bundle tips, and localizes especially
at rims of matrix rich areas, see Fig. 14(b) and 14(c). Correspond-
ing analyzes regarding the distributions of bundle damage w. r. t. the
orientation are given in Appendix.

6.2. Structural analysis perspective

Utilizing the experimental observations discussed in Section 2.2, we
derive different macroscopic failure criteria based on corresponding
full-field damage distributions. To investigate the influence of the
interaction between fiber bundle orientation and loading direction
on the damage evolution and the consequent point of failure, we
load generated microstructures with different orientation states (see
Fig. 10) in different, non-uniform distributed directions
𝒏 ∈ 𝑆2 = {𝒙 ∈ R3 ∣ ‖𝒙‖ = 1}. Therefore, we sample 1000 directions on
a unit half sphere with positive 𝒆𝑧-direction, see Fig. 15. In analogy
to the conducted experiments, we apply an effective uniaxial strain
boundary condition in all sampled directions.

For each direction, we compute the damage evolution and the
stress response, and evaluate the macroscopic stiffness reduction. For
the latter, we compare the current effective stiffness with the initial
stiffness in terms of the directional Young’s modulus 𝐸(𝒏) computed
via the stress–strain relation ▵ 𝜎(𝒏)∕ ▵ 𝜀(𝒏). Given a direction 𝒏, the
associated directional stress 𝜎(𝒏) can be extracted via

𝜎(𝒏) = 𝝈 ⋅ (𝒏⊗ 𝒏) , (6.1)

and similarly for the directional strain.
Fig. 16 shows the resulting failure surfaces of a planar isotropic

microstructure for different stiffness reductions, derived from the range
of reductions known from the experimental observations, see Fig. 5(d).
These plots define the maximum allowable stresses for a given level
of admissible damage before total failure. Hence, these failure surfaces
serve as criterion on a macroscopic integration point level whether a
part will sustain a certain stress level or not. For comparability, we de-
pict the failure surfaces in terms of a constrained plot in the {𝒆𝑥, 𝒆𝑦, 𝒆𝑧}-
space. Note that the negative axes for the stresses in the 𝒆𝑥-𝒆𝑦-plane
are caused by the corresponding loading directions that point into
negative 𝒆𝑥- and/or 𝒆𝑦-direction, see Fig. 15. The associated directional
stress levels themselves are always positive.

Evaluating Fig. 16, the planar isotropic nature of the microstructure
is apparent, as the failure surface is rotationally symmetric about the
𝒆𝑧-axis, i. e., the directional stress evoking a certain stiffness reduction
remains the same irrespective of the loading direction within the 𝒆𝑥-
𝒆 -plane. Choosing an admissible stiffness reduction of 20% would
𝑦
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Fig. 13. Evolution of matrix damage during increased loading in vertical direction, in analogy to experimental observations as presented in Fig. 6.
Fig. 14. Predicted UPPH matrix damage according to Section 3.3.1 for different orientations and loading of 2.5% strain in 𝒆𝑥-direction (see Fig. 10 for corresponding microstructures).
Bundles are hidden.
Fig. 15. Sampled directions on unit half sphere.

allow for a directional stress of about 120 MPa in the 𝒆𝑥-𝒆𝑦-plane, see
Fig. 16(b). An increasing 𝒆𝑧-component of the loading direction leads
to lower allowed stress levels before failure, as the supporting influence
of the fiber bundles decreases for an increasing deviation of the loading
direction away from the isotropic 𝒆𝑥-𝒆𝑦-plane.

Considering a microstructure with bundles being preferably aligned
in 𝒆𝑥-direction, see Fig. 10(b), we obtain the failure surfaces shown in
Fig. 17. The influence of the non-isotropic bundle orientation is notice-
able through the elongated shape of the failure surface in 𝒆𝑥-direction.
As more bundles are aligned in 𝒆𝑥-direction, the corresponding stress
level is highest and decreases for loadings with increasing components
in 𝒆𝑦-direction and/or 𝒆𝑧-direction. For an allowed stiffness reduction
of 20%, an SMC composite part with said orientation could bear stresses
of up to 250 MPa in 𝒆𝑥-direction and about 75 MPa in 𝒆𝑦-direction,
see Fig. 17(b). If we also add a component in 𝒆 -direction with an
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𝑧

angle of about 45◦, the structure withstands stresses between 75 MPa
and 105 MPa before total failure.

For a microstructure with (fully) aligned bundles in 𝒆𝑥-direction, see
Fig. 10(c), the resulting failure surfaces follow a similar pattern as for
the slight orientation in 𝒆𝑥-direction shown in Fig. 17, but are more pro-
nounced in their extremes, see Fig. 18. Furthermore, the failure surfaces
are rotationally symmetric about the 𝒆𝑥-axis, i. e., the admissible stress
level remains unchanged for any loading direction in a 𝒆𝑦-𝒆𝑧-plane. For
all loading directions with no component in 𝒆𝑥-direction, the allowed
stress level is lowest. The bulges, that become more pronounced for
higher stiffness reductions, are caused by the reinforcing character
of the fiber bundles for any loading direction with at least a small
component in 𝒆𝑥-direction. The bearable stress significantly increases
for any loading direction with a non-zero component in 𝒆𝑥-direction,
see Fig. 18(d). A further increase of the 𝒆𝑥-component further increases
the bearable stress level, but its effect decreases.

6.3. Design perspective

In addition to the structural analysis of our SMC composite, we use
our approach to analyze the SMC composite loading conditions from
a design perspective. For that case, we consider loadings that evoke
specific stress levels, e. g., motivated by given component specifications
or boundary conditions, and evaluate the resulting stiffness reduction.
The gained knowledge on stiffness reduction due to given stress levels
helps identifying and revisiting critical component areas during the
design process to counter failure from the start.

To scrutinize the relation between applied stress level and result-
ing stiffness reduction, we compute the directional-dependent relative
residual Young’s modulus as

𝛿(𝒏) = 𝐸(𝒏) (6.2)

𝐸0(𝒏)
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Fig. 16. Failure surface plots for a microstructure with planar isotropic orientation.
Fig. 17. Failure surface plots for a microstructure with higher alignment in 𝒆𝑥-direction.
Fig. 18. Failure surface plots for a microstructure with unidirectional orientation in 𝒆𝑥-direction.
via the current (damaged) Young’s modulus 𝐸(𝒏) and the initial Young’s
modulus 𝐸0(𝒏) in a direction 𝒏. Hence, a value of 𝛿(𝒏) = 100% represents
a sound Young’s modulus in that direction 𝒏. Similar to the analy-
sis conducted in Section 6.2, we depict the relative residual Young’s
modulus via iso-surface plots in the {𝒆𝑥, 𝒆𝑦, 𝒆𝑧}-space. Note that the
negative axes for the relative residual Young’s modulus in the 𝒆𝑥-𝒆𝑦-
plane are caused by the corresponding loading directions that point into
negative 𝒆𝑥- and/or 𝒆𝑦-direction, see Fig. 15. The associated directional
relative residual Young’s moduli themselves are always positive.

For a microstructure with planar isotropic orientation, the resulting
relative residual Young’s modulus plots are shown in Fig. 19. For an
applied stress of 10 MPa, the behavior is purely elastic and damage does
not initiate yet, which yields a value of 𝛿(𝒏) = 100% in all directions,
see Fig. 19(a). If the stress level is 60 MPa, damage evolves and the
stiffness is reduced, see Fig. 19(b). The stiffness reduction is smallest
in the 𝒆𝑥-𝒆𝑦-plane and highest for loading in out-of-plane 𝒆𝑧-direction,
which is in line with the observations made in Fig. 16. The relative
residual Young’s modulus is rotationally symmetric about the 𝒆𝑧-axis
due to the planar isotropic nature of the microstructure. For higher
loadings, the relative residual Young’s modulus decreases further, as
shown in Fig. 19(c). For convenience, we highlighted the undamaged
regions with values of 𝛿(𝒏) = 100% in the 𝒆𝑥-𝒆𝑦-plane in gray. A stress
level of 180 MPa results in a relative residual Young’s modulus within
the 𝒆𝑥-𝒆𝑦-plane of about 𝛿(𝒏) = 67%, which corresponds to the exper-
imental observations, compare Fig. 19(d) and Fig. 5. If we load the
microstructure with a component in 𝒆𝑧-direction having a 45◦ angle,
the relative residual Young’s modulus would be 𝛿(𝒏) = 53% for the same
loading level.
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The relative residual Young’s modulus plots for an SMC composite
microstructure that is preferably oriented in 𝒆𝑥-direction are shown
in Fig. 20. For stress levels that induce damage, the relative residual
Young’s modulus is highest in 𝒆𝑥-direction due to the reinforcing nature
of the fiber bundles and decreases towards a loading in 𝒆𝑦-direction.
The relative residual Young’s modulus is lowest for loadings in out-
of-plane 𝒆𝑧-direction, as we lack any supportive effect of the fiber
bundles, see Fig. 20(c). For an applied stress of 120 MPa, the relative
residual Young’s modulus is about 90% in 𝒆𝑥-direction and about 60%
in 𝒆𝑦-direction. Similar to observations made in Fig. 19(d), we see the
formation of bulges in Fig. 20(d). Even a small proportion of bundles
oriented in loading direction have a comparatively high influence
on the overall damage evolution, and the relative residual Young’s
modulus in vicinity of the 𝒆𝑧-direction immediately increases with a
comparatively high slope.

The resulting relative residual Young’s modulus plots for a mi-
crostructure with unidirectionally aligned bundles in 𝒆𝑥-direction are
shown in Fig. 21. These plots are rotationally symmetric about the uni-
directional 𝒆𝑥-axis. The general behavior is similar to the one observed
in Fig. 20, but more extreme. Again, we observe a higher sensitivity
of the relative residual Young’s modulus in vicinity to loadings in
the 𝒆𝑦-𝒆𝑧-plane and a lower sensitivity for loadings oriented in bundle
direction 𝒆𝑥.

7. Summary and conclusions

This work was devoted to identifying macroscopic and anisotropic
failure criteria for SMC composites that are motivated by damage evolu-
tion on the microscale. Accumulating damage in matrix and bundles in
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Fig. 19. Relative residual Young’s modulus plots for a microstructure with planar isotropic orientation.
Fig. 20. Relative residual stiffness plots for a microstructure with higher alignment in 𝒆𝑥-direction.
Fig. 21. Relative residual stiffness plots for a microstructure with unidirectional orientation in 𝒆𝑥-direction.
terms of microcracking [20,26,31] on the microscale yields a hardening
regime on the macroscale and eventually ends in abrupt failure [12,40].

To capture such a structural behavior, we applied an anisotropic
and modular framework [69]. The modular concept allows for the de-
scription of fully anisotropic stiffness degradation based on extraction
tensors. Inspired by Puck’s theory for laminates [73,74], as well as
dilatation and distortion, we introduced a number of extraction tensors
specifically designed to model damage evolution in SMC composites.

With the help of Bayesian optimization [95], integrating a Mátern
5∕2 kernel, an anisotropic distance function for the underlying Gaussian
process and an ‘‘expected improvement’’ acquisition function, we were
able to identify all necessary parameters in the highly heterogeneous
solution space. An implementation combining the experimental results,
an FFT-based full-field homogenization approach [56], generated SMC
composite microstructures [58] and a corresponding error measure,
allowed for a successful minimization of the cost function.

We compared our predicted full-field damage results to correspond-
ing in-situ 𝜇CT scan analyzes. Matrix damage in the form of microc-
racks initiates at the rims of matrix rich regions and is followed by bun-
dle damage. Utilizing generated SMC composite microstructures [58],
we transferred our findings onto microstructures with individually
selected orientations.

To propel scale-transition, we identified appropriate micromec-
hanics-based anisotropic failure surfaces. We proposed, on the one
hand, failure surfaces in stress space considering given admissible
stiffness reductions, useful for structural analysis processes. On the
other hand, we introduced relative residual stiffness (failure) surfaces
based on predetermined component boundary conditions, which are
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vital for (virtual) design processes. We analyzed the influence of the
fiber bundle orientation on both approaches for specific representative
microstructures.

The presented framework forms a foundation for a micromechani-
cally and physically motivated database for anisotropic failure criteria
on integration point level for SMC composites. In analogy to databases
identified for plasticity and short fiber reinforced composites [109,
110], a proper discretization and sampling of the orientation space
can be established for orientation-dependent SMC composite failure
criteria. Furthermore, an uncertainty quantification of the resulting
damage and consequent macroscopic failure w. r. t. microscopic pa-
rameter variations (such as phase properties or volume fractions) can
be investigated. The implemented damage model directly operates on
the compliance tensor, which allows for a straightforward coupling of
damage evolution to other phenomena such as plasticity [111,112] in
future applications.
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Fig. 22. Evolution of bundle damage perpendicular to bundle direction during increased loading in vertical direction, in analogy to experimental observation as presented in Fig. 6.

Fig. 23. Evolution of bundle damage in bundle direction during increased loading in vertical direction, in analogy to experimental observation as presented in Fig. 6.

Fig. 24. Predicted bundle damage according to Section 3.4.3 for different orientations and loading in 𝒆𝑥-direction (see Fig. 10 for corresponding microstructures). Matrix is hidden.

Fig. 25. Predicted bundle damage according to Section 3.4.5 for different orientations and loading in 𝒆𝑥-direction (see Fig. 10 for corresponding microstructures). Matrix is hidden.
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Appendix. Full-field damage evolution for different SMC compos-
ite microstructures

An increase of the total loading in combination with evolving matrix
damage leads to an increase of load being distributed onto specific fiber
bundles. Inevitable, damage is also evoked within these bundles in the
form of microcracks running through the bundles along the principal
direction and interface debonding. The evolution of bundle damage
associated to normal stresses perpendicular to the bundle direction is
shown in Fig. 22 for different loading levels in vertical direction (in
analogy to Figs. 13 and 6) . The higher the loading, the higher the
number of bundles that are damaged and the higher the damage level
in certain bundles. Generally, bundles perpendicular to the loading
direction encounter the highest damage, whereas bundles in loading
direction are hardly damaged for the case at hand, see Fig. 22(d).

Analogously, we encounter damage in bundles due to shear in
longitudinal bundle direction, which is shown in Fig. 23. For higher
loading levels, bundles that a preferably oriented in loading direction
are damaged according to the Puck-type shear criterion, whereas bun-
dles perpendicular to the loading direction are hardly damaged. Hence,
our applied Puck-type cases as discussed in Sections 3.4.3 and 3.4.5
are somewhat complementary in their effect on the overall damage
evolution, offering a full coverage of possible stiffness degradations in
the bundles.

The evolution and distribution of matrix damage is affected by
the orientation of the SMC composite microstructure, see Section 6.1.
The alignment of bundles is essential, as their reinforcing character
is more pronounced the more bundles point into loading direction.
Correspondingly, damage in bundles due to normal stresses perpendic-
ular to the principal directions is higher and further distributed, the
less fibers are oriented in loading direction, see Fig. 24. In the limit
of a pure unidirectional orientation, bundles do not undergo damage
perpendicular to their principal direction, see Fig. 24(c).

Damage due to shear stresses in principal bundle direction is also
affected by the orientation of the SMC composite microstructure, see
Fig. 25. In concurrence with the other damage cases (see Figs. 14 and
24), the damage level of bundles for the considered case is higher, if
more bundles are aligned in loading direction, see Fig. 25(b). For an
orientation state in vicinity to a unidirectional alignment in loading
direction, damage due to shear stresses localizes mainly at bundle tips
at the rims of matrix rich areas, see Fig. 25(c). In these regions, bundles
are subjected to local stress excesses due to the prior matrix damage,
see Fig. 14(c), and hence damage evolution is accelerated.
15
References

[1] Dumont PJ, Orgéas L, Favier D, Pizette P, Venet C. Compression mould-
ing of SMC: in situ experiments, modelling and simulation. Composites A
2007;38:353–68.

[2] Kim MS, Lee WI, Han WS, Vautrin A. Optimization of location and di-
mension of SMC pre-charge in compression molding process. Comput Struct
2011;89(15–16):353–68.

[3] Bücheler D. Locally continuous-fiber reinforced sheet molding compound (Doc-
toral thesis), Karlsruhe Institute of Technology (KIT); 2018.

[4] Wilkinson AN, Ryan AJ. Polymer processing and structure development.
Dordrecht: Springer; 1998.

[5] Huang B, Zhao L. Bridging and roughening of short fibers in SMC and
parametric optimum. Composites B 2012;43(8):3146–52.

[6] Asadi A, Miller M, Singh AV, Moon RJ, Kalaitzidou K. Lightweight sheet mold-
ing compound (SMC) composites containing cellulose nanocrystals. Compos
Struct 2017;160:211–9.

[7] Le T-H, Dumont P, Orgéas L, Favier D, Salvo L, Boller E. X-ray phase
contrast microtomography for the analysis of the fibrous microstructure of SMC
composites. Composites A 2008;39(1):91–103.

[8] Meyer N, Schöttl L, Bretz L, Hrymak A, Kärger L. Direct Bundle Simulation
approach for the compression molding process of Sheet Molding Compound.
Composites A 2020;132:105809.

[9] Schöttl L, Weidenmann KA, Sabiston T, Inal K, Elsner P. Fiber bundle tracking
method to analyze sheet molding compound microstructure based on computed
tomography images. NDT & E Int 2021;117:102370.

[10] Brinson HF, Brinson LC. An introduction to polymer engineering science &
viscoelasticity. New York, NY: Springer; 2008.

[11] Anagnostou D, Chatzigeorgiou G, Chemisky Y, Meraghni F. Hierarchical mi-
cromechanical modeling of the viscoelastic behavior coupled to damage in SMC
and SMC-hybrid composites. Composites B 2018;151:8–24.

[12] Trauth A. Characterisation and modelling of continuous-discontinuous sheet
moulding compound composites for structural applications (Doctoral thesis),
Karlsruhe: Karlsruhe Institute of Technology; 2020.

[13] Bücheler D, Trauth A, Damm A, Böhlke T, Henning F, Kärger L,
Seelig T, Weidenmann KA. Processing of continuous-discontinuous-fiber-
reinforced thermosets. In: SAMPE Europe conference Stuttgart. 2017, p.
1–8.

[14] Böhlke T, Henning F, Hrymak A, Kärger L, Weidenmann KA, Wood JT, edi-
tors. Continuous–Discontinuous fiber-reinforced polymers. Munich: Carl Hanser
Verlag GmbH & Co. KG; 2019.

[15] Görthofer J, Meyer N, Pallicity TD, Schöttl L, Trauth A, Schemmann M,
Hohberg M, Pinter P, Elsner P, Henning F, Hrymak A, Seelig T, Weiden-
mann K, Kärger L, Böhlke T. Virtual process chain of sheet molding compound:
Development, validation and perspectives. Composites B 2019;169:133–47.

[16] Motaghi A, Hrymak AN. Microstructure characterization in direct sheet molding
compound. Polym Compos 2017.

[17] Schöttl L, Dörr D, Pinter P, Weidenmann KA, Elsner P, Kärger L. A novel
approach for segmenting and mapping of local fiber orientation of continuous
fiber-reinforced composite laminates based on volumetric images. NDT & E Int
2020;110:102194.

[18] Trauth A, Pinter P, Weidenmann K. Investigation of quasi-static and dynamic
material properties of a structural sheet molding compound combined with
acoustic emission damage analysis. J Compos Sci 2017;1(2):18.

[19] Chen Z, Huang T, Shao Y, Li Y, Xu H, Avery K, Zeng D, Chen W, Su X.
Multiscale finite element modeling of sheet molding compound (SMC) compos-
ite structure based on stochastic mesostructure reconstruction. Compos Struct
2018;188:25–38.

[20] Fitoussi J, Meraghni F, Jendli Z, Hug G, Baptiste D. Experimental methodology
for high strain-rates tensile behaviour analysis of polymer matrix composites.
Compos Sci Technol 2005;65(14):2174–88.

[21] Jendli Z, Fitoussi J, Meraghni F, Baptiste D. Anisotropic strain rate effects on
the fibre-matrix interface decohesion in sheet moulding compound composites.
Compos Sci Technol 2005;65(3–4):387–93.

[22] Kehrer L, Wicht D, Wood JT, Böhlke T. Dynamic mechanical analysis of pure
and fiber-reinforced thermoset- and thermoplastic-based polymers and free
volume-based viscoelastic modeling. GAMM-Mitt 2018;41(1):1–16.

[23] Arif MF, Meraghni F, Chemisky Y, Despringre N, Robert G. In situ damage
mechanisms investigation of PA66/GF30 composite: Effect of relative humidity.
Composites B 2014;58:487–95.

[24] Rohrmüller B, Gumbsch P, Hohe J. Microstructural characterization of glass
fiber reinforced SMC by nanoindentation and single-fiber push-out test. In:
Proceedings of the 4th international conference hybrid 2020 materials and
structures, Germany. 2020, p. 1–6.

[25] Schöttl L, Kolb P, Liebig WV, Weidenmann KA, Inal K, Elsner P. Crack
characterization of discontinuous fiber-reinforced composites by using micro-
computed tomography: Cyclic in-situ testing, crack segmentation and crack
volume fraction. Compos Commun 2020;21:100384.

http://refhub.elsevier.com/S0263-8223(22)00128-3/sb1
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb1
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb1
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb1
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb1
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb2
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb2
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb2
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb2
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb2
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb3
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb3
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb3
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb4
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb4
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb4
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb5
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb5
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb5
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb6
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb6
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb6
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb6
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb6
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb7
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb7
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb7
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb7
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb7
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb8
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb8
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb8
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb8
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb8
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb9
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb9
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb9
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb9
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb9
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb10
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb10
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb10
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb11
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb11
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb11
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb11
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb11
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb12
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb12
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb12
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb12
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb12
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb13
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb14
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb14
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb14
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb14
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb14
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb15
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb16
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb16
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb16
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb17
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb18
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb18
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb18
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb18
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb18
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb19
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb20
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb20
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb20
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb20
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb20
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb21
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb21
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb21
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb21
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb21
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb22
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb22
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb22
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb22
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb22
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb23
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb23
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb23
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb23
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb23
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb25


Composite Structures 288 (2022) 115322J. Görthofer et al.
[26] Schöttl L, Liebig WV, Weidenmann KA, Inal K, Elsner P. The use of the
empirical crack orientation tensor to characterize the damage anisotropy.
Compos Commun 2021;25:100613.

[27] Hohberg M, Kärger L, Bücheler D, Henning F. Rheological in-mold measure-
ments and characterizations of sheet-molding-compound (SMC) formulations
with different constitution properties by using a compressible shell model. Int
Polym Process 2017;32(5):659–68.

[28] Ben Cheikh Larbi A, Sai K, Sidhom H, Baptiste D. Constitutive model of
micromechanical damage to predict reduction in stiffness of a fatigued SMC
composite. J Mater Eng Perform 2006;15(5):575–80.

[29] Bartkowiak M, Weit H, Montesano J, Weidenmann KA. Characterization of
discontinuous fiber reinforced sheet molding compounds under tension-tension
fatigue load. In: Proceedings of the 34th technical conference on composite
materials, Vol. 28428. Atlanta, USA: American Society for Composite; 2019, p.
3–10.

[30] Bartkowiak M, Liebig W, Weidenmann KA. Fatigue damage behavior of
continuous-discontinuous fiber reinforced sheet molding compounds. In: Pro-
ceedings of the 4th international conference hybrid 2020 materials and
structures, Germany. 2020, p. 1–7.

[31] Ogihara S, Koyanagi J. Investigation of combined stress state failure criterion
for glass fiber/epoxy interface by the cruciform specimen method. Compos Sci
Technol 2010;70(1):143–50.

[32] Schemmann M, Lang J, Helfrich A, Seelig T, Böhlke T. Cruciform specimen
design for biaxial tensile testing of SMC. J Compos Sci 2018;2(1):12.

[33] Schemmann M, Gajek S, Böhlke T. Biaxial tensile tests and microstructure-
based inverse parameter identification of inhomogeneous SMC composites. In:
Altenbach H, Jablonski F, Müller WH, Naumenko K, Schneider P, editors.
Advances in mechanics of materials and structural analysis: In honor of
Reinhold Kienzler, Vol. 80. Springer International Publishing; 2018, p. 329–42.

[34] Schäferling M, Berger D, Häfner B, Lanza G. Data fusion for quality assurance
of fibre-reinforced plastics. In: Proceedings of the international symposium on
structural health monitoring and nondestructive testing. 2018, p. 1–9.

[35] Bretz L, Wilke M, Häfner B, Lanza G. Comparison of anomaly detection
capabilities of pulse phase thermography in transmission and reflection setup on
Sheet Molding Compound. In: Proceedings of the 4th international conference
hybrid 2020 materials and structures, Germany. 2020, p. 108–15.

[36] Bretz L, Häfner B, Lanza G. Non-destructive measurement of fiber mass content
of glass fiber sheet molding compound using Terahertz radiation. Measurement
2021;168:108386.

[37] Fitoussi J, Bourgeois N, Guo G, Baptiste D. Prediction of the anisotropic
damaged behavior of composite materials: introduction of multilocal failure
criteria in a micro-macro relationship. Comput Mater Sci 1996;5:87–100.

[38] Fitoussi J, Guo G, Baptiste D. A statistical micromechanical model of anisotropic
damage for S.M.C. composites. Compos Sci Technol 1998;58(5):759–63.

[39] Fitoussi J, Bocquet M, Meraghni F. Effect of the matrix behavior on the damage
of ethylene-propylene glass fiber reinforced composite subjected to high strain
rate tension. Composites B 2013;45(1):1181–91.

[40] Meraghni F, Benzeggagh ML. Micromechanical modelling of matrix degradation
in randomly oriented discontinuous-fibre composites. Compos Sci Technol
1995;55(2):171–86.

[41] Meraghni F, Blakeman CJ, Benzeggagh ML. Effect of interfacial decohesion on
stiffness reduction in a random discontinuous-fibre composite containing matrix
microcracks. Compos Sci Technol 1996;56(5):541–55.

[42] Meraghni F, Desrumaux F, Benzeggagh ML. Implementation of a constitutive
micromechanical model for damage analysis in glass mat reinforced composite
structures. Compos Sci Technol 2002;62(16):2087–97.

[43] Baptiste D. Non linear behavior micromechanical multi-scale modelling of
discontinuous reinforced composites. Mater Sci Forum 2003;426–432:3939–44.

[44] Drugan WJ, Willis JR. A micromechanics-based nonlocal constitutive equation
and estimates of representative volume element size for elastic composites. J
Mech Phys Solids 1996;44(4):497–524.

[45] Guo G, Fitoussi J, Baptiste D. Modelling of damage behavior of a short-
fiber reinforced composite structure by the finite element analysis using a
micro-macro law. Int J Damage Mech 1997;6:278–99.

[46] Desrumaux F, Meraghni F, Benzeggagh ML. Micromechanical modelling cou-
pled to a reliability approach for damage evolution prediction in composite
materials. Appl Compos Mater 2000;7(4):231–50.

[47] Zheng QS, Du DX. An explicit and universally applicable estimate for the
effective properties of multiphase composites which accounts for inclusion
distribution. J Mech Phys Solids 2001;49:2765–88.

[48] Lee HK, Simunovic S. A damage constitutive model of progressive debonding in
aligned discontinuous fiber composites. Int J Solids Struct 2001;38(5):875–95.

[49] Jendli Z, Meraghni F, Fitoussi J, Baptiste D. Multi-scales modelling of dy-
namic behaviour for discontinuous fibre SMC composites. Compos Sci Technol
2009;69(1):97–103.

[50] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic
behaviour of polycrystals. J Mech Phys Solids 1962;10(4):343–52.

[51] Mori T, Tanaka K. Average stress in matrix and average elastic energy of
materials with misfitting inclusions. Acta Metall 1973;21(5):571–4.
16
[52] Willis JR. Variational and related methods for the overall properties of
composites. Adv Appl Mech 1981;21:1–78.

[53] Desrumaux F, Meraghni F, Benzeggagh ML. Generalised Mori-Tanaka scheme
to model anisotropic damage using numerical eshelby tensor. J Compos Mater
2001;35:603–24.

[54] Duschlbauer D, Pettermann H, Böhm H. Mori–Tanaka based evaluation of
inclusion stresses in composites with nonaligned reinforcements. Scr Mater
2003;48(3):223–8.

[55] Schemmann M, Görthofer J, Seelig T, Hrymak A, Böhlke T. Anisotropic
meanfield modeling of debonding and matrix damage in SMC composites.
Compos Sci Technol 2018;161:143–58.

[56] Schneider M. A review of nonlinear FFT-based computational homogenization
methods. Acta Mech 2021;1–50, online.

[57] Matouš K, Geers MGD, Kouznetsova VG, Gillman A. A review of predictive non-
linear theories for multiscale modeling of heterogeneous materials. J Comput
Phys 2017;330:192–220.

[58] Görthofer J, Schneider M, Ospald F, Hrymak A, Böhlke T. Computational
homogenization of sheet molding compound composites based on high fidelity
representative volume elements. Comput Mater Sci 2020;174:109456.

[59] Murakami S, Ohno N. A continuum theory of creep and creep damage. In:
Creep in structures. Berlin, Heidelberg: Springer; 1981, p. 422–44.

[60] Chaboche J-L. Continuous damage mechanics - a tool to describe phenomena
before crack initiation. Nucl Eng Des 1981;64(2):233–47.

[61] Rahimi AS, Ayatollahi MR, Torabi AR. Elastic–plastic damage prediction in
notched epoxy resin specimens under mixed mode I/II loading using two virtual
linear elastic failure criteria. Int J Damage Mech 2020;29(7):1100–16.

[62] Sharma A, Daggumati S. Computational micromechanical modeling of trans-
verse tensile damage behavior in unidirectional glass fiber-reinforced plastic
composite plies: Ductile versus brittle fracture mechanics approach. Int J
Damage Mech 2020;29(6):943–64.

[63] Abu-Farsakh GA, Asfa AM. A unified damage model for fibrous composite
laminae subject to in-plane stress-state and having multi material-nonlinearity.
Int J Damage Mech 2020;29(9):1329–44.

[64] Wei Q, Gu B, Sun B. Ballistic penetration damages and energy absorptions of
stacked cross-plied composite fabrics and laminated panels. Int J Damage Mech
2020;29(9):1465–84.

[65] Onodera S, Okabe T. Analytical model for determining effective stiffness and
mechanical behavior of polymer matrix composite laminates using continuum
damage mechanics. Int J Damage Mech 2020;29(10):1512–42.

[66] Krajcinovic D. Damage mechanics. Mech Mater 1989;8:3647–79.
[67] Dougill JW. On stable progressively fracturing solids. Z Angew Math Phys

1976;27:423–37.
[68] Ortiz M. A constitutive theory for the inelastic behavior of concrete. Mech Mater

1985;4(1):67–93.
[69] Görthofer J, Schneider M, Hrymak A, Böhlke T. A convex anisotropic damage

model based on the compliance tensor. Int J Damage Mech 2022;31(1):43–86.
[70] Halphen N, Nguyen Q. Sur les matériaux standards generalisés. J Méc

1975;14:508–20.
[71] Hansen NR, Schreyer HL. A thermodynamically consistent framework for

theories of elastoplasticity coupled with damage. Int J Solids Struct
1994;31(3):359–89.

[72] Wulfinghoff S, Fassin M, Reese S. A damage growth criterion for
anisotropic damage models motivated from micromechanics. Int J Solids Struct
2017;121:21–32.

[73] Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically
based phenomenological models. Compos Sci Technol 2002;62:1633–62.

[74] Knops M. Analysis of failure in fiber polymer laminates: The theory of Alfred
Puck. Berlin, Heidelberg and New York: Springer; 2008.

[75] Revfi S, Mikus M, Behdinan K, Albers A. On the bead design in LFT structures:
the influence of manufacturing-induced residual stresses. Des Sci 2021;7.

[76] Orgéas L, Dumont PJ. Sheet molding compounds. Wiley Encycl Compos
2011;1–36.

[77] Trauth A, Kehrer L, Pinter P, Weidenmann K, Böhlke T. On the effective elastic
properties based on mean-field homogenization of sheet molding compound
composites. Composites C 2021;4.

[78] Pinter P, Dietrich S, Bertram B, Kehrer L, Elsner P, Weidenmann K. Comparison
and error estimation of 3D fibre orientation analysis of computed tomography
image data for fibre reinforced composites. NDT & E Int 2018;95:26–35.

[79] Li Y, Chen Z, Su L, Chen W, Jin X, Xu H. Stochastic reconstruction and
microstructure modeling of SMC chopped fiber composites. Compos Struct
2018;200:153–64.

[80] Moulinec H, Suquet P. A numerical method for computing the overall response
of nonlinear composites with complex microstructure. Comput Methods Appl
Mech Engrg 1998;157:69–94.

[81] Determination of tensile properties of plastics - Part 4: Test conditions for
isotropic and orthotropic fibre-reinforced plastic composites (ISO 527-4: 1997).
Berlin, Germany: Deutsches Institut für Normung e.V.; 1997.

[82] Kehrer L, Wood JT, Böhlke T. Mean-field homogenization of thermoelastic
material properties of a long fiber-reinforced thermoset and experimental
investigation. J Compos Mater 2020;54(25):3777–99.

http://refhub.elsevier.com/S0263-8223(22)00128-3/sb26
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb26
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb26
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb26
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb26
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb27
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb28
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb28
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb28
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb28
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb28
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb29
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb31
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb31
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb31
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb31
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb31
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb32
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb32
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb32
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb33
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb36
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb36
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb36
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb36
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb36
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb37
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb37
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb37
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb37
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb37
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb38
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb38
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb38
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb39
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb39
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb39
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb39
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb39
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb40
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb40
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb40
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb40
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb40
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb41
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb41
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb41
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb41
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb41
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb42
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb42
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb42
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb42
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb42
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb43
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb43
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb43
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb44
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb44
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb44
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb44
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb44
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb45
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb45
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb45
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb45
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb45
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb46
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb46
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb46
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb46
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb46
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb47
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb47
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb47
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb47
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb47
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb48
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb48
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb48
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb49
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb49
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb49
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb49
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb49
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb50
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb50
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb50
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb51
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb51
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb51
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb52
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb52
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb52
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb53
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb53
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb53
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb53
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb53
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb54
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb54
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb54
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb54
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb54
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb55
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb55
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb55
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb55
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb55
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb56
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb56
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb56
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb57
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb57
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb57
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb57
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb57
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb58
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb58
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb58
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb58
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb58
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb59
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb59
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb59
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb60
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb60
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb60
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb61
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb61
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb61
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb61
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb61
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb62
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb63
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb63
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb63
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb63
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb63
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb64
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb64
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb64
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb64
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb64
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb65
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb65
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb65
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb65
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb65
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb66
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb67
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb67
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb67
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb68
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb68
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb68
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb69
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb69
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb69
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb70
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb70
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb70
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb71
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb71
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb71
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb71
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb71
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb72
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb72
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb72
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb72
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb72
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb73
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb73
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb73
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb74
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb74
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb74
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb75
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb75
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb75
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb76
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb76
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb76
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb77
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb77
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb77
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb77
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb77
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb78
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb78
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb78
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb78
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb78
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb79
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb79
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb79
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb79
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb79
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb80
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb80
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb80
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb80
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb80
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb81
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb81
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb81
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb81
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb81
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb82
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb82
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb82
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb82
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb82


Composite Structures 288 (2022) 115322J. Görthofer et al.
[83] Trauth A, Pinter P, Weidenmann KA. Acoustic emission analysis during bending
tests of continuous and discontinuous fiber reinforced polymers to be used in
hybrid sheet molding compounds. Key Eng Mater 2017;742:644–51.

[84] Borwein J, Lewis A. Convex analysis and nonlinear optimization: Theory and
examples. New York: Springer; 2006.

[85] Karush W. Minima of functions of several variables with inequalities as side
constraints (M. Sc. Dissertation), Dept. of Mathematics, Univ. of Chicago; 1939.

[86] Kuhn HW, Tucker AW. Nonlinear programming. In: Proceedings of the second
Berkeley symposium on mathematical statistics and probability. Berkeley:
University of California Press; 1951.

[87] Govindjee S, Kay GJ, Simo JC. Anisotropic modelling and numerical sim-
ulation of brittle damage in concrete. Internat J Numer Methods Engrg
1995;38:3611–33.

[88] Krawietz A. Passivity, convexity and normality of elastic-plastic materials.
Ing-Arch 1981;51:257–74.

[89] Krawietz A. Efficient integration in the plasticity of crystals with pencil glide
and deck glide. Tech Mech 2001;21(4):243–50.

[90] Mockus J. Bayesian approach to global optimization. Dordrecht: Kluwer; 1989.
[91] Mockus J. Application of Bayesian approach to numerical methods of global

and stochastic optimization. J Global Optim 1994;4(4):347–65.
[92] Noii N, Khodadadian A, Ulloa J, Aldakheel F, Wick T, Francois S, Wriggers P.

Bayesian inversion for unified ductile phase-field fracture. 2021, p. 1–61,
arXiv:2104.11114.

[93] Bolstad WM, Curran JM. Introduction to Bayesian statistics. John Wiley & Sons;
2016.

[94] Williams CKI, Rasmussen CE. Gaussian processes for machine learning, Vol. 2.
The MIT Press; 2006.

[95] Frazier PI. A tutorial on Bayesian optimization, vol. 5, arXiv:1807.02811, 2018,
p. 1–22.

[96] Hager W. Updating the inverse of a matrix. SIAM Rev 1989;31(2):221–39.
[97] Matérn B. Spatial variation, Vol. 36. New York: Springer; 2013.
[98] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking

the extremum. In: Dixon LCW, Szegö GP, editors. Towards global optimisation
2. North Holland Publishing; 1978, p. 117–29.
17
[99] Brochu E, Cora VM, De Freitas N. A tutorial on Bayesian optimization of expen-
sive cost functions, with application to active user modeling and hierarchical
reinforcement learning. 2010, arXiv:1012.2599.

[100] McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 1979;21(2):239–45.

[101] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The
best of both worlds. Comput Sci Eng 2011;13(2):31–9.

[102] Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE
2005;93(2):216–31.

[103] Schneider M. On the Barzilai-Borwein basic scheme in FFT-based computational
homogenization. Internat J Numer Methods Engrg 2018;118(8):482–94.

[104] Gélébart L, Mondon-Cancel R. Non-linear extension of FFT-based methods
accelerated by conjugate gradients to evaluate the mechanical behavior of
composite materials. Comput Mater Sci 2013;77:430–9.

[105] Wicht D, Schneider M, Böhlke T. On Quasi-Newton methods in fast
Fourier transform-based micromechanics. Internat J Numer Methods Engrg
2020;121(8):1665–94.

[106] Paleyes A, Vehtari A, Saul A, Damianou A, Winkelmolen F, Shen H, Hensman J,
Gonzalez J, Massiah J, Fass J, Lawrence N, Palm RB, Jenatton R, Kamronn S,
Dai Z. GPyOpt: A Bayesian optimization framework in Python. 2016, http:
//github.com/SheffieldML/GPyOpt.

[107] Thompson WR. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 1933;25(3/4):285–94.

[108] Advani SG, Tucker CL. The use of tensors to describe and predict fiber
orientation in short fiber composites. J Rheol 1987;31(8):751–84.

[109] Köbler J, Schneider M, Ospald F, Andrä H, Müller R. Fiber orientation
interpolation for the multiscale analysis of short fiber reinforced composite
parts. Comput Mech 2018;61(6):729–50.

[110] Gajek S, Schneider M, Böhlke T. An FE-DMN method for the multiscale analysis
of fiber reinforced plastic components. arXiv:2103.08253, vol. 1, 2021, p. 1–33.

[111] Simo J, Ju J. Strain- and stress-based continuum damage models - I.
Formulation. Int J Solids Struct 1987;23(7):821–40.

[112] Ju JW. On energy-based coupled elastoplastic damage theories: Constitutive
modeling and computational aspects. Int J Solids Struct 1989;25(7):803–33.

http://refhub.elsevier.com/S0263-8223(22)00128-3/sb83
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb83
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb83
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb83
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb83
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb84
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb84
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb84
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb85
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb85
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb85
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb86
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb86
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb86
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb86
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb86
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb87
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb87
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb87
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb87
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb87
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb88
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb88
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb88
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb89
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb89
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb89
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb90
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb91
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb91
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb91
http://arxiv.org/abs/2104.11114
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb93
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb93
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb93
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb94
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb94
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb94
http://arxiv.org/abs/1807.02811
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb96
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb97
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb98
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb98
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb98
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb98
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb98
http://arxiv.org/abs/1012.2599
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb100
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb100
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb100
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb100
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb100
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb101
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb101
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb101
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb102
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb102
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb102
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb103
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb103
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb103
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb104
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb104
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb104
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb104
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb104
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb105
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb105
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb105
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb105
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb105
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb107
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb107
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb107
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb108
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb108
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb108
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb109
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb109
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb109
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb109
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb109
http://arxiv.org/abs/2103.08253
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb111
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb111
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb111
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb112
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb112
http://refhub.elsevier.com/S0263-8223(22)00128-3/sb112

	A computational multiscale model for anisotropic failure of sheet molding compound composites
	Introduction
	State of the art
	Contributions and organization of this article
	Notation

	Sheet molding compound (SMC) composites
	Microstructure of SMC composites
	Experimental investigations
	Neat UPPH
	SMC composite
	In-situ CT scan analysis


	A modular framework to describe anisotropic damage based on extraction tensors
	A compliance-based anisotropic damage model
	Influence of the model parameters
	Extraction tensors accounting for dilatation and distortion
	Spherical stress state
	Deviatoric stress state

	Puck-type extraction tensors accounting for maximum stresses
	Basic idea
	Normal loading in fiber direction
	Normal loading perpendicular to fiber direction
	Shear loading perpendicular to fiber direction
	Shear loading in fiber direction


	Bayesian optimization process
	Identification of damage parameters in SMC composites
	Computational setup
	Definition of the parameter set to be identified
	Study on SMC composite microstructures

	Identification of macroscopic failure surfaces for SMC composites
	Full-field damage evolution
	Structural analysis perspective
	Design perspective

	Summary and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Full-field damage evolution for different SMC composite microstructures
	References


