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Abstract
Receiver operating characteristic (ROC) curves are used ubiquitously to evaluate scores, 
features, covariates or markers as potential predictors in binary problems. We characterize 
ROC curves from a probabilistic perspective and establish an equivalence between ROC 
curves and cumulative distribution functions (CDFs). These results support a subtle shift 
of paradigms in the statistical modelling of ROC curves, which we view as curve fitting. 
We propose the flexible two-parameter beta family for fitting CDFs to empirical ROC 
curves and derive the large sample distribution of minimum distance estimators in general 
parametric settings. In a range of empirical examples the beta family fits better than the 
classical binormal model, particularly under the vital constraint of the fitted curve being 
concave.

Keywords  Binary prediction · Classification · Evaluation of predictive potential

1  Introduction

Through all realms of science and society, the assessment of the predictive ability of scores 
or features for binary outcomes is of critical importance. To give but a few examples, bio-
markers are used to diagnose diseases, weather forecasts serve to anticipate extreme pre-
cipitation events, judges need to assess recidivism in convicts, banks use customers’ par-
ticulars to assess credit risk, and email messages are to be identified as spam or legitimate. 
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In these and myriads of similar settings, receiver operating characteristic (ROC) curves are 
key tools in the evaluation of predictive potential (Fawcett 2006; Flach 2016).

A ROC curve is simply a plot of the hit rate (HR) against the false alarm rate (FAR) 
across the range of thresholds for a real-valued score. Specifically, consider the joint dis-
tribution Q of the pair (S, Y), where the score S is real-valued, and the event Y is binary, 
with the implicit understanding that higher values of S provide stronger support for the 
event to materialize ( Y = 1 ). The joint distribution Q of (S, Y) is characterized by the prev-
alence �1 = Q(Y = 1) ∈ (0, 1) along with the conditional cumulative distribution functions 
(CDFs)

Any threshold value s can be used to predict a positive outcome ( Y = 1 ) if S > s and a 
negative outcome ( Y = 0 ) if S ≤ s , to yield a classifier with hit rate (HR),

and false alarm rate (FAR),

Terminologies abound and differ markedly between communities. For example, the hit rate 
has also been referred to as true positive rate (TPR), sensitivity or recall. The false alarm 
rate is also known as false positive rate  (FPR) or fall-out and equals one minus the true 
negative rate, specificity, or selectivity.

The term raw ROC diagnostic refers to the set-theoretic union of the points of the form 
(FAR(s), HR(s))� within the unit square.1 The ROC curve is a linearly interpolated raw ROC 
diagnostic, and therefore it also is a point set that may or may not admit a direct interpre-
tation as a function. However, if F1 and F0 are continuous and strictly increasing, the raw 
ROC diagnostic and the ROC curve can be identified with a function R, where R(0) = 0,

and R(1) = 1 . High hit rates and low false alarm rates are desirable, so the area under the 
ROC curve (AUC) is a widely used, positively oriented measure of the predictive potential 
of a score or feature. In data analytic practice, the measure Q is the empirical distribution 
of a sample (si, yi)ni=1 of real-valued scores si and corresponding binary observations yi . In 
this setting, it suffices to consider the unique values of s1,… , sn to generate the raw ROC 
diagnostic, and linear interpolation yields the empirical ROC curve, as illustrated in our 
data examples.

The remainder of our note is organized as follows. Section 2 establishes rigorous ver-
sions of fundamental theoretical results that thus far have been available informally or in 
special cases only. In particular, we demonstrate an equivalence between ROC curves and 
CDFs. In Sect.  3 we introduce the flexible yet parsimonious two-parameter beta model, 
which uses the CDFs of beta distributions to model ROC curves, and we discuss estimation 
and testing in this context. The paper closes with data examples in Sect. 4.

F1(s) = Q(S ≤ s | Y = 1) and F0(s) = Q(S ≤ s | Y = 0).

HR(s) = Q(S > s |Y = 1) = 1 − F1(s),

FAR(s) = Q(S > s | Y = 0) = 1 − F0(s).

(1)R(p) = 1 − F1(F
−1
0
(1 − p)) for p ∈ (0, 1),

1  We use the notation (a, b)� for a column vector in R2.
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2 � Fundamental properties of ROC curves

Consider the random vector (S, Y) where S is a real-valued score, feature, covariate, or marker, 
and Y is the binary response. As before, we refer to the joint distribution of (S, Y) as Q . Let 
�0 = 1 − �1 = Q(Y = 0) , and let

denote the marginal cumulative distribution function (CDF) of the score S. We write G(s−) 
for the left-hand limit of a function G at s ∈ R , and we let (a, b)�

(1)
= a and (a, b)�

(2)
= b 

denote coordinate projections.

2.1 � Raw ROC diagnostics and ROC curves

In this setting ROC diagnostics concern the points of the form (FAR(s), HR(s))� within the 
unit square. Formally, the raw ROC diagnostic for the bivariate distribution Q is the point set

The raw ROC diagnostic along with a single marginal does not characterize Q , due to its 
well known invariance properties (Fawcett 2006; Krzanowski and Hand 2009). However, 
the raw ROC diagnostic along with both marginal distributions determines Q.

Theorem 1  The joint distribution Q of (S, Y) is characterized by the raw ROC diagnostic 
and the marginal distributions of S and Y.

Proof  The mapping g ∶ [0, 1]2 → [0, 1] defined by (a, b)� ↦ (1 − a)�0 + (1 − b)�1 induces 
a bijection between the raw ROC diagnostic R∗ and the range of F. Therefore, it suffices to 
note that Q(S ≤ s, Y ≤ y) = 0 for y < 0,

for y ∈ [0, 1) , and Q(S ≤ s, Y ≤ y) = F(s) for y ≥ 1 . 	�  ◻

Briefly, a ROC curve is obtained from the raw ROC diagnostic by linear interpolation. For-
mally, the full ROC diagnostic or ROC curve is the point set

within the unit square, where

is a possibly degenerate, nondecreasing line segment. The choice of linear interpolation to 
complete the raw ROC diagnostic into the ROC curve (3) is natural and persuasive, as the 

F(s) = Q(S ≤ s) = �0F0(s) + �1F1(s)

(2)R∗ =

{(
1 − F0(s)

1 − F1(s)

)
∶ s ∈ R

}
.

Q(S ≤ s, Y ≤ y) = F0(s)�0

= F(s) − (1 − HR(s))�1

= F(s) − (1 − g−1
(2)
(F(s)))�1

(3)R =

{(
0

0

)}
∪ R∗ ∪

{
Ls ∶ s ∈ R

}
∪

{(
1

1

)}

Ls =

{
�

(
1 − F0(s)

1 − F1(s)

)
+ (1 − �)

(
1 − F0(s−)

1 − F1(s−)

)
∶ � ∈ [0, 1]

}
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line segment Ls represents randomized combinations of the classifiers associated with its 
end points.

The raw ROC diagnostic can be recovered from the ROC curve and the two marginal 
distributions, as the mapping g in the proof of Theorem 1 induces a bijection between 
the raw ROC diagnostic and the range of F that can be expressed in terms of �1 and �0 . 
From this simple fact the following result is immediate.

Corollary 1  The joint distribution Q of (S, Y) is characterized by the ROC curve and the 
marginal distributions of S and Y.

Given a ROC curve R, an obvious task is to find CDFs F0 and F1 that realize R. For a 
particularly simple and appealing construction, let F0 be the CDF of the uniform distri-
bution on the unit interval, and define F1 as F1(s) = 0 for s ≤ 0,

and F1(s) = 1 for s ≥ 1 , where the function R+ ∶ (0, 1) → [0, 1] is induced by the ROC 
curve at hand, in that R+(s) = inf

{
b ∶ (a, b)� ∈ R, a ≥ s

}
.

2.2 � Concave ROC curves

We proceed to elucidate the critical role of concavity in the interpretation and modelling 
of ROC curves. Its significance is well known and has been reviewed in monographs 
(Pepe 2003; Zhou et al. 2011). Nevertheless, we are unaware of any rigorous treatment 
in the extant literature that applies in both continuous and discrete settings, which is 
what we address now.

In the regular setting we suppose that F1 and F0 have continuous, strictly positive 
Lebesgue densities f1 and f0 in the interior of an interval, which is their common sup-
port. For every s in the interior of the support, we can define the likelihood ratio,

and the conditional event probability,

We note the equivalence of the following three conditions: 

(a)	 The ROC curve is concave.
(b)	 The likelihood ratio is nondecreasing.
(c)	 The conditional event probability is nondecreasing.

Theorem 2  In the regular setting statements (a), (b), and (c) are equivalent.

(4)F1(s) = 1 − R+(1 − s) for s ∈ (0, 1),

LR(s) =
f1(s)

f0(s)
,

CEP(s) = Q(Y = 1 | S = s) =
�1f1(s)

�0f0(s) + �1f1(s)
.
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Next we consider the discrete setting where we assume that the support of the score S is 
finite or countably infinite. This setting includes, but is not limited to, the case of empirical 
ROC curves. For every s in the discrete support of S, we can define the likelihood ratio,

and the conditional event probability,

Theorem 3  In the discrete setting statements (a), (b), and (c) are equivalent.

We skip proofs as Corollary 2.8 of Mösching and Dümbgen (2021) implies the equiva-
lence of (a) and (b) in both settings. Furthermore, LR(s) ∝ CEP(s)∕(1 − CEP(s)) , and the 
function c ↦ c∕(1 − c) is nondecreasing, which yields the equivalence of (b) and (c).

The critical role of concavity in the interpretation and modelling of ROC curves stems 
from the monotonicity condition (c) on the conditional event probability, which needs to be 
invoked to justify the thresholding that lies at the heart of ROC analysis. When theoretical 
models are fit to empirical ROC curves, the model parameters can be restricted to guaran-
tee concavity. Empirical ROC curves typically fail to be concave, but can be morphed into 
their concave hull, by subjecting a score to the pool-adjacent violators algorithm, thereby 
converting it into an isotonic, calibrated probabilistic classifier (Fawcett and Niculescu-
Mizil 2007).

2.3 � An equivalence between ROC curves and probability measures

We move on to provide concise and practically relevant characterizations of ROC curves.

Theorem  4  There is a one-to-one correspondence between ROC curves and probability 
measures on the unit interval.

Proof  Given a ROC curve, we remove any vertical line segments, except for the respec-
tive upper endpoints, to yield the CDF of a probability measure on the unit interval. Con-
versely, given the CDF of a probability measure on the unit interval, we interpolate verti-
cally at any jump points to obtain a ROC curve. This mapping is a bijection, and save for 
the symmetries in (4) it is realized by the construction in the proof of Corollary 1. 	�  ◻

We say that a curve C in the Euclidean plane is nondecreasing if a0 ≤ a1 is equivalent to 
b0 ≤ b1 for points (a0, b0)�, (a1, b1)� ∈ C . The following result then is immediate.

Corollary 2  The ROC curves are the nondecreasing curves in the unit square that connect 
the points (0, 0)� and (1, 1)�.

Natural analogues apply under the further constraints of either strict or non-strict con-
cavity. From applied perspectives, these results support a shift of paradigms in the statisti-
cal modelling of ROC curves. In extant practice, the emphasis is on modelling the condi-
tional distributions F0 and F1 . Our characterizations suggest a subtle but important change 

LR(s) =

{
Q(S = s |Y = 1)

/
Q(S = s |Y = 0) if Q(S = s |Y = 0) > 0,

∞, if Q(S = s |Y = 0) = 0,

CEP(s) = Q(Y = 1 | S = s).
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of perspective, in that ROC modelling can be approached as an exercise in curve fitting, 
with any nondecreasing curve that connects (0, 0)� to (1, 1)� being a permissible candidate.

3 � Parametric models, estimation, and testing

The binormal model is by far the most frequently used parametric model and “plays a cen-
tral role in ROC analysis” (Pepe 2003, p. 81). Specifically, the binormal model assumes 
that F1 and F0 are Gaussian with means �1 ≥ �0 and strictly positive variances �2

0
 and �2

1
 , 

respectively. We are in the regular setting of Sect. 2.2, and the resulting ROC curve is rep-
resented by the function R ∶ [0, 1] → [0, 1] with R(0) = 0,

and R(1) = 1 , where Φ is the CDF of the standard normal distribution, � = (�1 − �0)∕�1 ≥ 0 
is a scaled difference in expectations, and � = �0∕�1 is the ratio of the respective standard 
deviations. The associated area under the curve is AUC(�, �) = Φ(�∕

√
1 + �2) . A binor-

mal ROC curve is concave only if � = 1 or, equivalently, if F0 and F1 differ in location only.
Our next result demonstrates that this restriction is unavoidable if location-scale fami-

lies are used to model the class conditional distributions.

Proposition 1  Given any strictly increasing CDF F on R , let F0(s) = F((s − �0)∕�0) and 
F1(s) = F((s − �1)∕�1) for some �0,�1 ∈ R and 𝜎0, 𝜎1 > 0 . Then the ROC curve associ-
ated with the conditional CDFs F0 and F1 is non-concave whenever �0 ≠ �1.

Proof  If HR(s) < FAR(s) for some s ∈ R , the ROC curve 
extends below the diagonal and thus is non-concave. We note that 
HR(s) < FAR(s) ⟺ F0(s) < F1(s) ⟺ (s − 𝜇0)∕𝜎0 < (s − 𝜇1)∕𝜎1 and consider two 
cases. If 𝜎1 > 𝜎0 then F0(s) < F1(s) for s < (𝜇0𝜎1 − 𝜇1𝜎0)∕(𝜎1 − 𝜎0) ; if 𝜎0 > 𝜎1 then 
F0(s) < F1(s) for s > (𝜇0𝜎1 − 𝜇1𝜎0)∕(𝜎0 − 𝜎1) . 	� ◻

3.1 � The beta model

Motivated and supported by the characterizations in Sect.  2, we propose a curve fitting 
approach to the statistical modelling of ROC curves, with the two-parameter family of the 
cumulative distribution functions (CDFs) of beta distributions being a particularly attrac-
tive model. Specifically, consider the beta family with ROC curves represented by the 
function

where b�,�(q) ∝ q�−1(1 − q)�−1 is the density of the beta distribution with parameter values 
𝛼 > 0 and 𝛽 > 0 . This type of ROC curve arises as a special case of the setting in the case 
study by Zou et al. (2004, p. 1263), which models the class conditional distributions via 
beta densities. A beta ROC curve is concave if � ≤ 1 and � ≥ 2 − � , and its AUC value is 
AUC(�, �) = �∕(� + �) (Vogel 2019, Appendix 3.C). The condition for concavity is much 
less stringent than for the binormal family, where it constrains the admissible parameter 
space to a single dimension.

(5)R(p) = Φ(� + �Φ−1(p)) for p ∈ (0, 1),

(6)R(p) = B�,�(p) = ∫
p

0

b�,�(q) dq for p ∈ [0, 1],
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If further flexibility is desired, mixtures of beta CDFs, i.e., functions of the form

where w1,… ,wn > 0 with w1 +⋯ + wn = 1 , 𝛼1,… , 𝛼k > 0 , and 𝛽1,… , 𝛽k > 0 , approxi-
mate any regular ROC curve to any desired accuracy, as demonstrated by the following 
result. Recall from Sect. 2.2 that in the regular setting the ROC curve can be identified with 
the function R in (1), where F1 and F0 have continuous, strictly positive Lebesgue densities 
f1 and f0 in the interior of an interval, which is their common support. A ROC curve is reg-
ular if it arises in this way and strongly regular if furthermore the derivative R′ is bounded.

Theorem 5  For every strongly regular ROC curve R there is a sequence of mixtures of beta 
CDFs with integer parameters that converges uniformly to R.

Proof  We apply the construction in the proof of Corollary 1 and define F1 as in (4). Due to 
the assumption of strong regularity, F1 admits a density on (0, 1) that can be extended to 
a continuous function f1 on [0, 1]. The arguments in Bernstein’s probabilistic proof of the 
Weierstrass approximation theorem (Levasseur 1984) show that as n → ∞ the sequence

converges to f1(q) uniformly in q ∈ [0, 1] . Furthermore, an = ∫ 1

0
mn(q) dq → ∫ 1

0
f1(q) dq = 1 

as n → ∞ , and for n = 1, 2,… the mapping p ↦ Mn(p) = ∫ p

0
mn(q) dq∕an respresents a 

mixture of beta CDFs. The uniform convergence of mn to f1 implies that for every 𝜖 > 0 
there exists an n′ such that

for all integers n > n′ uniformly in p ∈ [0, 1] . The statement of the theorem follows. 	�  ◻

3.2 � Minimum distance estimation

For the parametric estimation of ROC curves for continuous scores various methods have 
been proposed, including maximum likelihood, approaches based on generalized linear 
models, and minimum distance estimation (Pepe 2003; Zhou et al. 2011). Here we pursue 
the minimum distance estimator, which is much in line with our curve fitting approach.

We assume a parametric model in the regular setting of Sect. 2.2, where now the ROC 
curve depends on a parameter 𝜃 ∈ Θ ⊆ Rk . Specifically, we suppose that for each � ∈ Θ 
the ROC curve is represented by a smooth function

Rn(p) =

n∑

k=1

wkB�k ,�k
(p) for p ∈ [0, 1],

mn(q) =
1

n + 1

n∑

k=0

f1

(
k

n

)
bk+1,n−k+1(q)

|F1(p) −Mn(p)| ≤ �
p

0

||||
f1(q) −

mn(q)

an

||||
dq

≤ �
p

0

||||
f1(q) −

f1(q)

an

||||
dq +

1

an �
p

0

||f1(q) − mn(q)
||dq

≤ ||||
1 −

1

an

||||
+

1

an �
p

0

||f1(q) − mn(q)
||dq < 𝜖
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where F1,� and F0,� admit continuous, strictly positive densities f1,� and f0,� in the interior 
of an interval, which is their common support. We also require that the true parameter 
value �0 is in the interior of the parameter space Θ , where the derivative

exists and is finite for p ∈ (0, 1) , and the partial derivative R(i)(p;�) with respect to compo-
nent i of the parameter vector � = (�1,… , �k) exists and is continuous for i = 1,… , k and 
p ∈ (0, 1).

We adopt the asymptotic scenario of Hsieh and Turnbull (1996), where at sample size 
n there are n0 and n1 = n − n0 independent draws from F0,� and F1,� with correspond-
ing binary outcomes of zero and one, respectively, where �n = n0∕n1 converges to some 
� ∈ (0,∞) as n → ∞ . For � ∈ Θ we define the difference process 𝜉n(p;𝜃) = R̂n(p) − R(p;𝜃) , 
where the function R̂n(p) represents the empirical ROC curve. The minimum distance esti-
mator 𝜃̂n = (𝜃̂1,… , 𝜃̂k)n then satisfies

where ‖�n(⋅ ;�)‖ = (∫ 1

0
�n(p;�)

2 dp)1∕2 is the standard L2-norm. If n is large, 𝜃̂n exists and is 
unique with probability approaching one (Millar 1984), and so we follow the extant litera-
ture in ignoring issues of existence and uniqueness.

The minimum distance estimator has a multivariate normal limit distribution in this set-
ting, as suggested by the asymptotic result of Hsieh and Turnbull (1996) that under the 
usual 

√
n scaling the difference process �n(p;�) has limit

at � = �0 , where B1 and B2 are independent copies of a Brownian bridge. In contrast to 
the results in Section 4 of Hsieh and Turnbull (1996), which concern minimum distance 
estimation for the binormal model and ordinal dominance curves, the following theorem 
applies to general parametric families and ROC curves.

Theorem 6  In the above setting the minimum distance estimator 𝜃̂n satisfies

as n → ∞ , where the matrices A and C have entries

for i, j = 1,… , k , respectively, and where

is the covariance function of the process W(p;�) in (7) at � = �0.

R(p;�) = 1 − F1,�(F
−1
0,�
(1 − p)) for p ∈ (0, 1),

R�(p;�) =
�R(p;�)

�p
=

f1,�(F
−1
0,�
(1 − p))

f0,�(F
−1
0,�
(1 − p))

‖𝜉n(⋅ ;𝜃̂n)‖ = min𝜃∈Θ‖𝜉n(⋅ ;𝜃)‖,

(7)W(p;�) =
√
�B1(R(p;�)) + R�(p;�)B2(p)

(8)
√
n (𝜃̂n − 𝜃0) → N(0,C−1AC−1)

(9)Aij = ∫
1

0 ∫
1

0

R(i)(s;�0)K(s, t;�0)R(j)(t;�0) ds dt, Cij = ∫
1

0

R(i)(s;�0)R(j)(s;�0) ds

(10)
K(s, t;�0) = � (min{R(s;�0),R(t;�0)} − R(s;�0)R(t;�0)) + R�(s;�0)R

�(t;�0)(min{s, t} − st).
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Proof  We are in the setting of Theorem 2.2 of Hsieh and Turnbull (1996), according to 
which there exists a probability space with sequences (B1,n) and (B2,n) of independent ver-
sions of Brownian bridges such that

almost surely, and uniformly in p on every interval [a, b] ⊂ (0, 1) . We proceed to verify 
the regularity conditions for Theorem  3.6 of Millar (1984). As regards the identifi-
ability condition (3.2) and the differentiability condition (3.5) it suffices to note that 
�n(p;�) − �n(p;�0) = R(p;�0) − R(p;�) is nonrandom, continuously differentiable with 
respect to p and the components of the parameter vector � , and independent of n. The 
boundedness condition (3.3) is trivially satisfied and the convergence condition (3.4) is 
implied by (11). Finally, we apply (2.17), (2.18), (2.19), and (2.20) in Section II of Millar 
(1984) to yield (8) and (9), where the covariance function of the process in (7) is

whence K(s, t;�0) is as stated in (10). 	� ◻

This result allows for asymptotic inference about model parameters, by plugging in 
𝜃̂n for �0 in the expression for the asymptotic covariance. For the binormal model (5) we 
have � = (�, �) , R(�)(p;�) = �(� + �Φ−1(p)) , R(�)(p;�) = Φ−1(p)�(� + �Φ−1(p)) , and 
R�(p;�) = � �(� + �Φ−1(p))∕�(Φ−1(p)) , where � is the standard normal density, so that 
the integrals in (9) can readily be evaluated numerically. Under the beta model (6) we have 
� = (�, �) and R�(p;�) = b�,�(p) . While closed form expressions for the partial derivatives 
of R(p;�) with respect to � and � exist, they are difficult to evaluate, and we approximate 
them with finite differences.

3.3 � Testing goodness‑of‑fit

A natural question is whether a given parametric model fits the data at hand, and for doing 
this we propose a simple Monte Carlo test that applies to any parametric model class C . 
Specifically, given a dataset of size n with n0 instances where the binary outcome is zero 
and n1 = n − n0 instances where it is one, our goodness-of-fit test proceeds as follows. We 
use the notation of Sect. 3.2 and denote the number of Monte Carlo replicates by M. 

1.	 Fit a model from class C to the empirical ROC curve, to yield the minimum distance 
estimate �data . Compute ddata as the L2-distance between the fitted and the empirical ROC 
curve.

2.	 For m = 1,… ,M , 

(a)	 draw a sample of size n under �data , with n0 and n1 instances from F0,�data
 and F1,�data

 
and associated binary outcomes of zero and one, respectively,

(b)	 fit a model from class C to the empirical ROC curve, to yield the minimum dis-
tance estimate, and

(c)	 compute dm as the L2-distance between the fitted and the empirical ROC curve.

(11)
√
n �n(p;�0) =

√
�B1,n(R(p;�0)) + R�(p;�0)B2,n(p) + o

�
n−1∕2(log n)2

�

K(s, t;�) = Cov(W(s;�),W(t;�))

= �Cov(B1(R(s;�)),B1(R(t;�))) + R�(s;�)R�(t;�)Cov(B2(s),B2(t))

= � (min{R(s;�),R(t;�)} − R(s;�)R(t;�)) + R�(s;�)R�(t;�)(min{s, t} − st),
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3.	 Find a p-value based on the rank of ddata when pooled with d1,… , dM . Specifically, 
p = (#{i = 1,… ,M ∶ ddata ≤ di} + 1)∕(M + 1).

Under the null hypothesis of the ROC curve being generated by a random sample within 
class C the Monte Carlo p-value is very nearly uniform, as is readily seen in simulation 
experiments.

4 � Empirical examples

Basic information about the datasets in our empirical examples is given in Table 1. In the 
dataset from Etzioni et al. (1999), the ratio of free to total prostate-specific antigen (PSA) 
two years prior to diagnosis in serum from patients later found to have prostate cancer 
is compared to age-matched controls. The datasets from Sing et al. (2005, Figure1a) and 
Robin et al. (2011, Figure 1) are prominent examples in the widely used ROCR and pROC 
packages in R. They concern a score from a linear support vector machine (SVM) trained 
to predict the usage of HIV coreceptors, and the S100� biomarker as it relates to a binary 
clinical outcome. The dataset from Vogel et  al. (2018, Figure  6d) considers probability 
of precipitation forecasts from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) for the binary event of precipitation occurrence in the West Sahel region.

Figure  1 shows binormal and beta ROC curves fitted to the empirical ROC curves, 
both in the unrestricted case and under the constraint of concavity. The respective unre-
stricted and restricted minimum distance estimates, the fit in terms of the L2-distance to 

Table 1   Basic information about the datasets, and minimum distance estimates under the unrestricted and 
concave binormal and beta models for the ROC curves in Fig. 1

Fit is in terms of the L2-distance to the empirical ROC curve, and the p-value is from the goodness-of-fit 
test of Sect. 3.3

Dataset Etzioni et al. (1999) Sing et al. (2005) Robin et al. (2011) Vogel et al. (2018)

Binary outcome Prostate cancer Coreceptor usage Clinical outcome Precipitation
Score/feature Antigen ratio SVM predictor S100� concentr. NWP forecast
Sample size 116 3450 113 5449
Binormal model
unrestricted (�, �) (1.05, 0.78) (1.58, 0.65) (0.75, 0.72) (1.13, 1.22)

   fit 0.043 0.019 0.033 0.008
   p-value 0.109 0.001 0.593 0.031

concave (�, �) (1.22, 1.00) (2.05, 1.00) (0.91, 1.00) (0.99, 1.00)
   fit 0.056 0.039 0.060 0.031
   p-value 0.125 0.001 0.114 0.001

Beta model
unrestricted (�, �) (0.34, 1.32) (0.15, 1.44) (0.36, 0.96) (0.79, 2.57)

   fit 0.042 0.023 0.032 0.006
   p-value 0.121 0.001 0.625 0.157

concave (�, �) (0.38, 1.61) (0.17, 1.83) (0.52, 1.48) (0.79, 2.57)
   fit 0.045 0.025 0.050 0.006
   p-value 0.212 0.001 0.203 0.157
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the empirical ROC curve, and the p-value from the goodness-of-fit test of Sect. 3.3 with 
M = 999 Monte Carlo replicates, are given in Table 1. In the unrestricted case, the binor-
mal and beta fits are visually nearly indistinguishable. The fitted binormal ROC curves 
fail to be concave and change markedly when concavity is enforced. For the beta ROC 
curves, the differences between restricted and unrestricted fits are less pronounced, and in 
the example from Vogel et al. (2018) the unrestricted fit is concave. For this dataset, our 
goodness-of-fit test rejects both the unrestricted and the concave binormal model, but does 
not reject the beta model—so the use of the more flexible beta family is of relevance and 
import. Generally, in the constrained case the improvement in the fit under the more flex-
ible beta model as compared to the classical binormal model is substantial.

For more detailed analyses of these datasets, which include a demonstration of the use 
of our asymptotic results to generate confidence bands, as well as four-parameter exten-
sions of the beta family, we refer to Vogel (2019,  Section  3.4). Omar and Ivrissimtzis 
(2019) discuss the use of parametric families of ROC curves specifically in machine 
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Fig. 1   Empirical (black), fitted binormal (red) and fitted beta (blue) ROC curves in the unrestricted (solid) 
and concave (dashed) case for the datasets from Table 1 (Color figure online)
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learning. Datasets and code in R (R Core Team 2021) for replicating our results and imple-
menting the proposed estimators and tests are available online (Vogel and Jordan 2021).
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