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Abstract 

This work presents novel simulation techniques for injection 

molding of fiber reinforced polymers (FRPs). Injection 

molding is one of the most applied processes for mass pro-

duction of discontinuous FRP parts. The process conditions 

such as filling rate, temperature, etc. have a significant influ-

ence on the final part properties. For an adequate prediction 

of these properties, a process simulation has to depict differ-

ent aspects, including all process steps, being mold filling, 

holding, in-mold solidification and out-of-mold cooling.  

During the mold filling phase, the flow modeling is of major 

significance. The complex matrix behavior must be modeled 

under consideration of shearing, temperature and, if present, 

chemical reactions. The important aspect of fiber orienta-

tion, depending on flow field, fiber length and volume frac-

tion, should be modeled for two reasons. The first one being, 

that the fiber orientation influences the anisotropic mechan-

ical properties of the material, and therefore, the final part’s 
behavior. Furthermore, the fibers also produce an aniso-

tropic flow behavior in the liquid material during mold fill-

ing. Similar to the orientation, the fiber length influences the 

flow and mechanical behavior of the material and is vice 

versa influenced by the mold filling process. The fiber length 

is crucial for the mechanical impact strength and resistance 

and the effective viscosity in fiber direction. On the opposite 

the flow field evokes forces on the fibers, leading them to 

break. In state-of-the-art simulation techniques, the influence 

of fiber orientation and fiber length on the flow field is not 

considered. Therefore, this work presents a novel simulation 

approach where viscosity, fiber orientation, fiber length and 

velocity field are coupled. 
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For consideration of the influence of fiber properties on vis-

cosity and hence velocity, the viscosity is modeled with a 

fourth order anisotropic viscosity tensor, depending on ma-

trix viscosity, fiber orientation, length and volume fraction. 

The viscosity tensor is calculated for a homogenized matrix 

fiber suspension, based on micro mechanical models. For 

modeling of fiber breakage, hydrodynamic drag and lift are 

computed. Furthermore, novel macroscopic approaches for 

fiber-fiber interaction forces (friction and lubrication) and 

contact points are presented and verified. 

Besides the mold filling, the following process steps holding, 

solidification and out-of-mold cooling also have impact on 

the final part’s properties and geometry. Due to the aniso-

tropic and viscoelastic mechanical behavior, warpage may 

occur, or residual stresses build up. State-of-the-art software 

simulates these phenomena anisotropic with linear elastic 

mechanical models. This work presents an approach to cal-

culate warpage and residual stresses for FRPs with thermo-

set matrix using thermo-chemo-elastic material models. 

Temperature and curing fields are mapped to be considered 

in the warpage simulation. Fiber and matrix properties as 

well as fiber orientations are used for homogenization to cre-

ate an orthotropic material model. The matrix behavior de-

pends on the degree of curing and temperature. Thermal and 

chemical shrinkage are also considered.  

The presented methods are implemented in the open-source, 

finite volume based software OpenFOAM for mold filling 

simulations and in the commercial finite element based soft-

ware Simulia Abaqus for warpage simulations. Numerical 

studies verify the implementations and methodology. The 

mold filling simulations are validated by comparison to ex-

perimental results, showing good agreement.  
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Kurzfassung 

Diese Arbeit präsentiert neuartige Simulationstechniken für 

Spritzgusssimulationen mit faserverstärkten Polymeren 

(FRPs).  

Spritzguss ist einer der meistverbreiteten Prozesse zur Mas-

senproduktion von diskontinuierlich faserverstärkten Poly-

merbauteilen. Die Prozessparameter (Füllrate, Temperatur, 

etc.) beeinflussen die Bauteileigenschaften signifikant. Für 

eine adäquate Vorhersage der finalen Bauteileigenschaften 

muss eine Simulation alle Prozessschritte (Formfüllung, 

Nachdruck, Abkühl-/Aushärtungsphase, Abkühlung außer-

halb des Werkzeuges) beinhalten.  

Während der Formfüllung hat die Strömungsmodellierung 

oberste Priorität. Das komplexe Matrixverhalten muss unter 

Beachtung von Scherrate, Temperatur und, falls vorhanden, 

chemischer Reaktion modelliert werden. Die sich ausprä-

gende Faserorientierung, die von Strömungsfeld, Faserlänge 

und Volumengehalt abhängt, sollte aus zwei Gründen be-

rechnet werden. Einer ist das Ausprägen von anisotropen 

Material- und somit auch Bauteileigenschaften aufgrund der 

Fasern. Zudem rufen die Fasern auch während der Formfül-

lung anisotropes Verhalten im flüssigen Material hervor. 

Auch die Faserlänge beeinflusst das mechanische und Fließ-

verhalten des Materials und wird im Umkehrschluss durch 

das Strömungsfeld während der Formfüllung beeinflusst. 

Die Faserlänge hat großen Einfluss auf die Schlagzähigkeit 

des Bauteils, aber auch auf die effektive Viskosität in Faser-

richtung im flüssigen Material. Umgekehrt erzeugt das Strö-

mungsfeld aber auch Kräfte auf die Fasern, die diese zum 

Brechen bringen können. Stand der Technik Simulationen 

beachten den Einfluss der Faserorientierung und -länge auf 
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das Strömungsfeld nicht. Diese Arbeit präsentiert einen neu-

artigen Ansatz, in welchem Viskosität, Faserorientierung, 

Faserlänge und Geschwindigkeit gekoppelt sind. 

Zur Berücksichtigung der Fasereigenschaften in der Viskosi-

tätsmodellierung und somit auch in der Geschwindigkeit 

wird die Viskosität als Tensor vierter Stufe, der als Funktion 

von Matrixviskosität, Faserorientierung, -länge und -volu-

mengehalt definiert ist, modelliert. Der Viskositätstensor 

wird für eine homogenisierte Matrix-Faser-Suspension auf 

Basis von mikromechanischen Modellen berechnet. Für die 

Modellierung des Faserbruchs werden die hydrodynami-

schen Schlepp- und Auftriebskräfte beachtet. Zusätzlich wer-

den makroskopische Ansätze zur Berechnung der Faser-Fa-

ser Interaktionskräfte (Schmier- und Reibkraft) gezeigt und 

verifiziert. 

Neben der Formfüllung beeinflussen die weiteren Prozess-

schritte Nachdruck, Abkühl-/Aushärtungsphase und Ab-

kühlung außerhalb des Werkzeuges ebenfalls die Bauteilei-

genschaften. Durch das anisotrop visko-elastische Verhalten 

können Verzug und Eigenspannungen aufkommen. Stand 

der Technik Software simuliert diese Phänomene in der Re-

gel anisotrop mit linear elastischen Modellen. Diese Arbeit 

präsentiert einen Ansatz zur Berechnung von Verzug und Ei-

genspannungen für FRPs mit duromerer Matrix und 

thermo-visko-elastischen Modellen. Relevante Prozessdaten 

wie Faserorientierung, Temperatur und Aushärtungsgrad 

werden übertragen um diese in der Verzugssimulation mit 

zu betrachten. Faser- und Matrixeigenschaften werden zur 

Homogenisierung verwendet und unter Beachtung der Fa-

serorientierung wird ein orthotropes Material definiert. Das 

Matrixverhalten wird als Funktion von Aushärtungsgrad 
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und der Temperatur modelliert. Zusätzlich werden thermi-

sche und chemische Schwindung beachtet.  

Die vorgestellten Methoden sind für Formfüllsimulationen 

in der open-source, finite Volumen basierten Software Open-

FOAM und für die Verzugsanalyse in die kommerziellen fi-

niten Elemente basierten Software Simulia Abaqus imple-

mentiert. Numerische Studien verifizieren die Implementie-

rung und Methoden. Die Formfüllsimulationen zeigen eine 

gute Übereinstimmung mit experimentellen Ergebnissen, 

was die neu entwickelten Ansätze validiert. 
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1 Introduction 

1.1 Motivation 

Reduction of costs, weight and CO2-emissions are major pri-

orities in almost every engineering field. Especially in the 

mobility sector, systems need to be cost-effective and light. 

Due to this development, new challenges such as functional 

integration and low-density materials are rising.  

The aspect of low-density drives discontinuous fiber rein-

forces polymers (FRPs) in focus of engineering tasks. These 

material systems offer good specific mechanical behavior 

due to fiber reinforcement in combination with low-density 

of the polymer matrix. Due to combination of fibers, matrix 

and several available additives, the material systems can be 

specified in regard of mechanical and thermal properties, 

chemical resistance, flame protection, etc. Furthermore, 

FRPs have a high potential for functional integration. The 

low temperature of the liquid material (compared to metals) 

creates the possibility of encapsulation of electric compo-

nents, metal inserts and other functional groups during part 

manufacturing. 

Manufacturing FRPs in combination with functional inte-

gration and mass production at low-cost leads to injection 

molding. Injection molding is one of the most frequently ap-

plied processes for manufacturing discontinuous FRPs with 

thermoplastic or thermoset matrix. Usually, the process is 

non-isothermal, transient and non-evacuated. Due to these 

aspects and since the process conditions have crucial impact 

on the final part properties, especially within the presence of 

fibers, a high-quality process simulation supports the 
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prediction of the parts properties and geometry. Further-

more, a process simulation shows the general manufactura-

bility of a given geometry under defined process conditions, 

considering pressure, temperature, air traps etc. Based on 

process simulations, process conditions can be optimized 

with respect to production time and energy effort. These as-

pects help to lower the development time and costs at an 

early stage of the engineering task.  

Although several approaches are already existing to simulate 

the injection molding process and the flow behavior of FRPs 

has been in focus of several research projects, a state-of-the-

art simulation still includes many simplifications and neglec-

tions. Therefore, this work presents a novel approach for all 

stages of the injection molding process, which takes the in-

fluence of fibers and in-mold air on the filling process into 

account and simulates the following process steps aniso-

tropic and viscoelastic. 

1.2 Objectives of the thesis 

The major objective of this thesis is increasing the level of 

detail for an injection molding simulation with FRPs for all 

process steps. Therefore, two points are addressed in mold 

filling simulations. One is the simulation of the in-mold air 

in addition to the FRP phase. The presence of air can lead to 

air entrapments for complex geometries and has influence 

on the in-mold pressure and thermal equilibrium. The sec-

ond point is the influence of fibers on the flow behavior of 

the FRP and vise versa.  

The co-existing FRP and air needs to be modeled during the 

mold filling simulation. Therefore, the simulation is ex-

tended from a single- to a multiphase approach. FRP and air 
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are simulated as immiscible fluids with separate flow and 

thermal behavior.  

By further considering the influence of fibers on the FRP 

flow behavior and enabling an anisotropic flow, the viscosity 

is extended from a scalar quantity to a tensor. The tensor is 

a function of fiber orientation and length. Since the fibers 

break during mold filling, the fiber length distribution is also 

considered during mold filling and fiber breakage is calcu-

lated, depending on flow induced forces. 

For a higher degree of detail in simulations of the following 

process steps (after mold filling), an anisotropic, non-isother-

mal structural analysis is performed to predict shrinkage, 

warpage and residual stresses. Relevant mold filling results 

are transferred and the calculated fiber orientation is used to 

create homogenized and orthotropic materials.  

1.3 Structure of the thesis 

1.3.1 Structure of content 

This work is structured along the course of an injection 

molding process. In Section 2 the state of the art is given. 

Section 2.1 gives a short outline of the real process and its 

different phases and materials. Section 2.2 and Section 2.3 

represent the state of the art for the corresponding simulation 

approaches. Section 3 contains the description of all novel 

approaches and methods, developed during the thesis. 

Within Section 4 the approaches are verified with numerical 

experiments (Section 4.1) and experimental process data 

(Section  4.2). Section 4.3 gives a short outlook on warpage 

analysis with the novel approaches. Section 5 includes the 

conclusion and outlook.  
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1.3.2 Information about notation 

Within this work, index notation and the Einstein sum con-

vention are used. Counting indices (for example coordinate 

directions) are visualized with Italian letters (݅, ݆, ݇, …). Spec-

ifications are represented by indices with normal letters (air, 

FRP, …). For scalars the specification indices are on the bot-
tom (i.e. ݔୱ୮ୣୡ୧୧ୡୟ୲୧୭୬ሻ, since they may be potentiated. Spec-

ifications of vectors and tensors are represented by indices 

on the top (i.e. ݔୱ୮ୣୡ୧୧ୡୟ୲୧୭୬) to separate them from the 

counting indices. 

All tensors of fourth order in this work show right hand, left 

hand and main symmetry, so they can be visualized in Voigt 

notation. For Voigt notation the following order is chosen: [ݔଵଵ ଶଶݔ ଷଷݔ ଶଷݔ ଵଷݔ -ଵଶ]. Therefore, a fourth order tenݔ

sor in Voigt notation is given by  

ܶ =
[  
   
 ଵܶଵଵଵ ଵܶଵଶଶ ଵܶଵଷଷ ଵܶଵଶଷ ଵܶଵଵଷ ଵܶଵଵଶଶܶଶଶଶ ଶܶଶଷଷ ଶܶଶଶଷ ଶܶଶଵଷ ଶܶଶଵଶଷܶଷଷଷ ଷܶଷଶଷ ଷܶଷଵଷ ଷܶଷଵଶଶܶଷଶଷ ଶܶଷଵଷ ଶܶଷଵଶsym. ଵܶଷଵଷ ଵܶଷଵଶଵܶଶଵଶ]  

   
 . 
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2 State of the Art 

2.1 Injection molding process 

2.1.1 Machine and process overview 

Injection molding is a discontinuous process, well suited for 

mass production of complex shaped parts with high toler-

ances [1]. The major amount of research and industrial ap-

plications focuses on thermoplastic injection molding 

(TIM), while this work focuses on thermoset injection mold-

ing, named reactive injection molding (RIM), since thermo-

sets solidify within an irreversible curing reaction (see Sec-

tion 2.1.2). One manufacturing cycle, also named shot, is di-

vided in plasticization, mold filling, holding, solidification 

(cooling or curing) and ejection. The cycle can be completely 

automated. 

A general build-up of the injection molding machine and a 

tool is schematically illustrated in Figure 2.1. The machine 

is departed in a plastification and clamping unit. The mate-

rial is feed in granular form through the hopper. Plasticiza-

tion, transport and mixing is realized with a screw, the plas-

ticization is supported by a heating system. During plastifi-

cation, the screw retracts and material is accumulated under 

pressure in a chamber right before the nozzle (screw cham-

ber). In order to inject the material into the mold, the screw 

moves forward to displace the material. The movement is 

controlled with hydraulics and usually a constant velocity or 

a velocity profile is defined. The material is injected via sprue 

(or runner system) into the mold which are part of the tem-

pered tool. After mold filling the material solidifies under 

pressure and the part is ejected. During the end of 
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solidification, the plastification unit can already melt mate-

rial for the next shot to keep cycle times low. 

 

 

Figure 2.1: Schematic illustration of an injection molding machine 
with tool 

The two major differences between of TIM and RIM, be-

sides the material, are the process temperatures and material 

plastification. A thermoplastic is processed and injected at 

high temperatures (160 °C to 400 °C) into a cooled mold 

(10 °C to 160 °C), while a thermoset is plasticized and in-

jected at cold temperatures (100 °C to 140 °C) into a heated 

mold (130 °C to 200 °C) [1]. Furthermore, thermoplastics 

have a more complex screw, containing special compres-

sion, mixing and shearing units, as well as a non-return 

valve. Thermosets are plasticized with a comparatively sim-

ple and compressionless screw, having no valve and a con-

stant pitch between the flights [1,2]. The simple screw may 

lead to material or pressure losses during processing, but en-

ables unscrewing if the material cures within the plastifica-

tion unit. 
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2.1.2 Injection molding materials 

This section will only provide a small overview of injection 

molding materials. More detailed information about poly-

mer materials, the molecular and atomic structure and the 

resulting properties as well as further applications and rele-

vance in industry can be found in [1–5]. 

Injection molding can be performed with polymers of all 

three main categories (thermoplastics, thermosets, elasto-

mers). The RIM process includes all reactive materials, 

which can be thermosets, elastomers and reactive thermo-

plastics. Since this work is focused on injection molding with 

thermosets, the usage of this material group should be con-

sidered, although all matrix material independent methods 

presented within this work are also applicable for thermo-

plastic materials. Even though the focus is on thermosets, 

some information about thermoplastics for injection mold-

ing should be provided, since TIM is the most important pro-

cess variant for various industry sectors.  

 Thermoplastics 

Besides the categories amorphous and semi-crystalline, ther-

moplastics are clustered in commodity (or standard), engi-

neering (or technical) and high temperature (or high perfor-

mance) thermoplastics, which also illustrates their typical 

field of usage. Commodity thermoplastics are mostly known 

from packaging sector due to their low price (< 2 €/kg [5]) 

and weak mechanical performance, which is a positive as-

pect in this case. Due to these properties the usage sector is 

mainly packaging, for example food and medical products. 

The most prominent thermoplastics in this group are PP, 

PET, PS and PVC [4]. 
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As indicated by the name, engineering thermoplastics are 

mostly used in engineering applications. Compared to com-

modity thermoplastics, they show better mechanical proper-

ties, especially at higher temperatures (up to 150 °C) [5]. Due 

to the application in engineering tasks, the properties are of-

ten modified to fulfill special mechanical, thermal, electrical 

but also optical requirements. Therefore, additives and fillers 

like for example glass (or carbon) fibers are added to improve 

stiffness and strength. Typical applications are in the auto-

motive and electronic sector, where these materials are used 

for support structures, housings, etc. The majority of parts is 

made of PA (6 and 66), PC and ABS [4]. 

High performance thermoplastics are characterized by good 

mechanical properties, especially at elevated temperatures. 

In order to improve the mechanical behavior, they may be 

fiber reinforced. Since costs are often a minor aspect for ap-

plications with high performance thermoplastics, the rein-

forcement is with carbon fibers, to unleash more lightweight 

potential in the most cases. Typical applications are in the 

aerospace sector and the most used materials are PEEK, 

PEK and PPS. One of the major material systems, illustrat-

ing the lightweight potential of this group, is PEEK rein-

forced with 30 %-wt. carbon fibers, available from various 

manufactures. Such a material has a tensile strength compa-

rable to steel and aluminum alloys within a density of only 

about 1.4 g/cm³ and can be handled by less than 400 °C [6]. 

 Thermoset Materials 

Opposite to thermoplastics, thermosets solidify irreversibly 

and cannot be remolten. During curing (solidification) the 

polymer chains cross-link covalently, hence the atomic struc-

ture is represented by a network and not by individual 
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chains, compared to thermoplastics [3]. Due to the covalent 

linkage, thermosets offer good mechanical properties and 

less tendency for creep compared to thermoplastics, only 

having van-der-Waals forces for chain coupling and physical 

cohesion. 

Thermosets are mainly clustered in four groups: phenol for-

maldehyde or phenolic (PF), unsaturated polyester (UPE), 

epoxy (EP) and cross-linked polyurethanes (PU). Thermo-

sets are typically highly filled, with fillers such as calciumcar-

bonat, wood (flour and fibers) or glass (spheres and fibers). 

Due to the high stiffness and strength PFs, UPEs and EPs 

are mostly used in engineering applications such as automo-

tive parts. In the last few years, PFs have also been used for 

engine parts, caused by the good mechanical properties at 

high temperatures in combination with low cost production 

[7,8]. Epoxies show a low viscosity during manufacturing as 

well as good adhesion and dielectrical properties. Therefore, 

they are often used for electronic encapsulation and as base 

material for industrial glue. Typical PU applications are 

housings of computers, televisions and other commercial 

electronic products, due to the low cost and high impact 

strength of this thermoset group [1]. 

 Flow behavior of thermoset materials during 

processing 

The most important material aspect for mold filling behavior 

and mold filling simulations is the viscosity, defining the ma-

terials resistance to flowing. The viscosity of a polymer is in-

fluenced by temperature, shear rate and degree of cur-

ing/crystallization. Other aspects such as polymer chain ar-

chitecture (length, side groups, etc.), fibers, pollutions and 
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humidity also influence the material behavior, but are not 

explicitly mentioned for description of the viscosity. 

A general course of polymer’s viscosity for different temper-
atures and shear rates is shown in Figure 2.2. The viscosity 

is lower for higher temperatures, which is a typical behavior 

of liquids. Polymers often show a Newtonian behavior for 

low shear rates, meaning the viscosity is constant (see Sec-

tion 2.2.2.3). For higher shear rates the materials act shear 

thinning and the viscosity decreases. The general viscosity 

level, presence and width of the Newtonian area as well as 

the change rate in the shear-thinning area depend on mate-

rial and fillers [3]. 

 

Figure 2.2: Qualitive illustration of polymer viscosity over shear rate 
for two different temperatures 

For processing of thermoset (or elastomer) polymers, the ir-

reversible curing reaction needs to be considered for viscos-

ity.  Figure 2.3 illustrates the viscosity of a thermoset during 

processing. Since the material is heating up during mold fill-

ing (see 2.1.1) the viscosity would descent continuously dur-

ing processing, but the cross-linking of the polymer chains 

has crucial impact on chain movement and hence rises the 

viscosity. The superimposition of these two effects leads to a 

parabolic related course of viscosity during processing, with 
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a specific time window, where the viscosity is low and the 

material can be processed easily and energy efficient [5]. 

 

Figure 2.3: Qualitive illustration of thermoset viscosity during pro-
cessing for temperature only (red), curing only (blue) and combined 
(green) 

The complex viscosity behavior of thermoset materials leads 

to a complex flow behavior and mold filling. The flow be-

havior is shown schematically in Figure 2.4.  

 

Figure 2.4: Fiber reinforced thermoset's flow behavior during mold 

filling. Hot surface layer (red) and cold core region (blue) in tool 
(grey) with corresponding fiber orientation, temperature and 
velocity  profile 



2 State of the Art 

12 
 

Due to the temperature difference between tool and mate-

rial, a hot surface layer and cold core region build up. Since 

the temperature in the surface layer is high, viscosity of the 

resin is low. For the surface layer  a shear dominated laminar 

flow is observed, while the flow in the core region is more 

plug-like, dominated by elongation stresses [9,10]. The over-

lay of these flow phenomena lead to a running ahead of the 

core region, resulting in a region with partial wall contact 

and an unstructured flow front [9–12]. Newer studies also 

show wall-slip effects, which influence the velocity profile, 

being not zero on the wall and hence also influencing viscous 

stress, fiber orientation, etc. [11]. This wall-slip effect is often 

neglected within simulations (see Section 2.2.1.5). Fibers 

align along the resulting forces of the flow field. Therefore, 

the alignment is in flow direction in the surface layer and 

perpendicular in the elongation dominated region [9]. Nev-

ertheless, the fibers influence the viscosity and flow behavior 

(see Section 3.3). Fiber alignment in flow direction increases 

the viscosity in this direction and is therefore contrary to the 

effects mentioned above. 

Some studies on the flow behavior of thermosets also show 

a qualitive distribution of the viscous stress over the different 

layers [9]. In these cases, the viscous stress is zero in the cen-

ter of the core region (plane of symmetry) and increases lin-

ear towards the tool walls. The linear increase is only true 

for a Newtonian fluid in a perfect parabolic velocity field 

(Poiseuille flow), which are both not the case for RIM pro-

cesses and should therefore not be assumed. 

2.1.3 Mold filling 

Even though mold filling takes up only a small amount of 

time in a complete injection molding cycle, it is an important 
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part defining various aspects of the final material state and 

part. The mold filling has crucial impact on fiber orientation, 

degree of curing, temperature distribution, air traps and en-

ergy requirement. Furthermore, insufficient mold filling may 

degrade the final part or damage the machine. 

The material enters the cavity at the inlet and takes up the 

void volume until filled, as shown in Figure 2.5. By default, 

the cavity is not evacuated and the FRP displaces the in-cav-

ity air, which leaves via venting slots, being too small for the 

liquid FRP to enter. In most cases, the mold filling is volume 

controlled (constant volume flow or profile), when the cavity 

is nearly filled, there is a switchover to a pressure-controlled 

filling. The switchover can be defined differently. Most com-

mon methods are position of the screw, hydraulic or screw 

chamber pressure. Another likely used criterion is reaching 

a defined mold pressure, dedicated by one or more sensors, 

ideally placed near the end of the flow path. Of course, these 

criteria can be combined and some aspect such as maximum 

screw position and maximum hydraulic pressure are gener-

ally present to secure the machine. 

 

Figure 2.5: Schematic illustration of the mold filling process in in-
jection molding. Material (green) enters at the inlet and fills the cav-
ity (white) 
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The mold may contain functional parts such as metal inserts, 

threads or electric chips, sensors and connectors. These com-

ponents get fixed or encapsulated during mold filling to func-

tionalize the part. The filled cavity corresponds to the final 

geometry of the part, besides eventual deviations due to 

shrinkage and warpage. The following process steps after 

mold filling are described in Section 2.1.4. 

2.1.4 Process steps following mold filling 

 Holding Stage 

After the mold is filled, the next process step is the holding 

stage, when a high pressure (up to 200 MPa) acts from the 

plastification unit via the inlet on the material. The primary 

function of the holding pressure is to press out retaining air 

and counteract the shrinkage. In general, the shrinkage de-

creases with increase of holding pressure [13]. The amount 

of holding pressure depends on the material, part geometry 

and maximum clamping force. Similar to the filling rate, the 

holding pressure may be constant or assume a defined pro-

file. The holding time depends on material, geometry and 

temperature. The holding stage is performed until the inlet is 

solidified, after this point, the pressure is not present in the 

cavity anymore. The mold should be designed, so sufficient 

holding stage is performable, depending especially on wall 

thickness and position of the inlet [1]. Amount and time can 

be estimated with simplified equations or determined and 

optimized with process simulations. 

If the glass transition temperature (increasing with the degree 

of cure) reaches the material temperature, residual stresses 

may build up. Inhomogeneous temperature distribution and 

shrinkage as well as anisotropy due to fibers influence the 
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evolution of residual stresses [14]. Residual stresses result in 

warpage after demolding. Several studies investigate these 

phenomena and their relations. Experimental works show 

the influence of  holding pressure, material temperature and 

mold temperature [13,15]. The experimental investigations 

show, that warpage and shrinkage may be decreased by 

higher holding pressure and longer cooling or curing times, 

but this of course increases the energy requirements and pro-

cess time. Therefore, an optimum must be found, which is 

also addressed by different investigations. Simulation mod-

els offer the possibility to perform a DoE with little effort, as 

for example shown by Huang and Tai [16] and Choi and Im 

[17]. Other approaches suggest relations with Kriging surro-

gate models [18] and artificial neural networks [19]. 

 In-mold solidification 

The solidification is no serial process step, since the material 

starts to solidify directly after thermal activation or mixing, 

including also the steps mold filling and holding. Neverthe-

less, a general process cycle contains a final solidification 

step, having the single aim to generate a form stable geome-

try and part. This step is necessary since the inlet is usually 

not the area with the greatest thickness, hence there is still 

liquid (or high viscous) material left in the cavity after the 

holding step. This step is named cooling for thermoplastics 

and curing for thermosets and elastomers. For RIM pro-

cesses the curing step has a crucial impact on the final degree 

of curing and therefore on the final part’s mechanical prop-

erties, shrinkage and residual stresses.  

 Ejection and out-of-mold cooling 

After solidification the part is form stable and is ejected from 

the tool. The ejection is supported by multiple cylinders, 
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pressing the part out. Of course, the mold must be designed 

the way, that the part can be ejected undamaged. Position, 

number and velocity of the ejection cylinders influence the 

final warpage [14].  

After ejection the part cools down to room temperature and 

may post cure in this period. Since the part is no longer 

bounded to the tool geometry the residual stresses result in 

warpage. The amount of warpage depends on geometry, fi-

ber orientation and volume fraction, temperature distribu-

tion, degree of cure and residual stresses, resulting from prior 

process steps. Additionally, the cooling in the atmosphere 

after ejection influences the warpage by temperature and 

thermal shrinkage. To reduce the effect of warpage or resid-

ual stresses, parts may be clamped and/or tempered after 

ejection. 

2.2 Mold filling simulation 

2.2.1 Process modeling  

 Governing equations 

In general, the injection molding process is a transient prob-

lem of fluid dynamic type. These can be solved analytically 

in some cases or under consideration of simplifications. 

Nowadays, fluid dynamic problems are solved in a compu-

tational fluid dynamics (CFD) simulations performed on a 

discretized mesh [1]. Solving a CFD problem for the mold 

filling simulations involves solving of the Navier-Stokes 

equations postulated in the first half of the 19th century [20], 

including the mass, momentum and thermal energy equa-

tion. The mass balance is shown in the form  
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ݐ݀ߩ݀ + ߲ሺߩ ܷሻ߲ݔ = Ͳ, (2.1) 

where ߩ is the density, ݐ the time, ݔ the coordinate vector 

and ܷ is the velocity vector. The momentum equation is re-

presented by 

 
݀ሺߩ ܷሻ݀ݐ + ߲ሺߩ ܷ ܷሻ߲ݔ = − ݔ߲߲ + ߲𝜏߲ݔ , (2.2) 

with  being the pressure and 𝜏 the viscous stress tensor. 

Body forces such as gravity would be formulated with terms 

like ݃ߩ, but are often neglected, as in the present work, since 

they only show minor significance. The thermal energy 

equation is described with Fourier’s Law by  

 

ݐ୮ܶ൯݀ܿߩ)݀ + ୮ܿߩ)߲ ܷܶ൯߲ݔ  = ୲୦ߣ ݔ߲ݔ߲߲ܶ + 𝜏ܦ, (2.3) 

where ܶ is the temperature, ߣ୲୦ and ܿ୮ are thermal conduc-

tivity and specific heat capacity. The term 𝜏ܦ calculates 

the viscous heat/dissipation with the strain-rate tensor ܦ, 
being the symmetrical part of the velocity gradient [1,20]. 

Other terms such as thermal radiation and source terms due 

to chemical reactions are neglected within this work. 

For an isotropic fluid (scalar viscosity) the viscous stress ten-

sor is given by 

 𝜏 = ߟʹ ܦ) − ͳ͵ ߲ ܷ߲ݔ  ), (2.4)ߜ

where ߟ is the dynamic viscosity and ߜ is the unity tensor. 

For anisotropic fluids, the viscosity is described by a tensor 
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of higher order. Similar to anisotropic mechanical behavior, 

the viscous stress for an anisotropic case can be written as  

 𝜏 =  . (2.5)ܦߟ

The symmetry rules of continuum mechanics also apply for 

fourth order viscosity tensor ߟ, therefore it contains up to 

21 independent entries. Nevertheless, at state of the art the 

anisotropy of FRPs is usually neglected and the viscous 

stress is calculated with an isotropic viscosity as described in 

Eq. (2.4). 

 Analytical approaches 

Since fluid dynamic problems exist far longer than the possi-

bility of solving numerical methods on computers, analytical 

approaches and solutions exist for special cases. Neverthe-

less, the solution of the Navier-Stokes equations in a 3D-case 

is part of the Millennium Problems, therefore all solutions 

come along with simplification, assumptions and re-

strictions.  

One of the mentioned special cases is the so called Poiseuille 

flow, describing the laminar and stationary flow of a Newto-

nian fluid in an infinitly long circular tube with a pressure 

difference between the two ends and radius ܴ. The solution 

was developed by Hagen and Poiseuille in the mid of the 19th 

century [20]. By assuming the velocity to be zero at the walls 

and the pressure to be constant over the tube’s cross section, 

the flow field is described by a parabolic velocity profile as 

shown in Figure 2.6. The velocity is given by  

 ଵܷሺݎሻ = ݈ߟͶ∆ ሺܴଶ −  ଶଶሻ, (2.6)ݔ

where ∆ is the pressure drop within the distance ݈. 
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Figure 2.6: Poiseuille flow velocity profile (green) in a circular tube 

The equation can be modified for non-circular cross-sections  

[20]. Today the Poiseuille flow is still an often-used model 

for flow description and verification and therefore is used in 

various scientific publications. 

Another milestone in flow field modeling is the description 

of a fluid in a narrow gap between two parallel plates, pre-

sented by Hele-Shaw at the end of the 19th century [1,20]. 

Considering an isotropic, incompressible fluid with no body 

forces and no wall slip the flow field is described by 

 

ଵݔ߲߲ (ܵୌୗ (ଵݔ߲߲ + ଶݔ߲߲ (ܵୌୗ (ଶݔ߲߲ = Ͳܵୌୗ = ∫ ߟଷଶݔ ଷ௫య,maxݔ݀


, (2.7) 

with the fluidity ܵୌୗ. Here, the narrow gap between the two 

plates is in the range Ͳ < ଷݔ < ଷݔ ଷ,୫ୟ୶, the two plates are atݔ = Ͳ, ݔଷ =  .ଷ-direction. ଷܷ is zero in the complete domainݔ ଷ,୫ୟ୶ and perpendicular to theݔ

It should be noted, that the viscosity is within the integral 

since it is not assumed to be constant and may depend on ݔଷ, 

temperature or shear-rate. For a Newtonian fluid, the 
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integral can be solved independent of the viscosity and the 

velocity is given by  

 
ଵܷ = ͳʹߟ ଵݔ߲߲ ଷ,୫ୟ୶ݔଷሺݔ − ଷሻଶܷݔ = ͳʹߟ ଶݔ߲߲ ଷ,୫ୟ୶ݔଷሺݔ −  ଷሻ, (2.8)ݔ

resulting in a parabolic velocity profile. 

Due to the thin wall character of many injection molding 

parts, the solution of Hele-Shaw is well suited for injection 

molding simulation, even though it was developed long be-

fore the first injection molding processes. Therefore, many 

of today’s 2D and 2.5D mold filling simulation rely on Hele-

Shaw. Nevertheless, it should be handled carefully, since it 

is only valid for thin areas far away from the inlet and side 

walls. [1] 

 Numerical methods 

Today it is standard to solve the governing equations for a 

CFD-simulation under consideration of numerical methods. 

The most prominent numerical methods are Finite Element 

Method (FEM), Finite Volume Method (FVM) and Finite 

Difference Method (FDM). The principle of these three 

methods is identical, the geometry is discretized into a finite 

number of elements as shown in Figure 2.7. The problem is 

then solved for the single elements (or cells) and combined 

to a global solution. The simulation mesh can be realized 

with different levels of complexity as illustrated in Figure 

2.7. The simplest mesh is a 2D-midplane mesh, representing 

the geometry by one or more meshed planes. Of course, also 

a 1D-approximation is possible, but most injection molding 

simulation software perform at least a 2D-simulation. The 
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2.5D-mesh discretizes only the geometry’s surfaces and is 
also known as Boundary Element Method. Additionally, to 

the boundary surfaces, a finite number of ‘inner planes’ can 
be regarded as indicated by the blue elements in Figure 2.7.  

 

 

Original Geometry 2D-midplane mesh 

  

2.5D-boundary mesh 3D-mesh 

Figure 2.7: Original Geometry and different possibilities to discre-
tize the geometry in a finite element mesh 

The most complex variant is the 3D-mesh, representing the 

complete geometry with 3D-elements. While the FEM is 

solved on nodes at the corners and edges of the elements, the 

FVM focuses on the cell centers and surface fluxes. It must 



2 State of the Art 

22 
 

be distinguished between boundary nodes/faces, where 

boundary conditions are applied and internal nodes/cells, 

where algorithms solve the problem. 

Every numerical method has its individual advantages and 

disadvantages. While FEM is well suited for Langrage ap-

proaches, with the nodes being able to move, FVM is flux 

based and therefore well suited for Euler approaches and 

hence CFD simulations. However, most commercial injec-

tion molding software is based on FEM, due to the numeri-

cal efficiency, enabling faster solving [21–23]. Nevertheless, 

injection molding simulation is a CFD problem, which is 

most likely solved with FVM in other cases. Therefore, some 

scientific publications offer FVM-based solutions for injec-

tion molding simulations [24–26]. Hence, FVM-based simu-

lation approaches are applied within this work. 

Besides the three mentioned discretization-based methods 

CFD problems are also solved with Smooth Particle Hydro-

dynamics (SPH). This mesh-less approach splits the simula-

tion domain into single particles considering neighbor parti-

cles in a defined area for solving. SPH has been successfully 

used to describe FRP flow processes on microscopic scale in 

[27]. 

 Influence of mesh size 

The mesh size has a crucial impact on the solution quality 

and numerical effort. One the one side a finer mesh, meaning 

smaller elements or more discrete points, predicts a more re-

alistic solution, but on the other side this directly correlates 

to more numerical effort, since more equations must be 

solved. Nevertheless, deviations from the analytical solution 

may occur if the mesh is not fine enough. A typical case is 

the approximation of a parabolic velocity profile, as it may 
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occur in injection molding (see Section 2.2.1.2). The analyt-

ical solution and approximations with increasing number of 

nodes are shown in Figure 2.8.  

V
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Figure 2.8: Approximation of parabolic distribution with different 
number of points and linear interpolation between the points 

The parabolic distribution is discretized by three, five and 

nine nodes with linear interpolation. While the three node 

solution creates great deviations and is not able to display 

the analytical solution, the five node solution already shows  

a quite good agreement. The nine node approach shows only 

small deviations and displays the analytical solution with 

good agreement. Of course, the interpolation between the 

nodes could also be of higher degree. Therefore, the para-

bolic distribution can be displayed exact by three nodes with 

interpolation of second order, but the higher order comes 

along with greater numerical effort. In summary, the mesh 

fineness is always a compromise between level of detail and 

numerical effort. 
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Since the quality of result depends on the mesh, the develop-

ment of novel methods should include a mesh study, show-

ing a convergence of results for different mesh refinements. 

A convergence can be reached if the approximated distribu-

tion can be represented correctly (for example Figure 2.8 

with quadratic interpolation), or if a finer mesh shows no 

more improvement for the results. A multiphase simulation 

with immiscible single phases (FRP and air in this case) al-

ways depends on the mesh, since the theoretical interface is 

reconstructed, depending on mesh dimensions [28]. Never-

theless, the flow front shows same tendencies and character-

istics for adequatly fine meshes, although the results are not 

identical. This aspect is further investigated in [26] and Sec-

tion 4.1.4. 

 Simulation model 

The mold filling simulation is a transient simulation, where 

the FRP enters the simulation mesh at a defined node for 

FEM or a defined boundary surface (inlet) in FVM. While 

FEM simulations with commercial software are single-

phase, considering only the FRP, the FVM-based simula-

tions presented in [24–26] perform a multi-phase simulation, 

considering FRP and air. 

The material in-flow is defined as a boundary condition and 

can be chosen similar to the real process, as described in Sec-

tion 2.1.3. This also applies for the switchover point. The re-

garded geometry usually contains only the cavity, not the 

tool or plastification unit. Figure 2.9 shows different states 

of filling for a multiphase mold filling simulation of an elec-

trical engine housing. Although there is a wall-slip in RIM 

processes, as described in Section 2.1.2.3, this effect is often 

neglected within a simulation, as it is within this work. A no-
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slip boundary condition is applied at the walls, justified by 

the need of less parameters and still creating good results 

[25,26]. 

The FRP enters the model at the inlet on the top and the 

simulation is performed until the cavity is completely filled. 

One reason for performing this simulation is to verify if the 

part is manufacturable by the chosen process parameters 

with respect to maximum machine pressure, clamping force, 

air traps, material temperature, etc. Another important as-

pect is information about the material state needed for fur-

ther analysis, including temperature and fiber orientation 

distribution as well as solidification state. 

 

Figure 2.9: Different states of a multiphase mold filling simulation 
of an electrical engine housing. Cavity filled with air in transparent 
grey and FRP in red 

2.2.2 Material modeling 

 Thermal properties 

The relevant thermal properties are specific heat capacity 

and thermal conductivity (Eq. (2.3)). Additionally, the reac-

tion enthalpy may be a material property, relevant for 
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thermal modeling, but the influence of reaction heat is often 

neglected, as within this work [14,25,26]. This assumption is 

justified by the thin wall character of the molded parts, so the 

influence of the reaction heat is neglectable, compared to the 

thermal influence of the massive and tempered tool. 

The specific heat capacity ܿ୮ is a scalar property. Independ-

ent of polymer type, ܿ୮ increases with temperature and 

shows a jump for the phase change [29,30]. Kamal and Ryan 

[29] present measurements of the specific heat depending on 

temperature and degree of cure showing also a significant in-

crease of ܿ୮ during curing. Since only the liquid state is rele-

vant for mold filling and the degree of cure has only marginal 

changes in this process phase, it is often assumed to be con-

stant or only function of temperature. 

The thermal conductivity ߣ୲୦ also increases with tempera-

ture and jumps at the phase change. Also similar to ܿ୮, an 

increase of ߣ୲୦ is shown in [29]. For the same reasons com-

pared to specific heat capacity, the thermal conductivity is 

often assumed to be constant or only function of tempera-

ture. The thermal conductivity may be a multi-dimensional 

tensor for anisotropic materials. The homogenized thermal 

conductivity can be calculated with the same assumption 

about serial and parallel connections as performed for me-

chanical properties [31,32]. Nevertheless, the anisotropy of ߣ୲୦ is also often neglected during form filling, since the val-

ues are generally low (< 0.5 W/(m∙K)) for most polymer 
composites and the mold filling is performed within a short 

period of time. 

 Curing kinetics 

The curing reaction, meaning the cross-linking of molecular 

chains with covalent bonds, of thermoset materials has 
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crucial impact on the viscosity and hence on the mold filling 

behavior, even though the fraction of cross-linked material is 

small during mold filling. Therefore, the curing kinetics 

should be modeled accurately for a mold filling simulation 

of a RIM process. 

The curing of thermosets is an irreversible and exothermal 

process, which can be modeled by mechanistic or empirical 

models. Mechanistic models describe the chemical processes 

during cross-linking and therefore depend on detailed, mate-

rial specific information, which are hard to determine [14]. 

Empirical models focus on simpler description with less pa-

rameters. Here, the reaction process is described by a simple 

differential equation, depending on a few empirical parame-

ters, degree of cure and in some cases temperature. The sim-

plest possibility to describe the reaction is given by 

 
ݐ݀ܿ݀ ~ሺͳ − ܿሻ, (2.9) 

with ܿ being the degree of cure and ݊ the reaction order in 

this case. One disadvantage of this approach is, that the max-

imum change of cure is always at ܿ = Ͳ, which is no typical 

behavior of industrially used thermoset materials [14]. 

Kamal and Sourour [33] extended this approach by  

 
ݐ݀ܿ݀ ~ܿሺͳ − ܿሻ, (2.10) 

with an empirical parameter ݉ in this case, so the change 

rate is zero at the beginning of the reaction. Finally, the cur-

ing kinetics are calculated with the so called Kamal-Malkin 

(or also Kamal-Sourour) kinetics model [33], determining 

the rate of change as 
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ݐ݀ܿ݀ = ሺܭଵ + ଶܿేሻሺͳܭ − ܿሻే , (2.11) 

with the empirical parameters ݉ and ݊. The parame-

ters ܭଵ and ܭଶ are often given by an Arrhenius type approx-

imation in the form  

ଵ,ଶܭ  = ଵ,ଶܣ ∙ exp ቆ−ܧଵ,ଶܴ ∙ ܶ ቇ, (2.12) 

with empirical factors ܣଵ and ܣଶ, activation energies ܧଵ and ܧଶ and universal gas constant ܴ [14]. 

The literature offers more complex models for better descrip-

tions, if the temperature is for example near the glass transi-

tion temperature [14,34]. Nevertheless, the Kamal-Malkin 

model is often used and well established for curing kinetics 

model for different materials and processes [23,25,26,34–
36]. Within this work the Kamal-Malkin kinetics model (Eq. 

(2.11)) in combination with Eq. (2.12) is used to model cur-

ing kinetics during the complete process simulation. 

 Viscosity properties 

The viscosity must be modeled to determine the viscous 

stress tensor, which is needed to solve the momentum equa-

tion as shown in Eq. (2.2). The simplest approach to model 

the viscosity is to assume the FRP as Newtonian, resulting 

in a constant viscosity 

ߟ  = const.  (2.13) 

Meyer et al. [37] and Sommer et al. [38] present good results 

for simulating compression molding with Newtonian matrix 

behavior. Nevertheless, polymers show a clearly non-New-

tonian behavior, with a viscosity depending on temperature 

and shear rate, described in 2.1.2.3. 
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The simplest description of a shear rate depending viscosity 

in case of simple shear load is given by the power-law ap-

proach [39], determining the shear stress 𝜏 by 

 𝜏 = ′Pܭ ∙ Pైߛ̇ , (2.14) 

and with 𝜏 =  the dynamic viscosity by ߛ̇ߟ

ߟ  = Pܭ ∙  ሺPై−ଵሻ, (2.15)ߛ̇

with ̇ߛ being the scalar shear rate, defined as ̇ߛ = మܦܦ√  P and ݊P are constant, positive model parameters in thisܭ .

case. The power-law approach models shear thinning (݊ <ͳ), shear thickening (݊ > ͳ) and Newtonian behavior (݊ =ͳ). One disadvantage, is the prognostication of a zero-shear 

stress and zero viscosity for zero-shear rate, which may be 

true for the shear stress, but not for viscosity. To overcome 

this, the approach can be extended to describe a so called 

Herschel-Bulkley fluid [40] with the viscosity given by 

ߟ  = {𝜏̇ߛ−ଵ + ܭ ∙ −ଵߛ̇ ߛ̇ < ଵ−ߛ𝜏̇ߛ̇ + ܭ ∙ −ଵߛ̇ ߛ̇   , (2.16)ߛ̇

where ̇ߛ and 𝜏 are material specific parameters. For 𝜏 < 𝜏 

the material behaves as a solid. ̇ߛ indicates the shear rate for 

a change from Newtonian to shear thinning behavior (cf. 

Figure 2.2). Today’s most common approaches for viscosity 
modeling of polymer melts are of Cross type. Cross [41] de-

scribes the viscosity by 

 
ߟ = ͳߟ + ቀߟ̇ߛ𝜏∗ ቁଵ−CWైF  , (2.17) 

with zero-shear viscosity ߟ and 𝜏∗ indicating the critical 

shear stress for beginning of shear thinning behavior. ݊C 

is a material specific parameter. In order to respect the 
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temperature dependence, ߟ is often described by the Wil-

liams–Landel–Ferry (WLF) equation like 

 

ߟ = −Cଵexpቆܦ Cଵሺܶܣ − ܶሻܣCଶ + ሺܶ − ܶሻቇܶ = Cଶܦ + CଶܣCଷܦ = Cଷܣ Cଷܦ+ , (2.18) 

where ܶ is the glass transition temperature and ܣCଵ, ,Cଷܣ ,Cଵܦ  Cଷ are materialܦ Cଶ andܦ

specific fitting parameters. For most materials, it is assumed 

to be ܦCଷ = Ͳ, so ܶ and ܣCଶ are constant. The com-

bination of Eq. (2.17) and Eq. (2.18) is the so called Cross-

WLF viscosity model, being the most used viscosity model 

for injection molding simulations with thermoplastic mate-

rials. 

Although the Cross-WLF model is well suited for thermo-

plastic materials, there are better approaches for thermoset 

materials. Castro and Macosko [42] reported a better fitting 

by describing the temperature dependence with an Arrhe-

nius equation with an additionally term to take the curing 

kinetics into account. For thermoset material the today’s 
most common viscosity model is the so-called Castro-Ma-

cosko (CM) model, combining a Cross type equation with 

Arrhenius equation and curing dependence by 

 

ߟ = ͳߟ + ቀߟ̇ߛ𝜏∗ ቁଵ−C ቆ ܿܿ − ܿቇሺ𝐶Cభ+𝐶Cమሻߟ = Cexpܤ ( Cܶܶ) , (2.19) 

with material specific fitting parameters ܤC, ,Cଶܥ ,Cଵܥ ݊C, Cܶ and ܿ being the gelation conversation point. 
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 PvT modeling 

The aim of pressure-volume-temperature (PvT) modeling is 

the relation between pressure, specific volume (or density) 

and temperature, also often titled as equation of state. The 

simplest way to describe this relation is to assume incom-

pressibility, so  

ߩ  = const. (2.20) 

or equivalent ߝଵ̇ଵ + ଶ̇ଶߝ + ଷ̇ଷߝ = Ͳ, with ߝ̇ being the strain 

rate tensor. This assumption is valid for polymer injection 

molding and often chosen in different studies [24,37,38,43]. 

Since this study includes the air within the process simula-

tion, this phase would also be considered incompressible, 

which is an unsatisfying simplification. The PvT behavior of 

gases is often given by the perfect gas law so 

ߩ  =  ୱ, (2.21)ܴܶ

with ܴୱ as specific gas constant. The best related description 

of liquids in this case is to assume a perfect fluid, determining 

the density with 

ߩ  = ୱܴܶ +  . (2.22)ߩ

Here, ߩ is the density at ܶ = Ͳ ܭ.  

During the history of polymer processing several PvT mod-

els with different complexity and experimental effort have 

been created. An overview of different models in relation to 

different polymers is given by Rodgers [44] and Júnior et al. 

[45]. Both studies name the so-called Tait model (or Tait 

equation) as most used and best fitting model for a variety of 
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polymers and pressure/temperature scales. The Tait equa-

tion represents the specific volume ݒ by 

 

,ሺݒ ܶሻ = ሺܶሻݒ [ͳ − ୲lnܥ (ͳ + [(ሺܶሻܤ + ,௧ሺݒ ܶሻ. (2.23) 

 ୲ is an universal constant with value Ͳ.ͲͺͻͶ. The Taitܥ

model is also called two-domain Tait model, since the for-

mulation changes, depending on the volumetric transition 

temperature, defined as 

 ୲ܶሺሻ = ܾହ + ܾ(2.24) . 

The subfunctions, needed for Eq. (2.23) are given in Table 

2.1, wherein ்ܶ = ܶ − ܾହ. All mentioned ܾ-parameters 

within this Section are purely empirical and material-specific 

fitting parameters. 

Table 2.1:  Definition of subfunctions for Tait model (Eq. (2.23)) 

Function ୲ܶሺሻ < ܶ ୲ܶሺሻ > ሺܶሻ ܾଵ୫ݒ ܶ + ܾଶ୫ ்ܶ ܾଵୱ + ܾଶୱ ሺܶሻ ܾଷ୫expሺ−ܾସ୫ܤ ்ܶ ்ܶሻ ܾଷୱexpሺ−ܾସୱ ்ܶሻ ݒ௧ሺ, ܶሻ 0 ܾexpሺ଼ܾ ்ܶ − ܾଽሻ 
 

Wang et al. [46] further improved the model, by describing 

the ܾ-parameters as function of the temperature change rate 

and not as constants. 

Due to a lack of available PvT data, the FRPs within this 

work are described nearly incompressible. Since multi-phase 

approaches are performed, a complete incompressible simu-

lation would be unsatisfying with respect to the air phase. 

Therefore, the air will be assumed as perfect gas (Eq. (2.21)) 
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and the FRP is assumed to be a perfect fluid (Eq. (2.22)), 

where ܴୱ is chosen very high, so /ሺܴܶୱሻ ≈ Ͳ and ߩ ≈  .ߩ
2.2.3 Fiber orientation modeling 

 Movement of a single fiber 

The modeling of fiber orientation has been in the focus of 

research for several decades. Today’s models are based on 

Jeffery’s work to describe the orientation change of a single 

ellipsoid in a Newtonian fluid with the so called Jeffery’s 
equation [47]. The orientation of a single fiber is described 

by the nominated orientation vector ݍ, as shown Figure 

2.10. The orientation can be formulated in Cartesian coordi-

nates or with the orientation angles 𝜑 and ߠ, as shown in 

Figure 2.10. The Jeffery’s equation for ݍ is ݀ݍ݀ݐ = 𝑊ݍ + ଶݎ − ͳݎଶ + ͳቀܦݍ −  ൯ቁ, (2.25)ݍܦݍ)ݍ

with the vorticity tensor 𝑊, being the unsymmetrical part 

of the velocity gradient and fiber aspect ratio ݎ, defined as 

ݎ  =  /݀, (2.26)ܮ

where ܮ and ݀ are fiber length and diameter.  

 

Figure 2.10: Orientation of a single fiber (blue) represented by vector ݍ or angles ߠ and 𝜑 
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Fiber matrix suspensions are clustered in three regimes: di-

lute, semi-dilute and concentrated. The regimes are defined 

by fiber volume fraction 𝛷 or ݊ܮ, with ݊ being the number 

density of fibers in the suspension. In dilute suspension it is 𝛷 ا ͳ and ݊ܮ ا ͳ [48] or 𝛷 ا ͳ/ݎଶ [49]. The space be-

tween the fibers is large and fibers rotate without influence 

by their neighbors, Eq. (2.25) is valid. The stationary solu-

tion in this case is a periodic rotation of the fiber. In semi-

dilute suspensions (𝛷 ا ͳ and ݊ܮ ب ͳ [48] or ͳ/ݎଶ 𝛷ا ا ͳ/ݎ for isotropic orientation [49]) fiber-fiber interac-

tions occur. If also 𝛷 is no longer small, a concentrated re-

gime is reached, fiber interactions significantly influence the 

movement and fibers are no longer free to move inde-

pendently. At state of the art, the movement of fibers in semi-

dilute and concentrated regimes cannot be described analyt-

ically.  

Folgar and Tucker [50] developed a semi-empirical model to 

take fiber interactions into account. The Folgar-Tucker-

model is an extension of the Jeffery’s equation with an em-
pirical interaction coefficient ୍ܥ. The stationary solution is a 

final orientation, depending on ୍ܥ. The approach still de-

scribes the evolution of a single fiber over time. Applying this 

model, meaning calculate the movement of every single fiber 

within a mold filling simulation, creates a huge numerical 

effort, which is unacceptable at state of the art. 

 Macroscopic orientation modeling 

Advani and Tucker [51] present a homogenization scheme, 

describing the fiber orientation evolution with orientation 

tensors to reduce the numerical effort. The exact formula-

tions of the second and fourth order tensors ܣ and ܣ are 
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ܣ  = ∫߰ሺ𝒒ሻݍݍd𝒒 (2.27) 

and 

ܣ  = ∫߰ሺ𝒒ሻݍݍݍݍd𝒒, (2.28) 

where ߰ሺݍሻ (or ߰ሺߠ, 𝜑ሻ) is the probability density function 

for a specific orientation. Inclusion of ܣ into the Folgar-

Tucker model leads to 

 

ݐ݀ܣ݀ + ߲ ܷܣ߲ݔ = −(𝑊ܣ − ଶݎ+ 𝑊൯ܣ − ͳݎଶ + ͳ(ܦܣ + ܦܣ − ߜ)ߛ𝐼̇ܥʹ+ ൯ܣܦʹ −  .൯ܣ͵
(2.29) 

This approach builds the base for several actual orientation 

models with different focuses [52–56]. 

Today’s most commonly used models are the reduced strain 

closure (RSC) model by Wang et. al. [52] for slow orienta-

tion due to high fiber volume fractions and the RSC-ARD-

model (anisotropic rotary diffusion) by Phelps and Tucker 

[53] for additionally long fibers. The models become more 

complex to consider more effects by need of more empirical 

parameters. To keep the empirical parameters low and since 

small aspect ratios (ݎ  ͳͲͲሻ being in the focus of this work, 

the RSC model is used. Based on the Folgar-Tucker model 

and by considering the eigenvectors and eigenvalues of the 

orientation tensor, the approach describes the evolution of 

the second order orientation tensor of ܣ by 
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ݐ݀ܣ݀ + ߲ ܷܣ߲ݔ = −(𝑊ܣ − ଶݎ+ 𝑊൯ܣ − ͳݎଶ + ͳ ܣܦ} + ܣ]ʹ− ܦܣ + ሺͳ − ܮ) ሻߢ ߜ)ߛ୍̇ܥߢʹ+ {ܦ[൯ܣܯ− −  .൯ܣ͵
(2.30) 

The fourth order tensors ܮ and ܯ are calculated with 

the eigenvectors ߥ and eigenvalues ߣ of ܣ as described in 

[52]. The so-called strain reduction factor ߢ is empirical and 

material specific, with ߢ ∈ [Ͳ,ͳ]. For ߢ = ͳ the RSC-model 

reduces to the Folgar-Tucker-model (Eq. (2.29)). 

 Characteristics of ܣ 
Since the orientation tensor is a complex construct, infor-

mation to interpret the results is required. The side entries 

reflect the deviation to the coordinate axis, hence it is  ܣ ∈[−Ͳ.ͷ,Ͳ.ͷ] for ݅ ≠ ݆. A fiber has no front or back end, there-

fore, ݍ = ܣ  is valid andݍ− ∈ -The major entries rep .݉ݕݏ

resent the amount of fibers orientated in the respective direc-

tion. Due to normalization it is trሺܣሻ = ͳ, which leads (in 

combination with ܣ ∈ sym.) to five independent entries 

[48]. 

One simple and often used interpretation is to see the eigen-

vectors as individual fibers with an orientation probability of 

its corresponding eigenvalue. Therefore, transversely iso-

tropic materials can be created by only regarding the direc-

tion with the highest eigenvalue, or the tensor is used for ori-

entation averaging. Further information is given in Section 

2.3.2.2. 
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Figure 2.11 shows specific fiber orientations with corre-

sponding orientation tensor. The three cases quasi-isotropic, 

aligned and 2D random (Figure 2.11a-c) are often used ori-

entations to verify novel approaches. Comparing Figure 

2.11c and Figure 2.11d illuminates one disadvantage of the 

orientation tensor, since it is identical in both cases, but the 

orientations are clearly different and the mechanical behav-

ior of the final parts would show significant deviations. Sim-

ilar configurations can also occur for 3D orientations. 

a) b) 

 
ܣ  = [ͳ/͵ Ͳ ͲͲ ͳ/͵ ͲͲ Ͳ ͳ/͵] ܣ = [Ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ Ͳ] 

c) d) 

ܣ   = [Ͳ Ͳ ͲͲ ͳ/ʹ ͲͲ Ͳ ͳ/ʹ] ܣ = [Ͳ Ͳ ͲͲ ͳ/ʹ ͲͲ Ͳ ͳ/ʹ] 
Figure 2.11: Different fiber orientations with corresponding ori-
entation tensor. Quasi-isotropic/3D random (a), unidirec-
tional/aligned (b), planar isotropic/2D random (c) and fabric 
like/2D aligned (d) 
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 Determination of ୍ܥ 
The interaction coefficient represents fiber-fiber interactions, 

thus it depends on  𝛷 and fiber orientation [57]. In past 

works, ୍ܥ is determined with experiments [58,59] or mathe-

matically as function of  𝛷 and ݎ [48,60]. Heinen compared 

the experimental and numerical approaches in her PhD the-

sis [61]. The results show, that a combination of [48,60] such 

as ୍ܥ = {Ͳ.Ͳ͵ሺͳ − expሺ−Ͳ.ʹʹͶ𝛷 ݎሻሻͲ.ͲͳͺͶexpሺ−Ͳ.ͳͶͺ𝛷 ݎሻ  
𝛷 ݎ  ͳ.͵ 𝛷 ݎ > ͳ.͵ (2.31) 

fits best to the experimental work in [58] and [59]. Within 

this work ୍ܥ is calculated according to this approach, which 

is similar to [61]. 

 Closure approximations for ܣ 
The change rate of ܣ requires the unknown fourth order 

orientation tensor ܣ. Similar to the second order tensor, 

a change rate equation can be determined for the fourth or-

der tensor, which would create numerical effort and require 

an unknown orientation tensor of sixth order [51]. There-

fore, ܣ is determined with a closure approximation.  

The first solutions for such closure approximations are the 

linear approach, which is exact for an isotropic distribution, 

the quadratic approach, which is exact for aligned fibers, and 

the hybrid approach, which is a combination of linear and 

quadratic [62]. Today there are several approaches for clo-

sure approximations to determine ܣ based on invariants 

or eigenvalues of ܣ [63]. Within this work the IBOF5 clo-

sure approximation developed by Chung and Kwon [64] is 
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used to determine ܣ, since was found to be a good ap-

proximation with quite little numerical effort. 

2.2.4 Fiber breakage modeling 

 Modelling of decreasing fiber length 

During processing, or during compounding, fibers may get 

damaged by interaction with the wall or other fibers as well 

as by hydrodynamic load of the surrounding matrix. Dam-

age in this case is similar to fiber breakage, hence the average 

fiber length within a compound or part is at least as long as 

in the initial material or shorter. Since the fiber length has 

crucial impact on the mechanical behavior of an FRP, an 

adequate prediction of the final fiber length distribution is 

crucial for subsequent material modelling. 

One of the first approaches to model fiber length distribu-

tions during compounding is presented by Shon et al. [65], 

describing the length evolution by  

 
ݐ݀ܮ݀ = −݇ୗ୦୭୬ሺܮ −  ∞ሻ, (2.32)ܮ

with kinetic constant ݇ୗ୦୭୬, determined for different process 

devices and the equilibrium fiber length ܮ∞ representing the 

shortest possible fiber length. Inceoglu et al. [66] extended 

this approach by considering the specific mechanical energy Π୫ୣ so 

 
ݐ݀ܮ݀ = ´´ܭ− ∙ Π୫ୣ ∙ ሺܮ −  ∞ሻ. (2.33)ܮ

Here ܭ´´ represents a change rate constant, determined by 

data of a batch mixer.  
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 Fiber breaking mechanisms 

The approaches of Shon and Inceoglu may describe the 

shortening of fibers, but in an empirical and linear way. The 

model parameters may be well suited for compounding pro-

cesses, but the variety of process conditions and geometries 

in injection molding is too high to describe the complex pro-

cess of fiber breaking with such simple models. 

In a first step it is crucial to identify the mechanisms, which 

lead the fibers to break. In principal these are identical to 

other damage mechanisms, meaning a specific strain or 

stress is reached. However, the material behavior of fibers 

and matrix during processing is complex and it is ambiguous 

which load case or cases are present, so it is unclear if the 

fiber is breaking due to bending, stretching or buckling. Sev-

eral studies identify buckling as the major, but not singular, 

effect for fiber breakage  [47,67–70]. Of course, effects such 

as interaction with walls or other fibers as well as imperfec-

tion in material and fiber geometry may favor or complicate 

this process.  

Assuming buckling as breaking criterium, it is necessary to 

verify that the stress field of the fiber, induced by the flow 

field, puts the fiber in compression. Therefore, the orienta-

tion between the fiber and the flow field must be known. The 

orientation state, where the fiber is under compression, is 

known as Jeffery orbit [47] and defined by  

ݍݍܦ  < Ͳ. (2.34) 

Figure 2.12 shows the values of ܦݍݍ for all possible ori-

entations, represented by a unity sphere in case of simple and 

normed shear flow. According to the color bar the Jeffery 

orbit is given by the blue area.  
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Figure 2.12: Visualization of Jeffery orbit on a unity sphere in sim-

ple shear flow. Colors represent value of ⟦ܦ⟧ݍݍ, blue regions 

(negative values) represent Jeffery orbit 

After the load case is known, the acting forces and stress dis-

tribution must be determined, to evaluate if the fiber is buck-

ling. A first approach is given by Burgers [71], assuming the 

forces to act from the fiber end to the center along the fiber 

axis. In a later work Hernandez et al. [68] extended this ap-

proach, determining analytical and pseudo-analytical solu-

tions of the force integral along the axis, showing a non-lin-

ear distribution. This aspect is quite important for determin-

ing the buckling point, meaning the critical force above the 

fiber buckles. Durin  et al. [69] performed simulations for fi-

ber loads with different orientations, flow fields and aspect 

ratios, also based on the model of Burgers.  Within the study 

it is shown, that for most cases the buckling criterion is 

reached before the breakage criterium (critical stress). The 

conclusion is, that for brittle fibers, such as glass or carbon, 

buckling then will lead to breakage and is acceptable and 

meaningful as singular breakage criterium.  
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Defining buckling as the mechanism for fiber breakage leads 

to the need of defining a point at which the fiber buckles. 

Therefore, the Euler buckling modes, derived by Euler in the 

middle of the 18th century are a common model. The critical 

load of this purely elastic deformation mode can by defined 

by stress, so 

 𝜎ୠ୳ = ܧ (  )ଶ, (2.35)ݎͶߨ

with ܧ being the elastic modulus of the fiber, used by Durin 

et al. [69]. The criterion can also be defined for forces as 

ୠ୳ܨ  = ଶܮ݀ସͶܧଷߨ , (2.36) 

used by Phelps et al. [70]. Both works identify the first buck-

ling mode as critical, leading to the assumption, that fibers 

break only at one point, so only two new fibers are created. 

The work of Meyer et al. [27] shows, that at least in dilute 

suspensions also other eigenmodes can be reached and fibers 

may break in three parts. 

 Fiber length distribution models 

To predict an adequate fiber length distribution within the 

final part, a physically based breakage model considering 

material properties and process condition must be defined. It 

can be seen in literature, that a crucial part of fiber breakage 

takes place within the plastification unit in case of injection 

molding. Nevertheless, this part of the process is often quite 

similar and the conditions change only slightly, so a known 

state of fiber length distribution at the end of plastification 

can be used as input for the mold filling simulation. Two ac-

tual models for fiber length distribution modeling with 

breakage mechanisms are given by Durin et al. [69] and 
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Phelps et al. [70]. While the first one is built to model break-

age in a twin screw extruder and uses single fiber orienta-

tions, the latter one is focused on mold filling in macroscopic 

injection molding simulations. Therefore, only the approach 

of Phelps et al. will be further discussed. 

In a first step, some assumptions must be defined. The most 

important are, that there is a minimum fiber length, where 

no more fiber breakage is possible and all possible fiber 

lengths are a multiple of this length. Furthermore, the flow 

field is assumed to be pure shear [70]. Additionally, the force 

acting on the fiber must be determined, to compute if the fi-

ber buckles. Therefore, Phelps et al. use the slender-body 

analysis presented by Dinh and Amstrong [72], representing 

the acting force by  

ܨ  = ଶͺܮߟߞ  ൯, (2.37)ݍݍܦ−)

where ߞ is a dimensionless drag coefficient and ߟ is the ma-

trix viscosity. Buckling is assumed to happen if the critical 

force, defined in Eq. (2.36) is reached, so 

 

ୠ୳ܨܨ = Ͷߟߞ̇ܮ)ߛ ൯ସߨଷܧ݀ସ =         ൯ݍݍ⟦ܦ⟧ʹ−) ൯         ݍݍ⟦ܦ⟧ʹ−)ୠ୳ܤ ͳ, (2.38) 

with ܤୠ୳ being the dimensionless buckling index and ⟦ܦ⟧ 
is the normed strain rate defined as ⟦ܦ⟧ = ܮ The index ݊ corresponds to the possible fiber length .ߛ̇/ܦ . According to 

Figure 2.12 it is  −ͳ  ݍݍ⟦ܦ⟧ʹ−  ͳ for all possible ori-

entations in case of pure shear. Hence there is no state satis-

fying Eq. (2.38) if ܤୠ୳ < ͳ. Furthermore, Phelps et al. 
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assume −ʹ⟦ܦ⟧ݍݍ = ͳ in regions where the fibers are un-

der compression. Regarding Figure 2.12, this means that the 

areas with xଷ > Ͳ and xଵ < Ͳ or xଷ < Ͳ and xଵ > Ͳ are fully 

and homogenous blue. Within this assumption, the remain-

ing buckling criterium is ܤୠ୳  ͳ and no fiber orientations 

must be determined. 

Based on numerical experiments Phelps et al. [70] define a 

breakage probability 𝑃ୠ୰ for every possible fiber length as  

𝑃ୠ୰ = { Ͳ for ܤୠ୳ < ͳܥୠ୰̇ߛ ቀͳ − exp(ͳ − ୠ୳൯ቁܤ for ܤୠ୳  ͳ, (2.39) 

with the breakage coefficient ܥୠ୰. Within [70] it is clearly 

mentioned, that (ͳ − expሺͳ −  ,ୠ୳ሻ൯ is a fitting approachܤ

and better functions may be found, although the numerical 

experiments show a low sensitivity towards the exact formu-

lation of this function. 

In a constitutive breakage model, fibers must create new, 

shorter fibers when breaking. Therefore, Phelps et al. [70] in-

troduce a child generation rate defined as  

 ܴୠ୰ = ߷ୠ୰PDFቆܮ ʹܮ, , ܵbrቇ, (2.40) 

being a Gaussian probability density function (PDF) with 

standard deviation ܵ ୠ୰ and mean value ܮ /ʹ, so fibers break 

most likely in the middle. The scaling factor  ߷ୠ୰ is defined 

to fulfill  

 ∑ܴୠ୰ = ʹ𝑃ୠ୰, (2.41) 

since every break creates two children fibers. Furthermore, it 

is  
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 ܴୠ୰ = ܴሺ−ሻୠ୰ , (2.42) 

because the length of one child and the parent fiber defines 

the length of the other child fiber. For example, if one child 

of a 1.0 mm fiber is 0.7 mm, the other one must be 0.3 mm 

and hence have the same probability. The last restriction to 

the child generation rate is  

 ܴୠ୰ = Ͳ for ݊  ݉, (2.43) 

otherwise recombining fibers to create longer ones would be 

possible, which is unphysical. 

Finally, the evolution equation of fiber lengths is given by 

 
߲ ߲ܰݐ + ܷ ߲ ߲ܰݔ = −𝑃ୠ୰ ܰ +∑ܴୠ୰ ܰ , (2.44) 

where ܰ  is the number of fibers with length ܮ  within the 

control volume. 

In summary, the approach of Phelps et al. [70] is able to cap-

ture the evolution of an arbitrary number of different fiber 

lengths within an injection molding simulation, considering 

process conditions. Furthermore, only a small amount of 

material information is needed. Physical parameters such as, 

matrix viscosity, elastic modulus and diameter of the fiber 

are usually known. In addition, the three empirical parame-

ters ܥ ,ߞୠ୰ and ܵୠ୰ must be determined. Although this ap-

proach is well suited to determine the fiber length distribu-

tion with respect to process parameters, there are disad-

vantages. One is the simplification −ʹ⟦ܦ⟧ݍݍ = ͳ and an-

other one is the need of an empirical parameter for force cal-

culation. These two aspect will be addressed with novel ap-

proaches in Section 3.4 within this work. 
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2.3 Simulation of process steps following 

mold filling 

The simulation of following process steps is indispensable to 

predict shrinkage, residual stress and hence the final part ge-

ometry. The range of complexity and numerical effort of 

such simulations form a wide spectrum. The material model 

can be isotropic, linear elastic up to anisotropic, time-de-

pendent and chemo-thermal viscoelastic. The simulation 

model itself may be only the filled cavity or the complete tool 

with integrated cooling/heating system. Several research 

works investigate in modeling with linear elastic [73], visco-

elastic [74] and thermo-viscoelastic approaches [17,75–78]. 

In general, the material flow during the holding pressure 

phase is neglected and the simulations are pure solid me-

chanics. Besides the stress-strain equilibrium, the thermal 

equation (Eq. (2.3)) still needs to be solved, although the vis-

cous heating can be neglected due to the low strain rates, 

compared to the mold filling phase. Furthermore, evolution 

equations for chemical reactions and phase change are still 

considered, since the majority of such processes take part 

within these process steps and they have significant influence 

on the material’s mechanical and thermal behavior. 

2.3.1 Matrix material modeling 

The mechanical behavior of the matrix is an overlay of ma-

terial aspects such as the exothermal curing reaction, glass 

transission temperature, material history, but also molecular 

aspects such as polymer-chain geometry. However, the latter 

are not considered in macroscopic simulations. Besides ma-

terial behavior, also the temperature field is significant, since 
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it co-defines the material temperature distribution. There-

fore, a wide range of models with different complexity and 

attendant experimental effort for parameter determination 

exist. A good overview of polymer viscoelasticity is given by 

Bergström [79] and in the special case of epoxies with fiber 

reinforcement by Bernath [14]. 

 Viscoelastic modeling 

A viscoelastic material model is able to describe the material 

behavior within a wide range of frequencies. In addition, 

polymer phenomena such as relaxing or creep can be mod-

eled. In a general form the stress tensor is given by  

 𝜎 = ∫ ݐሺܩ − ሻߦ ௧ߦሻ݀ߦሺߝ݀
 d(2.45) ,ߦ 

with strain tensor ߝ, time integration variable ߦ and relax-

ation modulus tensor ܩ, which is also often represented 

by a scalar, since the matrix behaves isotropic. Descriptions 

for ܩ in case of injection molding warpage modeling can 

be found in [75,77] or by Choi and Im  [17]. Unfortunately, 

all these studies focus on thermoplastic materials. According 

to the author’s knowledge during writing this thesis, no work 

addressing warpage simulation for reactive injection mold-

ing with visco-elastic phenolics has been published so far. 

Although, Mirabedini et al. [80] investigate in phenolic/rub-

ber compounds, the viscoelastic behavior is dominated by 

the rubber part, and the phenolic is already completely cured 

within the studies. Nevertheless, viscoelastic modeling of 

continuous fiber reinforced epoxies is investigated in several 

studies and the general modeling aspects are transferable, 

since epoxies show a more comparable behavior to phenol-

ics, than thermoplastics to phenolics. For thermoset 
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materials, the relaxation modulus is often approximated 

with a Prony series [81]  

 

,ݐሺܩ ܶ, ܿሻ= ୰ܩ ሺܿሻ ሺܿሻ𝑁ܩ∑+
=ଵ expቆ ,Θሺܶݐ ܿሻቇ, (2.46) 

with ܩ୰  being the elastic modulus in the rubbery state and Θ as actual relaxation time, depending on temperature and 

state of cure. The suitability of Prony series to model ther-

moset viscoelasticity is shown in [82–84]. Since the relaxa-

tion time strongly depends on the material state [14,83], they 

are often approximated with a shift function such as 

 Θሺܶ, ܿሻ = ܽୱሺܶ, ܿሻ + Θ୰ୣሺ ୰ܶୣ, ܿ୰ୣሻ, (2.47) 

where Θ୰ୣ are relaxation times referring to a reference state 

based on a master curve determined with experimental 

measurements. The shift-factor ܽୱ can be modeled WLF 

based or with an Arrhenius-type function [14]. 

 CHILE model 

Although viscoelastic approaches represent the material ad-

equately, a high experimental effort is necessary to charac-

terize the material and feed the model. Therefore, simplified 

approaches with accompanying restrictions exist. One ex-

ample is the class of the cure hardening instantaneously lin-

ear elastic (CHILE) models. In the line of simplifications be-

tween fully viscoelastic and CHILE, also path-dependent 

models exist, but since they are not relevant within this work 

they are not further discussed. More information about path-

dependent models is given by Svenberg and Holmberg  [85] 

as well as Bernath [14]. 
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Compared to viscoelastic approaches, the material history is 

neglected by CHILE models, so 

 𝜎 = ∫ ୡܧ ሺܶ, ܿሻ ௧ߦሻ݀ߦሺߝ݀
 d(2.48) ,ߦ 

with elastic stiffness tensor defined as ܧୡ ሺܶ, ܿሻ
= {  
ୡ୰ܧ   , ∆ ଵܶܧୡ୰ + ܶሺܿሻ − ܶ − ୡܶଵୡܶଶ − ୡܶଵ ቀܧ − ୡ୰ܧ ቁ, ∆ ଶܶܧୡ , ∆ ଷܶ

. (2.49) 

Here it is ∆ ଵܶ ∈ ܶሺܿሻ − ܶ < ୡܶଵ, ∆ ଷܶ ∈ ܶሺܿሻ − ܶ > ୡܶଶ and ∆ ଵܶ  ∆ ଶܶ  ∆ ଷܶ. ୡܶଵ and ୡܶଶ are material specific parame-

ters. ܧୡ୰ ୡܧ ,
 and ܧୡ  are the instantaneous elastic mod-

uli in pure rubbery, pure glassy and actual material state. 

One disadvantage of the CHILE approach is the non-release 

of frozen-in stress, after reheating above ܶ + ୡܶଵ, although 

there is a change of material stiffness. For normal process 

conditions, this aspect is uncritical, since the material is 

heated up to mold temperature once and cools down to room 

temperature afterwards. Both process steps include monoto-

nous temperature changes. During heating, the degree of 

cure has not reached the point of gelation in most cases. 

Hence, no residual stress can be frozen in. In the cooling 

step, the change from rubbery to glassy state should only 

happen once, so the frozen stresses cannot release.  

The approach can be further improved by assuming ܧୡ୰  and ܧୡ
 not to be constant. Bogetti and Gillepie [86] describe ܧୡ୰  by an interpolation between the values of fully cured 
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and fully uncured, as function of the degree of cure. Adolf 

and Martin [87] describe the evolution based on the power 

law. But, due to a lack of experimental data, ܧୡ୰  will be 

assumed to be constant within this study. According to Ber-

nath [14] ܧୡ
 is also assumed to be constant, since the state 

of cure has neglectable effect on small-strain properties, be-

ing relevant for modeling residual stresses and warpage. Fur-

thermore, Bernath verifies the CHILE model to be well 

suited to model the residual stresses und warpage in case of 

transverse isotropic material behavior with epoxy matrix in 

the RTM process. 

2.3.2 Homogenization and mapping 

 General procedure 

As mentioned, the parameters have crucial impact on the 

material during processing, and therefore on the final prop-

erties of the part. Hence it is important to describe the mate-

rial adequately and transform corresponding attributes from 

the process to the structural simulation, which are often not 

performed within the same software. 

In case of structural simulation of FRPs, an additional ma-

terial homogenization, based on fiber volume fraction and 

fiber orientation distribution, is often performed, because, 

similar to the process simulation, the numerical effort to sim-

ulate individual fibers is too high. Therefore, the homoge-

nized FRP is described by an isotropic, transverse isotropic 

or orthotropic material model. The principle of homogeni-

zation is shown in Figure 2.13a. 

Since the meshes at start and end of the data transformation 

(also known as source and target mesh) are not identical, val-

ues must be interpolated. This procedure is called mapping, 
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applied for example on temperature and curing field, but also 

fiber orientation tensors, relevant for the mechanical behav-

ior. 

 

 

(a) (b) 

Figure 2.13: Schematic illustration of homogenization (a). High-
lighting the influence of different meshes for change of values during 
mapping (b). Colors indicate different values of attributes 

Within the mapping process information may vanish or blur, 

as schematically shown in Figure 2.13b. The differences of 

source and target mesh have a significant influence within 

the mapping, as indicated in the intermediate state in Figure 

2.13b, although this influence may become irrelevant, as in-

dicated on the right side. While the mapping of scalars and 

vectors is explicit, this is not the case for tensors. 

 Homogenization schemes for FRPs 

The aim of homogenization is to calculate effective material 

parameters with accompanying minimal effort for experi-

mental data or empirical model parameters. Especially in 

case of FRPs, homogenized material models are often used, 

since on the one hand, the numerical effort to simulate single 

fibers and matrix separately is too high and on the other 
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hand the experimental effort to get all necessary material pa-

rameters for every material component is also unrealistic.  

The literature offers several homogenization schemes for dif-

ferent material groups and load scenarios. In general, ho-

mogenization schemes are separated in mean field and full 

field approaches. The latter are based on representative or 

statistical micro models to determine the mechanical answer 

of a macroscopic load, as for example presented by Müller 

et al. [88,89]. Due to the experimental and numerical effort, 

these approaches will not be further discussed. Mean field 

methods can be divided in bounding and estimating meth-

ods. The most prominent boundary methods may be the up-

per bound by Voigt [90] in combination with the lower 

bound by Reuss [91]. Since these approaches only take fiber 

volume content into account, but no aspect ratio or fiber ori-

entation distribution, the usage for discontinuous reinforced 

material is not suitable. Another often used approach for sec-

ond order bounds is provided by Hashin and Shtrikman [92–
94].  

Additionally, some often used, well suited and more detailed 

approaches are the approach by Mori and Tanaka [95] and 

by Tandon and Weng [96]. The approach of Tandon and 

Weng considers fiber volume content and aspect ratio and 

does not need further empirical parameters. Based on the as-

sumption of aligned spheroidal inclusions, a transverse iso-

tropic stiffness tensor is determined for equal strain. 

Thermal properties can also be homogenized with different 

approaches. The specific heat can be simply volume aver-

aged, since it is a scalar and isotropic property.  The thermal 

conductivity can be determined with the approach given by 

Clayton [32], representing an extension  of the Maxwell 
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approach for dilute suspension and valid for higher concen-

trations. For the coefficient of thermal expansion, Schapery 

presents an energy based approach [97]. Another often used 

model is presented by Rosen and Hashin [98], determining 

the effective properties by superposition of an isothermal 

problem with surface displacement and an uniform temper-

ature problem with homogenous boundary displacement. 

Nevertheless, these approaches only describe transverse iso-

tropic behavior, which is insufficient in most cases for injec-

tion molded FRPs. The material properties must be further 

orientation averaged. Besides the orientation tensors, Ad-

vani and Tucker [51] present an orientation averaging 

scheme for tensor properties, based on a transverse isotropic 

microstructure. According to [51] a transverse isotropic sec-

ond order Tensor ܶ is fully described by 

 ܶ = ݍݍଵܤ + ߜଶܤ , (2.50) 

with the material specific constants ܤଵ and ܤଶ. Similar to 

the orientation tensor, described in Section 2.2.3.2 the ori-

entation average of ܶ is given by 

 

ۃ ܶۄ = ∫ ܶሺݍሻ߰ሺݍሻ݀ݍ             = ۄݍݍۃଵܤ + =    ۄߜۃଶܤ ܣଵܤ + ߜଶܤ . (2.51) 

Here, ۄ∙ۃ indicates the orientation averaging. Hence, the ori-

entation average of a transverse isotropic tensor can be de-

scribed by the orientation tensor and the corresponding unity 

tensor. 

A fourth order, transverse isotropic tensor is completely de-

fined by five independent constants ܤଵ−ହ, as for example a 

unidirectional continuous FRP, where the mechanical 
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behavior is represented by the five engineering constants. 

Therefore, the orientation averaging is given by ۃ ܶۄ = ߜܣ)ଶܤ+                ܣଵܤ + ߜܣ)ଷܤ+                ൯ߜܣ + ߜܣ + ߜܣ + ൯ߜߜ)ସܤ+                ൯ߜܣ + ߜߜ)ହܤ +  ൯. (2.52)ߜߜ

The combination of the Tandon-Weng homogenization and 

the Advani-Tucker orientation averaging is successfully ap-

plied by Hohberg [99] for SMC material and also used within 

this work. 

 Mapping schemes 

Several commercially available mapping tools exist to trans-

form data between a process simulation and a structural 

analysis. In case of fiber reinforced polymers, these are for 

example MPCCI MapLib [100,101] or Digimat [102]. Fur-

ther approaches are presented in literature, for example by 

Reclusado and Nagasawa [103], mapping fiber orientation 

based on only the first eigenvalue with corresponding eigen-

vector. MPCCI MapLib has been successfully used for SMC 

material by Hohberg [99] and Görthofer et al. [104]. The 

principal of these mapping processes is always the same and 

shown in Figure 2.14. 

MPCCI MapLib maps independent of the software, which 

created the source and target mesh. Therefore, the mapping 

is purely based on geometry and the results and meshes. In 

case of mapping between different software packages, the 

meshes must be converted in a neutral data structure [100], 

being for example VTK within this work. In case of tensors, 

MapLib interpolates each tensor component independently. 

This method may lead to a loss of shape of the tensor.  
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Nevertheless, the only tensor mapped within this work is the 

orientation tensor, being positive definite and having a 

normed diagonal. Therefore, this mapping strategy is ac-

ceptable. 

 

Figure 2.14: Schematic illustration of mapping process. Colors indi-
cate different values of attributes. Due to source mesh, every element 
in the target mesh shows a different color / value 



3 Development of simulation methods 

56 
 

3 Development of simulation 

methods 

3.1 Considered interactions in process 

and material 

A comprehensive process simulation of FRP injection mold-

ing includes more than solving the Navier-Stokes equation 

with standard material models, as described in the Sections 

2.2.1.1, 2.2.2 and 2.2.3. Figure 3.1 shows all considered in-

teractions within this work. At first, interactions between the 

FRP and the tool must be considered. This aspect is solved 

via boundary conditions, for example the tool temperature 

as boundary condition for FRP’s temperature at the bound-

ary faces. Such interactions are already considered in a state-

of-the-art single-phase and isotropic injection molding simu-

lation. 

Due to the single-phase approach, the air in the mold is ne-

glected in state-of-the-art simulations. Within this work, the 

air is considered as separate phase in the mold, leading to a 

multi-phase approach with two immiscible fluids for the sim-

ulations. This leads to two more interaction pairs, which 

need to be mentioned. One is, similar to the FRP, the inter-

actions between the air and the tool, which are also solved 

via the boundary conditions. The other one is the interaction 

between FRP and air, which is solved within the multi-phase 

approach as described in Section 3.2 and [25,28]. 

Furthermore, internal material interactions are regarded 

within this work. The interactions between fibers and matrix 

are separated, so the influence from fibers on the matrix and 
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vice versa are modeled individually and with different ap-

proaches. 

 

Tool and FRP 
→ Boundary Conditions 

FRP and air 
→ Multiphase approach 
(Section 3.2) 

Tool and air 
→ Boundary Conditions 

Fibers on matrix 
→ Viscosity tensor 
(Section 3.3) 

Matrix on fibers 
→Hydrodynamic forces 
(Section 3.4.1) 

Fibers on fibers 
→Fiber-fiber forces 
(Section 3.4.2) 

Figure 3.1: Macroscopic interactions between FRP (green), air (light 
blue) and tool (shaded) with corresponding simulation aspects. Ma-
terial internal interactions between fibers (blue) and matrix (yellow) 
with corresponding simulation approaches 

Due to their non-spherical shape, the fibers induce stresses 

in the matrix in an anisotropic way. Therefore, the FRP’s 
viscosity is modeled by a fourth order viscosity tensor, de-

pending on non-Newtonian matrix viscosity, fiber orienta-

tion, length and volume fraction. The viscosity tensor and 

the underlying micro-mechanical models are described in 

Section 3.3 and [26,38,105]. 
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On the opposite, the relative velocity between matrix and fi-

bers induces hydrodynamic forces in the fibers, leading to fi-

ber re-orientation and may also lead to fiber breakage. The 

hydrodynamic forces are calculated to support fiber break-

age simulations, depending on matrix viscosity, flow field 

and fibers. The corresponding methods are described in Sec-

tion 3.4.1 and [37,106]. 

Besides the matrix, fibers interact with other fibers. These in-

teractions induce lubrication, friction and normal forces in 

the fibers. Hence, these forces are approximated as function 

of matrix viscosity, fiber orientation, geometry and volume 

fraction, as described in Section 3.4.2 and [106–110]. 

To keep the numerical effort in an acceptable range to per-

form a macroscopic process simulation of a whole part, the 

fiber orientation is described with state-of-the-art models and 

orientation tensors, described in Section 2.2.3. Hence, for 

the hydrodynamic forces on fibers, only the portion in fiber 

direction is considered, leading to buckling and breaking. 

The non-fiber-direction component of the forces leads to re-

orientation and would therefore be an overshoot, because 

the orientation is calculated separately.  

3.2 Multiphase approach1 

3.2.1 Volume-of-fluid method 

A multi-phase approach requires a methodology to differen-

tiate between the phases and separate material properties in 

the calculations. Many different approaches to separate two, 

or more, phases in a CFD simulation have been published 

                                                      
1 The methods presented in this Section are published in [25]. 
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and can be found in several fluid dynamic books. Within this 

work, the FRP and air are considered as homogeneous fiber 

matrix suspension and gas mixture. Therefore, the multi-

phase approach distinguishes only between two phases, 

which are immiscible. A well-suited approach for these con-

ditions is the volume-of-fluid method (VOF) with one VOF-

factor ߙ ∈ [Ͳ,ͳ]. 
Within this work, ߙ = Ͳ equals pure air and ߙ = ͳ pure 

FRP. Cells with ߙ ∈ ሺͲ,ͳሻ are partially filled. Effective ma-

terial specific properties can be calculated by volume averag-

ing 

 ∙ ̅ୣ = ୖP|∙|ߙ + ሺͳ −  ሻ|∙|ୟ୧୰. (3.1)ߙ

3.2.2 Phase-dependent boundary condi-

tion 

Due to the presence of air within the mold, a phase-depend-

ent boundary condition must be formulated, the way that air 

can leave the mold but FRP not. The boundary condition is 

defined as function of ߙ to consider the phase-dependence 

and applies for ܷ . The air is assumed to leave the mold with-

out a change of state, so 

 
߲ ܷ߲ݔ = (Ͳ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ)  for ߙ = Ͳ, (3.2) 

being a Neumann boundary condition named zeroGradient. 

Furthermore, the boundary condition should act like a wall 

for the FRP resulting in a Dirichlet boundary condition with 

 ܷ = ሺͲ Ͳ Ͳሻ for ߙ = ͳ, (3.3) 
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named ܷ ୣ୰୭. Hence a no-slip boundary condition is applied, 

which is a simplification for RIM, but creates good results 

with less need of model parameters (see Section  2.2.1.5). 

There are different options to define the condition for ߙ ∈ሺͲ,ͳሻ. One is to define a fixed switchover for ߙ = ͳ, leading 

to a loss of material caused by outflow, while cells are par-

tially filled. To reduce this loss, the switchover can be de-

fined at any point  ߙ  ͳ, which leads to in-mold air, unable 

to leave. Within this work, a compromise between these two 

cases is chosen. Similar to material properties and according 

to [25,26] the two boundary conditions zeroGradient and ܷୣ୰୭ are interpolated with ߙ. The final velocity boundary 

condition is described schematically with 

 Ubound = ߙ ܷୣ୰୭ + ሺͳ −  (3.4) ,ݐ݊݁݅݀ܽݎܩݎ݁ݖሻߙ

Numerical studies and a verification of the boundary condi-

tion are presented in Section 4.1.1. To minimize the material 

loss caused by this formulation, the condition is only applied 

for a specific region of the mold as shown in Figure 3.2. This 

region, called outlet, is defined at the end of the flow path, 

where the venting slots are positioned in the real process. 

The other boundary areas (besides the inlet) are impermea-

ble walls, so neither FRP nor air may leave the mold. 

 

Figure 3.2: Different boundary regions for an arbitrary mold filling 
model. Inlet in blue, impermeable walls in grey and outlet with 
phase-dependent boundary condition in red 
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3.3 Anisotropic viscosity modeling2 

3.3.1 Theory 

 Transversely isotropic fluids 

The real viscosity of a FRP is a complex combination of tem-

perature, chemical reaction, shearing and, due to presence of 

fibers, anisotropy. Within this Section the focus is on de-

scription of anisotropic viscosity due to fibers. 

Since fibers are non-spherical, stress builds up along the sur-

face in an anisotropic way. This effect is similar to FRPs in 

solid mechanics and hence, the simplest anisotropic behav-

ior is transversely isotropic. This behavior is present if all fi-

bers are aligned parallel in one direction (cf. Figure 2.11b 

and Figure 3.3).  Gibson [43] describes a transversely fluid 

analogy to solid mechanics by ߝ̇ = ܵ୲୰ୟ୬ୱ୴ୣ୰ୱୣ𝜎 
 ܵ୲୰ୟ୬ୱ୴ୣ୰ୱୣ =

[  
   
 ܵଵଵଵଵ ܵଵଵଶଶ ܵଵଵଶଶ Ͳ Ͳ Ͳܵଶଶଶଶ ܵଶଶଷଷ Ͳ Ͳ Ͳܵଶଶଶଶ Ͳ Ͳ ͲͶܵଶଶଶଶ − ܵଵଵଵଵ Ͳ Ͳsym. ܵଵଶଵଶ Ͳܵଵଶଵଶ]  

   
 
, 

(3.5) 

with ܵ as forth order fluidity tensor.  

Additionally, Gibson assumes incompressibility, so it is 

                                                      
2 The methods presented in this Section are published in [26]. 
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ଵ̇ଵߝ  + ଶ̇ଶߝ + ଷ̇ଷߝ = Ͳ, (3.6) 

leading to 

 
ሺ𝜎ଶଶ + 𝜎ଷଷሻሺܵଶଶଶଶ + ܵଵଵଶଶ + ܵଶଶଷଷሻ = −𝜎ଵଵሺ ଵܵଵଵଵ + ʹܵଵଵଶଶሻ. (3.7) 

Since Eq. (3.7) must be valid for any arbitrary stress state, 

two more conditions are given by  

and 

ሺܵଶଶଶଶ + ܵଵଵଶଶ + ܵଶଶଷଷሻ = Ͳ, 
 ሺܵଵଵଵଵ + ʹܵଵଵଶଶሻ = Ͳ, (3.8) 

hence the number of independent material constants reduces 

to three and the fluidity tensor can be rewritten as 

ܵ୲୰ୟ୬ୱ୴ୣ୰ୱୣ,୧୬ୡ୭୫୮ =

[  
   
  ܵଵଵଵଵ −ௌభభభభଶ −ௌభభభభଶ Ͳ Ͳ Ͳௌభభభభ+ௌమయమయସ ௌభభభభ−ௌమయమయସ Ͳ Ͳ Ͳௌభభభభ+ௌమయమయସ Ͳ Ͳ Ͳܵଶଷଶଷ Ͳ Ͳsym. ܵଵଶଵଶ Ͳܵଵଶଵଶ]  

   
  
, 

(3.9) 

 

Within [43], these three constants are independent of fiber 

attributes. 

 Dependence on fiber attributes of transversely 

isotropic fluids 

A solution to describe the three constants of a transversely 

fluid as function of fiber attributes is given by Pipes et al. 

[105]. Besides the full alignment and the incompressibility 
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Pipes et al. define a few more assumptions. The fiber ends 

are touching and the fibers are arranged in square or hexag-

onal packaging. Fiber ends in one row are next to fiber cen-

ters in neighbor rows, also in hexagonal packaging, which is 

a simplification. All fibers have the same diameter ݀  , length ܮ and neighbor distance ℎ. The rows have an offset of ܮ ʹ⁄ . 

The variation of velocity in fiber direction is linear ( ଵܷ ଵݔଵ̇ଵߝ  = + const.), so ߝଵ̇ଵ = const.  Fibers move with the ve-

locity of their center. A schematic visualization of such an 

assembly with resulting shearing is given in Figure 3.3.  

 

Figure 3.3: Aligned fibers in a fluid. Shearing due to ଵܷ,ଶ > ଵܷ,ଵ. 

Based on the assumptions and information in Figure 3.3 it is  

 ଵܷ,ଶ − ଵܷ,ଵ = ଵ̇ଵߝ ܮ ʹ⁄  (3.10) 

and 

ଵ̇ଶߝ  = ߛ̇ = ଵ̇ଵߝ ܮ ሺʹሺℎ − ݀ሻሻ⁄ . (3.11) 

For a fiber formation as shown in Figure 3.3, the fiber vol-

ume fraction is given by 

 Φ = Φ୫ୟ୶ (݀ℎ)ଶ, (3.12) 
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with Φ୫ୟ୶ being the maximum possible fiber volume frac-

tion, which is ߨ/√ͳʹ for hexagonal and ߨ/Ͷ for square pack-

ing. Since hexagonal packing represents a stable equilibrium 

it is the more realistic case. Therefore, hexagonal packaging 

is assumed within this work. 

According to [105] the average force ̂ܨ acting in fiber direc-

tion at the fiber midpoint is given by 

ܨ̂  = ʹ𝜎ଵଵΦ ቆ݀ߨଶͶ ቇ. (3.13) 

On the opposite, the force due to shear stress 𝜏ଵଶ on half of 

the fiber surface is  

ܨ̂  = 𝜏ଵଶ ʹ ݀ܮ ߨ) ) = ߛ̇ߟ ʹ ݀ܮ ߨ) ). (3.14) 

Building up the force equilibrium leads to  

ߛ̇ߟ  = 𝜎ଵଵΦ (݀ܮ) = 𝜎ଵଵΦݎ. (3.15) 

Finally, the combination of Eq. (3.11), (3.12) and (3.15) 

yields to ߟଵଵ = 𝜎ଵଵߝଵ̇ଵ = ʹΦߟ ቆ √Φ/Φ୫ୟ୶ͳ − √Φ/Φ୫ୟ୶ቇݎଶ. (3.16) 

The axial elongational viscosity ߟଵଵ is identical to the entry ߟଵଵଵଵ in the fourth order viscosity tensor for a complete mi-

cro-mechanical approach. Nevertheless, later in this work 

the formulation of ߟଵଵଵଵ will be defined differently due to 

homogenization based on this micro mechanical approach 

(see Section 3.3.2). Therefore, the notation ߟଵଵ is chosen. 
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Similar to ߟଵଵ the axial shear viscosity ߟଵଶ and transverse 

shear viscosity ߟଶଷ can be determined, as shown in [105]. 

The results are 

ଵଶߟ  = ʹߟ ቆʹ − √Φ/Φ୫ୟ୶ͳ − √Φ/Φ୫ୟ୶ቇ (3.17) 

and 

ଶଷߟ  = ሺͳߟ − Φ/Φ୫ୟ୶ሻଶ. (3.18) 

With these three parameters (ߟଵଵ,  ଶଷ) it is possibleߟ ଵଶ andߟ

to fully describe the viscous behavior of a transversely fluid 

with fiber arrangement as shown in Figure 3.3. The matrix 

viscosity can be assumed constant, as in [38], or be calcu-

lated with an viscosity model such as in [26]. Within this 

work, the matrix viscosity is calculated with the Castro-Ma-

cosko model described in Section 2.2.2.3, if not explicitly 

mentioned differently. 

Pipes et al. published further investigations to describe the 

material behavior on microscopic scale for a fiber-fiber over-

lap ≠ ܮ ʹ⁄  [111] or within a power-law matrix [112]. Never-

theless, these further approaches are not suitable for a mac-

roscopic process simulation with orientation tensors, since 

too much information, for example the overlap length of in-

dividual fibers, is not defined. 
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3.3.2 Viscosity tensor of discontinuous 

FRPs 

 Viscosity tensor of transversely isotropic 

FRPs 

Based on the assumptions and formulations of Section 3.3.1 

and by setting  ܵଵଵଵଵ = ͳ/ߟଵଵ, ܵଶଷଶଷ = ͳ/ߟଶଷ and ܵଵଶଵଶ =ͳ/ߟଵଶ the viscosity would be defined as inverse of the fluidity 

tensor (Eq. (3.9)), but, due to the incompressibility assump-

tion, the fluidity tensor is singular. Sommer et al. [38] present 

a solution to formulate a fourth order viscosity tensor for the 

assumption of incompressibility. In a first step, a 

pseudoinverse viscosity tensor for a transversely isotropic 

fluid is built. The methodology is given by Loredo and 

Klöcker [113], determining the stiffness tensor of an incom-

pressible solid material. The pseudoinverse is defined as 

ܵ−ଵ = ( ܵ + (ͳ͵) )−ଵߜߜ − (ͳ͵) ߜߜ . (3.19) 

Applying this for the fluidity tensor as defined in Eq. (3.9) 

and further replacing ܵଵଵଵଵ = ͳ/ߟଵଵ, ܵଶଷଶଷ = ͳ/ߟଶଷ and ܵଵଶଵଶ = ͳ/ߟଵଶ leads to ߟ୲୰ୟ୬ୱ୴ୣ୰ୱୣ =
ଵଽ [  
   
 Ͷߟଵଵ ଵଵߟʹ− ଵଵߟʹ− Ͳ Ͳ Ͳߟଵଵ + ͻߟଶଷߟଵଵ − ͻߟଶଷ Ͳ Ͳ Ͳߟଵଵ + ͻߟଶଷ Ͳ Ͳ Ͳߟଶଷ Ͳ Ͳsym. ଵଶߟ Ͳߟଵଶ]  

   
 
. 

(3.20) 
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 Orientation averaging of the viscosity tensor 

The tensor given by Eq. (3.20) is only valid for transversely 

isotropic, meaning fully aligned, materials. However, this 

state is never reached in a real process, although it might be 

a good approximation near the surface and in thin part re-

gions. To close this gap and apply the tensor also for less ori-

entated regions, the orientation averaging by Advani and 

Tucker, introduced in Section 2.3.2.2 (Eq. (2.52)) is used, 

similar to [26,38]. Finally, the orientation averaged fourth 

order viscosity tensor is defined as ߟۃୖPۄ = ሺߟଵଵ − Ͷߟଵଶ + +                ܣଶଷሻߟ ቀ−ߟଵଵ͵ + ଶଷቁߟ ߜܣ) + ଵଶߟ൯                +ሺߜܣ − ଶଷሻߟ ቆ ߜܣ ߜܣ+ + ߜܣ + +                ቇߜܣ ቀߟଵଵͻ − ଶଷቁߟ ߜߜ)ଶଷߟ+                ൯ߜߜ) +  .൯ߜߜ
(3.21) 

This formulation fulfills Eq. (3.9) and generates similar re-

sults compared to the formulations of Ericksen [114] and 

Hinch and Leal [115]. The viscosity is calculated aniso-

tropic, depending on fiber orientation, fiber volume fraction, 

fiber aspect ratio and matrix viscosity, represented by the 

three parameters ߟଵଵ, ߟଵଶ and ߟଶଷ given in Eq. (3.16)-(3.18).  

 Extension to multi-phase modeling 

The work of Sommer et al. [38] focusses on modeling a sin-

gle-phase compression molding process. The approach must 

be extended to be applicable for a multi-phase simulation 

with FRP and air, as described in [26]. The viscosity is a 
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material specific variable, interpolated with the VOF method 

(cf. Section 3.2.1). Hence the effective viscosity ߟୣ  is 

ୣߟ  = ߙ ∙ ୖPߟ + ሺͳ − ሻߙ ∙ ୟ୧୰ߟ , (3.22) 

with  ߟୟ୧୰ =
ୟ୧୰ߟ

[  
   
Ͷ/͵ −ʹ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ Ͳ Ͳ Ͳͳ Ͳ Ͳsym. ͳ Ͳͳ]  

   , (3.23) 

where ߟୟ୧୰ is the scalar viscosity of air, assumed to be con-

stant within this work. The fourth order viscosity tensor of 

air is isotropic and the formulation fulfills the condition 

 

ୟ୧୰ߟ ܦ ୟ୧୰ߟʹ = ܦ) − ͳ͵ ߲ ܷ߲ݔ  ), (3.24)ߜ

so the results for the viscous stress tensor are identical for the 

scalar and fourth order tensor formulation (see Section 

2.2.1.1, Eq. (2.4) and Eq. (2.5)). 

 Implementation in OpenFOAM 

The momentum equation (Eq. (2.2)) is solved implicitly 

within OpenFOAM 4.1. Since the viscous stress tensor di-

rectly depends on the velocity gradient, Eq. (2.4) is used dur-

ing solving, so the viscous stress can change and the equilib-

rium is reached. This term cannot be directly replaced by ߟୣ  , since the implicit solving algorithm is only definedܦ

for scalars, vectors and second order tensors in Cartesian 
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coordinate systems. Nevertheless, implicit solving is more 

stable and robust. To gain more stability during solving, the 

effective viscosity tensor is split into an isotropic and aniso-

tropic part so that 

ୣߟ  = ୣ,୧ୱ୭ߟ +  ୣ,ୟ୬୧ୱ୭, (3.25)ߟ

as presented in [26]. The isotropic part can be represented by 

a scalar value and hence be solved implicitly without loss of 

information. According to Bertóti and Böhlke [116] the ef-

fective scalar shear viscosity of an anisotropic fluid is  

,୧ୱ୭ୣߟ  = ͳͳͲߟୣ 𝑃ଶ , (3.26) 

where 𝑃ଶ  is the second projector tensor of fourth order. 

The corresponding fourth order tensor is defined similar to 

the viscosity of air as ߟୣ,୧ୱ୭ =
,୧ୱ୭ୣߟ

[  
   
Ͷ/͵ −ʹ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ Ͳ Ͳ Ͳͳ Ͳ Ͳsym. ͳ Ͳͳ]  

   . (3.27) 

The anisotropic part can be determined by ߟୣ,ୟ୬୧ୱ୭ ୣߟ= − ୣ,୧ୱ୭ߟ
. Finally, the viscous stress is calculated with  𝜏 = ୣߟ ܦ = ୣ,୧ୱ୭ߟ) + = ܦୣ,ୟ୬୧ୱ୭൯ߟ ,୧ୱ୭ୣߟʹ ܦ) − ͳ͵ ߲ ܷ߲ݔ )⏟                ୱ୭୪୴ୣୢ ୧୫୮୪୧ୡ୧୲୪୷ߜ +  ⏟        ୱ୭୪୴ୣୢ ୣ୶୮୪୧ୡ୧୲୪୷. (3.28)ܦୣ,ୟ୬୧ୱ୭ߟ
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3.4 Fiber forces and breakage modeling3 

3.4.1 Hydrodynamic forces from fluid on 

fibers 

The anisotropic viscosity tensor, presented in Section 3.3 

represents the fiber to fluid part in the stress equilibrium, but 

not the fluid on fiber part. The matrix introduces forces in 

the fibers, due to relative velocity, leading to re-orientation 

or in some cases to fiber damage. This fluid dynamic phe-

nomenon is known as hydrodynamic forces. In principal the 

effect is similar to aerodynamics and therefore, the same ap-

proaches can be adapted.  

Since fibers are non-spherical bodies, the hydrodynamic 

force ܨ୦୷ୢ is a combination of drag force ܨୢ  and lift force ܨ୪୧. The first appears whenever a fluid has a relative velocity 

and contact to a rigid body, while the latter occurs due the 

inhomogeneous stress distribution on the surface, caused by 

the non-spherical geometry [20]. 

The literature offers several studies on the modeling of hy-

drodynamic forces on fibers, such as for example work of 

Phan-Thien et al. [117], Lindström and Uesaka [118], Dinh 

and Amstrong [72] and Meyer et al. [37]. Within this work, 

the approach of Meyer et al. is adapted, since it has proven 

to be well suited for modeling forces on glass fibers, or fiber 

bundles, in a macroscopic process simulation, although 

Meyer et al. focus on compression molding simulations. Fur-

thermore, the approach provides the possibility to 

                                                      
3 The methods for fiber force modeling presented in this Section 

are published in [106]. 
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distinguish between drag and lift force, which is not directly 

possible in other approaches. 

 Modeling of hydrodynamic drag and lift force 

The drag force of a sphere is given by Stokes law, so  

ୢܨ  = ݀ୱ୮Δߟߨ͵ ܷ,  (3.29) 

with ݀ ୱ୮ being the diameter of the sphere and Δ ܷ the relative 

velocity. According to Batchelor [20], the absolute hydrody-

namic resistance is proportional to ߟ݀ୱ୮‖Δ ܷ‖ and inde-

pendent of the body’s shape, if the flow is Newtonian, in-
compressible and the internal forces are neglectable com-

pared to the viscous forces so ܴ݁ ا ͳ. Hence, Meyer et al. 

define an equivalent diameter  

 ݀ୱ୮ = ݇ୢሺݎ, ߶ሻ݀, (3.30) 

with the dimensionless correction coefficient ݇ୢ, depending 

on fiber aspect ratio and relative angle between fiber and rel-

ative velocity ߶. 

Besides the drag force, the lift force should also be consid-

ered. Meyer et al. [37] present a similar approach using a di-

mensionless correction coefficient ݇୪୧. Of course, the lift 

force acts not in direction of the relative velocity, but perpen-

dicular to the relative velocity and the fiber axis. Hence, the 

lift force direction is defined as 

  = ሺݍ × ۤΔ ܷۥሻ × ۤΔ ܷ(3.31) .ۥ 

Similar to the drag force, but acting in a different direction, 

the lift force is then defined by 

୪୧ܨ  = ,ݎ݇୪୧ሺߟߨ͵ ߶ሻ݀‖Δ ܷ‖ۤ(3.32) .ۥ 
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Finally, the complete hydrodynamic force on one fiber is 

given by  

 
୦୷ୢܨ = ୢܨ + = ୪୧ܨ ݀ሺ݇ୢΔߟߨ͵ ܷ + ݇୪୧‖Δ ܷ‖ۤۥሻ. (3.33) 

The ۤ ۤ brackets represent a normed vector, defined as ۥ∙ ۥݔ  .‖ݔ‖/ݔ=

 Definition of correction coefficients ݇ୢ and ݇୪୧ 
Within [37], ݇ୢ and ݇୪୧ are approximated, based on numeri-

cal experiments computing the stress on single fibers in a 

simple shear flow with different orientations and aspect ra-

tios. Since the hydrodynamic force is the result of an inter-

action between fluid and fiber on the fiber surface, it is also 

given by 

୦୷ୢܨ  = ∫𝜎 ݊dܣ, (3.34) 

with ܣ describing the fiber surface and ݊ being the corre-

sponding normal vector. Here, the fiber ends are neglected. 

Meyer et al. [37] performed numerical experiments with a 

fixed fiber within a flow field with known viscosity and ve-

locity. Combining Eq. (3.33) and (3.34) leads to 

 ݇ୢ = ͳ͵ߟߨ݀‖Δ ܷ‖∫𝜎݊dܣ (3.35) 

and 

 ݇୪୧ = ͳ͵ߟߨ݀‖Δ ܷ‖∫𝜎 ݊dܣ, (3.36) 

where the index ݅  and ݆  indicate the components vertical and 

horizontal on the surface here. Meyer et al. solve Eq. (3.35) 
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and Eq. (3.36) for Δ ܷ = ሺͳ Ͳ Ͳሻ mm/s and ߶ ∈ [Ͳ°, ͻͲ°] 
as well as different aspect ratios. The angle interval repre-

sents all possible angles between fiber and relative velocity, 

since a fiber has no front or back end. Within [37] numerical 

fits are performed to approximate ݇ୢ and ݇୪୧ as function of 

aspect ratio and angle. The results are given by  

 ݇ୢ = ͳ − ݎ୦୷ୢሺߙ − ͳሻcosሺʹ߶ሻ + ݎ୦୷ୢሺߚ − ͳሻ (3.37) 

and 

 ݇୪୧ = ݎ୦୷ୢሺߙ − ͳሻsinሺʹ߶ሻ, (3.38) 

with ߙ୦୷ୢ = Ͳ.Ͳͻ and ߚ୦୷ୢ = Ͳ.͵ͳʹͷ. By these approxima-

tions ݇ୢ shows a steady increase for ݎ > ͳ and for an in-

crease of  ߶, while it is constant for ݎ = ͳ , applying [20] in 

case of spherical inclusions. Whereas ݇୪୧ is zero for ݎ = ͳ or ߶ = {Ͳ° ͻͲ°} and has a maximum for ߶ = Ͷͷ°, since fibers 

have a symmetric surface. 

 Application of hydrodynamic force modeling 

in homogenized material 

The work of Meyer et al. [37] includes a material model ap-

proach with individual fibers (or fiber bundles) enabling the 

calculation of the hydrodynamic force as given by Eq. (3.33). 

Within a homogenized material three important aspects are 

unknown. The first one is that the relative velocity between 

fibers and fluid is unknown. Secondly, the angle between the 

fiber and Δ ܷ is unknown. Consequently and thirdly, the di-

rection of the lift force  is also unknown. In a first step, the 

relative velocity is approximated. Similar to [37] and [106], Δ ܷ can be approximated by  

 Δ ܷ 𝑊ݓ∑= ሺ ܷ − ܷሻ, (3.39) 



3 Development of simulation methods 

74 
 

with ݓ = exp ቀ−ሺͻ݀ଶ ሻ/(ʹܮଶ൯ቁ   and  𝑊 = ∑ ݓ . The 

indices ݊ and ݉ indicate different cells and ݀ is the dis-

tance between the centers of these cells. Contrary to [37] ܷ  

is not the velocity of the bundle part within this work, but 

the velocity in cell ݉ at the cell center and is assumed that 

all fibers within this cell have on average the same velocity 

as the cell center. This simplification is justified by homoge-

nization and the fact that no fiber matrix separation is as-

sumed [106].  Hence, Δ ܷ depends on the velocities ܷ of 

the ݊ considered neighbor cells. The value of ݊ is chosen so  ͳ/݊∑ ݀  ͳ.ͷ ܮ, but at least one generation of cell 

neighbors is always taken into account. 

The next step is to approximate the angle between Δ ܷ and 

the fibers. Without knowledge of single fiber orientation, the 

next meaningful approximation is to determine some kind of 

average angle. This angle can be defined in relation to a ref-

erence fiber. In structural analysis, the material is often de-

scribed transverse isotropic with fibers along the first eigen-

vector, as described in Section 2.3.2 and [103]. Hence, the 

eigenvector can be interpreted as such a representative fiber. 

Since there are always three eigenvectors, there are three ref-

erence fibers with exact known orientation and the orienta-

tion probability of the corresponding eigenvalue can be de-

termined for every known second order orientation tensor. 

This assumption fits to the definition of the orientation ten-

sor, since it is  

ܣ  = ∫߰ሺݍሻݍݍdݍ = ଷߥߥߣ∑
=ଵ  (3.40) 

in case of three fibers. Here, ߥ is the ݊-th eigenvector of ܣ 
and ߣ the corresponding eigenvalue. 
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By knowing the orientation of the eigenvectors, the angle to 

the relative velocity is given by  

 ߶ = arccos (Δ ܷߥ‖Δ ܷ‖) (3.41) 

and the direction of the lift force by  

  = ሺߥ × ۤΔ ܷۥሻ × ۤΔ ܷ(3.42) .ۥ 

Based on this information, Eq. (3.33) can be solved and ܨ୦୷ୢ 

can be approximated in a discretized mesh with fiber orien-

tation tensors [106].  Due to the dependence of ߶ and  on 

the three eigenvectors, ܨ୦୷ୢ is calculated three times in every 

cell. Furthermore, ݇ୢ and ݇୪୧ depend on the fiber aspect ra-

tio, so in case of fiber length distributions, ܨ୦୷ୢ is determined 

three times for every possible fiber length. 

3.4.2 Fiber-fiber interactions 

 Approximation of fiber-fiber contact points 

During processing, fibers are in contact, which gets more sig-

nificant for more highly filled suspensions. Whenever there 

is a contact between two fibers, contact forces act at these 

contacts. Since the forces appear on every contact point, in a 

first step, the number of these contact points needs to be de-

termined. 

Toll [119] describes that the average number of fiber center-

lines, intersecting an average test fiber is exactly given by  

 ܰ୧ = ݊ܮଶ݂݀ + ͳ Ͷ⁄ ݀ଶሺ݃ܮ݊ߨ + ͳሻ, (3.43) 
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with ݊ being the number of fibers per volume and ݂ and ݃ 

are the scalar invariants of the fiber orientation distribution, 

given by  

 ݂ = ݍ|∫∫ × |ஒݍ ߰ሺݍሻ߰ሺݍஒሻdݍdݍஒ (3.44) 

and 

 ݃ = |ஒݍݍ|∫∫ ߰ሺݍሻ߰ሺݍஒሻdݍdݍஒ . (3.45) 

Here, the indices Ƚ and Ⱦ indicate different individual fibers. 

In a later study, Toll shows, that the average number of fiber 

contact points ܰୡ per fiber is determined by replacing ݀ 
within Eq. (3.43) with ʹ݀ [107], so  

 ܰୡ = ʹ݊ܮଶ݂݀ + ݀ଶሺ݃ܮ݊ߨ + ͳሻ. (3.46) 

The fiber volume fraction 𝛷 is given by ሺͳ/Ͷሻ݊ߨܮ݀ଶ, so 

the contact points may also be calculated as function of the 

volume fraction by  

 ܰୡ = ͺ ⁄ߨ 𝛷ݎ݂ + Ͷ𝛷ሺ݃ + ͳሻ. (3.47) 

Finally, the number of contact points is given, depending on 

fiber volume fraction, aspect ratio and orientation. Although 

this approach is a great advance in FRP process modeling, 

one disadvantage is the dependence of ݂  and ݃  on single fiber 

orientations, being an information, which is not available in 

a macroscopic process simulation. 

Therefore, Férec et al. [120] present an approach to approx-

imate the number of contacts points, with information pro-

vided by the orientation tensors. Within the study, new rhe-

ological models for fiber orientation are developed, includ-

ing a so-called interaction tensor ୍ܾ, defined as 
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୍ܾ = ݍݍ∫∫ ݍ| × |ஒݍ ߰ሺݍሻ߰ሺݍஒሻdݍdݍஒ. (3.48) 

 Due to the normed orientation vectors, it is 

 ݂ = ୍ܾ. (3.49) 

Furthermore, |ݍ × |ஒݍ = ͳ −   ஒ, soݍݍஒݍݍ

 ୍ܾ = ∫∫ቀݍݍ − ሻ߰ݍቁ ߰ሺݍݍஒݍݍஒݍݍ ቀݍஒቁdݍdݍஒ = ∫∫ቀݍݍ − ሻ߰ݍஒቁ ߰ሺݍஒݍݍݍݍݍ ቀݍஒቁdݍdݍஒ = ܣ − ܣܣ . 
(3.50) 

Additionally, Férec et al. [120] introduce a fitting factor, so 

values for ݂ calculated with Eq. (3.44) and Eq. (3.49) are 

identical in case of quasi-isotropic fiber orientation and the 

final interaction tensor is finally given by 

 ୍ܾ = ͅ⁄ߨ͵ ܣ) −  ൯. (3.51)ܣܣ

According to Toll  [107] the term Ͷ𝛷ሺ݃ + ͳሻ in Eq. (3.47) 

can be neglected in case of high aspect ratios ݎ, only appear-

ing in the first term, which becomes dominant in this case. 

Férec et al. neglect this term too and no approximation for 

the scalar invariant ݃  is given in [120]. Nevertheless, for high 

orientations ݂ decreases, while ݃ increases and becomes 

more important as it is also the case in short fiber materials. 

Within this work, the two novel approaches to determine  ݂ 
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and ݃ presented in [106] are used, also only depending on 

information, given by ܣ. In this way, the average contact 

points of a fiber within a fiber network can also be deter-

mined adequately in case of high orientations and short fiber 

materials in a macroscopic simulation. 

In the first approach the eigenvectors ߥ and eigenvalues ߣ 

of ܣ are used to determine ݂ and ݃. Similar to Eq. (3.40) ݂ 

and ݃ can be reformulated as 

 ݂ = ∑ ߥ| × ଷߣߣ|ߥ
,=ଵ  (3.52) 

and 

 ݃ = ∑ ଷߣߣ|ߥߥ|
,=ଵ . (3.53) 

Since ܣ ∈ sym. it is ߥ ⊥ |ߥߥ|  , soߥ = Ͳ for ݊ ≠ ݉. 

By further regarding |ߥ| = ͳ, ݂ and ݃ simplify to 

 ݂ = ͅ⁄ߨ͵ ሺʹߣଵߣଶ + ଷߣଵߣʹ +  ଷሻ (3.54)ߣଶߣʹ

and 

 ݃ =  ଷ. (3.55)ߣଷߣ+ଶߣଶߣ+ଵߣଵߣ

As shown in [106] and 4.1.3.3 the calculation of ݂ with the 

interaction tensor and Eq. (3.54) creates identical results. 

Therefore, the correction factor ͵ߨ/ͺ is also used for this ap-

proach, to fit the value in case of quasi-isotropic orientation. 

In the case of full alignment, it is ݃ = ͳ for Eq. (3.45) and 

Eq. (3.55) and since this invariant is more important for 

more highly orientated states, no fitting factor is used. Eq. 

(3.54) and Eq. (3.55) show, that ݂ and ݃ can be 
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approximated as function of the eigenvalues with corre-

sponding factors in a polynomial way [106]. Hence, in a sec-

ond approach, the invariants can also be approximated by  

 ݂, ݃ = ∑ ଷߣ̃ߣ̃ܯ
,=ଵ , (3.56) 

with ܯ containing the polynomial coefficients and ̃ߣ =ሺߣଵ ଶߣ ͳሻ, since the eigenvalues are normed and all infor-

mation is provided by two eigenvalues. The entries of ܯ 

are determined in [106] and given in Table 3.1. 

Table 3.1:  Coefficients of polynomial fit of scalar invariants ݂ and ݃ [106] 

Entry of ܯ Approx. of ݂ Approx. of ݃ ܯଵଵ 3.27 3.3011 ܯଶଶ -6.6744 0.4173 ܯଷଷ 1.3475 1.5728 ܯଵଶ ଵଷܯ ଶଵ 4.63897 4.2687ܯ+ ଶଷܯ ଷଵ -4.5262 -3.8701ܯ+  ଷଶ 2.482 -1.9965ܯ+

 

 Approximation of fiber contact forces 

The three forces, present at every fiber contact point, are the 

normal force ܨ୬, the friction force ܨ୰ and the lubrication 

force ܨ୪୳. The direction of the normal force depends on the 

orientations of the two fibers in contact. Since the reference 

fibers are represented by the eigenvectors within this work, 

the normal force cannot be approximated adequately due to ܣ ∈ sym. and ߥ ⊥ ݊  forߥ ≠ ݉. Nevertheless, the 
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amount of the average normal force, as for example used in 

[121,108,109] and relevant for friction, can be given by  

‖୬ܨ‖  = ͵ʹͷߨଶܧ݀ଶ𝛷ଷ݂ଷ. (3.57) 

One benefit presented within [106] is the possibility to model 

the invariant ݃ and not only ݂. Therefore, when modeling 

the normal force, and hence friction force, ݃  can also be con-

sidered, as shown in [106]. According to Toll and Månson 

[108] the average normal force within a volume is given by  

‖୬ܨ‖  = ୬୭ୢୣ‖݊୬୭ୢୣ݀ܨ‖ , (3.58) 

with the node force ܨ୬୭ୢୣ and the number of nodes per vol-

ume ݊୬୭ୢୣ defined as  

 ݊୬୭ୢୣ = Ͷ߶݀ߨଶܽ̅, (3.59) 

where ܽ̅ is the average node space. One node is defined by 

four fibers with three contact points, as schematically shown 

in Figure 3.4. By assuming the contact points to be homoge-

nously distributed along the fibers and according to Figure 

3.4 the average node space is given by  

 ܽ̅ = ܰୡܮʹ = ߶ܮʹ ܰୡ𝜙, (3.60) 

with the specific number of contacts ܰୡ𝜙 (cf. Eq. (3.47)) de-

fined as  

 ܰୡ𝜙 = ͺ ⁄ߨ ݂ݎ + Ͷሺ݃ + ͳሻ = ܰୡ߶ . (3.61) 

According to [108], ܨ୬୭ୢୣ is given by  
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‖୬୭ୢୣܨ‖  = Ͷߨ∫ ͳܽ̅ܵ୬̅̅ ̅ d߶′𝜙f
 , (3.62) 

where  ܵ୬̅̅ ̅ is the average nodal compliance, defined by  

 ܵ୬̅̅ ̅  = ʹܽ̅ଷܧߨ݀ସ. (3.63) 

 

Figure 3.4: Schematic illustration of one node as defined in [108], 

consisting of four fibers and with node space ܽ. The contact points 

are assumed to be homogeneously distributed along the fiber 

Solving Eq. (3.62) by considering Eq. (3.60) and Eq. (3.63) 

leads to 

 

‖୬୭ୢୣܨ‖ = ∫ ݀ସ߶′ସܧ ܰୡ𝜙ସͺܮସ𝜙f
 d߶′ 

= ݀ସ߶ହܧ ܰୡ𝜙ସͶͲܮସ . (3.64) 

Further combining Eqs. (3.58), (3.59) and (3.64) the average 

normal force is  

‖୬ܨ‖  = ݀ହ߶ଷܧߨ ܰୡ𝜙ଷͺͲܮଷ . (3.65) 
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For ܰୡ𝜙 = ͺݎ݂/ߨ, meaning neglecting the ݃-term of the 

contact points, which is the assumption within [108], Eq. 

(3.65) and Eq. (3.57) are identical. Within this work and sim-

ilar to [106] Eq. (3.65) is used for normal and hence friction 

force. 

Regarding the friction force, Coulomb friction is assumed in 

most cases and the force is given by  

୰ܨ  = ݇୰‖ܨ୬‖⟦Δ ܷ⟧, (3.66) 

with ݇୰ being the friction coefficient and Δ ܷ is the relative 

velocity between the two fibers. Of course, the real relative 

velocity of the fibers is unknown due to the homogenization 

and the relative velocity Δ ܷ between matrix and fibers de-

fined in Eq. (3.39), used for calculating the hydrodynamic 

force, is not valid in this case. The relative velocity of two 

fibers within one cell is given by  

 Δ ܷ =  ℎ, (3.67)ܦ

where ℎis the distance vector between the fiber centers. As-

suming the distance to be equal in every direction [106], Eq. 

(3.67) can be reformulated to 

 Δ ܷ = √ℎℎ͵ ܦ∑ = √ℎℎ͵ Δܷ̃. (3.68) 

Since the friction force only depends on the normed relative 

velocity, ℎ does not need to be determined and the direction 

can be approximated by summing up the corresponding en-

tries of the strain rate tensor. 

Regarding the lubrication force, the literature contains sev-

eral approaches with different level of detail and complexity. 



3 Development of simulation methods 

83 
 

Yamane et al. [122], Bounoua et al. [123] or Meyer et al. 

[110] present detailed approaches depending on single fiber 

orientations and therefore not suitable for a macroscopic ap-

proach. Approaches suitable for a homogenized material are 

usually assumed to be linear proportional to a dimensionless 

coefficient ݇୪୳. The linear dependence is further on the rela-

tive velocity Δ ܷ and matrix viscosity, as for example pre-

sented by Servais et al. [109]. Djalili-Moghaddam and Toll 

[124] further consider the surface area, but the area is as-

sumed to be constant and the dependence is represented by ݀. Within this work and identical to [106], the lubrication 

force is assumed to be proportional to the relative velocity, 

matrix viscosity, overlapping area and reciprocal propor-

tional to the fiber distance, since it vanishes with rising dis-

tances. Finally, the lubrication force is given by  

 

୪୳ܨ       = ݇୪୳√ℎℎ ͵⁄ Δܣߟ ܷ 
= ݇୪୳ߟܣΔܷ̃, (3.69) 

with ܣ being the average overlap area of two fibers within 

one cell. 

 Approximation of fiber-fiber overlap area 

To approximate the fiber-fiber overlap area, it is assumed, 

that the fibers do not overlap near the ends [106]. Therefore, 

the overlap area is completely defined by the fiber diameter 

and the overlap angle ߱. Two different cases, depending on 

orientation state must be separated. The first one is ω ωୡ୰୧୲, where the overlap area is a parallelogram, as shown in 

Figure 3.5a and Figure 3.5b. The second one is ω < ωୡ୰୧୲, 
where the area is a hexagon, as shown in Figure 3.5c. 



3 Development of simulation methods 

84 
 

 

(a)                 (b)                 (c) 

Figure 3.5: Two overlapping fibers with highlighted overlap area 

(green). Arbitrary angle ߱ > ߱௧ (a), critical angle ߱ = ߱௧ (b) 

and over-critical angle ߱ < ߱௧ (c). Red area is subtracted for cal-
culation of overlap [106] 

If it is ω  ωୡ୰୧୲ the projected overlap area is given by  

ܣ  = ݀ଶsin ሺωሻ. (3.70) 

For realistic aspect ratios (ݎ > ͳͲ) and material orientation 

states, it is ω  ωୡ୰୧୲ in most processes. Nevertheless, the 

case ω < ωୡ୰୧୲ can be reached, and must be considered. In 

this case, the assumption of small angles is an adequate ap-

proximation and the simplification sinሺωሻ ≈ ω is valid, 

hence the critical angle is given by  

 ωୡ୰୧୲ = ݀ܮ⁄ʹ =  . (3.71)ݎʹ

The overlap area is given by subtracting the not overlapping 

areas from the complete projected surface. Regarding Figure 

3.5c, the red areas are subtracted from the complete area and 

result is the green area. So, for ω < ωୡ୰୧୲ the overlap area is 

given by  
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ܣ  = ݀ܮ − ଶͶܮ ω. (3.72) 

Combining Eq. (3.70) and (3.72) the projected overlap area 

is given by  

ܣ  = {  
  ݀ଶsin ሺωሻ for ω  ω௧݀ܮ − ଶͶܮ ω for ω < ω௧ . (3.73) 

The angle of the individual fibers is simply given by 

 ω = cos−ଵ ቀݍݍஒቁ. (3.74) 

Unfortunately, the eigenvectors are always perpendicular to 

each other, so computing the individual angle would not be 

meaningful or representative. Furthermore, the average ω is 

unknown in the homogenized material, but as shown in 

[106] the averaged angle within one cell can be approxi-

mated with ݂ and is given by  

 ω ≈ Ͷ݂ߨ . (3.75) 

Hence, the averaged, projected overlap area of the fibers 

within one cell can be determined depending on fiber geom-

etry and orientation state, with information provided by the 

second order orientation tensor, fiber length and diameter. 

3.4.3 Constitutive fiber breakage model 

 Breaking criterium based on hydrodynamic 

forces 

As explained in Section 2.2.4.2, buckling is one of the major 

mechanisms for fiber breakage. In a first step, it is 
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determined, whether the fibers within one cell are under 

pressure and buckling in general is possible. This state is 

reached if ܦݍݍ < Ͳ (Eq. (2.34)). Similar to calculation of 

hydrodynamic forces, explained in Section 3.4.1, the eigen-

vectors of the orientation tensor are used as reference fibers, 

and the Jeffery orbit is reformulated to  

ߥߥܦ  < Ͳ, (3.76) 

where, again the index ݊ indicates the number of the eigen-

vector and ݊ ∈ {ͳ,ʹ,͵}. A summation of the corresponding 

eigenvalues approximates the amount of fibers, that are able 

to buckle, within one cell. 

In a next step, it is checked, whether the force, acting on the 

fiber is high enough to cause buckling. This concerns only 

the eigenvectors fulfilling Eq. (3.76). Therefore, the hydro-

dynamic forces are used, as described in Section 3.4.1. For 

buckling, only the amount of force in fiber direction is rele-

vant, which is given by the dot product of the force and the 

corresponding fiber direction. So, the relevant force is given 

by  

୦୷ୢܨ̂  =  ୦୷ୢ (3.77)ܨߥ

and the buckling criterium is reached if  

୦୷ୢܤ  = ୠ୳ܨ୦୷ୢܨ̂  ͳ, (3.78) 

with ܨୠ୳ being the critical force for fibers with length ܮ  and 

defined in Eq. (2.36). Similar to [69] and [70] transverse 

forces, which favor buckling, are not considered, which is a 

huge simplification due to a lack of information in an mac-

roscopic and homogenized approach. 
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 Fiber length evolution 

The evolution of fiber lengths is strongly based on the model 

of Phelps et al. [70] explained in Section 2.2.4.3. The break-

ing probability is defined as  

𝑃ୠ୰ = { Ͳ,  caseAܥୠ୰̇ߛ (ͳ − exp ቀͳ − (୦୷ୢቁܤ ,  caseB, (3.79) 

for every eigenvector ߥ and fiber length ܮ . The cases are  

 caseA = ୦୷ୢܤ  < ͳ or ߥߥܦ > Ͳ (3.80) 

and 

 caseB = ୦୷ୢܤ   ͳ and ߥߥܦ  Ͳ. (3.81) 

The final breakage probability for a specific length is 

weighted with the eigenvalues and given by 

 𝑃ୠ୰ = 𝑃ୠ୰ߣ . (3.82) 

The subsequent fiber breakage simulation is similar to Phelps 

et al. [70]. The child generation rate is defined similar to Eq. 

(2.40) with the same restrictions as described in Section 

2.2.4.3 and [70]. The time evolution is given by Eq. (2.44), 

simulating the fiber length distribution by number of differ-

ent possible fiber lengths in every cell. 

 Model restrictions and separation to state-of-

the-art modeling 

Within Section 3.4.3.1 only the hydrodynamic forces from 

Section 3.4.1 are mentioned for fiber breakage, but not the 

friction and lubrication force explained in Section 3.4.2.2. 

Although these forces can be approximated, their influence 

on fiber breakage is unclear [68,70]. The fiber breakage is 

based on buckling, and therefore on pressure. The contact 



3 Development of simulation methods 

88 
 

force may be set in relation to the direction of the eigenvec-

tors and the contact points may be assumed equidistant 

along the fiber, but still it is unclear if the forces favor or hin-

der buckling and breakage. Additionally, the Jeffery orbit is 

only based on hydrodynamic forces and this aspect would 

not be valid any longer. Future studies have to focus on the 

role of contact forces in fiber breakage to enable a meaning-

ful use in such simulations. Furthermore, the information 

may be used for a dynamic description of the breakage coef-

ficient ܥୠ୰, which is assumed to be constant to this point of 

time. 

The main difference of the novel approach presented within 

this work and the state-of-the-art, is the calculation of the 

forces and the derived buckling criterium. In Phelps et al. 

[70] the forces are calculated by the approach of Dinh and 

Armstrong [72] (see Eq. (2.37)). In this thesis, the forces are 

determined by considering hydrodynamic drag and lift force, 

as described in Section 3.4.1. These forces act on reference 

fibers, represented by the eigenvectors of the orientation ten-

sor. 

Within [70], −ʹ⟦ܦ⟧ݍݍ = ͳ is assumed, so the buckling 

criterium is independent of orientation and determined by 

matrix viscosity, shear rate, fiber geometry and a fitting pa-

rameter. Furthermore, the assumption −ʹ⟦ܦ⟧ݍݍ = ͳ 

leads to an overestimation of  ܤୠ୰ , since it is −ʹ⟦ܦ⟧ݍݍ <ͳ for almost all possible orientations (cf. Eq. (2.38) and Fig-

ure 2.12). Additionally, this approach leads to a model 

where all fibers within one cell offer potential to break. The 

novel approach distinguishes between three reference fibers 

in every cell, where the Jeffery orbit and forces are calculated 

independent for every reference fiber. The final breaking 
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probability is weighted with the corresponding eigenvalues. 

Consequently, this novel approach offers the following two 

advantages. One is, that the amount of fibers, able to break 

is determined more accurate. The other one is, that the forces 

are determined without material specific fitting parameters, 

so the breakage modeling needs one empirical parameter less 

compared to the state-of-the-art. 

3.5 Modeling of warpage and residual 

stresses 

3.5.1 Schematic procedure 

The simulation of warpage and residual stresses, needs infor-

mation of the mold filling simulation and material state. 

Therefore, pre-processing algorithms, providing and trans-

forming the relevant data are necessary. The general proce-

dure of pre-processing is schematically shown in Figure 3.6.  

 

Figure 3.6: Schematic illustration of data transformation as pre-pro-
cessing of structural analysis 
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The results of the mold filling simulation are mapped, in-

cluding the fiber orientation tensor, for orientation averaging 

as well as the temperature and curing distribution, for the 

simulation itself. The input of material data, including infor-

mation of the matrix in rubbery and glassy state, as well as 

mechanical and geometrical information of the fibers and 

the fiber volume content are used for the homogenization. 

The results of the homogenization are the effective mechan-

ical and thermal properties as well as the coefficient vectors 

of thermal expansion and chemical shrinkage 𝜗୲୦ and 𝜗ୡ୦. 

The exact methods and models, which are used for the pre-

processing and the simulation, are mentioned and explained 

in the following sections and a summary is given in Table 

3.2 at the end of Section 3.5.2.3. 

3.5.2 Material model 

 Mechanical model 

To perform an adequate simulation of residual stresses and 

warpage, in a fiber reinforced part, the material model  of the 

solid-mechanical structural simulation should be aniso-

tropic. The material model for the fiber material is elastic, 

isotropic and independent of temperature, since glass fibers 

are simulated. For modeling the mechanical behavior of the 

matrix, the CHILE model, introduced in Section 2.3.1.2 is 

used. The anisotropy arises due to the homogenization of fi-

bers and matrix to a homogeneous FRP. Such an approach 

was already successfully applied by Bernath [14] in case of 

continuous fiber reinforced epoxy parts, with a transversely 

isotropic behavior. Within this work, the model of Bernath 

is extended to represent orthotropic material behavior, being 

more meaningful for discontinuous reinforced injection 
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molded parts, which are not fully aligned and hence not 

transversely isotropic.  

The mechanical behavior of the matrix is given by Eq. (2.49). 

The elastic modulus in the glassy state is assumed to be con-

stant. In the rubbery state, the elastic modulus is given by  

ୡ୰ܧ  = ୡ୰,୫ୟ୶ܧ ቆܿଶ − ܿଶͳ − ܿଶ ቇ଼/ଷ, (3.83) 

with ܧୡ୰,୫ୟ୶ representing the elastic modulus in the fully 

cured rubbery state (c = ͳ) and ܿ  being the point of gelation. 

This power law based approach is presented by Adolf and 

Martin [87] and also used by Bernath [14]. 

Besides the mechanical load, mainly based on holding pres-

sure, the part undergoes chemical and thermal change, evok-

ing thermal and chemical shrinkage. Hence, the complete 

change of strain is given by 

 Δߝ = Δߝ୫ୣୡ୦ + Δߝ୲୦ + Δߝୡ୦, (3.84) 

with change of thermal strain Δߝ୲୦ being defined by 

 Δߝ୲୦ = 𝜗୲୦Δܶ (3.85) 

and change of chemical strain Δߝୡ୦ being defined by 

 Δߝୡ୦ = 𝜗ୡ୦Δܿ, (3.86) 

where Δߝୡ୦ = Δߝ୲୦ = Ͳ for ݅ ≠ ݆. 
For the homogenization of the mechanical properties the 

method presented by Tandon and Weng [96] is applied to 

create a transversely isotropic material, which is orientation 

averaged afterwards with the method presented by Advani 

and Tucker [51]. This procedure is similar to Hohberg [99]. 
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Description of 𝜗୲୦ and 𝜗ୡ୦ are given in Section 3.5.2.2 for 

thermal expansion and 3.5.2.3 for chemical shrinkage. 

 Thermal model 

The thermal properties, which need to be considered for the 

warpage analysis are the specific heat capacity, thermal con-

ductivity, coefficient of thermal expansion and glass transi-

tion temperature. The latter depends on the matrix material 

and, since thermoset materials are regarded, on the degree of 

cure. The cross-linking due to curing complicates the sliding 

of the polymer molecules and hence ܶ rises with the degree 

of cure. A modeling approach for the relationship between ܶ and the degree of cure is given by DiBenedetto [125], by  

 ܶ = ܶ, + ( ܶ,∞ − ܶ,൯ߢܿͳ − (ͳ − ൯ܿߢ , (3.87) 

with ܶ, and ܶ,∞ being ܶ for ܿ = Ͳ and ܿ = ͳ and ߢ as 

material specific dimensionless modeling parameter. This 

approach is well established and applied in several studies 

[14,126–128]. 

The effective thermal conductivity is determined according 

to the work of Clayton [32]. Contrary to the mold filling 

phase, the holding pressure and curing phase take up a 

longer time period, with a significantly higher amount of 

heat flow. Therefore, it is reasonable to model the thermal 

conductivity as anisotropic vector ߣ୲୦. 

Within a transversely isotropic FRP, the conductivity is only 

distinguished in fiber direction ߣଵ୲୦ = ଶ୲୦ߣ ୲୦ and perpendicular∥ߣ = ଷ୲୦ߣ =  ୲୦. In fiber direction the property is simply⊥ߣ

given by volume averaging so 
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ଵ୲୦ߣ  = 𝛷ߣ୲୦, + ሺͳ − 𝛷ሻߣ୲୦,, (3.88) 

with ߣ୲୦, and ߣ୲୦, representing the thermal conductivity of 

fibers and matrix, which are assumed to be isotropic. 

For the perpendicular direction, Clayton [32] extends the 

general form for dilute dispersion given by  

 
ଶ୲୦ߣ − ଶ୲୦ߣ୲୦,ߣ + µߣ୲୦, = 𝛷 ቆ ୲୦,ߣ − ୲୦,ߣ୲୦,ߣ + µߣ୲୦,ቇ (3.89) 

and the corresponding differentiation 

 
ሺµ + ͳሻߣ୲୦,(ߣଶ୲୦ + µߣ୲୦,൯ଶ dߣଶ୲୦ = ቆ ୲୦,ߣ − ୲୦,ߣ୲୦,ߣ + µߣ୲୦,ቇd𝛷, (3.90) 

with the dimensionless shape factor µ. It is 

 
ଶ୲୦ሺͳߣ݀ + µሻߣଶ୲୦ = ቆ ୲୦,ߣ − ୲୦,ߣଶ୲୦ߣ + µߣ୲୦ቇ ݀𝛷ͳ − 𝛷, (3.91) 

assuming ߣଶ୲୦ = ୲୦, for small additions of 𝛷 and ͳ/ሺͳߣ − 𝛷ሻ as correction factor for this assumption. Further 

the integration from ߣଶ୲୦ = ୲୦, at 𝛷ߣ = Ͳ to ߣଶ୲୦ = ୲୦, at 𝛷ߣ = ͳ leads to  

 ͳ − 𝛷 = ቆ ୲୦,ߣ − ୲୦,ߣଶ୲୦ߣ + ଶ୲୦ߣ୲୦,ߣ୲୦,ቇቆߣ ቇ ଵଵ+µ. (3.92) 

The shape factor is given by µ = ͳ for cylindrical inclusions, 

such as fibers [32], so Eq.  (3.92) leads to  ߣଶ୲୦ߣ୲୦, = ቆ ୲୦,ቇߣ୲୦,ߣ ሺͳ − 𝛷ሻ ቆ ୲୦,ߣ୲୦,ߣ − ͳቇቆ  ୲୦,ቇଵଶ. (3.93)ߣଶ୲୦ߣ
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Finally, the thermal conductivity perpendicular to the fiber 

direction is given by  ߣଶ୲୦ ୲୦,Ͷߣ = ൮√ሺͳ − 𝛷ሻଶ ቆ ୲୦,ߣ୲୦,ߣ − ͳቇଶ + Ͷ ୲୦,ߣ୲୦,ߣ
− ሺͳ − 𝛷ሻ ቆ ୲୦,ߣ୲୦,ߣ − ͳቇ)

ଶ. 
(3.94) 

The last property needed for warpage analysis is the thermal 

expansion coefficient. Here, the energy based approach of 

Schapery [97] is used. Based on the energy potential, bounds 

are defined for a linear elastic surface traction problem with 

space-wise constant temperature change. Within [97] it is 

shown, that the upper bound shows the minimal error for 

volume averaging, so  

 𝜗ଵ୲୦ = 𝛷ܧ𝜗୲୦, + ሺͳ − 𝛷ሻܧ𝜗୲୦,𝛷ܧ + ሺͳ − 𝛷ሻܧ , (3.95) 

where ܧ is the elastic modulus of the matrix. The same pro-

cedure for the perpendicular direction results in  

 

𝜗ଶ୲୦ = 𝜗ଷ୲୦ = ሺͳ + ሻ𝛷𝜗୲୦,ߥ     + ሺͳ + −ሻ𝛷𝜗୲୦,ߥ 𝜗୲୦̅̅ ̅̅  ߥ̅

(3.96) 

with ߥ and ߥ being the Poisson ratio of fibers and matrix. 

Similar to the mechanical properties, the thermal conductiv-

ity and expansion coefficient are only determined for a trans-

versely isotropic material. Therefore, the properties are fur-

ther orientation averaged to create an orthotropic material 
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with the orientation averaging scheme presented by Advani 

and Tucker [51] and explained in Section 2.3.2.2. 

 Model for chemical shrinkage 

The homogenization of the chemical shrinkage is not imple-

mented within homogenization the algorithm. Therefore, it 

is determined by simple volume averaging as  

 𝜗ୡ୦ = 𝛷𝜗ୡ୦, + ሺͳ − 𝛷ሻ𝜗ୡ୦,, (3.97) 

with 𝜗ୡ୦,, and 𝜗ୡ୦,, being the coefficients of chemical 

shrinkage for pure fibers and pure matrix. Since there is no 

chemical shrinkage in the fibers (𝜗ୡ୦,, = Ͳ), Eq. (3.97) sim-

plifies to  

 𝜗ୡ୦ = ሺͳ − 𝛷ሻ𝜗ୡ୦,. (3.98) 

The chemical shrinkage is assumed to be isotropic, so  

 𝜗ୡ୦ = ͳ⁄͵ (‖𝜗ୡ୦‖ ‖𝜗ୡ୦‖ ‖𝜗ୡ୦‖൯. (3.99) 

Table 3.2:  Summary of homogenized material properties with cor-
responding homogenization methods 

Property Homogenization 

method 

Orientation 

averaging ܧୡ୰  Tandon and Weng [96]  ܧୡ
 Tandon and Weng [96]  ߣ୲୦ Clayton [32]  c୮ Volume averaging  𝜗୲୦ Schapery [97]  𝜗ୡ୦ Volume averaging  
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Table 3.2 gives a summary and overview of the homoge-

nized mechanical and thermal material properties with cor-

responding homogenization method and whether it is orien-

tation averaged or not. 
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4 Verification and validation 

4.1 Numerical verification 

4.1.1 Phase-dependent boundary condi-

tion 

To verify the boundary condition described in Section 3.2.2 

a stair-like model, as shown in Figure 4.1, is simulated, so 

different amounts of material reach the outlets at different 

points of time. At the beginning, the cavity is filled with air 

and the FRP enters the model at the inlet (blue) with a con-

stant velocity of ܷ = ሺͺ.Ͳ ∙ ͳͲ−ଷ Ͳ Ͳሻ m/s. Hence the 

cavity should be completely filled after 5 s, if no material 

leaves the model. The model is meshed with cubic hexahe-

drons, having an edge length of 1 mm. 

 

Figure 4.1: Stair model for verification of phase-dependent bound-
ary condition. Inlet in blue and three outlets with different distances 
to the inlet in red. Walls in transparent grey 
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To keep the simulation as simple as possible, the material is 

modeled isotropic and Newtonian with ߟ = ͳͲ Pa∙s and a 
no slip boundary condition is chosen for the walls. Four dif-

ferent formulations of the phase-dependent boundary condi-

tion at the outlet are compared, as shown in Figure 4.2.  

 

Figure 4.2: Simulation results after 5 s for different formulations of 

the phase-dependent boundary condition. Cut through the ݔଶ-plane 
of symmetry (see Figure 4.1). Colors visualize the value of the VOF 

factor ߙ. Switchover means change from zeroGradient to ܷ ௭  (Eq. 

(3.3)) 

The case ‘ZeroGradient’ applies Eq. (3.2) all the time and 

independent of VOF factor ߙ, so the FRP can leave the cav-

ity without any resistance.  ‘Switchover for ߙ > Ͳ’ means a 
spontaneous transition from zeroGradient to ܷୣ୰୭ (Eq. (3.3)) 

as soon as ߙ > Ͳ without any intermediate state. Similar 

‘Switchover for ߙ = ͳ’ means a spontaneous transition from 
zeroGradient to ܷୣ୰୭ as soon as ߙ = ͳ. At last the interpo-

lated formulation, as given by Eq. (3.4), is regarded. Figure 

4.2 shows the comparison of the simulations at the ݔଶ-plane 
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of symmetry after 5 s, so the cavities should be completely 

filled with FRP. The blue areas for ‘ZeroGradient’ and 
‘Switchover for ߙ = ͳ’ indicate a relative high material loss 
compared to the other two formulations, where the cavity is 

almost completely filled. Since all finite volumes of the sim-

ulation mesh have identical dimensions, the results can be 

quantified by summing up all values of ߙ and divide the re-

sult by the total number of finite volumes of the domain. The 

results would be one for a completely filled cavity. The re-

sults are shown in Table 4.1. 

Table 4.1:  Normalized filled volume for different formulations of 
the phase-dependent boundary condition at the outlet 

Formulation Normalized fill state 

ZeroGradient 0.8479 

Switchover for ߙ = ͳ 0.9134 

Switchover for ߙ > Ͳ 0.9904 

Interpolated switch Eq. (3.4) 0.9913 

 

As expected, ‘ZeroGradient’ generates the highest material 
loss. The results of ‘Switchover for ߙ > Ͳ’ and Eq. (3.4) are 

quite similar, although the interpolated boundary condition 

is slightly better. A reason for the similarity is the sharp flow 

front with only one or two partially filled elements along the 

flow path. A more complex material behavior resulting in a 

torn and chaotic flow front would lead to more partially 

filled elements at the flow front and hence to more remaining 

air in the cavity for ‘Switchover for ߙ > Ͳ’. Nevertheless, Eq. 

(3.4) generates the best results and is chosen for further mold 

filling simulations. 
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4.1.2 Analytical verification of isotropic 

flow modeling with anisotropic vis-

cosity tensor 

The isotropic solution of ߟ is given by an isotropic distri-

bution of fibers, represented by ܣ = ͳ/͵ and ܣ = Ͳ for ݅ ≠݆ (see Figure 2.11), resulting in 

ୖP,୧ୱ୭ߟ =
[  
   
୧ୱ୭||ߟ   ୧ୱ୭⊥||ߟ ୧ୱ୭⊥||ߟ Ͳ Ͳ Ͳߟ||୧ୱ୭ ୧ୱ୭⊥||ߟ Ͳ Ͳ Ͳߟ||୧ୱ୭ Ͳ Ͳ Ͳߟ⊥୧ୱ୭ Ͳ Ͳsym. ୧ୱ୭⊥ߟ Ͳߟ⊥୧ୱ୭]  

   
  
. (4.1) 

The values for ߟ||୧ୱ୭,   .୧ୱ୭ are given in Table 4.2⊥ߟ ୧ୱ୭ and⊥||ߟ 

Table 4.2:  Values for the entries of  ߟ𝐹ோ𝑃,௦
 (Eq. (4.1)), calculated 

with Eq. (3.21) 

Tensor entry Value ߟ||୧ୱ୭ 
Ͷߟଵଵ + ʹͶߟଵଶ + ʹͶߟଶଷͶͷ  ୧ୱ୭⊥||ߟ 
ଵଵߟʹ− − ͳʹߟଵଶ − ͳʹߟଶଷͶͷ  ୧ୱ୭⊥ߟ 
ଵଵߟ + ߟଵଶ + ߟଶଷͳͷ  

 

Here, ܣ is determined with the linear closure approxima-

tion, representing the exact solution for an isotropic fiber dis-

tribution [62]. For an isotropic and Newtonian fluid, it 
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would be ߟଵଶ = ଶଷߟ = ଵଵߟ and ߟ = -known as the Trou ,ߟ͵

ton ratio as relation between shear and elongation viscosity, 

first described by Trouton in 1906 [129]. Assuming this, ߟ𝐹ோ𝑃,୧ୱ୭
 can be rewritten as 

ୖP,୧ୱ୭ߟ = ߟ
[  
   
Ͷ/͵ −ʹ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ Ͳ Ͳ Ͳͳ Ͳ Ͳsym. ͳ Ͳͳ]  

   , (4.2) 

being the correct fourth order viscosity tensor of an isotropic 

and Newtonian fluid. Nevertheless, with respect to Eqs. 

(3.16)-(3.18) the only two solutions for ߟଵଶ = ଶଷ are Φߟ = Ͳ 

and Φ ≈ ͵.͵ͺ͵Φ୫ୟ୶. Since the latter is unrealistic, Φ = Ͳ 

is chosen to compare the anisotropic tensor to an isotropic 

solution, therefore, it is ߟଵଵ = Ͳ. Of course, this is also unre-

alistic, since the assumption and micro-mechanical models 

in Section 3.3.1.2 are not valid for Φ = Ͳ, but it is the only 

way to compare the approach to one of the analytical ap-

proaches mentioned in Section 2.2.1.2. By assuming Φ = Ͳ 

it is ߟଵଶ = ଶଷߟ = ଵଵߟ  andߟ = Ͳ. Hence the scalar effective 

viscosity according to Eq. (3.26) is given by ୣߟ,୧ୱ୭ = Ͷ ͷ⁄  ߟ

and the complete fourth order tensor is given by ߟୖP,୧ୱ୭ =
Ͷ ͷ⁄ ߟ

[  
   
Ͷ/͵ −ʹ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ −ʹ/͵ Ͳ Ͳ ͲͶ/͵ Ͳ Ͳ Ͳͳ Ͳ Ͳsym. ͳ Ͳͳ]  

   . (4.3) 
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Hence, if implemented correctly, the simulation creates sim-

ilar results to an analytical approach, calculated with a vis-

cosity being 80 % of the viscosity in the simulations. As ref-

erence case, a Poseuille flow as described in Section 2.2.1.2 

is chosen. The parameters are given in Table 4.3. 

Table 4.3:  Parameters for comparison of the viscosity tensor to a 

Poiseuille flow 

Parameter Value Unit 

Pressure difference 1 MPa 

Tube length 200 mm 

Tube radius 10 mm 

Viscosity 100 and 80 Pa∙s 

 

The simulation model is built up in 3D. The boundary con-

ditions are defined to fit the assumptions of a Poiseuille flow. 

The fiber aspect ratio is set to one to suppress fiber re-orien-

tation. The mesh is created with 21 hexahedral elements 

along the diameter and 200 along the flow path. Since the 

simulation method is created for injection molding simula-

tion, it is a transient solver. The simulation time is set to 10 

s, according to the mean volume flow, the tube should be 50 

times completely flown through at this point of time and the 

steady state is reached.  

The results are shown in Figure 4.3, represented by the ve-

locity profile along the diameter. The simulation results are 

slightly lower than the analytical ones, but fit well. The max-

imum velocity in the center is 1.5625 m/s for the analytical 

and 1.4991 m/s for the simulation approach, giving a maxi-

mum deviation of about 4 %. Regarding the complete profile 

the mean square error (MSE) is 0.0026, which represents a 
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good agreement. One reason for the difference is the numer-

ical solving and discretization in the simulation. Addition-

ally, the analytical approach solves only a 1D problem, while 

the simulation is still solved in full 3D. The analytical solu-

tion should not be seen as correct, since it also underlies as-

sumptions and simplification, which are not all identical to 

the ones of the simulation. One example is the assumption 

of no radial flow in the analytical solution, which is not sup-

pressed in the 3D-simulation model, although the velocity 

components are very low, they are not exactly zero. 
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Figure 4.3: Comparison of velocity profile between analytical ap-
proach (black) and simulation (red) in case of a Poiseuille flow 

In summary, the simulation creates meaningful results, close 

to the analytical approach. This verifies the implementation 

in case of pure flow modeling, independent of anisotropic 

effects. 
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4.1.3 Numerical verification of modeled 

forces and interaction points4 

 Creation of individual fibers 

The approaches for calculating fiber forces, contact points 

and angles presented in Sections 3.4.1 and 3.4.2 are all based 

on orientations of individual fibers and modified to apply for 

a homogenized material with no information of individual 

fibers. Therefore, it is meaningful to verify these approaches 

by comparing them to results, calculated with individual fi-

bers. The second and fourth order orientation tensors, 

needed for verification, are directly computed with individ-

ual fibers with Eq. (2.27) and Eq. (2.28). 

For verification, 22 different orientation states (OS), consist-

ing of 500 individual fibers each, are considered. The OS of 

a single fiber is defined by the two angles 𝜑 and ߠ as illus-

trated in Figure 2.10. In OS 1, the possible values are 𝜑 ∈[Ͳ, ሻߠand cosሺ [ߨ ∈ [Ͳ,ͳ] representing quasi-isotropic orien-

tation. For OS with higher numbers, the window with possi-

ble values is reduced by ߨ/ʹͲ for 𝜑 and 1/ʹͲ for cosሺߠሻ, so 

the fibers become more highly orientated towards the ݔଵ-di-

rection. Due to this rate of change, full orientation is given 

for OS 21, represented by 𝜑 = Ͳ and cosሺߠሻ = Ͳ. OS 22 rep-

resents planar isotropic orientation, so 𝜑 ∈ [Ͳ, ሻߠand cosሺ [ߨ = Ͳ. Although planar isotropic orientation is not typ-

ical in RIM processes, this OS is often used for verifications. 

The possible values of 𝜑 and ߠ for the different orientation 

states are shown in Figure 4.4. 

                                                      
4 Similar numerical studies and results are published in [106]. 
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Figure 4.4: Possible values of 𝜑 and ߠ for different orientation states 
illustrated by colored areas (cf. Figure 2.10) 

Due the definition of changing the value for cosሺߠሻ in a lin-

ear way, the change of ߠ is non-linear. By this definition the 

amount of fibers in ݔଷ-direction decreases faster, compared 

to the other directions ݔଵ and ݔଶ. This is also the case in 

many real fiber orientations in injection molding, due to the 

thin walled part design. Figure 4.5 shows three examples of 

the OS 1, 10 and 17 with corresponding orientation tensors. 

The single fiber orientations are visualized by the red dots on 

a unity sphere. The different fibers are created by using the 

‘rand()’ function of Matlab R2019, creating a random value 

between zero and one, which is multiplied with the maxi-

mum value of 𝜑 and cosሺߠሻ in the corresponding OS. 
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Orientation state 1 

‘3D-quasi-isotropic’ 

ܣ = [ ͳ/͵ Ͳ Ͳͳ/͵ Ͳsym. ͳ/͵] 

 

Orientation state 10 

‘mean orientated’ 

ܣ = [ Ͳ.Ͷ Ͳ.ʹͶ Ͳ.ͲͲͺͲ.ͷ −Ͳ.ͲͲ͵sym. Ͳ.ͳ ] 

 

Orientation state 17 

‘highly orientated’ 

ܣ = [Ͳ.ͺ Ͳ.ʹ Ͳ.ͲͲͲ.ͳʹ Ͳ.ͲͲʹsym. Ͳ.Ͳͳ ] 

Figure 4.5: Visualization of different orientation states (red dots) on 

a unity sphere with corresponding orientation state number and sec-
ond order orientation tensor 
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 Comparison of hydrodynamic forces for sin-

gle fibers and homogenized material 

The hydrodynamic drag and lift force are calculated with Eq. 

(3.33), as explained in Section 3.4.1.1. For calculations with 

individual fibers (ܨ୦୷ୢ_) the relation between orientation 

and relative velocity is given by ݍ. In case of a homogenized 

material (ܨ୦୷ୢ_), the eigenvectors of ܣ are used as de-

scribed in Section 3.4.1.3. Since 500 individual fibers exist 

for every OS, ܨ୦୷ୢ_ is calculated 500 times for each OS, 

while ܨ୦୷ୢ_ is calculated three times, due to the three ei-

genvectors. To verify the novel approach, the average force 

of each OS is compared, being defined as  

୦୷ୢ_ୟ୴_ܨ  = ͳͷͲͲ∑ܨ୦୷ୢ_ୟ୴_ହ
=ଵ  (4.4) 

for the individual fibers. The averaged force of the homoge-

nized approach is weighted with the eigenvalues so 

୦୷ୢ_ୟ୴_ܨ  = ୦୷ୢ_ୟ୴_ଷܨߣ∑
=ଵ . (4.5) 

The comparison of the individual and homogenized average 

force is shown in Figure 4.6, split into the drag and lift part. 

Two relative velocities are regarded, the first one is chosen 

to be 𝛥U୧ = ͳ/√͵ሺͳ ͳ ͳሻ m/s  (Figure 4.6a) and the second 

one is 𝛥U୧ = ሺͳ Ͳ Ͳሻ m/s (Figure 4.6b). The material param-

eters are ݀ = Ͳ.Ͳͳͷ mm, ݎ = ͳͲͲ and ߟ = ʹͲ Pa ∙ s. 
The drag force components in Figure 4.6a are all identical, 

since the direction weighting of the drag force is given by 𝛥 ܷ, whose entries are identical. The lift force is zero for a 
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quasi-isotropic orientation (OS 1), because the average fiber 

direction and 𝛥 ܷ are the same. Of course, there are lift 

forces, acting on the single and reference fibers, but they can-

cel each other during the summation for the average force. 

This is also the fact for planar quasi-isotropic orientation 

(OS 22), where ܨଵ୪୧୲_ୟ୴ ≈ ଶ୪୧୲_ୟ୴ܨ ≈ Ͳ and only ܨଷ୪୧୲_ୟ୴ exists. 

In detail, the force components are not exact zero, since the 

fibers are created randomly, so the orientations are not exact 

(planar) quasi-isotropic. 

In Figure 4.6b it is 𝛥 ଶܷ = 𝛥 ଷܷ = Ͳ, hence ܨଶୢ ୰ୟ_ୟ୴ ଷୢܨ= ୰ୟ_ୟ୴ = Ͳ. ܨଵୢ ୰ୟ_ୟ୴ decreases with higher degree of orien-

tation since the projected area of the fibers in the ݔଵ-plane 

decreases, being relevant for this 𝛥 ܷ and is represented by 

the change of ݇ୢ, as explained in Section 3.4.1.2. The lift 

force is zero for (planar) quasi-isotropic and full alignment, 

since these orientations are symmetric to 𝛥 ܷ. Hence ܨଷ୪୧୲_ୟ୴ = Ͳ for all orientations, since the orientation in ݔଷ-

direction is always symmetric to 𝛥 ܷ in this case. Further-

more, it is ܨଵ୪୧୲_ୟ୴ = Ͳ, because the lift force acts perpendicu-

lar to 𝛥 ܷ. 
In general, the homogenized results are in exact agreement 

with the individual solution as shown within [106], verifying 

the novel approach to determine the average force on an ar-

bitrary orientation state. Nevertheless, an inference on single 

fiber forces is not possible, being a disadvantage since forces 

on individual fibers may exist, but cancel each other while 

calculating the average. Such phenomena require an ap-

proach on microscopic scale and modeling of individual fi-

bers. However, the average force within one cell is well ap-

proximated.  
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Figure 4.6: Comparison of average drag and lift force for individual 

fibers (f) and homogenized material (based on eigenvalues, EV) with 

different relative velocities 𝛥 ܷ = ͳ/√͵ ሺͳ ͳ ͳሻ ݉/ݏ (a) and 𝛥 ܷ = ሺͳ Ͳ Ͳሻ ݉/ݏ (b) 

a) 

b) 
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 Comparison of contact points for single fibers 

and homogenized material 

Three approaches are compared to the individual fiber solu-

tion in case of fiber-fiber contact points. One is the interac-

tion tensor as explained in Eqs. (3.48) - (3.51) and [120], rep-

resenting the state of the art. The other two are the eigenvec-

tor based (Eq. (3.54) and Eq. (3.55)) and the polynomial fit 

(Eq. (3.56)) with the values given in Table 3.1 [106]. For all 

approaches the contact points are determined with Eq. 

(3.47), the difference is in the calculation of the invariants ݂ 

and ݃ of the fiber orientation distribution. For individual fi-

bers Eq. (3.44) and Eq. (3.45) are used to determine ݂ and ݃. 

The creation of the individual fibers and different orientation 

states is described in Section 4.1.3.1 and the second and 

fourth order orientation tensors are directly computed with 

the individual fibers. 

In a first step, the results of ݂ and ݃ are compared for the 22 

different orientation states, shown in Figure 4.7.  Due to the 

correction factor (see Section 3.4.2.1) the interaction tensor 

and eigenvector approach fit exactly, which is also shown 

analytically within [106] for specific cases. Furthermore, 

both approaches predict a too low ݂ for higher OS, while the 

polynomial approach fits well besides OS 21. The maximum 

deviation of the eigenvector and interaction tensor approach 

is about 90 % at OS 20. Besides full orientation (OS 21), 

which is an unrealistic OS and will never be reached in the 

real process, the polynomial approach has a maximum devi-

ation of about 8 % for OS 10. The MSE of the eigenvector 

and interactions tensor approach is 0.01 and 0.001 for the 

polynomial approach, which is 10 times smaller. 
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Regarding the approximation of ݃ (Figure 4.7b) the interac-

tion tensor is no longer considered, since only an approxi-

mation for ݂ is given within [120]. Contrary to ݂ the eigen-

vector method shows a maximum deviation for quasi-iso-

tropic orientation of about 19 % and fits better for higher ori-

entation. Again, the eigenvector approach fits perfectly for 

full alignment. The polynomial fit approach shows again 

good agreement for all OS and has maximum deviation of 

about 2.4 % for planar isotropic orientation (OS 22). The 

MSE of the polynomial approach is about 0.000035 and 

therefore about 484 times lower than the MSE of the eigen-

vector approach, being 0.015. In general, the polynomial fit 

shows the best results with the lowest MSEs and should also 

create the best results in case of calculating contact points. 

For comparison of contact points per fiber, according to Eq. 

(3.47), a theoretical material with ߶ = Ͳ.͵ͷ and the aspect 

ratios ݎ = ͳͲ (Figure 4.8a) and ݎ = ͳͲͲ (Figure 4.8b) is re-

garded [106]. As expected, the polynomial approach creates 

the best fitting results, with a maximum deviation of 29.4 % 

for ݎ = ͳͲ and 292 % for ݎ = ͳͲͲ in the unrealistic case of 

full alignment.  

The results of the eigenvector approach are slightly better 

than the interaction tensor for all OS, due to the considera-

tion of ݃, creating an offset of exactly Ͷ߶ሺ݃ + ͳሻ (see Eq. 

(3.47)). The relative importance of this offset becomes 

smaller for higher aspect ratios, since the other term to deter-

mine the contact points is linear in ݂ and ݎ, which is the 

reason why Ͷ߶ሺ݃ + ͳሻ is often neglected. The maximum 

deviation of the eigenvector approach is about 29.8 % for ݎ = ͳͲ and 65 % for ݎ = ͳͲͲ at OS 17 and OS 19.  
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The MSEs of the polynomial and eigenvector approach are 

0.0917 and 1.013 for ݎ = ͳͲ and 8.83 and 82.82  for ݎ =ͳͲͲ, so the MSE of the polynomial approach is about 10 

times smaller. In general, and as expected, the polynomial 

approach predicts the contact points most accurately, with 

respect to the other approaches. 

 Comparison of average fiber-fiber angle and 

overlap area for single fibers and homoge-

nized material 

In the next step, the approach to approximate the average 

fiber-fiber angle presented in [106] and Eq. (3.75) is verified. 

Again the 22 different orientation states described in Section 

4.1.3.1 are used. Firstly, the individual angles between the 

500 single fibers are determined with Eq. (3.74), resulting in 

124500 angles, since one angle always includes two fibers 

and a fiber has no angles with itself (ͷͲͲଶ/ʹ − ͷͲͲ =ͳʹͶͷͲͲሻ. Afterwards, the average of these 124500 angles is 

calculated and compared to the ݂-based approximation 

given in Eq. (3.75). The value of ݂ is computed directly with 

the individual fibers (Eq. (3.44)) since the aim is to verify 

Eq. (3.75) and therefore ݂ should be as exact as possible and 

no approximation should blur the results. 

The comparison is given in Figure 4.9, showing good agree-

ment. Due to the fitting factor Ͷ/ߨ, there is a good agreement 

for (nearly) quasi-isotropic orientation states. The maximum 

deviation is about 25.8 % for OS 20 and the MSE is 8.45. 

The angle deviates about 2.25° on average. Due to the good 

agreement, the results verify Eq. (3.75) to be well suited to 

approximate the average angle within an arbitrary fiber dis-

tribution. Hence, the next step is to verify the modeling of 

the average fiber-fiber overlap area, which is based on this 
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angle approximation. The comparison of the average fiber-

fiber overlap area is given in Figure 4.10 for the aspect ratios 

of ݎ = ͳͲ (Figure 4.10a) and ݎ = ͳͲͲ (Figure 4.10b). For 

the reference case, 124500 overlap areas, according to the 

124500 angles are determined with Eq. (3.73) and averaged 

for every orientation state.  
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Figure 4.9: Computed average fiber-fiber angle by averaging single 

angles of individual fibers (black, □) and approximation based on f 

given by Eq. (3.75) (green, ߘ) 

Since ܣ ∈ sym., the eigenvectors are always perpendicular 

to each other and computing the individual overlap is not 

meaningful for the approximations. Therefore Eq. (3.75) is 

used to determine the average angle and afterwards the av-

erage overlap with Eq. (3.73). Only the eigenvector and pol-

ynomial approach are compared, since the average angle 

only depends on ݂, the results of the eigenvector and inter-

action tensor based approaches would be identical.  
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Both approximations predict a slightly too low overlap for 

both aspect ratios in case of lower orientation states 

(OS < 15). In higher orientated states, the eigenvector ap-

proach overshoots the results, while the polynomial ap-

proach fits well, except for the unrealistic state of full align-

ment. Here, the polynomial approach shows its maximum 

deviation with about 27.5 % for ݎ = ͳͲ and 870 % for ݎ =ͳͲͲ, while the eigenvector approach fits perfectly. Again, 

this case will not be reached in a real process and therefore 

will not be included in the further discussion. The eigenvec-

tor approach has a maximum deviation of 64.5 % for ݎ =ͳͲ (OS 17) and 162 % for ݎ = ͳͲͲ (OS 20). The MSEs are ͳ.Ͷͺ ∙ ͳͲ−ଶ for ݎ = ͳͲ and ͵ .͵ ∙ ͳͲ−ଵଽ for ݎ = ͳͲͲ in case 

of the polynomial approach and .ͳ ∙ ͳͲ−ଶ for ݎ = ͳͲ and ͻ.ͳ ∙ ͳͲ−ଵ଼ for ݎ = ͳͲͲ in case of the eigenvector approach.  

The MSE of the polynomial approach is about 4.1 times 

smaller for ݎ = ͳͲ and about 27 times smaller for ݎ = ͳͲͲ. 

Again, the polynomial fit approximation creates the best re-

sults with the smallest MSE and should be used for further 

simulations, since the approximation of the lubrication force 

will be the most adequate, compared to the other mentioned 

approximations. 

4.1.4 Mesh study 

The interpolation of significant different material properties 

of FRP and air with the VOF in the flow front region will 

always create different results for different meshes. In gen-

eral, simulations with VOF will never be independent of the 

mesh [28]. Nevertheless, the flow front shows identical 

tendencies, when reaching a corresponding mesh refinement 

level, such as in a mesh study presented in  [26]. Here, the 

flow front of a standard isotropic Newtonian and the 
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anisotropic non-Newtonian approach are compared for dif-

ferent mesh refinements. The simulated geometry is a 3 mm 

thick square plate with 100 mm edge length and a circular 

inlet with a 15.5 mm diameter, as shown in Figure 4.11. The 

model is meshed with hexahedral elements with 1 mm edge 

length in ݔଵ- and ݔଶ-direction and 5, 10 and 15 elements in ݔଷ-direction (plate thickness).  

 

Figure 4.11: CAD-model and geometry information for the mesh 
study. Square plate with circular inlet in blue and outlet in red 

The cavity is filled with a constant volume flow of 50 cm³/s, 

always perpendicular to the inlet surface. Similar to [26], two 

different flow modeling cases are compared. One is isotropic 

and Newtonian with ߟ = ͳͲͲ Pa∙s, the other one is with an-

isotropic viscosity tensor (Eq. (3.21)) and the Castro-Ma-

cosko model (Eq. (2.19)) for matrix viscosity and Kamal-

Malkin model (Eq. (2.11)) for curing kinetics . The model 

parameters are given in Table 4.4 and Table 4.5. 

The fiber orientation at the inlet is ܣଵଵ = Ͳ.ͺ at the walls and ܣଵଵ = Ͳ. ͵̅ at the inlet center with parabolic interpolation. 

The further entries are ܣଶଶ = ଷଷܣ = ሺͳ − ଵଶܣ ଵଵሻ/ʹ andܣ ଵଷܣ= = ଶଷܣ = Ͳ, if not explicitly mentioned differently. The 

fiber aspect ratio is 75. The fiber orientation is determined 

using the RSC-model (Eq. (2.30)) with 0.03=ߢ.  
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Table 4.4:  Model parameters for Castro-Macosko matrix viscosity 
model [26] 

Parameter Value Unit 𝜏∗ 0.03 Pa ݊C 0.5 - ܥCଵ 17 - ܥCଶ 17 - ܤC 1.123∙10-7 Pa∙s Cܶ 13750 K ܿ 0.4 - 

 

Table 4.5:  Parameters for the Kamal-Malkin kinetic model [25] 

Parameter Value Unit ܴ 8.3144598 J/(K∙mol) ܣଵ 1.9454∙1012 1/s ܣଶ 3041.4 1/s ܧଵ 2878805.64 J/mol ܧଶ 38425.6452 J/mol ݉ 1.643 - ݊ 0.4893 - 

 

The simulation results of the six different cases are shown in 

Figure 4.12. A significant difference of the flow fronts be-

tween 5 and 10 elements can be detected in the isotropic and 

anisotropic case. Further refinement from 10 to 15 elements 

has almost no effect on the isotropic Newtonian results. In 

the anisotropic non-Newtonian case, the flow fronts are 
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slightly different for 10 and 15 elements, but show the same 

tendencies, deviating from the sharp result for 5 elements.  

 

Figure 4.12: Simulated flow fronts for different simulation methods 
and different mesh sizes with increasing number of elements over 
plate thickness. Detail area of the complete geometry shown in Fig-
ure 4.11 [26] 

Both flow fronts are torn and chaotic as expected in RIM 

process, even though the mesh is structured. The torn and 

chaotic area is in a similar scale for both cases. Therefore, a 

mesh with 10 elements over plate thickness seems to reach 

some kind of convergence state. Although, the exact for-

mation of the flow front will always scatter for different 

meshes, due to minimal mesh inaccuracies and numerical 

discretization. According to [26] a minimum number of 10 

elements is applied between two walls in the simulations. 
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4.1.5 Verification of flow and force mod-

eling5 

In the following Sections 4.1.5.1 to 4.1.5.3 different configu-

rations are simulated to highlight the benefits of anisotropic 

flow coupling [26] and show the newly gained information 

about the calculated forces [106]. Therefore, fiber aspect ra-

tios and initial orientations are varied. The simulation model 

is identical in all cases, and similar to the model used in Sec-

tion 4.1.4 (Figure 4.11) with 10 elements in ݔଷ-direction. The 

material is injected with a constant volume flow of ͷͲ cmଷ/s, perpendicular to the inlet’s surface and a no slip 
boundary condition is applied for the walls. The material has 

temperature of 110 °C at the inlet and the tool temperature 

is 170 °C. The Castro-Macosko viscosity model (Eq. (2.19)) 

is used for the matrix viscosity and the Kamal-Malkin model 

for curing kinetics (Eq. (2.11)). The parameters are given in 

Table 4.4 and Table 4.5. The fiber aspect ratio is constant ݎ = ʹͲ or ݎ = ͳͲͲ, depending on the simulation. Fiber ori-

entation model and initial conditions are identical to Section 

4.1.4. 

 Influence of fiber length 

Figure 4.13 compares two different fiber lengths with result-

ing aspect ratios of r = ʹͲ and r = ͳͲͲ. Due to the aniso-

tropic viscosity tensor, depending on fiber length, the flow 

front builds up in a different way. The higher aspect ratio 

leads to higher viscosities and hence to higher viscous stress, 

resulting in a higher gradient of viscosity along the ݔଷ-direc-

tion. Consequently, the flow front in the simulation with 

                                                      
5 Similar numerical studies and results published in [26] and [106]. 
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longer fibers is more torn and has a larger area with partial 

wall contact. Such a flow front is a typical phenomenon of 

RIM processes as explained in Section 2.1.2.3 and would not 

be predicable within an isotropic, single-phase simulation. 

 

      (a)       (b) 

Figure 4.13: Comparison of flow fronts at the wall for two different 

fiber lengths: ݎ = ʹͲ (left) and  ݎ = ͳͲͲ (right) at ݐ = Ͳ.ʹ ݏ (a) 

and ݐ = Ͳ.͵ ݏ (b) 

 Influence of fiber orientation 

Within this Section, two different initial conditions of the fi-

ber orientation state are compared. The first one is the one 

explained in Section 4.1.4. The second one is the reverse 

case, so it is ܣଵଵ = Ͳ. ͵̅ at the walls and ܣଵଵ = Ͳ.ͺ at the inlet 

center. Both simulations are performed with r = ͳͲͲ.  

Figure 4.14 shows the results for state of filling (Figure 4.14a) 

and cavity pressure (Figure 4.14b) after 0.5 s of filling. The 

different orientations have no major influence on the flow 
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front evolution, but there is a significant influence on the in-

mold pressure. Due to the high degree of orientation near the 

walls, the viscosity rises, leading to a higher pressure. In an 

isotropic standard simulation, the viscosity does not depend 

on the orientation state and therefore, no difference between 

the two initial states would be visible. This highlights a ben-

efit of the anisotropic flow coupling, with focus on better 

pressure prediction especially near gates and other regions 

with significant change of fiber orientation. 

 

(a) (b) 

Figure 4.14: Comparison of state of filling (a) and corresponding 
cavity pressure (b) at the wall for different initial fiber orientations. 
80% fibers aligned at the wall (left) compared to 80% fibers aligned 

in the symmetry plane (right). The aspect ratio is ݎ = ͳͲͲ in both 

cases 
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 Force distributions 

Figure 4.15 shows the ܣଵଵ component results of the injection 

molding simulation with ݎ = ͳͲͲ. The resulting average hy-

drodynamic force (Eq. (3.33)), friction force (Eq. (3.66)) and 

lubrication force (Eq. (3.69)) are shown in Figure 4.16, Fig-

ure 4.17 and Figure 4.18. The average hydrodynamic force 

(Figure 4.16) is quite independent of the fiber orientation. 

Due to the high relative velocity, the force is higher near the 

inlet, compared to the remainder part. Regarding a path 

along the ݔଷ-direction, the force is low at the wall elements 

and in the core region, which is also traceable to the low rel-

ative velocity in these regions.  

 

Figure 4.15: Injection molding simulation result of fiber orientation 

tensor component ܣଵଵ. Cut through the ݔଶ-plane of symmetry (cf. 
Figure 4.11) 

The comparably high forces near the wall, but not directly at 

the wall correspond to the regions where fiber breakage is 

observed in the real process. Of course, fiber damaging is 

also observed directly at the walls, but other phenomena 
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such as fiber-wall interactions, which are not considered 

within this simulation are more important here. 

 

Figure 4.16: Injection molding simulation result of average hydro-

dynamic force ‖ܨℎ௬ௗ_𝑎௩‖ on a single fiber according to fiber orien-

tation shown in Figure 4.15. Cut through the ݔଶ-plane of symmetry 
(cf. Figure 4.11) 

Contrary to hydrodynamic and lubrication forces, the fric-

tion force (Figure 4.17) is not depending on an absolute 

value of any relative velocity. Hence it is not higher near the 

inlet. The friction force is depending on the specific number 

of contacts ܰୡ𝜙, which is higher in less orientated regions, 

as shown in Section 4.1.3.3. Therefore, the friction is higher 

in the core region, where the fibers are less orientated and 

lower at the walls, especially in regions with high degree of 

orientation (cf. Figure 4.15). 

The lubrication force distribution, shown in Figure 4.18, is 

mainly depending on fiber-fiber overlap and velocity gradi-

ent. Hence, the high regions are regions with high degree of 

orientation (cf. Figure 4.15), due to the larger overlap area.  
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Figure 4.17: Injection molding simulation result of average friction 

force on contact point  ‖ܨ‖ according to fiber orientation shown 

in Figure 4.15. Cut through the ݔଶ-plane of symmetry (cf. Figure 
4.11) 

 

Figure 4.18: Injection molding simulation result of average lubrica-

tion force on contact point  ‖ܨ௨‖ according to fiber orientation 

shown in Figure 4.15. Cut through the ݔଶ-plane of symmetry (cf. 
Figure 4.11) 
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Most high values are reached by a combination of high de-

gree of orientation and high velocity gradients as detectable 

at walls near the inlet. Another region with slightly higher 

lubrication forces is near the walls and near the flow front, 

where the fiber orientation is almost isotropic, but the veloc-

ity gradient assumes high values. 

In general, all three computed forces show meaningful re-

sults along the flow path with respect to fiber orientation and 

flow field. The friction and lubrication force show both a sig-

nificant dependency on orientation. Therefore, an orienta-

tion dependent modeling of these forces is essential when us-

ing them in further modeling approaches. Knowledge about 

the mentioned forces may help to improve state of the art 

models of fiber orientation, breakage, fiber-matrix separa-

tion or viscosity and flow modeling itself. The hydrody-

namic forces, used to calculate fiber breakage, are experi-

mentally validated in Section 4.2.3. 

4.2 Experimental validation of filling 

simulation 

4.2.1 Anisotropic flow modeling6 

The novel approach for anisotropic flow modeling should be 

experimentally validated. The validation should include fi-

ber materials with fiber dependent quantifiable flow effects. 

Therefore the experimental work of Chiba and Nakamura 

[130] is referred. Here, the steady state flow of a Newtonian 

fiber suspension in a 1:4 backward-facing step channel is de-

termined for different Reynolds numbers (ܴ݁). Caused by 

                                                      
6 Results also published in [26]. 
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the backward step, eddies built up for higher ܴ݁, influencing 

the flow field and fiber orientation. The suspension is a New-

tonian water-syrup-solvent with ߟ = Ͳ.ͲͶ͵ Pa∙s, filled 
with Φ = ʹ ∙ ͳͲ−ହ vinylon fibers, having an aspect ratio of r = ʹͺ͵. Due to the low fiber volume content, the Folgar-

Tucker model (Eq. (2.29)) is used for fiber orientation mod-

eling. The simulation model with geometrical information is 

shown in Figure 4.19. Due to the large model, the mesh is 

created with cubic elements having an edge length of 2 mm. 

Hence there are areas with less than 10 elements between 

two walls, which is acceptable in this case, since the com-

plete cavity is filled with suspension and no flow front is re-

garded. Figure 4.20 represents the simulation results in case 

of streaming lines and fiber orientation ellipsoids, calculated 

with the eigenvalues and eigenvectors of the second order 

orientation tensor. 

 

Figure 4.19: Simulation model for the experimental work of [130], 
1:4 backward-facing step channel for creating a recirculating flow. 
Inlet in blue, outlet in red and green frame, representing the area of 
Figure 4.20 
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The results are obtained within the green frame in Figure 

4.19 ±2 mm in xଷ-direction, so some streamlines disappear, 

since they leave this control volume. The streamlines visual-

ize no eddy for ܴ݁=1.9, but for ܴ݁=11.1 and ܴ݁=14.9. The 

vortex increases with ܴ݁. This effect and the dimensions of 

the eddies correspond to the numerical and experimental re-

sults of Chiba and Nakamura. Also similar to [130], the fi-

bers align along the streaming lines with higher orientation 

near the walls and more randomly orientation in the vor-

texes. The good agreement validates the simulation ap-

proach in case of flow modeling and fiber orientation for low 

fiber volume content. [26] 

4.2.2 Fiber orientation7 

 Material, models and process conditions 

For validation of fiber orientation, the work of Englich [9] is 

considered, containing experimental data of a 35 %-vol short 

glass fiber filled phenolic compound. The fiber orientation is 

determined with microscopic images, presented in [9]. The 

images are created of RIM experiments with a square plate, 

having an edge length of 150 mm, a thickness of 2 mm and 

a 135 mm long and 1.5 mm high line inlet along one edge. 

The complete cavity with sprue is given in Figure 4.21. The 

sprue is meshed with 27 hexahedral elements along the di-

ameter and 115 in ݔଷ-direction. The plate is meshed with 300 

hexahedral elements in ݔଵ- and ݔଶ-direction and 10 in ݔଷ-di-

rection. The simulation is performed anisotropic, non-New-

tonian and non-isothermal. The FRP is injected with 

16 cm³/s and 110 °C into the mold with a constant surface 

temperature of 175 °C. Similar to [26] and Section 4.1.4, the 

                                                      
7 Results also published in [26] 
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Castro-Macosko viscosity model (Eq. (2.19)) is used for the 

matrix viscosity and the Kamal-Malkin model for curing ki-

netics (Eq. (2.11)), the parameters are given in Table 4.4 and 

Table 4.5. 

The fiber orientation is determined using the RSC-model 

(Eq. (2.30)) with strain reduction factor 0.03=ߢ and 0.08=ߢ 

for a reference case with isotropic viscosity modeling. Both 

strain reduction factors are optimized to fit the orientation 

distribution [26]. The fiber orientation at the inlet is chosen 

to be ܣଷଷ = Ͳ.ͺ at the walls and ܣଷଷ = Ͳ. ͵̅ at the inlet center 

with parabolic interpolation. The further entries are defined 

as ܣଵଵ = ଶଶܣ = ሺͳ − ଵଶܣ ଷଷሻ/ʹ andܣ = ଵଷܣ = ଶଷܣ = Ͳ, be-

ing also similar to Section 4.1.4, but the fibers are orientated 

dominantly in ݔଷ-direction, not ݔଵ, due to the direction of 

the sprue. The fiber aspect ratio is constant ݎ = ͳͷ [26]. The 

isotropic reference case is also simulated with the Castro-

Macosko viscosity model, the model parameters are given in 

[25]. The curing modeling of the isotropic case is identical to 

the anisotropic one, so the parameters are given in Table 4.5. 

 

Figure 4.21: Square plate mold model for fiber orientation simula-

tions, derived from [9]. Circular inlet in blue and outlet in red [26] 
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 Results for fiber orientation distribution 

Figure 4.22 shows the results, represented by distribution of ܣଵଵ over plate thickness in the plate’s center. The experi-

mental results are given by the numerical mean with corre-

sponding standard deviation. Both simulation approaches 

create good results validating the anisotropic approach in 

case of fiber orientation modeling. The anisotropic results fit 

better near walls, while the isotropic result is better in the 

core region. Near the walls (first two and last two points) the 

MSE is 0.0042 for the isotropic and 0.0016 for the aniso-

tropic simulation. In the core region (three middle points) 

the mean square error is 0.0069 for the isotropic and 0.019 

for the anisotropic simulation.  
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Figure 4.22: Second-order orientation tensor component ܣଵଵ over 

plate thickness for RSC-model with isotropic (red) and anisotropic 
flow modeling (green). Experimental result (black) derived from mi-
croscopic images in [9] [26] 
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Regarding the complete region the mean square error is 

0.0054 for the isotropic and 0.0091 for the anisotropic simu-

lation. Although the results are quite similar, the strain re-

duction factor is more than 2.5 times higher in the isotropic 

simulation, highlighting the influence of fiber-flow coupling 

for fiber re-orientation. 

4.2.3 Fiber length 

 Material, models and process conditions 

For the experimental investigations focusing on fiber length 

and cavity pressure within this study, an experimental long 

fiber phenolic molding compound of the novolac type is con-

sidered. The compound Porophen GF9201L12a by Sumi-

tomo Bakelite Co., Ltd. was supplied as unidirectionally 

glass fiber reinforced flakes with an initial fiber length of ܮ = ͳʹ mm [131]. According to the measurements, the fi-

bers are assumed with a constant diameter of ݀ =Ͳ.ͲͲͳ mm. This compound is typically used for compres-

sion molding applications, not for injection molding, due to 

the processing difficulties. However, it is used for injection 

molding in a study to develop a long fiber RIM process in a 

DFG-project running since 2018, with project number 

400343062. These experiments have been performed at the 

Fraunhofer ICT in 76327 Pfinztal, Germany [132]. 

Processing the experimental long fiber phenolic compound 

has proven to be difficult in the injection molding process, 

due to the strong adhesion of the resin to the screw and the 

barrel of the injection molding machine, resulting in step-like 

and abrupt screw movement during plasticizing. Previous re-

search studies by other authors reported similar problems 

[133]. A higher back pressure and higher barrel temperatures 
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had to be used to counteract the adhesion, compared to con-

ventional short fiber molding compounds. The higher tem-

peratures reduce the adhesion to the barrel, but of course also 

support the curing of the resin. In order to avoid premature 

curing, plasticizing was only performed with the plasticizing 

unit retracted from the hot mold [132]. The process parame-

ters found in this way are given in Table 4.6. A stable and 

repeatable process was possible. 

The injection molding experiments were performed on a 

KraussMaffei 550/2000 GX injection molding machine 

equipped with a standard 60 mm thermoset screw and no 

non-return valve. The temperature control of the plasticizing 

unit is realized by four individually controlled, oil-tempered 

zones. The clamping unit has a maximum clamping force of 

5500 kN. For in-mold pressure measurement, two capacitive 

sensors of the type 6163 manufactured by Kistler Instru-

mente GmbH (Sindelfingen, Germany) are placed within 

the mold. Plates with a constant wall thickness of four milli-

meters and a size of 480 mm × 190 mm are manufactured. 

The mold has a central sprue with a cone shape and 185 mm 

height, further defined by a start diameter of 9 mm, an end 

diameter of 15.5 mm. The simulation model of the plate with 

sprue and part of the screw chamber is shown in Figure 4.23. 

In the simulation, the front part of the plasticizing unit barrel 

and the nozzle are considered (Figure 4.23b). By doing so, a 

more realistic modeling of fiber orientation and length distri-

bution at the beginning of the sprue is possible, since the in-

itial fiber length distribution is determined in the frontal part 

of the plasticizing unit barrel (see Section 4.2.3.2). The 

model is meshed with hexahedral cells. The cells in the plate 

have a length of 2.3 mm in ݔଵ-, 1.75 mm in ݔଶ- and 0.4 mm 

in ݔଷ-direction. The sprue and nozzle are built up with 24 
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cells along the diameter, 32 along the circumference and 1.5 

mm edge length in ݔଷ-direction. 

Table 4.6: Process parameters for injection molding experiments of 
the long fiber phenolic molding compound [132] 

Parameter Value Unit 

Mold temperature 185 °C 

Barrel temperature profile 50-70-90-90 °C 

Plasticizing volume 650 cm³ 

Screw speed plasticizing stage 1 20 1/min 

Back pressure plasticizing stage 1 120 bar 

Plasticizing stage 1 volume 100 cm³ 

Screw speed plasticizing stage 2 65 1/min 

Back pressure plasticizing stage 2 100 bar 

Plasticizing stage 2 volume 650 cm³ 

Injection speed 150 cm³/s 

Cavity pressure for switching to 

holding pressure 
100 bar 

Holding pressure stage 1 600 bar 

Holding pressure stage 1 duration 15 s 

Holding pressure stage 2 600 – 10 
(linear 
ramp) 

bar 

Holding pressure stage 2 duration 5 s 

Cure time 180 s 

 

The screw chamber is meshed with 72 elements along the 

diameter, 64 along the circumference and 1.57 mm edge 

length in ݔଷ-direction.  
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At the beginning of the simulation, the screw chamber is 

filled with FRP, while the rest of the cavity contains air. In 

the following, FRP enters the model at the top surface of the 

screw chamber, which is highlighted in blue in Figure 4.23. 

Both short edges of the plate are defined as outlet, but only 

one is visible in Figure 4.23a. The matrix viscosity, curing 

and fiber orientation model are identical to Section 4.2.2.1. 

Since the resin system is quite similar to the one considered 

in Section 4.2.2.1 the same parameters are used for the vis-

cosity model, but the viscosity is lowered to 50 %, since the 

resin system of the long fiber material shows a lower viscos-

ity with same tendencies on temperature and shearing. The 

thermal boundary conditions are of Dirichlet type and fit to 

the process boundary conditions (see Table 4.6). For the ve-

locity, a no-slip boundary condition at the walls is assumed, 

which is a simplification in RIM simulation, but creates 

good results as mentioned in Section 2.2.1.5. At the inlet the 

velocity is ܷ୧୬୪ୣ୲ = ሺͲ Ͳ −Ͳ.Ͷʹͷሻ m/s. For the velocity at 

the outlet, the phase-dependent boundary condition given by 

Eq. (3.4) is applied. The material has an initial cure of 0.01 % 

and the fiber orientation distribution at the inlet and in the 

initially stored material is quasi-isotropic. The fiber length 

distribution at the inlet and in the initially stored material is 

identical to the measurements in the screw chamber (see Sec-

tion 4.2.3.2). All other boundary fields (fiber orientation at 

the walls, curing rate, etc.) are set to zeroGradient at the walls. 

Only the mold filling with a time of 3.3 s is simulated, so the 

mold is filled. Since no relative velocity appears in the com-

pletely filled mold, no fiber breakage will occur in the simu-

lation. Therefore, ongoing process steps like holding and cur-

ing have no effect on the fiber length distribution within the 

simulations. 
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(a) 

 

(b) 

Figure 4.23: Cavity for validation (rectangle plate with central 

sprue) with positions of pressure sensors ଵ and ଶ, area for fiber 

length evaluation ܮ and inlet area in blue and outlet in red. Com-

plete cavity (a) and cut through ݔଶ-plane of symmetry for detailed 
visualization of screw chamber and nozzle (b)  
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 Results for fiber length distribution 

For the fiber length analysis, specimens are extracted from 

the frontal part of screw chamber and the molded part (posi-

tion ܮ Figure 4.23). The measurement is carried out by and 

according to the method described and validated by 

Maertens et al. [132]. The fiber length measurement princi-

ple is destructive and based on the commercially available 

FASEP system (IDM Systems, Darmstadt, Germany). The 

measurement process works in four steps according to the 

work of Goris et al. [134]. For the first step (matrix removal), 

a sample of approximately 2.5 g is extracted from the plate 

and the matrix is removed by for 18 h in pyrolysis at 650 °C 

and air atmosphere using a TGA701 device by LECO Cor-

poration, (St. Joseph, Michigan, USA). Afterwards, the ash 

residue is transferred into an aqueous solution, which is di-

luted using an apparatus consisting of a stirrer and beaker. 

Therefore, a repeatable and controlled sample-taking out of 

the dilution is enabled. Contrary to current state-of-the-art 

fiber dispersion and sample-taking methods, the influence of 

the operator on the measurement results is reduced [132]. 

The third and fourth step are the image acquisition and the 

image processing (fiber detection) by using the algorithms 

provided by the FASEP software. 

For the simulation results, the fiber breakage is simulated 

with the method described in Section 3.4.3. For the child 

generation rate and the length evolution, the state-of-the-art 

approaches given by Eq. (2.40) and Eq. (2.44) are used. The 

force is determined with eigenvectors and hydrodynamic 

forces as described in Section 3.4.1 and based on these 

forces, the breakage probability is determined with Eq. 

(3.79). 24 different fiber lengths between 0.25 mm and 11.75 

mm (in 0.5 mm steps) are possible, corresponding to the 
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clustering of the fiber length measurement, being also 0.5 

mm. The  breakage coefficient is set to be ܥୠ୰ = Ͳ.Ͳʹͷ and 

the standard deviation for breaking point is ܵୠ୰ = ͳ, being 

identical to the values used by Phelps et al. [70]. The differ-

ence is the force modeling, which is based on hydrodynamic 

forces and set in relation to the eigenvectors of the orienta-

tion tensor in this work (Eq. (3.33)).  

The experimental results of the screw chamber (black) and 

plate (green), as well as the simulation results in the plate 

(blue) are shown in Figure 4.24 for fiber lengths from 5.25 

mm to 11.75 mm and Figure 4.25 for 0.25 mm to 4.75 mm. 

The experimental results are the average of five measure-

ments, illustrated with corresponding standard deviation 

and results are weighted by fiber length. 

Only slightly more than 5 % of the initially 12 mm fibers re-

main at the end of plastification, meaning that most of the 

fiber breakage happens within the plastification and not dur-

ing mold filling. There are some other longer fibers left with 

an amount of 2 % around 6 mm and 8 mm length, but most 

of the fibers (about 70 %) are already shorter than 1 mm be-

fore entering the mold. Regarding the plate measurement, 

nearly no fibers longer than 3.25 mm are left, since the 

amount is about 0.6 % in sum. Therefore, the amount of fi-

bers shorter than 1 mm has risen to about 78.5 %.  

Regarding the complete measurement of screw chamber and 

plate, the average fiber length in the experiments decreases 

by about 14 % from 0.434 mm to 0.38 mm. The simulation 

corresponds to the measurements, predicting about 79.6 % 

to be shorter than 1 mm, being a deviation of only 1.1 %. As 

shown in Figure 4.24 and Figure 4.25 the simulated fiber 

length distribution is in good agreement with the 



4 Verification and validation 

140 
 

experimental data, showing a slight rise of proportions from 

11.25 mm to 1.75 mm and a following faster rise of propor-

tions up to 0.25 mm.  
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Figure 4.24: Length weighted amount of fibers with lengths of 
5.25 mm to 11.75 mm. Experimental results of screw chamber 
(black) and in plate (green) with corresponding standard deviation. 
Simulation results in the plate in blue × 

One exception is 11.75 mm, where the predicted amount of 

fibers is about 5.6 times higher, compared to the measure-

ments. Nevertheless, compared to the initial state, nearly 

87 % of the 11.75 mm fibers which break due to the meas-

urement are also broken within the simulation. 

Figure 4.26 shows the simulated average fiber length for the 

beginning and end of the sprue, being critical transit areas for 

fiber breakage. 
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Figure 4.25: Length weighted amount of fibers with lengths of 
0.25 mm to 4.75 mm. Experimental results of screw chamber (black) 
and in plate (green) with corresponding standard deviation. Simu-
lation results in blue × 

By transition from the screw chamber to the sprue (Figure 

4.26a), the average fiber length decreases already about 5 %. 

A state-of-the-art simulation often starts at the beginning of 

the sprue and the screw chamber and nozzle are neglected. 

As can be seen, a proportion of fibers is already broken at 

this point and the assumption of a fiber length distribution 

similar to the stored material is not valid at this point.  

Figure 4.26b further highlights the transit from sprue to mold 

as an important area of fiber breakage, where the average fi-

ber length is reduced by 10 %, due to the sharp edge, creating 

high shearing rates and relative velocities. 
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Figure 4.26: Simulated average fiber length at the end of filling, 
weighted by number. Image detail of transition from screw chamber 
to sprue (a) and sprue to mold plate (b) 

The simulation results are in good agreement with the exper-

imental data, validating the novel approach of simulating fi-

ber breakage based on eigenvectors and hydrodynamic 

forces on macroscopic scale. The fiber breakage is predicted 

at meaningful areas within the part. Of course, shortening of 

the fibers affects the anisotropic viscosity modeling, depend-

ing on the fiber aspect ratio. Hence, the simulated cavity 

pressure is also influenced by the fiber breakage, which will 

be discussed in the next Section. 

4.2.4 Cavity pressure 

Figure 4.27 shows the experimental and simulation results 

of cavity pressure for two positions within the mold, as illus-

trated in Figure 4.23. The experimental pressure data is 
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again the average of five measurements with corresponding 

standard deviation. The data fits to the fiber length measure-

ments presented in Section 4.2.3.2 so the process parameters 

are given by Table 4.6. Two simulations are compared. Both 

are based on the anisotropic viscosity tensor presented in 

Section 3.3. One simulation is calculated with fiber break-

age, where the fiber length distribution is given in Section 

4.2.3.2.  
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Figure 4.27: Cavity pressure during mold filling at sensor ଵ (solid 

lines) and ଶ (dotted lines) as shown in Figure 4.23. Comparison of 
experiments (black) and anisotropic modeling without fiber break 
(red) and with fiber break (green). Experimental lines are the aver-

age of five measurements with corresponding standard deviation 

The other simulation assumes a constant fiber length of 

0.434 mm, based on the measurements in the screw 
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chamber. Since the simulation model is identical to the fiber 

length simulation, all parameters and boundary conditions 

are given in Section 4.2.3.1. Both simulations predict the 

cavity pressure well at position ଵ and slightly too high at 

position ଶ being still within the standard deviation of the 

experiments. The results match the previous work [26], 

where the anisotropic flow coupling with constant fiber 

length is validated to be suitable for in-mold pressure simu-

lation during mold filling. The focus point of this compari-

son is the deviation at ଵ of the two simulations after 4.5 s, 

where the simulation without fiber breakage predicts a 

higher pressure. The maximum deviation is about 0.43 MPa 

at 5.45 s, being about 10 %.  The deviation is within an area, 

where simulated pressure is too high, compared to the exper-

imental results, so in summary, the results with fiber break-

age are slightly better than without. 

As expected, the predicted pressure, or pressure drop be-

tween  ଵ and ଶ is higher without fiber breakage, due to the 

longer fibers, causing a higher viscosity. Although the differ-

ence is quite marginal with about 10 %, it corresponds to 

only a slight change of fiber length with about 14 % (see Sec-

tion 4.2.3.2) and highlights the benefit of a fiber length de-

pendent viscosity modeling with parallel fiber breakage cal-

culation. However, the predicted pressure at ଶ is too high 

for both simulations. One reason may be the no-slip bound-

ary condition, which should be further investigated. Sliding 

along the wall, would lower the pressure by lowering the ki-

netic energy, needed for material transport.  Of course, this 

would affect both regarded positions ଵ and ଶ, but ଶ will 

be affected stronger, due to the longer flow path. 
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4.3 Outlook on prediction of warpage 

simulation 

This Section will give a short outlook on the potential of pre-

dicting warpage and residual stresses, presented in Section 

3.5. Due to a lack of information about material data and 

experimental data, the approach cannot be validated within 

this work. But at least the general feasibility of such a simu-

lation will be shown. 

4.3.1 Model and procedure 

 Initial state of warpage analysis 

The warpage analysis begins after mold filling, including the 

process steps holding, curing, ejection and out-of-mold cool-

ing. Four different cases are considered. On the one side, the 

time period of the curing step is performed for 10 s and 60 s, 

on the other side both configurations are simulated with an 

ejection step and without. The warpage analysis is per-

formed with the FEM software Abaqus 2018 (Dassault Sys-

témes, Johnston, RI, USA).  

The simulation model is a rectangular plate, similar to the 

one shown in Figure 4.23, except the thickness of the plate 

is only 3 mm not 4 mm so the model is similar to [26], where 

the anisotropic flow modeling without fiber breakage is val-

idated. Here, fiber breakage is ignored, since the algorithm 

for homogenization and material creation can only handle 

constant fiber aspect ratios. Therefore, the short fiber mate-

rial and mold used in [26] are regarded. As input for the 

warpage analysis, fiber orientation, temperature and degree 

of curing distribution at the end of the mold filling simula-

tion are mapped, using MPCCI MapLib [100,101]. 
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Therefore, all relevant parameters for material modeling are 

identical to the mold filling simulation in the initial state. 

 Material modeling and boundary conditions 

During the holding and curing step, displacement is blocked 

on the whole part’s surface, since it is still in mold in the real 
process. The surface temperature is set constant to 170 °C. 

The holding stage applies for 40 s, the curing step for 10 s or 

60 s. Afterwards, an ejection step of 3 s is performed, fol-

lowed by an out-of-mold cooling step of 6000 s. During the 

latter two steps, only the top end of the sprue is blocked for 

displacement to fix the model for numerical stability. Over 

the course of the ejection step, the corner nodes of the plate 

are displaced 20 mm in ݔଷ-direction during the complete 

ejection step. In the cooling step, the corner nodes have no 

specific displacement boundary condition, similar to the rest 

of the model. During ejection and cooling, a convection 

boundary condition for temperature is applied on the whole 

part. The corresponding film coefficient and sink tempera-

ture are 15 W/(m²K) and 20 °C. The effective material prop-

erties are determined with the schemes listed in Table 3.2 

and explained in Section 2.3.2 and Section 3.5.2. For the me-

chanical model, the CHILE model (Section 2.3.1.2) is used 

in an orthotropic formulation. The model parameters are 

given in Table 4.7 and Table 4.8. The part is clustered in 30 

different material sections, depending on orientation state, 

so similar orientation states are summarized. The sections 

must not be contiguous, but have similar fiber orientations, 

which are normally nearby. According to the 30 material 

sections, 30 orthotropic materials are created, describing the 

material behavior also for the corresponding fiber orienta-

tion state. This procedure is performed to lower the numeri-

cal effort and increase numerical stability. 
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Table 4.7: Material parameters of fiber and matrix for material 
modeling of warpage analysis 

Parameter Value  Unit ߩ 1270 kg/m³ ߩ 2500 kg/m³ ܧ, 3500 MPa ܧ,୰ 233.33 MPa ܧ 8∙104 MPa ߥ 0.35 - ߥ 0.22 - 𝜗୲୦,, 10-4 m/K 𝜗୲୦,,୰ 3.3∙10-5 m/K 𝜗୲୦, 5.4∙10-6 m/K 𝜗ୡ୦, 2∙10-4 - 𝜗ୡ୦, 2∙10-4 - ߣ୲୦, 0.38 W/(m∙K) ߣ୲୦, 0.15 W/(m∙K) ܿ୮, 1850 J/(kg∙K) ܿ୮, 1850 J/(kg∙K) 

 

Due to a lack of material data, the parameters are not correct 

for the rubbery state and glass transition of the matrix for the 

corresponding material, but orientated at the work of Ber-

nath [14]. Nevertheless, the aim is a proof of concept, not 

generating quantifiable results. The values for chemical 

shrinkage and specific heat capacity are known for the com-

pound and therefore chosen identical for matrix and fiber for 
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simplification, to fit to the value of the compound. For the 

homogenization, a fiber volume content of 0.35 and an as-

pect ratio of 15 is applied. 

Table 4.8: Glass transition parameters of the matrix for material 
modeling of warpage analysis 

Parameter Value  Unit ୡܶଵ 2 K ୡܶଶ 3 K ܶ, 74 °C ܶ,∞ 224 °C ߢ 0.268 - 

 

4.3.2 Results of the warpage analysis 

The results of the warpage analysis are shown in Figure 4.28 

for 60 s curing time and Figure 4.29 for 10 s curing time. In 

both figures, the deformation on the part is scaled up five 

times, so the general shape of the final part is detectable. Af-

ter 60 s of curing, the degree of cure is above 0.75 at every 

point of the part and above 0.9 within the plate. Therefore, 

it is ܶ > ͳͻͲ °C within the plate and the behavior is linear 

elastic at the point of ejection. 

Due to the linear elastic behavior for the complete part, the 

simulation results with ejection deformation (Figure 4.28b) 

are identical to the results without ejection deformation (Fig-

ure 4.28a), because the ejection deformation simply goes 

back to its initial state during cooling. Therefore, the ejection 

does not influence the warpage in this case and the defor-

mations must have a different source.  
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Figure 4.28: Magnitude of displacement after 40 s holding, 60 s cur-
ing, ejection and 6000 s cooling. Simulation without ejection 
deformation (a) and with ejection deformation (b) 
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Figure 4.29: Magnitude of displacement after 40 s holding, 10 s cur-
ing, ejection and 6000 s cooling. Simulation without ejection 
deformation (a) and with ejection deformation (b) 
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The displacement shown within Figure 4.28 is caused by fro-

zen-in residual stresses during curing and thermal shrinkage 

in combination with anisotropic behavior. The maximum 

displacement is about 7.5 mm at the edge with maximum ݔଵ-

value and a convex shell is built.  

In case of only 10 s curing time, the results with ejection de-

formation (Figure 4.29b) and without (Figure 4.29a) are dif-

ferent, since the material does not behave linear elastic dur-

ing ejection. When ejecting the part after only 10 s curing it 

is ܶ < ͳͲ °ܥ in most regions of the part, therefore the be-

havior is entropy elastic (rubbery state). Hence, a part of the 

ejection deformation is captured due to the change of mate-

rial behavior during ejection and the final deformation is 

higher in Figure 4.29b, compared to Figure 4.29a.  

Comparison of Figure 4.28a and Figure 4.29a, shows lower 

deformations for lower curing times, resulting in a maxi-

mum displacement of only about 5.5 mm. This is caused by 

less frozen-in stresses at the point of ejection, since the ma-

terial is in rubbery state and no residual stresses can build up. 

The general distribution of deformation and final part shape 

is quite similar in both cases, since is mainly driven by ther-

mal shrinkage and anisotropy, where the latter is identical in 

all simulations. In reality it would be unlikely, that a part 

with such small curing time, and hence degree of cure will 

deform less. Effects such as movement of the part and grav-

ity will deform the still visco-elastic and not completely 

form-stable part, but are neglected within the simulation. 

In summary, the orthotropic CHILE model in combination 

with mapping of process fields is able to capture warpage of 

fiber reinforced injection molding parts, depending on pro-

cess parameters, fiber orientation distribution and curing 
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reaction. The displacements are in a realistic scale. Never-

theless, the material parameters in the area of the rubbery 

state and glass transition are only estimated and not based 

on experimental data. Further investigations on material pa-

rameters and warpage experiments with injection molding 

parts must be performed to validate the method. 
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5 Conclusion and outlook 

5.1 Conclusion 

Novel simulation approaches for fiber reinforced injection 

molding have been presented. The state-of-the-art is ex-

tended by a multiphase approach, considering air and FRP 

within the simulation. A phase-dependent boundary condi-

tion enables that the air may leave the mold, while the FRP 

is blocked. The boundary condition is formulated to mini-

mize the material loss during simulation.  

To consider fiber length and orientation within the flow sim-

ulation, the viscosity is modeled non-Newtonian with a 

fourth order viscosity tensor, taking fiber orientation, length 

and volume fraction into account. Numerical studies show 

the influence of fiber length and orientation on flow front 

evolution and on in-mold pressure, highlighting the benefits 

of the tensorial approach. 

New approaches approximate hydrodynamic forces, fiber-fi-

ber contact points and fiber-fiber forces within the homoge-

nized material with information provided by the second or-

der orientation tensor. The contact point and force modeling 

is verified with numerical experiments, including randomly 

generated individual fibers. The novel approaches show 

good results for different orientations states and fiber lengths. 

The hydrodynamic forces are used to model fiber breakage 

with orientation and flow dependency during mold filling. 

The breakage modeling is validated with fiber length distri-

butions and pressure data of injection molding experiments.  

The numerical results are in good agreement with the exper-

imental data. In combination with the viscosity tensor, the 
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fiber breakage directly influences the flow modeling, which 

is also detectable for the simulated in-mold pressure. 

After mold filling, relevant process data is mapped to per-

form a non-isothermal structural analysis with respect to fi-

ber orientation, length and curing distribution. Therefore, 

the part is clustered into a defined number of different mate-

rials, which are all orthotropic and the values are determined 

by homogenization and orientation averaging. The simula-

tion results are meaningful and show a prediction of warpage 

with respect to non-isotropic material behavior, curing and 

glass transition in a realistic scale.  

In summary, the novel approaches improve the quality and 

level of detail for injection molding simulations with fiber 

reinforced polymers. A more detailed prediction of air traps, 

flow front evolution, cavity pressure and material internal 

forces, depending on fiber orientation and length distribution 

and fiber volume fraction is enabled. In combination with 

the subsequent warpage prediction, these approaches help to 

improve the final part’s quality. Furthermore, the higher de-

gree of knowledge during the form filling supports the pro-

cess and product design in an early stage of development, 

which decreases the loops of part design optimization and 

tool revision and therefore has a positive effect on costs, 

economy and environment. 

5.2 Outlook 

Although the presented novel approaches improve the qual-

ity of an injection molding simulation, there is still unused 

potential for more improvement which needs to be regarded 

and validated. This concerns all process steps mentioned 

within this work. 
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The calculated fiber-fiber interaction points and forces have 

no effect on the simulation at this point of time, which is of 

course not the case in the real process. The mentioned as-

pects may be used to improve fiber breakage calculations by 

more detailed force modeling or dynamic description of 

model parameters, used within the breakage model. Further-

more, they offer potential for a more detailed fiber orienta-

tion modeling and even flow modeling itself. This applies for 

viscosity modeling and for the momentum balance equation 

itself, since the interaction forces represent material internal 

forces. Nevertheless, the qualitive and quantitative influence 

of fiber-fiber contact is not well studied at this point of time 

and the resulting consequences on fiber breakage and mate-

rial behavior are not completely known. Therefore, further 

investigations from experimental and numerical side are 

needed to improve the state of knowledge on these phenom-

ena. Of course, these effects are on microscopic scale and 

cannot be separated from each other, creating a high experi-

mental effort. 

Additionally, some boundary conditions can be improved, 

by a more detailed approach. This concern the wall-slip ef-

fect, which should be further regarded experimental and sim-

ulative. Influence of tool, temperature, pressure, viscosity 

and of course velocity and material on this friction contact 

should be quantified and taken into account in the simula-

tions. Another aspect is the temperature boundary condi-

tion, which is often chosen homogeneous and constant at 

state of the art, or the tool with cooling/heating channels is 

also part of the simulation model, creating higher numerical 

effort. A more detailed description of heat flow as boundary 

condition improves the temperature modeling without sig-

nificant rise of numerical effort, since no tool must be 



5 Conclusion and outlook 

156 
 

regarded. Here also, the heat transfer coefficient should be 

modeled with respect temperature, pressure, curing state, 

etc. Both extensions of the boundary conditions may im-

prove the simulation results, especially in case of in-mold 

pressure and temperature modeling. 

Furthermore, more investigation on the early state of warp-

age analysis shown within this work should be done. In a 

first step the shown approaches must be validated (or modi-

fied) based on experimental data, which also includes exper-

iments to determine relevant material properties. Further-

more, the method can be improved by more detailed mate-

rial modeling. The fiber aspect ratio should be included into 

the mapping and homogenization process, so the warpage 

analysis can consider the length distribution. 
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