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One key event in insect evolution was the development of mandibles with
two joints, which allowed powerful biting but restricted their movement
to a single degree of freedom. These mandibles define the Dicondylia,
which constitute over 99% of all extant insect species. It was common
doctrine that the dicondylic articulation of chewing mandibles remained
unaltered for more than 400 million years. We report highly modified mand-
ibles overcoming the restrictions of a single degree of freedom and
hypothesize their major role in insect diversification. These mandibles are
defining features of parasitoid chalcid wasps, one of the most species-rich
lineages of insects. The shift from powerful chewing to precise cutting
likely facilitated adaptations to parasitize hosts hidden in hard substrates,
which pose challenges to the emerging wasps. We reveal a crucial step in
insect evolution and highlight the importance of comprehensive studies
even of putatively well-known systems.
1. Introduction
In terms of species numbers and morphological and ecological diversity, insects
are by far the most diverse lineage of terrestrial organisms [1–3]. During more
than 400 million years, insect mouthparts have evolved considerable modifi-
cations allowing the ecological diversification of biting/chewing, sucking or
filtering lineages and contributing to the tremendous species richness of the
group [4,5]. The mandibles of the earliest hexapod lineages (Collembola, Diplura
and Protura) are characterized by a single posterior articulation allowing flexible
movement along a ball-and-socket joint [6]. A major evolutionary step was the
development of dicondylic mandibles with an additional anterior articulation
to the head capsule [7], leading to the Dicondylia, which traditionally comprise
all insects except the bristletails (Archaeognatha) [8]. Within Dicondylia, second-
ary monocondyly is known from insects, whose mouthparts are transformed
into stylets (e.g. Hemiptera) [9], but all groups with chewing mouthparts are
considered dicondylic. Dicondylic mandibles are generally linked to an
increased biting force [10–12], which allowed insects to exploit new food
sources [13]. A major consequence of this transformation was the loss of rotating
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Figure 1. Head morphology and mandibular movement of Colotrechninae sp. (a) Head, frontal aspect. (b) Head, lateral aspect. (c,d) Original arrangement of
the four mandibular muscles, M1a, M1b, M2a and M2b. (e,f ) Putative biting movement. (g,h) Putative grasping movement. ac, anterior condyle; ai, antennal
insertion; as, antennal scrobe; it, inner tooth; lp, lateral process; me, mandibular extension. Scale bar, 0.5 mm. (Online version in colour.)
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motion of the mandibles and their confinement to move-
ment in a single plane [12,14]. As a fixed axis of rotation
requires fewer muscles to control mandibular movements,
the complexity of mandibular musculature was gradually
reduced from early hexapods to winged insects (Neoptera)
[10]. In most derived Neoptera, mandibular movement is
realized solely by two large antagonistic muscles, adductor
and abductor. Both may be composed of several bundles of
fibres [15,16] but insert at single attachment sites, often via
sclerotized tendons.

The evolution of parasitoidism in Hymenoptera has led to
one of the largest species radiations within insects [17–19].
Several morphological adaptations have been identified that
triggered diversification processes during parasitoid evolution
(e.g. wasp waist, venomous stinger) [20]. The role of mouth-
parts has mainly been studied in the context of feeding, but
its role in emergence from host, mating behaviour, host hand-
ling and nest construction has also been discussed [21].
However, there were no hints that mouthpart evolution might
have been a strong driver of parasitoid species radiations.

In an undescribed species of parasitoid wasps, we
discovered peculiar antler-like extensions on top of otherwise
ordinary-looking chewing mandibles (figure 1). These exten-
sions correspond to forward-projecting processes on the face
and potentially serve as a grasping tool. Both grasping and
chewing obviously cannot be realized by dicondylic mandib-
ular movement. We analysed the functional morphology of
the mandibles of this extraordinary specimen by synchrotron
X-ray microtomography and found evidence for flexible man-
dibular movement, contradicting the current hypothesis of
largely conserved mandibular articulations and musculature
in chewing insects. The undescribed species belongs to the
superfamily Chalcidoidea, which comprises one of the largest
groups of insects with an estimated 500 000 predominantly
parasitoid species [22]. Until now there was no convincing
hypothesis which morphological features might have
facilitated their unparalleled diversification [23,24].

To test whether flexible mandibular movement represents
a singular evolutionary event or might play a larger role in
parasitoid evolution, we analysed the occurrence of this
type of mandible throughout Chalcidoidea and all major
lineages of Hymenoptera and correlated the morphological
characters with the most recent molecular phylogenies of
Hymenoptera [25] and Chalcidoidea [24].
2. Results
(a) Mandibular morphology of Colotrechninae sp.
The face of Colotrechninae sp. is excavated and bears a pair of
lateral facial processes next to the inner eye margins, which
are each flanked by a single elongate seta. These processes are
pointed ventrally and are slightly curved inwards. They are
situated slightly below the level of the antennal insertions.
The antennae are inserted high on the facewithin deep antennal
scrobes. The mandibles possess five teeth each. Their outer
surfaces feature conspicuous, distally pointed extensions,
reaching distally to the lateral facial processes. Further, each
mandibular extension carries a distinct inner tooth (figure 1a,b).

The mandible is loosely articulated to the head capsule by
a single anterior condyle. A posterior condyle is completely
absent. All mandibular muscles insert directly to the mand-
ible and not via sclerotized tendons (figure 1c,d). Two
separate pairs of muscle bundles are developed and connect
the mandible to the cranium. One pair (M1) has its anterior
bundle (M1a) originating from the frons and its posterior
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Figure 2. Comparison of mandibles and attached musculature in two wasps and a histerid beetle. (a) Chromeurytoma (Chalcidoidea). (b) Zeuxevania (Evanioidea).
(c) Margarinotus (Coleoptera: Hydrophiloidea). (d–f ) Mandibular articulations in the respective species, lateral view, cranium cut. (d ) Monocondylic mandible with a
single anterior articulation. (e,f ) Dicondylic mandibles with anterior and posterior articulations that restrict mandibular movement to a fixed axis of rotation
(indicated). ac, anterior condyle; pc, posterior condyle. Scale bars, 0.5 mm. (Online version in colour.)
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bundle (M1b) from the gena. Both bundles insert at the inner
angle of the mandibular base. The second pair (M2) has its
anterior (M2a) and posterior bundles (M2b) originating at
the ventral part of the gena and inserting to flanges of the
outer margin of the mandibular base (figure 1c,d).

(b) Mandibular character distribution throughout
Hymenoptera

Despite huge variation in overall mandibular shape, all
other Chalcidoidea examined (figure 2a,d, 3 and 4) share
the monocondylous condition found in Colotrechninae sp.
Only in Austrotoxeuma, a posterior condyle is slightly indi-
cated but not articulated to the head capsule. The
mandibular musculature of all other Chalcidoidea is also
characterized by two muscles (M1 and M2) with two bundles
each, which individually insert on the mandible. As in Colo-
trechninae sp., M1a originates always from the frons and M1b
from the gena. In most Chalcidoidea, M2a and M2b originate
from the ventral gena. A notable exception is the flattened
head of Ceratosolen (Agaonidae), where M2a originates from
the frons.

Regarding mandibular morphology, we also found a
reduction of the posterior condyle in other Proctotrupomor-
pha, while it was distinct in all other groups (figures 2e
and 5). In close relatives of Chalcidoidea (Belytus (Diaprioi-
dea) and Exallonyx (Proctotrupoidea)), the posterior condyle
is completely reduced (no posterior articulation with the
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Figure 3. Characters of mandibles and mandibular musculature found in the examined taxa mapped on the molecular phylogeny of Chalcidoidea from
Peters et al. [24]. The placement of Rotoita follows Heraty et al. [23]. Dotted lines indicate taxa of uncertain phylogenetic position. f- , originates from the
frons; g-, originates from the gena; M1a, M1b, M2a, M2b, mandibular muscle bundles; (+), posterior condyle indicated; –, posterior condyle reduced.
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head capsule), while it is indicated but without form closure
around the condyle in the more distantly related lineages
(Telenomus (Platygastroidea) and Andricus (Cynipoidea)).

The mandibles in all hymenopteran lineages except
Chalcidoidea have single insertion points for M1 and M2
(figures 2b and 6) and muscle bundles usually insert via scler-
otized tendons (abductor tendon not recognizable only in
Belytus (Diaprioidea) and Exallonyx (Proctotrupoidea)). With
the exception of Netelia (Ichneumonoidea), the tendons of
M1 are split distally and attach to separate muscle bundles.
Both muscles (M1 and M2) originate from the gena. This lar-
gely corresponds to the condition found in other mandibulate
insects, such as beetles (figure 2c,e).
3. Discussion
(a) Functional interpretation
In Chalcidoidea, the mandible and its articulation as well as the
associated musculature are highly modified compared to other
pterygote insects, with fundamental functional consequences.
The mandible is articulated to the head capsule by just a
single anterior condyle, instead of two condyles as generally
postulated for pterygote insects with biting mouthparts. This
abolishes a functional restriction of mandibular movement to
a single plane. Instead, in combination with highly modified
mandibular musculature, a flexible movement of mandibles
can be achieved, including adduction, abduction, protraction,
retraction, rotation and any combination of these movements.
In Chalcidoidea, M1 is therefore not restricted in its function
as an adductor and M2 not as abductor as in other pterygote
insects. By contrast to all other groups examined, M1a
originates from the frons (figures 1, 2a and 4), instead of the
gena (figures 2b,c and 6). This allows the mandible to be
pulled from an anterior direction, supporting mandibular
movement along multiple planes. Moreover, each bundle of
M1 and M2 inserts independently at the mandible, whereas
in other biting insects, these bundles insert via a single
sclerotized tendon [26] (figures 2b,c and 6). Based on the obser-
vations mentioned above we conclude that in the mandibular
musculature of Chalcidoidea eachmuscle bundle acts as a func-
tionally separate entity. Standard biting can still be achieved by
the antagonizing bundles ofM1 andM2. In this case, these pairs
of muscle bundles would act as adductor (M1) and abductor
(M2) (figure 1e,f). By contrast, flexible mandibular movement
along multiple degrees of freedom is realized by the interplay
of all four muscle bundles acting independently. For upward-
directed movement of mandibles, the two posterior bundles
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Figure 4. Mandibles and attached musculature throughout Chalcidoidea. (a) Ceratosolen (Agaonidae). (b) Austrotoxeuma (Perilampidae). (c) Eurytoma (Eurytomi-
dae). (d ) Lariophagus (Pteromalidae). (e) Eupelmus (Eupelmidae). ( f ) Idiomacromerus (Torymidae). (g) Tanaostigmodes (Tanaostigmatidae). (h) Australomymar
(Mymaridae). (i) Rotoita (Rotoitidae). Scale bars, 0.5 mm. (Online version in colour.)
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M1b and M2b would act as protractors and their anterior
counterparts M1a and M2a as retractors. In Colotrechninae
sp., this movement allows for a closure between the tips of
the mandibular antlers and the lateral facial processes
(figure 1g,h; see electronic supplementary material, movie S1).
(b) Evolutionary considerations
Chalcidoidea are unique among parasitoids in targeting
the largest diversity of host taxa and in exhibiting the
largest number of feeding types defined for parasitoid wasps
[27]. However, unlike other parasitoid wasp groups, such as
Ichneumonoidea, Chalcidoidea do not often develop on free-
living hosts, such as ectophytophagous larvae of butterflies,
moths or beetles. A large majority of chalcid species develop
on enclosed host stages with reduced mobility. Examples
include wood and stem borers, leaf-miners or inhabitants of
galls, seeds and fruits [27]. Interestingly, most of these host
associations are displayed by ectoparasitoid chalcids, which
enables the parasitoid larvae to develop within the protection
of a concealed environment without being exposed to the
host immune system, thereby combining advantages of endo-
and ectoparasitoid lifestyles. A consequence of this strategy is
the challenge of the freshly emerged wasp to escape from the
concealed environment, which is usually achieved by time-con-
suming biting through the surrounding substrate. In this
respect, the host biology of Lariophagus distinguendus (Förster,
1841) (Pteromalidae) is typical for the majority of chalcid
wasp species. Flexible mandibular movements during its host
eclosion are clearly visible (see electronic supplementary
material, movie S2): both mandibles can move independently
at the same time. This allows precise cutting, as the mandibles
can operate under different angles to the substrate and to each
other. This flexible movement might be especially helpful in
an environment with spatial constraints, where force has to be
applied with minimal movements of the head itself. These
constraints can either be caused by arthropod host eggs, as in
the earliest chalcid lineage Mymaridae, or by the substrate sur-
rounding parasitoids emerging from their enclosed hosts, as in
themajority of Chalcidoidea. Therefore, we assume that flexible
mandibular movement played an important role in the evol-
ution of diverse host associations.

The flexible articulation of the mandibles represents a
modification unique among insects. Close relatives of Chalci-
doidea (Diaprioidea and Proctotrupoidea) already show at
least a partial reduction of the posterior condyle (figure 5),
which may be interpreted as an intermediate state putatively
leading to increased flexibility. In a second step, the complete
reduction of the posterior condyle is accompanied by modi-
fied musculature with a functional separation, different
origins and insertions of abductors and adductors. This
resulted in full flexibility of mandibles in Chalcidoidea. Inter-
estingly, this case of secondary monocondyly is realized
differently than in the primarily monocondylic hexapods
(Collembola, Diplura and Protura). By contrast to the latter,
only the anterior (secondary) articulation remained to facili-
tate mandibular movements in Chalcidoidea.

The bizarre mandibles in Colotrechninae sp. represent a
unique evolutionary step that was facilitated by their flexible
articulation. The antler-like extensions of the mandibles can
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interlock with the lateral facial processes. In combination
with the excavated face, this strongly hints to a grasping
mechanism, while the standard biting function of the
mandibles can be maintained (figure 1e–h, electronic sup-
plementary material, movie S1). A potential grasping
mechanism could be used for clasping the hosts prior to ovi-
position. Currently, the host biology of Colotrechninae sp. is
obscure and the new species is only known from a single
female specimen. The face and mandibular morphology of
Colotrechninae sp. is unparalleled among extant insects but
shows a staggering similarity to the ‘hell ants’ (Formicidae:
Haidomyrmecinae) described from Cretaceous amber
deposits [28]. ‘Hell ants’ were able to move their mandibles
vertically to interlock with a cephalic projection, and a func-
tion as prey-capturing device has been verified based on the
discovery of a fossil specimen holding its roach-like prey [29].
The mandibular articulation of ‘hell ants’ is currently not
known but the observed similarities to Colotrechninae sp.
are undoubtedly the result of convergent evolution. Another
similarity between Colotrechninae sp. and ‘hell ants’ is the
presence of sensory organs close to the cephalic projection.
In Colotrechninae sp., a single seta is situated close to each
of the paired facial processes. In ‘hell ants’, the setae are
more prominent and situated in a row along the outer
margin of the cephalic projection. In both cases, these setae
might have triggered the (potential) grasping mechanism.

(c) Mouthpart evolution triggers diversification of
arthropods

The mandible of Chalcidoidea represents an evolutionary
novelty that likely played an important role during an
extremely large insect radiation process leading to the estimated
500 000 species of this superfamily. It has long been known that
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Figure 6. Mandibles and attached musculature throughout Hymenoptera. (a) Microcurgus (Pompiloidea). (b) Pristapenesia (Chrysidoidea). (c) Andricus (Cynipoidea).
(d ) Belytus (Diaprioidea). (e) Dendrocerus (Ceraphronoidea). ( f ) Netelia (Ichneumonoidea). Scale bars, 0.5 mm. (Online version in colour.)
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the evolution of mandibles in the Mandibulata (the most spe-
ciose group of Arthropoda comprising millipedes, crustaceans
and hexapods) and its modifications in the dicondylic insects
have triggered large species radiations [13]. Our results suggest
that the secondary reversal to monocondylic mandibles in
Chalcidoidea (this time affecting the posterior condyle instead
of the anterior typical for monocondylic hexapods) had further
dramatic evolutionary consequences for parasitoids and
helped them to exploit novel host systems, leading to complex
niche differentiations and adaptive radiations.
4. Methods
(a) Taxon sampling
Representative taxa of ethanol-preserved Hymenoptera and one
species of Coleoptera (electronic supplementary material,
table S1) have been selected and studied and voucher specimens
are deposited at the State Museum of Natural History, Stuttgart.
(b) Synchrotron X-ray microtomography
Tomographic scans of ethanol-preserved insect heads were per-
formed at the UFO-I station of the Imaging Cluster at the KIT
light source using a parallel polychromatic X-ray beam produced
by a 1.5T bending magnet. The beam was spectrally filtered by
0.5 mm aluminium and the resulting spectrum had a peak at
about 15 keV, with a full-width at a half maximum bandwidth
of about 10 keV. A fast indirect detector system was employed,
consisting of a 12 µm LSO:Tb scintillator [30] and a diffraction-
limited optical microscope (Optique Peter) [31] coupled with a
12bit pco.dimax high speed camera with 2016 × 2016 pixels.
Scans were done by taking 3000 projections at 70 fps and an opti-
cal magnification of 10×, resulting in an effective pixel size of
1.22 µm. We used the control system concert [32] for automated
data acquisition and online reconstruction of tomographic slices
for data quality assurance. Online and final data processing
included flat field correction and phase retrieval of the projec-
tions based on the transport of intensity equation [33]. X-ray
beam parameters for algorithms in the data processing pipeline
were computed by syris [34] and the execution of the pipelines,
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including tomographic reconstruction, was performed by the
UFO framework [35].

(c) Post-processing of tomographic data
Tomographic slices were converted to 8 bit and cropped to the
region of interest. In Amira 5.6. heads, mandibles and mandibu-
lar muscles were pre-segmented in the software’s segmentation
editor. The labels served as input for automated segmentation,
which was performed using the online platform Biomedisa
(https://biomedisa.org) [36]. Segmentation results were again
imported into Amira 5.6 and minor errors were corrected. The
final labels were converted into polygon meshes, exported as
OBJ files and reassembled and smoothed in CINEMA 4D R20.

(d) High-resolution videography
The specimens of L. distinguendus used in this study originate
from the laboratory colonies of the Biologische Beratung
GmbH (Berlin), where they were bred on larvae of Sitophilus
oryzae (Linnaeus, 1763) (Coleoptera: Curculionidae) that devel-
oped in grains of the common wheat Triticum aestivum L. The
infested wheat grains were observed and the hatching wasps
were recorded using a Nikon DSC D90 camera mounted on a
Leica MZ 12.5 stereomicroscope.
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