KIT | KIT-Bibliothek | Impressum | Datenschutz

Spectral theory of approximate lattices in nilpotent Lie groups

Björklund, Michael ; Hartnick, Tobias

Abstract:

We consider approximate lattices in nilpotent Lie groups. With every such approximate lattice one can associate a hull dynamical system and, to every invariant measure of this system, a corresponding unitary representation. Our results concern both the spectral theory of the representation and the topological dynamics of the system. On the spectral side we construct explicit eigenfunctions for a large collection of central characters using weighted periodization against a twisted fiber density function. We construct this density function by establishing a parametric version of the Bombieri–Taylor conjecture and apply our results to locate high-intensity Bragg peaks in the central diffraction of an approximate lattice. On the topological side we show that under some mild regularity conditions the hull of an approximate lattice admits a sequence of continuous horizontal factors, where the final horizontal factor is abelian and each intermediate factor corresponds to a central extension. We apply this to extend theorems of Meyer and Dani–Navada concerning number-theoretic properties of Meyer sets to the nilpotent setting.


Verlagsausgabe §
DOI: 10.5445/IR/1000143068
Veröffentlicht am 14.02.2022
Originalveröffentlichung
DOI: 10.1007/s00208-021-02329-w
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0025-5831, 1432-1807
KITopen-ID: 1000143068
Erschienen in Mathematische Annalen
Verlag Springer
Band 384
Seiten 1675–1745
Vorab online veröffentlicht am 20.12.2021
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page