ENTWICKLUNG EINER HOCHLEITFÄHIGEN UND MECHANISCH STABILISIERTEN Vlieselektrode und Bipolarelektrodeneinheit für Vanadium-Redox-Flow-Batterien

Zur Erlangung des akademischen Grades einer

DOKTORIN DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

von der KIT-Fakultät für Chemie und Biowissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M. Sc. Jessica Pfisterer

1. Referent: Prof. Dr. Helmut Ehrenberg
2. Referentin: Prof. Dr. Annie Powell

Tag der mündlichen Prüfung: 14.12.2021
Selbstständigkeitserklärung

Karlsruhe, den 03.11.21

Jessica Pfisterer
Inhaltsverzeichnis

ABKÜRZUNGSVERZEICHNIS .. IV
ABBILDUNGSVERZEICHNIS .. VI
TABELLENVERZEICHNIS ... XI
1 EINLEITUNG ... 1
2 THEORETISCHE GRUNDLAGEN ... 5
 2.1 Funktionsweise der Vanadium-Redox-Flow-Batterie ... 5
 2.2 Kenndaten einer VRFB ... 7
 2.3 Kohlenstoffbasierte Vliese als Elektrodenmaterial ... 8
 2.3.2 Kompressionsstudie der Vlieselektroden in der VRFB ... 10
 2.3.1 Aktivierung der Vlieselektrode ... 11
 2.4 Bipolarelektrode .. 13
3 EXPERIMENTELLE TEIL .. 15
 3.1 Elektrodenpräparation ... 15
 3.1.1 Imprägnierung mit Polyacrylnitril und Poly(4-vinylphenol) 15
 3.1.2 Oxidative Stabilisierung und Karbonisierung von Polyacrylnitril 15
 3.1.3 Thermische Aktivierung der mit PAN imprägnierten Proben 16
 3.1.4 Oxidative Stabilisierung und Karbonisierung der mit Poly(4-vinylphenol) imprägnierten Proben ... 16
 3.2 Herstellung der Bipolarelektrodeneinheit ... 17
 3.2.1 Herstellung leitfähiger PAN-basierter Kleber ... 17
 3.3 Verwendete Analysemethoden .. 18
 3.3.1 Strukturelle und physikochemische Eigenschaften ... 18
 3.3.1.1 Untersuchung der mechanischen Stabilität .. 18
 3.3.2 Elektrochemische Untersuchungen .. 21
4 IMPRÄGNIERUNG DER VLIESELEKTRODEN .. 27
 4.1 Einfluss der Temperatur auf die Imprägnierung ... 27
 4.1.1 Charakterisierung der Eigenschaften .. 28
 4.1.2 Charakterisierung der elektrochemischen Eigenschaften .. 33
 4.1.3 Kapitelzusammenfassung .. 35
4.2 Einfluss der Polymerkonzentration auf die Imprägnierung .. 37
4.2.1 Charakterisierung der Eigenschaften .. 37
4.2.2 Zusammenfassung Charakterisierung der Eigenschaften ... 47
4.2.3 Charakterisierung der Oberflächeneigenschaften ... 47
4.2.4 Elektrochemische Untersuchung .. 48
4.2.5 Kapitelzusammenfassung ... 52
4.3 Thermische Aktivierung imprägnierter Vliese .. 53
4.3.1 Charakterisierung der Eigenschaften .. 53
4.3.2 Zusammenfassung der Stabilitäts- und Widerstandsbestimmung 64
4.3.3 Charakterisierung der elektrochemischen Eigenschaften .. 64
4.3.4 Zusammenfassung der elektrochemischen Untersuchungen .. 73
4.3.5 Vollzellttest ... 73
4.4 Imprägnierung mit Poly(4-vinylphenol) .. 76
4.4.1 Oxidative Stabilisierung .. 77
4.4.2 Herstellung der imprägnierten Vliese mit Poly(4-vinylphenol) 78
4.4.3 Charakterisierung der strukturellen Eigenschaften ... 80
4.4.4 Elektrochemische Untersuchung .. 83
4.5 Kapitelzusammenfassung Imprägnierung der Vlieselektroden ... 85
5 Bipolarelektrodeneinheit ... 87
5.1 PAN/Graphit Kleber ... 88
 5.1.1 Charakterisierung der physikochemischen Eigenschaften ... 88
 5.1.2 Charakterisierung der elektrochemischen Eigenschaften ... 89
 5.1.3 Antrocknen von G/PAN .. 90
5.2 PAN/Graphit/Carbonblack- basierte Kleber ... 92
 5.2.2 Untersuchung der elektrischen Leitfähigkeit .. 92
 5.2.3 Charakterisierung der elektrochemischen Eigenschaften ... 93
5.3 PAN/Graphit/Graphitfaser-basierte Aleber ... 94
 5.3.1 Untersuchung der elektrischen Leitfähigkeit .. 94
 5.3.2 Untersuchung der elektrochemischen Eigenschaften ... 95
5.4 Vergleich der Klebersysteme ... 96
5.5 Vollzellttest .. 97
5.6 Zusammenfassung ... 99
6 ZUSAMMENFASSUNG UND AUSBlick ... 100
7 LITERATUR .. 103
8 ANHANG .. 113
9 DANKSAGUNG .. 117
10 WISSENSCHAFTLICHE BEITRÄGE ... 119
10.1 Publikationen .. 119
10.2 Konferenzbeiträge ... 119
ABKÜRZUNGSVERZEICHNIS

AE Arbeitselektrode
ASR Flächenabhängiger Widerstand (engl.: Area specific resistance)
at.% Atomprozent
a.u. Willkürliche Einheit (engl.: arbitrary unit)
B Binder
BET Oberflächenbestimmung durch Stickstoffadsorption (benannt nach: Brunner, Emmet und Teller)
BPE Bipolarelektrode
BPP Bipolarplatte
CB Carbon black (Leitruß)
CE Coulombeffizienz
CV Zyklovoltammetrie
CP Anpressdruck (engl.: Contact pressure)
DMSO Dimethylsulfoxid
DSC Dynamische Differenzkalorimetrie (engl.: differential scanning calorimetry)
EDLC Doppelschichtkapazität (engl.: Electrochemical double layer capacitance)
EE Energieeffizienz
EIS Elektrochemische Impedanzspektroskopie
FTIR Fourier-Transformierte Infrarotspektroskopie
G Graphit
GC Glaskohlenstoff (engl.: Glassy carbon)
GE Gegenelektrode
GF Graphitfasern
Gew.% Gewichtsprozent, Anteil in % der Masse
LA Leitadditiv
<table>
<thead>
<tr>
<th>Abk.</th>
<th>Begriff</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHE</td>
<td>Normal-Wasserstoffelektrode</td>
<td></td>
</tr>
<tr>
<td>PAN</td>
<td>Polyacrylnitril</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylen</td>
<td></td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluorethylen</td>
<td></td>
</tr>
<tr>
<td>P4VP</td>
<td>Poly(4-vinylphenol)</td>
<td></td>
</tr>
<tr>
<td>REM</td>
<td>Rasterelektronenmikroskopie</td>
<td></td>
</tr>
<tr>
<td>RFB</td>
<td>Redox-Flow-Batterie</td>
<td></td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetrische Analyse</td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>Spannungseffizienz</td>
<td></td>
</tr>
<tr>
<td>VRFB</td>
<td>Vanadium-Redox-Flow-Batterie</td>
<td></td>
</tr>
<tr>
<td>XPS</td>
<td>Röntgenphotoelektronenspektroskopie</td>
<td></td>
</tr>
</tbody>
</table>
ABBILDUNGSVERZEICHNIS

Abbildung 1.1 Schematische Darstellung der Ziele dieser Arbeit. ..3
Abbildung 2.1 Die vier Oxidationsstufen des Vanadiums. ...5
Abbildung 2.2 Schematische Darstellung des Aufbaus einer VRFB. ...6
Abbildung 2.3 Oxidative Stabilisierung und Karbonisierung von Polyacrylnitril.9
Abbildung 2.4 Darstellung des Faser-Faser-Kontaktes in der Vlieselektrode. a) REM-Aufnahme einer kommerziellen Vlieselektrode, b) Schematische Darstellung zweier Fasern an einem Kreuzungspunkt. ...10
Abbildung 2.5 Schematische Darstellung des von Skyllas-Kazacos et al. vorgeschlagenen Redox-Reaktionsmechanismus für a) das VO$_2^+$/VO$^{2+}$-Redoxpaar im Katholyten und b) das V$^{2+}$/V$^{3+}$-Redoxpaar im Anolyt. ...11
Abbildung 2.6 Schematische Darstellung des katalysierten Reaktionsmechanismus einer Stickstoffdotierten Graphenelektrode vorgeschlagen von Zhang et al. für die VO$_2^+$/VO$^{2+}$-Redoxreaktion. a) Reduktionsreaktion und b) Oxidationsreaktion. ..12
Abbildung 2.7 Neues Reaktionsschema für die Halbzellenreaktionen in einer Vanadium-Redox-Flow-Batterie vorgeschlagen von Radinger et al., a) Dreistufiger Reaktionsmechanismus der negativen Halbzelle: (1) Ionenaustausch von Wasserstoff, der an eine Randstelle der Elektrode gebunden ist, und einem VIII-Ion aus dem Elektrolyten; (2) Elektronenübertragung von der Elektrode reduziert den Oxidationszustand des Vanadium-Ions; (3) ein zweiter Ionenaustausch zwischen Vanadium und einem Proton aus dem Elektrolyten setzt VII frei, b) Vierstufiger Reaktionsmechanismus in der positiven Halbzelle: (1) Ionenaustausch von Wasserstoff VO$_2^+$-Ionen aus dem Elektrolyten; (2) Sauerstoff aus dem Elektrolyten wird auf das positiv geladene Vanadium-Ion übertragen; (3) ein Elektron wird unter Freisetzung eines Protons auf die Elektrode übertragen; (4) Vanadium reagiert mit dem freien Proton durch Ionenaustausch, wodurch VO$_2^+$.[86] ..13
Abbildung 3.1 Schematische Darstellung des verwendeten Teststands zur Bestimmung der elektrischen Leitfähigkeit. ...19
Abbildung 3.2 Bestandteile einer VRFB-Einzelzelle. ..22
Abbildung 3.3 Zyklovoltammogramm einer kommerziellen Vlieselektrode.24
Abbildung 3.4 Verwendetes Ersatzschaltbild zur Anpassung der Spektren.25
Abbildung 4.1 Schematische Darstellung des Imprägniervorgangs an einer Vlieselektrode. ...27
Abbildung 4.2 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression. ...28

Abbildung 4.3 a) Ramanspektren der verschiedenen Karbonisierungsstufen der imprägniern Vliese mit PAN, b) D/G-Verhältnisse entsprechend zu den Ramanspektren in a). ..31

Abbildung 4.4 XPS-Messungen der imprägniern Proben bei verschiedenen Karbonisierungstemperaturen. a) zeigt das O 1s Detailspektrum, b) N 1s und c) C 1s. ..33

Abbildung 4.5 a) Zyklovoltammogramm mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbelle der imprägniern Proben, die bei unterschiedlichen Temperaturen karbonisiert wurden, b) Messung der elektrochemischen Doppelschichtkapazität, graphische Auftragung der Ströme bei einem Potential von 0,17 V vs. Ag/AgCl für jede Scangeschwindigkeit.34

Abbildung 4.6 a) REM-Aufnahmen der imprägniern Vliese mit unterschiedlichen Konzentrationen a) 0,5 Gew.%; b) 1 Gew.%; c) 2 Gew.%; d) 3 Gew.% und e) 4 Gew.%. ...38

Abbildung 4.7 a) Vernetzung mehrerer Fasern gleichzeitig; b) Verbrückung parallel verlaufender Fasern; c) und d) Vergrößerung der Kontaktfläche am Berührungspunkt zweier Fasern; e) Unmantelung der Fasern durch karbonisiertes PAN und f) Querschnitt der unmantelten Fasern. 39

Abbildung 4.8 a) Anpressdruck in Abhängigkeit von der Kompression der Proben imprägniern mit unterschiedlich konzentrierter PAN-Lösung; b) vergrößerter Ausschnitt der Bruchstellen. .. 40

Abbildung 4.9 a) und b) REM-Aufnahmen der gebrochenen Vernetzungen der Probe VPAN2 nachdem diese bis zu 20 % komprimiert wurde. ... 41

Abbildung 4.10 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Flächenspezifischer Widerstand in Abhängigkeit des Anpressdrucks der imprägniern Proben im Vergleich zur Referenz. 42

Abbildung 4.11 Flächenspezifischer Widerstand und Anpressdruck in Abhängigkeit von der Kompression; rote Linie zeigt die Kompression die mindestens aufgebracht werden muss, um eine Verbesserung gegenüber der Referenz zu erzielen. a) VPAN0,5 mit einer Mindestkompresion von 11 %, b) VPAN1 mit einer Mindestkompresion von 7 %, c) VPAN2 mit einer Mindestkompresion von 7 %, d) VPAN3 mit einer Mindestkompresion von 6 % und e) VPAN4 mit einer Mindestkompresion von 5 %. 46

Abbildung 4.12 XPS-Messungen der imprägniern Proben. .. 48
Abbildung 4.13 Elektrochemische Untersuchung der mit PAN imprägnierten Proben im Vergleich zur Referenz der beiden Halbzellen in einem Dreielektrodenaufbau. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbzelle; b) Vergrößerung des V⁺-Oxidationspeaks; c) der negativen Halbzelle und d) Auftragung des Stroms bei einem Potential von 0,17 V vs. Ag/AgCl bei verschiedenen Scangeschwindigkeiten. ...49

Abbildung 4.14 Elektrochemische Impedanzspektroskopie der imprägnierten Vliese im Vergleich zur Referenz. ...51

Abbildung 4.15 a) REM-Aufnahme einer VPAN3-Probe nach einer thermischen Aktivierung bei 400 °C für 10 h; b) vergrößerte Aufnahme einer Faser.53

Abbildung 4.16 Untersuchung der mechanischen Stabilität der aktivierten PAN-Proben bei einer Dauer von 10 h im Vergleich zur nicht aktivierten PAN-Probe und Referenz. a) Auftragung des Anpressdrucks in Abhängigkeit von der Kompression für VPAN0,5_10h; b) VPAN1_10h; c) VPAN2_10h; d) VPAN3_10h und e) VPAN4_10h. ...54

Abbildung 4.17 Mechanische Stabilität aller getesteten Aktivierungsduern von a) VPAN0,5; b) VPAN1; c) VPAN2; d) VPAN3 und e) VPAN4.56

Abbildung 4.18 a) bis d) zeigen REM-Aufnahmen von VPAN3_1,5 bei unterschiedlichen Vergrößerungen. ...57

Abbildung 4.19 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN0,5 bei verschiedenen Aktivierungsduern. ...58

Abbildung 4.20 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN1 bei verschiedenen Aktivierungsduern. ...59

Abbildung 4.21 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN2 bei verschiedenen Aktivierungsduern. ...60

Abbildung 4.22 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN3 bei verschiedenen Aktivierungsduern. ...60

Abbildung 4.23 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN4 bei verschiedenen Aktivierungsduern. ...61

Abbildung 4.24 Flächenspezifischer Widerstand und Anpressdruck in Abhängigkeit von der Kompression; rote Linie zeigt die Kompression die mindestens aufgebracht werden muss, um eine Verbesserung gegenüber der Referenz zu erzielen. a) VPAN0,5_1,5h mit einer Mindestkompression von 12 %; b) VPAN1_1,5h mit einer Mindestkompression von 8 %; c) VPAN2_1,5h mit einer Mindestkompression von 6 %; d) VPAN3_1,5h mit einer Mindestkompression von 6 % und e) VPAN4_1,5h mit einer Mindestkompression von 5 %. ...63

Abbildung 4.25 Elektrochemische Untersuchung der VPAN0,5-Probe bei einer Aktivierungsduer von 1,5 h im Vergleich zur Referenz der beiden
Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s^{-1} der positiven Halbzone; b) Vergrößerung des V^{2+}-Oxidationspeaks; c) der negativen Halbzone.66

Abbildung 4.26
Elektrochemische Untersuchung der VPAN1-Probe bei einer Aktivierungsduer von 1.5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s^{-1} der positiven Halbzone; b) Vergrößerung des V^{2+}-Oxidationspeaks; c) der negativen Halbzone und d) Auftragung des Stroms bei einem Potential von 0,17 V vs. Ag/AgCl bei verschiedenen Scangeschwindigkeiten. ...68

Abbildung 4.27
Elektrochemische Untersuchung der VPAN2-Probe bei einer Aktivierungsduer von 1.5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s^{-1} der positiven Halbzone; b) Vergrößerung des V^{2+}-Oxidationspeaks; c) der negativen Halbzone. ...69

Abbildung 4.28
Elektrochemische Untersuchung der VPAN3-Probe bei einer Aktivierungsduer von 1.5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s^{-1} der positiven Halbzone; b) Vergrößerung des V^{2+}-Oxidationspeaks; c) der negativen Halbzone. ...70

Abbildung 4.29
Elektrochemische Untersuchung der VPAN4-Probe bei einer Aktivierungsduer von 1.5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s^{-1} der positiven Halbzone; b) Vergrößerung des V^{2+}-Oxidationspeaks; c) der negativen Halbzone. ...71

Abbildung 4.30
Ergebnisse des Vollzelttests. a) typische Lade- und Entladespannungskurven bei 50 mA cm^{-2}, b) Entladekapazitäten aller imprägnierten Proben bei verschiedenen Stromdichten. ..73

Abbildung 4.31
a) Coulombeffizienz CE, b) Spannungseffizienz VE und c) Energieeffizienz EE bei einer Stromdichte von 250 mA, 500 mA, 750 mA und 1,25 A. ..74

Abbildung 4.32
Ausschnitt der Strukturformel des Poly(4-vinylphenol).76

Abbildung 4.33
a) TG und DSC in Abhängigkeit von der Temperatur von P4VP; b) FTIR-Intensitäten der Zersetzungsprodukte im Abgasstrom. ...77

Abbildung 4.34
Allgemeines Temperaturprofil mit den zu überprüfenden Parametern für die oxidative Stabilisierung von P4VP. ..77

Abbildung 4.35
a) TG und Gram Schmidt der Karbonisierung des stabilisierten P4VPs; b) Intensitäten der Zersetzungsprodukte während der Karbonisierung; c) 2D Plot der in b) dargestellten Intensitäten in Abhängigkeit von der Temperatur. ..78

Abbildung 4.36
Verwendetes Temperaturprofil zur Karbonisierung von P4VP.79

Abbildung 4.37
a) bis d) zeigen REM-Aufnahmen der imprägnierten Probe mit P4VP mit jeweils verschiedenen Vergrößerungen. ...80

Abbildung 4.38
a) Anpressdruck in Abhängigkeit von der Kompression der Proben imprägniert mit unterschiedlich konzentrierter PAN-Lösung; b) vergrößerter Ausschnitt der Bruchstellen. ..81
Abbildung 4.39 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Flächenspezifischer Widerstand in Abhängigkeit des Anpressdrucks der PJVP-Probe im Vergleich zur VPAN2-Proben und zur Referenz. ..82

Abbildung 4.40 Elektrochemische Untersuchung der mit PJVP imprägnierten Proben im Vergleich zur Referenz sowie den PAN-Proben. a) Zyklovollammetrie mit einer Scanrate von 0,001 V s⁻¹ der positiven Halbzelle; b) Vergrößerung des V²⁻-Oxidationspeaks; c) der negativen Halbzelle und d) Auftragung des Stroms bei einem Potential von 0,17 V vs. Ag/AgCl bei verschiedenen Scangeschwindigkeiten. ...83

Abbildung 5.1 Schematische Darstellung einer Bipolarelektrode mit einem Graphit/ PAN-Kleber. ...88

Abbildung 5.2 Flächenspezifischer Widerstand bei einer Kompression von 20 % der Proben G/PAN1, G/PAN2 und G/PAN3 im Vergleich zur Referenz. ..89

Abbildung 5.3 a) CV, b) elektrochemisches Impedanzspektrum und c) Auswertung der Doppelschichtkapazität der verklebten Proben G/PAN1, G/PAN2 und G/PAN3 im Vergleich zur nicht verklebten Referenz. ...90

Abbildung 5.4 a) CV, b) elektrochemische Impedanzspektrum der angetrockneten G/PAN1-Probe im Vergleich zur nicht angetrockneten Probe. ...91

Abbildung 5.5 Schematische Darstellung einer Bipolarelektrode mit einem Graphit/Activkohle/PAN-Kleber. ...92

Abbildung 5.6 a) Flächenspezifischer Widerstand bei einer Kompression von 20 % der Proben G/CB/PAN1, G/CB/PAN2 und G/CB/PAN3 im Vergleich zur Referenz.92

Abbildung 5.7 a) CV, b) elektrochemische Impedanzspektrum der Proben G/CB/PAN1, G/CB/PAN2 und G/CB/PAN3 im Vergleich zur Referenz. ...93

Abbildung 5.8 Schematische Darstellung einer Bipolarelektrode mit einem Graphit/Graphitfaser/PAN-Kleber. ...94

Abbildung 5.9 a) Flächenspezifischer Widerstand bei einer Kompression von 20 % der Proben G/GF/PAN1, G/GF/PAN2 und G/GF/PAN im Vergleich zur Referenz.94

Abbildung 5.10 a) CV, b) elektrochemisches Impedanzspektrum und c) Auswertung der Doppelschichtkapazität der Proben G/GF/PAN1, G/GF/PAN2 und G/GF/PAN im Vergleich zur Referenz. ...95

Abbildung 5.11 a) Flächenspezifischer Widerstand bei einer Kompression von 20 % und b) CV der verklebten Proben G/PAN1, G/CB/PAN2 und G/GF/PAN im Vergleich. ...96

Abbildung 5.12 REM-Aufnahmen der Querschnitte der Proben G/PAN1 (a-c), G/CB/PAN1 (d-f) und G/GF/PAN (g-i). ...97

Abbildung 5.13 Ergebnisse des Vollzelltad. Lade- und Entladespannungskurven bei 50 mA cm⁻² der Probe G/PAN1 im Vergleich zur Referenz. ...98

Abbildung 5.14 a) Coulombeffizienz CE, b) Spannungseffizienz VE und c) Energiedichte der von einer Stromdichte von 250 mA, 500 mA, 750 mA und 1,25 A. ..99

Abbildung A.1 a) - e) Zyklovollammetrie der aktivierten Proben der positiven Halbzelle: Vergleich der verschiedenen Aktivierungszeiten untereinander. ..115

Abbildung A.2 Anpressdruck in Abhängigkeit von der Kompression der verklebten Probe G/PAN1 im Vergleich zur nicht verklebten Probe. ..117
TABELLENVERZEICHNIS

Tabelle 3.1 Zusammensetzung der verschiedenen leitfähigen Kleber. Alle Kleber beinhalten als Basis Graphit (G) und Polyacrylnitril als Binder (B), die jeweils zugesetzten Leitadditive (LA) sind in der Tabelle falls vorhanden angegeben. ..18

Tabelle 4.1 Werte des Widerstandes ASR sowie des Anpressdrucks CP bei einer Kompression von 10 % und 20 %. ..29

Tabelle 4.2 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der imprägnierten Vliese mit PAN. ..34

Tabelle 4.3 PAN-Anteil der getrockneten Vliese nach der Imprägnierung sowie der Anteil des karbonisierten PANs im Vlies. Werte links entsprechen der Masse in mg und Werte rechts der prozentuale Anteil bezogen auf die gesamte Vliesmasse.37

Tabelle 4.4 Werte des Anpressdrucks CP bei einer Kompression von 10 % und 20 %.41

Tabelle 4.5 Werte des Widerstandes ASR bei einer Kompression von 20 % (links) und einem Anpressdruck von 7 N cm2. ..43

Tabelle 4.6 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der imprägnierten Vliese mit PAN. ..50

Tabelle 4.7 Ladungstransferwiderstände R_{DCT} der mit PAN imprägnierten Vliese welche aus den Fits des Ersatzschaltbildes erhalten wurden. ...52

Tabelle 4.8 Die gemessenen Anpressdrücke in [N cm2] bei einer Kompression von 20 % der thermisch aktivierten Proben bei unterschiedlichen Aktivierungszeiten.57

Tabelle 4.9 Die gemessenen Anpressdrücke in [N cm2] und flächenspez. Widerstände ASR bei einer Kompression $C_{R_{min}}$ die mindestens angewendet werden muss, um den Widerstand und den Anpressdruck zu verbessern. ...62

Tabelle 4.10 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der aktivierten VPAN0,5-Probe im Vergleich zur nicht aktivierten Probe und Referenz mit. ..67

Tabelle 4.11 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der aktivierten VPAN1-Probe im Vergleich zur nicht aktivierten Probe und Referenz mit. ..68

Tabelle 4.12 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der aktivierten VPAN2-Probe im Vergleich zur nicht aktivierten Probe und Referenz mit. ..69

Tabelle 4.13 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der aktivierten VPAN3-Probe im Vergleich zur nicht aktivierten Probe und Referenz mit. ..71

Tabelle 4.14 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakeparation ΔE_p der aktivierten VPAN4-Probe im Vergleich zur nicht aktivierten Probe und Referenz mit. ..72
Tabelle 4.15 Ladungstransferwiderstände R_{CT} der mit PAN imprägnierten und aktivierten Vliese, welche aus den Fits des Ersatzschaltbildes erhalten wurden. ..72

Tabelle 4.16 Massenanteile des eingebrachten Polymers PAN und P4VP, nach der Imprägnierung (links) und nach der Karbonisierung (rechts). ...79

Tabelle 4.17 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der imprägnierten Vliese mit P4VP im Vergleich zu aktivierten und nicht-aktivierten VPAN_2_Probe. ..84

Tabelle 4.18 Ladungstransferwiderstände R_{CT} der mit P4VP und PAN imprägnierten und aktivierten Vliese, welche aus den Fits des Ersatzschaltbildes erhalten wurden. 85

Tabelle A.1 Gewichtssangabe der verwendeten Vliese vor der Imprägnierung, nach der Imprägnierung und nach der Karbonisierung. ..113

Tabelle A.2 Übersichtstabelle der Daten der BET-Messung der imprägnierten Vliese im Vergleich zur Referenz. ..113

Tabelle A.3 Übersichtstabelle der Daten der BET-Messung der imprägnierten und aktivierten Vliese im Vergleich zur Referenz. ..113

Tabelle A.4 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der imprägnierten und aktivierten Vliese bei verschiedenen Aktivierungsduern. ..115
1 EINLEITUNG

<table>
<thead>
<tr>
<th>Millisekunden – Sekunden</th>
<th>Versorgungsqualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekunden – Minuten</td>
<td>Frequenzstabilisierung</td>
</tr>
<tr>
<td>Minuten – Stunden</td>
<td>Spitzenlastverschiebung</td>
</tr>
<tr>
<td>Stunden – Wochen</td>
<td>Langzeitspeicher</td>
</tr>
<tr>
<td>Monate</td>
<td>Saison speicher</td>
</tr>
</tbody>
</table>

Für die Speicherung von erneuerbaren Energien im großen Maßstab liegt das Haupteigenmerk

Anknüpfend daran werden in dieser Arbeit zwei relevante Ansätze verfolgt: um einen die Bereitstellung höherer Leistungen durch verringerte Innenwiderstände und zum anderen ein vereinfachtes Assembling durch sogenannte Bipolarelektroden (BPE), wodurch die Anzahl an
notwendigen Komponenten pro Zelle von vier auf nur zwei reduziert wird. Als Elektrodenmaterial werden in VRFBs standardmäßig graphitbasierte Vlieselektroden eingesetzt, da diese porös, elektrisch leitfähig und sowohl im Spannungsbereich der Batterie, als auch im sauren Medium des Elektrolyten stabil sind. Ein großer Nachteil dieser Elektrodenmaterialien besteht darin, dass die wenige μm-dicken Fasern der Vliese nur lose miteinander verknüpft oder verwoben sind. Aufgrund des runden Faserquerschnitts ergeben sich folglich nur minimale Kontaktflächen zwischen den einzelnen Fasern, was sich negativ auf die elektrische Leitfähigkeit der Elektrode auswirkt. Die geringe Steifigkeit der Vliese ermöglicht zudem nur einen geringen Anpressdruck gegen die Bipolarplatte, welche in Kombination mit der hohen Porosität und der durch die Fasergeometrie verursachte geringe Kontaktfläche zu einem hohen Kontaktwiderstand führt. Ziel dieser Arbeit ist es, eine kommerziell verfügbare Vlieselektrode mit Hilfe von geeigneten Polymeren zu imprägnieren um dadurch Quervernetzungen zwischen den Fasern zu erzeugen, wodurch die Leitfähigkeit erhöht und Innenwiderstände verringert werden können. Gleichzeitig wird dadurch die nötige Steifigkeit gewährleistet, um den Kontaktwiderstand zur Bipolarplatte deutlich zu reduzieren. Der zweite Ansatz beschreibt die Anbindung der Vlieselektrode an die Bipolarplatte mittels einer eigens entwickelten leitfähigen Klebepaste. Dadurch sollen die Kontaktwiderstände zwischen Elektrode und Bipolarplatte deutlich reduziert werden und ein vereinfachtes Assembling zu einem Bauteil realisiert werden (Abbildung 1.1).

Abbildung 1.1| Schematische Darstellung der Zielsetzung dieser Arbeit. (1) Reduktion des elektrischen Widerstandes mit Hilfe der Imprägnierungsmethode, (2) Realisierung einer Bipolarelektrotdeneinheit (BPE) zur Minimierung der Kontaktwiderstände und Verringerung der Anzahl an Batteriekomponenten.
Hierfür werden verschiedene Klebersysteme hinsichtlich ihrer Zusammensetzung und Eigenschaften getestet und eingehend untersucht. Mit Hilfe dieser Erkenntnisse wird versucht, die Leistungsfähigkeit der Elektrode zu steigern und eine geeignete Bipolarelektrodeneinheit zu entwickeln, mit der die Innenwiderstände in der Zelle minimiert und somit die Leistung der Batterie gesteigert werden kann.

Die vorgestellte Arbeit wurde im Rahmen des BMWi-Projektes „HiCo-BiPEC“ (Förderkennzeichen: 03ET6130C) in Zusammenarbeit mit den Industriepartnern Fraunhofer UMSICHT, Schunk Kohlenstofftechnik GmbH, Enerox GmbH und dem universitären Partner Freie Universität Berlin durchgeführt (September 2017 bis März 2021).
2 THEORETISCHE GRUNDLAGEN

2.1 Funktionsweise der Vanadium-Redox-Flow-Batterie

Die Vanadium-Redox-Flow-Batterie (VRFB) wurde von Maria Skyllas Kazacos an der University of New South Wales in den 1980ern entwickelt und gilt bis heute als die am besten erforschte Redox-Flow-Batterie (RFB). Das Konzept der VRFB basiert auf der Verwendung der vier Oxidationsstufen des Vanadiums, die als elektrochemisch aktive Spezies gelöst im Elektrolyten vorliegen (Abbildung 2.1). Ermöglicht wird dies durch die vier Oxidationsstufen \(V^{II} \), \(V^{III} \), \(V^{IV} \) und \(V^{V} \), wobei die höher oxidierten Spezies als Vanadyl \(V^{IV}O^{2+} \) bzw. als Pervanadyl \(V^{V}O_{2}^{+} \) vorliegen.

![Abbildung 2.1](image)

Abbildung 2.1 | Die vier Oxidationsstufen des Vanadiums.

Durch die Verwendung von einem Element als Aktivmaterial können so Kreuzkontaminationen zwischen den beiden Halbzellen vermieden werden. Wie in Abbildung 2.2 dargestellt, besteht die Batterieeinheit der VRFB aus zwei Halbzellen, die räumlich durch eine Membran voneinander getrennt sind. Als Elektrodenmaterial werden hauptsächlich Graphitvliese, aufgrund ihrer hohen Porosität und großen Oberfläche, ihrer guten elektrischen Leitfähigkeit und Stabilität im verwendeten Potentialfenster, sowie ihre Beständigkeit im korrosiven Medium und ihrer großen Oberfläche eingesetzt. Der Elektrolyt wird jeweils aus separaten Tanks in die beiden Halbzellen und durch die porösen Elektroden gepumpt. Im positiven Elektrolyten (Katholyt) befinden sich gelöst in verdünnter Schwefelsäure die Vanadiumspezies \(VO^{2+} \) und \(VO_{2}^{+} \), während im negativen
Elektrolyten V^{2+} und V^{3+} vorliegen. Ein Übertritt der aktiven Spezies in die jeweils andere Halbzelle ist möglich („Cross-over“) und bedingt eine Verringerung der Energiedichte, schädigt das System jedoch nicht irreversibel, wie es bei aktiven Spezies verschiedener Elemente der Fall ist. Während des Lade- bzw. Entladevorganges laufen folgende Reaktionen ab:

Negativ (Anolyt): $V^{2+} \rightleftharpoons V^{3+} + e^- \quad (E^0 = -0.25 \, \text{V}) \quad (1)$

Positiv (Katholyt): $\text{VO}_2^+ + 2H^+ + e^- \rightleftharpoons \text{VO}^{2+} + \text{H}_2 \quad (E^0 = +1.00 \, \text{V}) \quad (2)$

Gesamtreaktion: $V^{2+} + \text{VO}_2^+ + 2H^+ \rightleftharpoons V^{3+} + \text{VO}^{2+} + \text{H}_2 \quad (3)$

Ist die Batterie vollständig geladen, so liegt in den Elektrolyttanks V^{2+} bzw. VO_2^+ vor.\cite{28} Beim Laden der Batterie werden Elektronen durch die Bipolarplatte von der positiven Seite zur negativen Halbzelle übertragen und Wasserstoffionen diffundieren durch die Membran zur negativen Seite.\cite{12} Die selbe Reaktion erfolgt umgekehrt für den Entladevorgang.\cite{21} Die Elektrode wird dabei vollständig durchströmt („flow-through“) oder durch Strömungs kanäle in der Bipolarplatte überströmt („flow-by“).\cite{23} Der elektrische Rückkontakt wird über den Stromsammler, der sogenannten Bipolarplatte (BPP), der aus Graphit oder einem Graphit-Polymer-Komposit besteht, gewährleistet. Durch Kombination mehrerer Einzelzellen zu einem Stack können höhere Systemspannungen generiert werden. Die Leistung einer VRFB hängt allein von der Elektrodenfläche ab, während die Ladungskapazität des Systems von der
Elektrolytmenge bzw. von der Stoffmenge an Vanadium bestimmt wird. Auf diese Weise können Leistung und Kapazität der Zelle unabhängig voneinander skaliert und je nach Bedarf angepasst werden. Aus der Konzentration resultiert eine theoretische Energiedichte von 40 Wh L\(^{-1}\).\(^{24}\) Da neben Leitungen und Pumpen auch Leistungselektronik zum Betrieb der Batterie benötigt werden, verringert sich dieser Wert für das Gesamtsystem.\(^{24}\) Die flächenspezifische Leistungsdichte einer VRFB liegt im Bereich von 50 bis 100 mW cm\(^{-2}\). Dieser Wert entspricht einer um zehn Größenordnungen kleineren Leistungsdichte im Vergleich zu Brennstoffzellen und Li-Ionen-Batterien.\(^{5,25}\) Bedingt durch die Vergleichsweise geringen Energie- und Leistungsdichte, wird die VRFB zur stationären Energiespeicherung genutzt. Da die Vanadium-Redoxpaare im wässrigen Elektrolyten vorliegen, wird das Potentialfenster durch Nebenreaktionen des Wassers begrenzt. Bei höheren Potentialen ab 1,2 V vs. NHE im Katholyten ist die Kohlenstoffkorrosion des Graphitvlieses unter Bildung von CO und CO\(_2\) zu berücksichtigen.\(^{23}\) Ab einem Potential von –0,3 vs. NHE ist im Anolyten die Wasserstoffentwicklung limitierend.\(^{23}\) Die VRFB muss unter Ausschluss von Sauerstoff betrieben werden, da V\(^{2+}\) unmittelbar und V\(^{3+}\) träge im Kontakt mit Sauerstoff oxidiert, wodurch es zu einem Kapazitätsverlust der Batterie kommt. Durch den Cross-over kann es zu weiteren Kapazitätsverlusten kommen, da durch Migration oder Diffusion Vanadiumionen durch die Membran gelangen und diese in der anderen Halbzelle entsprechend oxidiert bzw. reduziert werden. Die Konzentration an Vanadiumsulfat im Elektrolyten wird möglichst hoch gewählt (1,5 bis 2 M), da die Energiedichte des Gesamtsystems direkt davon abhängig ist. Auch ist eine Wärmeregulierung des Systems zwischen 10 und 40 °C notwendig, um die Fällung von VO\(_2^+\) zu schwerlöslichem V\(_2\)O\(_5\) zu verhindern.\(^{26}\)

2.2 Kenndaten einer VRFB

Um die Leistungsfähigkeit einer Batterie und ihrer Bestandteile zu bestimmen, können Lade- und Entladezyklen aufgenommen werden.\(^{12}\) Dabei wird zum Vergleich der Elektroden eine festgelegte Menge an Elektrolyt zyklisch zwischen eineroberen und unteren Potentialgrenze galvanostatisch ge- bzw. entladen.\(^{27,28}\) Aus den aufgenommenen Zyklen können dann mit Hilfe der Gleichungen 4 - 6 die Coulombeffizienz (CE), Spannungseffizienz (VE) und Energieeffizienz (EE) ermittelt werden.\(^{29,30,31,32}\)
CE = (Entladekapazität/Ladekapazität) × 100 \hspace{1cm} (4)

VE = (Mittelwert des Entladepotentials/Mittelwert des Ladepotentials) × 100 \hspace{1cm} (5)

EE = CE × VE \hspace{1cm} (6)

2.3 Kohlenstoffbasierte Vliese als Elektrodenmaterial

eingebaut und ein Ringschluss der Nitrilgruppen zu einer polyiminartigen Struktur ermöglicht.
Dazu ist notwendig, um die Vernetzungen des Polymers zu graphitischen Basalebenen während der Karbonisierung zu erleichtern und die Bildung von teerartigen Nebenprodukten und somit eine geringere Kohlenstoffausbeute zu verhindern.\[30,37\] Anschließend werden die Fasern unter Schutzgasatmosphäre karbonisiert, wobei die vollständige Karbonisierung bei einer Temperatur von 1100 °C gewährleistet ist. Dabei werden Abspaltprodukte wie H₂, CH₄, CO und NH₃ gebildet. Der Masseverlust bis zur vollständigen Karbonisierung beträgt dabei etwa 45 - 50 %.\[38\] Während der Karbonisierung bilden sich aus dem Polymerpräkursor graphitische Basalebenen, die zunächst turbostratisch vorliegen. Diese Unordnung in c-Richtung nimmt mit steigender Temperatur ab, bis ab einer Temperatur von 2200 °C die Fasern graphitisiert werden (Abbildung 2.3).\[39-41\]

Abbildung 2.3 | Mechanismus der oxidativen Stabilisierung sowie der Karbonisierung von Polyacrylnitril.
2.3.2 Kompressionsstudie der Vlieselektroden in der VRFB
Da das Vliesmaterial aus einem losen Fasernetzwerk besteht, resultiert daraus eine hohe Flexibilität und dadurch eine sehr geringe mechanische Stabilität. Bedingt durch die runde Fasergeometrie ergeben sich so im Vlies nur wenige Kontaktflächen, was zu hohen elektrischen Widerständen im Vlies führt. Durch die Flexibilität können nur sehr geringe Anpressdrücke realisiert werden, wodurch hohe Kontaktwiderstände zur Bipolarplatte die Folge sind. Aus diesem Grund muss die Vlieselektrode in der Zelle gegen die Bipolarplatte gedrückt werden, um Kontaktwiderstände zu minimieren, wobei die Elektrode komprimiert wird. (Abbildung 2.4).

Abbildung 2.4 Darstellung des Faser-Faser-Kontaktes in der Vlieselektrode. a) REM-Aufnahme einer kommerziellen Vlieselektrode, b) Schematische Darstellung zweier Fasern an einem Kreuzungspunkt.

Energieeffizienz zu erreichen.[24] Deshalb wird in dieser Arbeit versucht, die mechanische Stabilität der Vliese zu erhöhen. Dadurch können Kontaktwiderstände minimiert werden, ohne die Kompression erhöhen zu müssen. Alternativ könnten gar geringere Kompressionen in der Zelle realisiert werden, um den Durchflusswiderstand so gering wie möglich halten zu können.

2.3.1 Aktivierung der Vlieselektrode

Die Kinetik und Reaktionsmechanismen der VIII/VII und VIVO2+/VIVO2+- Redoxreaktionen sind Gegenstand aktueller Forschung und konnten bisher noch nicht vollständig geklärt werden.[45,46] Frühere Studien haben gezeigt, dass funktionelle Sauerstoffgruppen auf der Kohlenstoffoberfläche die Kinetik der Redoxreaktionen von VIII/VII und VIVO2+/VIVO2+ stark fördern und die CE der VRFB dadurch gesteigert werden konnte. Die verbesserte Kinetik der Vanadium-Redoxpaare wurde auf die Bindung von Vanadiumionen an die Sauerstoffgruppen auf der Elektrode zurückgeführt.[47]

\begin{itemize}
 \item \textbf{Abbildung 2.5} Schematische Darstellung des von Skyllas-Kazacos et al. vorgeschlagenen Redox-Reaktionsmechanismus für a) das VO2+/VO2+-Redoxpaar im Katholyten und b) das V3+/V2+-Redoxpaar im Anolyten.
\end{itemize}

Dabei ist eine Vielzahl an Methoden zur Aktivierung bekannt. Einige Bespiele dafür sind die thermische Oxidation, die elektrochemische Oxidation oder die chemische Behandlung mit H\textsubscript{2}SO\textsubscript{4}. Auch die Herstellung von Kompositelektroden aus einem Kohlenstoffvlies und Kohlenstoffnanoröhren[48-50], Graphitoxid[51,52] oder metallischen Katalysatoren[53,54] können zur Aktivierung genutzt werden. Bei der Oxidation der Fasern werden die Defektstellen der sonst nahezu inerten Basalebenen oxidiert. Dabei kommt es erst zur Bildung von sauerstoffhaltigen Oberflächengruppen und anschließend zur Kohlenstoffkorrosion, bei der die Kohlenstoffatome unter Bildung von CO und CO\textsubscript{2} verflüchtigt werden. Dadurch vergrößert sich die Oberfläche der Fasern, da es zu einer weiteren Porenbildung kommt.[55,56] Die Bildung von CO und CO\textsubscript{2} ist dabei abhängig von der Temperatur und der Verweildauer.[57-60] Auch die Einbringung anderer
Heteroatome auf die Kohlenstoffoberfläche wie z.B. Stickstoff oder Schwefel führen zu einer verbesserten Reaktionskinetik gegenüber der Vanadium-Redoxpaaare (Abbildung 2.6).

Im Bereich der VRFB werden die katalytischen Eigenschaften von oxidierten Kohlenstoff bis heute diskutiert. Neueste Arbeiten zeigen, dass die Aktivierung nicht ausschließlich auf die Sauerstoffkonzentration zurückgeführt werden kann, da die Oberflächengröße und die Zunahme der Defektdichte im graphitischen Kohlenstoff eine entscheidende Rolle spielt. Dabei konnte gezeigt werden, dass eine Erhöhung an Defekten und Kanten („edge-sites“) in der Basalebene zu einer Erhöhung der Reaktionskinetik von $\text{V}^{III}/\text{V}^{II}$ und $\text{V}^{IV}\text{O}_2^+/\text{V}^{IV}\text{O}^{2+}$ führt, vor allem bei geringen Konzentrationen. Hingegen konnte keine Korrelation zwischen der Konzentration bestimmter funktioneller Sauerstoffgruppen und der elektrochemischen Leistung festgestellt werden, da die sauerstofffreien Elektroden eine insgesamt bessere Halbziellenperformance zeigten. Hingegen konnte mit Hilfe von Raman-Spektroskopie nachgewiesen werden, dass ein direkter Zusammenhang zwischen bestimmten Kohlenstoffdefekten und den elektrochemischen Eigenschaften besteht. Als neuer Reaktionsmechanismus wurde vorgeschlagen (Abbildung 2.7), dass wasserstoffterminierte Kantenpositionen an den Redoxreaktionen beteiligt sind und diese nicht durch Sauerstoffgruppen (Hydroxylgruppen) unterstützt werden.

Abbildung 2.6| Schematische Darstellung des katalysierten Reaktionsmechanismus einer Stickstoffdotierten Graphenelektrode vorgeschlagen von Zhang et al. für die $\text{VO}_2^+/\text{VO}_2^+$-Redoxreaktion. a) Reduktionsreaktion und b) Oxidationsreaktion.
2.4 Bipolarelektrode

3 Experimenteller Teil

3.1 Elektrodenpräparation

3.1.1 Imprägnierung mit Polyacrylnitril und Poly(4-vinylphenol)

Die zur Imprägnierung verwendeten Vlieselektroden (GFD 4.6 mm, SGL Carbon) wurden auf eine Größe von 3,3 cm x 3,3 cm (~10 cm²) zurechtgeschnitten und mit 4 mL Polymerlösung imprägniert. Dafür wurden verschiedene konzentrierte Polyacrylnitril- bzw. Poly(4-vinylphenol)-Lösungen hergestellt. Untersucht wurden für die Imprägnierung mit Polyacrylnitril (PAN, Sigma Aldrich, Mw = 150000) folgende Konzentrationen: 0,5 Gew.%; 1 Gew.%; 2 Gew.%; 3 Gew.% und 4 Gew.% Die entsprechende Menge an PAN wurde in 20 mL Dimethysulfoxid (DMSO, Sigma Aldrich, ≥ 99,7 %) gelöst und über Nacht bei Raumtemperatur gerührt. Die Proben wurden entsprechend der Konzentration bezeichnet als VPAN0,5; VPAN1, VPAN2, VPAN3 und VPAN4. Mit Poly(4-vinylphenol) (P4VP, Sigma Aldrich) wurden 2 Gew.% in 20 mL DMSO hergestellt. Die Probe wurde entsprechend als Probe P4VP__2 bezeichnet. Ein Volumen von 4 mL wurde zur Imprägnierung gewählt, da dies die maximal aufnehmbare Menge für ein Vlies der Größe (10 cm²) entspricht. In eine Petrischale wurden zunächst 2 mL der Polymerlösung vorgelegt, anschließend das Vlies auf diese Stelle gelegt und mehrfach mit einer zweiten Petrischale das Vlies zusammengedrückt, bis die Menge komplett vom Vlies aufgenommen wurde. Mit der noch trockenen Seite des Vlieses wurde ebenso mit den restlichen 2 mL der Lösung verfahren. anschließend wurde das Vlies zum Trocknen zwischen zwei Gittern locker eingespannt, so dass es währenddessen nicht zu einer Kompression kommt und dadurch die Lösung wieder aus dem Vlies heraus gedrückt werden kann, mit einem Heißluftfön bei einer Temperatur von 150 °C für 20 min getrocknet. Entscheiden dabei ist für die homogene Verteilung des Polymers im Vlies hinterher, dass das Vlies während der Trocknung gedreht wird. Anschließend wurde das Vlies mit Hilfe von GC-Stäbchen aufgestellt und in einem Trockenschrank bei 80 °C über Nacht zum vollständigen Abdämpfen des Lösemittels getrocknet.

3.1.2 Oxidative Stabilisierung und Karbonisierung von Polyacrylnitril

Die imprägnierte PAN-Probe wurde zur oxidativen Stabilisierung in einem Muffelofen (Nabertherm) unter Luftatmosphäre mit einer Heizrate von 1 K min⁻¹ auf 290 °C erhitzt und diese Temperatur für 3 h gehalten. Anschließend wurde die Probe in einen Ofen mit Metallretorte

3.1.3 Thermische Aktivierung der mit PAN imprägniern Proben

Die karbonisierten Proben wurden zur Aktivierung einer weiteren thermischen Behandlung unterzogen. Dabei wurden die Proben in einem Kammerofen unter Luftatmosphäre bei 400 °C behandelt. Hierfür wurden mehrere Haltezeiten getestet: 10 h, 5 h; 2,5 h und 1,5 h. Dementsprechend wurden die Proben bezeichnet als: VPANX_10h, VPANX_5h usw.

3.1.4 Oxidative Stabilisierung und Karbonisierung der mit Poly(4-vinylphenol) imprägniern Proben

Zur Stabilisierung wurden die Proben in einem Kammerofen in Luftatmosphäre zunächst mit einer Heizrate von 3 K min⁻¹ auf 220 °C erhitzt und anschließend mit einer geringeren Heizrate von 1 K min⁻¹ auf eine Endtemperatur von 330 °C aufgeheizt und diese Temperatur für 5 h gehalten. Anschließend wurde das imprägnierte Vlies in einen verschließbaren Graphittiegel gestellt und vor der Karbonisierung evakuiert und anschließend mit Argon geflutet, um eine inerte Atmosphäre im Tiegel gewährleisten zu können. Der Graphittiegel wurde dann in den Ofen gestellt, welcher dann mit einem Argonstrom von 3 L min⁻¹ gespült wurde und die Probe anschließend mit einer Heizrate von 3 K min⁻¹ auf eine Temperatur von 450 °C erhitzt und diese Temperatur für eine Stunde gehalten wurde. Dann wurde die Temperatur mit derselben Heizrate auf 650 °C erhöht und ebenfalls für eine Stunde gehalten. Anschließend wurde die Probe auf
1100 °C erhitzt und fünf Stunden lang karbonisiert. Die Probe wurde dann zunächst auf 500 °C mit einer Heizrate von 3 K min⁻¹ und dann unkontrolliert auf Raumtemperatur abgekühlt.

3.2 Herstellung der Bipolarelektrodeneinheit

Zur Herstellung der Bipolarelektroden wurden Bipolarplatten (Sigracell, SGL Carbon) in die entsprechende Größe zurechtgeschnitten, mit einem leitfähigen Kleber beschichtet, indem eine dünne Schicht der Paste die komplette Bipolarplatte bedeckt und anschließend ein Vlies mit derselben Größe auf die nasse Klebeschicht gedrückt wurde. Dann wurde die verklebte Bipolarelektrode über Nacht im Trockenschrank bei 80 °C getrocknet. Im Folgenden sind die Zusammensetzungen und Herstellungen der einzelnen leitfähigen Kleber dargestellt.

3.2.1 Herstellung leitfähiger PAN-basierter Kleber

3.2.1.1 PAN-GF

Für die Herstellung des PAN-GF-Klebers wurde eine bestimmte Menge an Graphitvlies mit Hilfe eines Mörser zerkleinert, bis ein feines Pulver aus Graphitfasern entstanden ist. Das Pulver wurde dann im entsprechenden Verhältnis (siehe Tabelle 3.1) dem PAN-Graphit untergemischt und wie bereits in Abschnitt 3.2.1 erläutert weiterverarbeitet.
3.2.1.2 PAN-GFO
Zur Herstellung der PAN-GFO Bipolarelektroden wurde die Bipolarplatte mit PAN1 bzw. PAN_GF-Kleber beschichtet und anschließend zerkleinerte Graphitfasern mit Hilfe eines Siebs gleichmäßig über die nasse Oberfläche gestreut, so dass die gesamte Fläche vollständig bedeckt wurde. Anschließend wurde das Vlies auf die beschichtete Bipolarplatte gedrückt und über Nacht im Trockenschrank bei 80 °C getrocknet.

Tabelle 3.1| Zusammensetzung der verschiedenen leitfähigen Kleber. Alle Kleber beinhalten als Basis Graphit (G) und Polyacrylnitril als Binder (B), die jeweils zugesetzten Leitadditive (LA) sind in der Tabelle falls vorhanden angegeben.

<table>
<thead>
<tr>
<th>Kleber</th>
<th>Leitadditiv (LA)</th>
<th>Zusammensetzung (G:LA:B)</th>
<th>Kapitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/PAN1</td>
<td>-</td>
<td>9:1</td>
<td>5.1</td>
</tr>
<tr>
<td>G/PAN2</td>
<td>-</td>
<td>9,5 : 0,5</td>
<td>5.1</td>
</tr>
<tr>
<td>G/PAN3</td>
<td>-</td>
<td>9,7 : 0,3</td>
<td>5.1</td>
</tr>
<tr>
<td>G/CB/PAN1</td>
<td>Aktivkohle</td>
<td>8:1:1</td>
<td>5.2</td>
</tr>
<tr>
<td>G/CB/PAN2</td>
<td>Aktivkohle</td>
<td>7:2:1</td>
<td>5.2</td>
</tr>
<tr>
<td>G/CB/PAN3</td>
<td>Aktivkohle</td>
<td>4,5:4,5:1</td>
<td>5.2</td>
</tr>
<tr>
<td>G/GFPAN1</td>
<td>Graphitfaser</td>
<td>8,5:0,5:1</td>
<td>5.3</td>
</tr>
<tr>
<td>G/GFPAN2</td>
<td>Graphitfaser</td>
<td>4,5:4,5:1</td>
<td>5.3</td>
</tr>
<tr>
<td>G/GFO/PAN</td>
<td>Graphitfaser</td>
<td>4,5:4,5:1</td>
<td>5.3</td>
</tr>
</tbody>
</table>

3.3 Verwendete Analysemethoden

3.3.1 Strukturelle und physikochemische Eigenschaften

3.3.1.1 Untersuchung der mechanischen Stabilität
Die Untersuchung der mechanischen Stabilität der imprägnierten Proben wurden mit einer Kraftzugmaschine ZwickLine der Firma Zwick/Roell durchgeführt. Dabei wurde eine Kraftdose mit einer Kraftaufnahme von 100 N verwendet. Zunächst wurde vor jeder Messung die Dicke der Probe bestimmt, indem die Stempel soweit zusammengefahren sind, bis ein Anpressdruck von 0,1 N cm⁻² erreicht wurde. Dieser Wert wurde einer Kompression von 0 % gleichgesetzt und als Anfangswert für die kompressionsabhängige Messung verwendet. Für die Messung wurde eine Probengröße von 1,4 x 1,4 cm (1,96 cm²) eingesetzt. Es wurde jeweils der Anpressdruck bis zu
einer Kompression von 60 % aufgenommen. Zur Erfassung und Auswertung der Druckkurven wurde die Software TestXpert verwendet.

3.3.1.2 Bestimmung des elektrischen Widerstandes

Die Widerstandsmeßungen der Probe wurden ebenfalls mit Hilfe der Kraftzugmaschine und einer eigens im Arbeitskreis entwickelten Aufbau zur Bestimmung des Widerstands bei bestimmter Kompression bzw. bestimmten Anpressdruck bestimmen zu können. Dieser Aufbau (Abbildung 3.1) besteht aus zwei Kupferstempeln, die jeweils an der Stempelfläche mit Gold beschichtet wurden. Die Kupferstempel wurden an die Kraftzugmaschine montiert, so dass eine bestimmte Kompression bzw. Anpressdruck präzise eingestellt werden konnte. Die Kupferstempel wurden an einem Potentiostaten (SP 300, BioLogic) angeschlossen, um den Spannungsabfall bei einer konstanten Stromstärke von 100 mA zu messen. Der Einstellungen am Potentiostaten wurden mit Hilfe der Software EC-Lab (BioLogic) ausgeführt. Die Proben wurden für die Messungen auf eine Größe von 1,4 x 1,4 cm (1,96 cm²) zugeschnitten und aufgrund der hohen Streuung dreimal gemessen. Der so erhaltene gemittelte Wert der Spannung konnte mit Hilfe des ohmschen Gesetzes \(R = \frac{U}{I} \) in den Widerstand umgerechnet werden. Dabei ist zu beachten, dass der Widerstandswert den Gesamtwiderstand und nicht den Widerstand des Materials selbst darstellt. Der Gesamtwiderstand setzt sich zusammen aus den Kontaktwiderständen \(R_{SV} \) zwischen Kupferstempel und Vlies bzw. im Fall der Bipolarelektrode der Kontaktwiderstand \(R_{VB} \) zwischen Vlies und Bipolarelektrode, sowie der Kontaktwiderstand \(R_{BS} \) zwischen Bipolarplatte und

\[\text{Abbildung 3.1} \quad \text{Schematische Darstellung des verwendeten Teststands zur Bestimmung der elektrischen Leitfähigkeit.}\]

3.3.1.3 Rasterelektronenmikroskopie (REM)

3.3.1.4 Raman-Spektroskopie

3.3.1.5 Röntgenphotoelektronenspektroskopie (XPS)

Peakanpassung erfolgte mit einem oder mehreren Voigt-Funktionen (Ungenaugkeit der Bindungsgenergie ± 0,2 eV). Alle Spektren wurden auf die C 1s-Peaks von Kohlenwasserstoff bei 285,0 eV referenziert. Die Energieskala wurde über die bekannten Photoelektronenlinien von metallischem Gold, Silber und Kupfer kalibriert.

3.3.1.6 Thermogravimetric Analyse (TGA)

3.3.1.7 Oberflächenbestimmung durch Stickstoffadsorption (BET)

Zur Oberflächenbestimmung der Proben durch Stickstoffadsorption wurde der Gemini VII 2390 Surface Area Analyzer der Firma Micrometics Instrument Corporation verwendet. Für die Messung wurden elf Adsorptionsmesspunkte bis zu einem Relativdruck von p/p₀ = 0,5 aufgenommen, wobei die BET-Oberfläche im Bereich des Relativdrucks von 0,1 bis 0,25 bestimmt wurde.

3.3.2 Elektrochemische Untersuchungen

3.3.2.1 Aufbau einer VRFB-Einzelzelle

Der Aufbau basiert auf dem Aufbau einer MicroflowCell von Eletrocell und ist in Abbildung 3.2 dargestellt. Der Aufbau besteht aus zwei PTFE-Endplatten mit jeweils einem Zu- und Ablauf, Stromkollektoren bzw. sogenannte Bipolarplatten aus Graphit-PE-Gemisch (Sigracell) und Dichtrahmen aus Viton, sowie Rahmen aus Teflon. Die Elektrodenfläche beträgt 10 cm², beide
Halbzellen wurden in der Mitte durch eine FAP450-Membran (Fumatech) voneinander getrennt. Über zwei Metall-Anpressplatten und 6 Schrauben wurden die Elektroden um 20 % komprimiert, um das geeignete Verhältnis von Porosität aber auch einen ausreichend hohen Anpressdruck zu generieren, um die Kontaktwiderstände so gering wie möglich zu halten. Der Vanadium-Elektrolyt wurde von GfE (Gesellschaft für Elektrometallurgie mbH) bezogen. Für die Tests in der Einzelzelle wurde ein Elektrolytvolumen von je 75 mL verwendet. Unter jedem Tank befinden sich Rührplatten mit jeweils einem Rührfisch in jedem Tank, um eine gleichmäßige

Abbildung 3.2|Bestandteile einer VRFB-Einzelzelle.

3.3.2.2 Lade-/Entladezyklen
Diese Art der Messmethode wird durchgeführt, um die Leistung einer Batterie und somit auch die Leistung der Elektrode zu bestimmen. Dazu wurden die beiden Elektrolyte bis zu einer unteren Grenze von 0,8 V bzw. oberen Grenze von 1,65 V mit einer festgelegten Menge an Elektrolyt ge- bzw. entladen. Dies wurde galvanostatisch bei unterschiedlichen Stromdichten von 25 mA cm⁻² bis 125 mA cm⁻² durchgeführt. Mit den so erhaltenen Werten lassen sich die Coulombeffizienz (CE), die Spannungsseffizienz (VE) und die daraus resultierende Energieeffizienz (EE) mit den folgenden Gleichungen ermitteln. [20,30,31,32]
CE = (Entladekapazität/Ladekapazität) × 100
\((4) \)

VE = (Mittelwert des Entladepotentials/Mittelwert des Ladepotentials) × 100
\((5) \)

EE = CE × VE
\((6) \)

Die Coulomb-Effizienz wird hauptsächlich durch den Cross-over der Vanadiumionen, sowie durch Nebenreaktionen, wie der Sauerstoff- oder der Wasserstoffbildung, beeinflusst. Der Cross-over ist von der Membran abhängig, so dass die CE durch die Auswahl der Membran beeinflusst wird. Die Spannungseffizienz berechnet sich aus dem Quotienten der mittleren Entladespannung und der mittleren Ladepspannung. Dabei wird diese durch die ohmschen Verluste und der Reaktionskinetik an der Elektrode beeinflusst und kann somit zur Bewertung der modifizierten Elektroden herangezogen werden. Um die Elektrodenmaterialien untereinander auf diese Art vergleichen zu können, müssen alle Parameter wie Membran, Elektrolytmenge und Temperatur gleichgehalten werden. Die Energieeffizienz kann als Kenngröße für die gesamte VRFB genutzt werden.\[96\]

3.3.2.3 Zyklovoltammetrie
allerdings gehemmt, so spricht man von einer quasi-reversiblen Reaktion. Reversible Reaktionen können mit Hilfe der Randles-Sevcik-Gleichung (4) beschrieben werden.\cite{1} Bei quasi-reversiblen Reaktionen muss die Abhängigkeit des Durchtrittsfaktors \(\alpha \) miteinbezogen werden (5):\cite{2}

\[
I_{\text{peak}} = 2.69 \cdot 10^5 \cdot n^{2/3} \cdot AD^{1/2} \cdot c_v^{1/2}
\]
\(\text{(7)} \)

\[
I_{\text{peak}} = 2.69 \cdot 10^5 \cdot n^{2/3} \cdot \alpha \cdot AD^{1/2} \cdot c_v^{1/2}
\]
\(\text{(8)} \)

Dabei ist \(I_{\text{peak}} \) der Peakstrom [A], \(n \) die Zahl der übertragenen Elektronen, \(A \) die Fläche der Elektrode [cm\(^2\)], \(D \) der Diffusionskoeffizient [cm s\(^{-1}\)], \(c \) die Konzentration der elektrochemisch aktiven Spezies [mol cm\(^{-3}\)] und \(v \) die Scangeschwindigkeit [V s\(^{-1}\)]. Zur Auswertung der CV-Messungen werden in der Regel die Peakmaxima, die Peakseparation, sowie die Onsetpotentiale bestimmt. Jedoch muss hier beachtet werden, dass aufgrund der Porosität der Vliese im Vergleich zu planaren Elektroden, diese verzerrte CV-Diagramme liefern und somit die erhaltenen Daten aus den Peaklagen und den Stromamplituden mit Vorsicht betrachtet werden müssen.\cite{3} In dieser Arbeit wurde das Onsetpotential als Näherung zur Bestimmung der elektrochemischen Aktivität der Elektrodenmaterialien genutzt. Das Onsetpotential wurde als das Potential definiert, ab dem ein Stromschwellwert von 1 mA bezogen auf die Basislinie überschritten wurde (Abbildung 3.3). Dabei gilt für die Oxidationsreaktionen, je niedriger das Onsetpotential, umso höher ist die

Abbildung 3.3| Zyklolvoltammogramm einer kommerziellen Vlieselektrode.
elektrochemische Aktivität der untersuchten Vlieselektrode. Für die Reduktionsreaktion gilt Gegenteiliges.

Für die Messungen wurden folgende Bedingungen gewählt: Das imprägnierte Vlies bzw. die Bipolarelektrode wurde als Arbeitselektrode geschaltet, als Referenzelektrode diente eine Ag/AgCl-Elektrode (3 M KCl, E= 0,210 V vs. NHE). Ein Platinnetz wurde als Gegenlektrode verwendet. Die Arbeitselektrode wurde aus einem größeren Vliesstück ausgestanzt (rund, d= 7 mm). Vor jeder Messung wurde die Vlieselektrode im entsprechenden Elektrolyten zentrifugiert, um eine vollständige Benetzung zu gewährleisten. Als Elektrolyt wurde für die positive Halbzelle 0,1 M V^V=O^2+ (VOSO_4 - xH_2O) in 2 M Schwefelsäure (H_2SO_4, Merck, 98 %) hergestellt. Für die Untersuchung der negativen Halbzelle wurde der Elektrolyt zuvor in einer Vollzelle zu V^{3+} entladen und wurde entsprechend mit 2 M H_2SO_4 zu einer 0,1 M V^{3+}-Lösung verdünnt. Der Elektrolyt wurde vor der Messung mit Argon durchspült und während der Messung mit Argon benetzt. Die verwendete Scangeschwindigkeit betrug 1 mV s^{-1}.

3.3.2.4 Elektrochemische Doppelschichtkapazität (EDLC)

Die Messung der elektrochemischen Doppelschichtkapazität wurde in 2 M H_2SO_4 als Elektrolyt in einem Potentialbereich von 0,15 V bis 0,25 V vs. Ag/AgCl aufgenommen. Der Wert des anodischen sowie des kathodischen Stroms wurden bei einem Potential von 0,17 V vs. Ag/AgCl bestimmt. Die Auftragung der Steigung des Stroms in Abhängigkeit von der Scangeschwindigkeit ergibt die Kapazität [mF].

3.3.2.5 Elektrochemische Impedanzspektroskopie

Die Impedanzspektren wurden bei einer Spannungsamplitude von 10 mV für die positive Halbzelle bei einem Potential von 0,9 V vs. Ag/AgCl aufgenommen. Die Spektren wurden mit dem Ersatzschaltbild in Abbildung 3.4 gefittet:

Dabei entspricht L induktiven Effekten, R_EI stellt den Elektrolytwiderstand dar, R_{QnF} und R_{QnT} entsprechen dem Widerstand und dem Constant Phase Element der Grenzfläche zwischen

Abbildung 3.4| Verwendetes Ersatzschaltbild zur Anpassung der Spektren.
Elektrode/Bipolarplatte bzw. Elektrode/ Elektrolyt. RQ_{LT} beschreibt somit den Ladungstransfer vom Elektrolyt zur Elektrode. Q_{D} entspricht der Diffusion des Elektrolyten zur Faseroberfläche. Das Constant Phase Element wird anstelle eines Kondensators eingesetzt, um die inhomogene Struktur der Vliese und die daraus resultierende ungleichmäßige Spannungsverteilung an der Faseroberfläche zu simulieren.[74]

26
4 IMPRÄGNIERUNG DER VLIESELEKTRODEN

Graphitbasierte Vlieselektroden sind die am häufigsten eingesetzten Elektrodenmaterialien in VRFB. RFBs werden fast ausschließlich nach dem Flow-Through-Prinzip realisiert, wobei Vlieselektroden mit einer Dicke von 3 - 5 mm verwendet werden, um den Durchflusswiderstand möglichst gering zu halten. Die Fasern mit einer Dicke von etwa 10 µm sind allerdings nur lose miteinander verknüpf, woraus sich nur sehr kleine Kontaktflächen zwischen den einzelnen Fasern ergeben, was sich negativ auf die Leitfähigkeit innerhalb der Elektrode auswirkt. Bedingt durch die lose Verknüpfung besitzen Vliese eine geringe Steifigkeit, weshalb ein nur sehr geringer Anpressdruck gegen die Bipolarplatte generiert werden kann. Dies wiederrum führt zu einer geringen Kontaktfläche zwischen der Elektrode und der Bipolarplatte und deshalb zu einem hohen Kontaktwiderstand. Um diese Eigenschaften zu verbessern wurden Vliese mit karbonisierbaren Polymerbindern imprägniert, um dadurch einerseits die Faser-Faser-Kontaktflächen zu erhöhen, sowie andererseits durch mechanische Versteifung einen höheren Anpressdruck gegen die Bipolarplatte zu realisieren. Um die Benetzung und die elektrokatalytische Aktivität der Vliese zu erhöhen, wurden diese im Anschluss thermisch aktiviert. Im folgenden Kapitel werden die imprägnierten Vliese auf ihre strukturellen und elektrochemischen Eigenschaften eingehend untersucht und mit einer kommerziellen Standardelektrode, die als Referenz bezeichnet wird, verglichen.

Abbildung 4.1| Schematische Darstellung des Imprägniervorgangs an einer Vlieselektrode.

4.1 Einfluss der Temperatur auf die Imprägnierung

Um die Auswirkungen der Karbonisierungstemperatur auf die Imprägnierung zu untersuchen, wurden die imprägnierten Vliese bei fünf verschiedenen Temperaturen karbonisiert. Dazu wurden sie zunächst mit einer Polyacrylnitril-Lösung mit einer Konzentration von 2 Gew. % imprägniert,

4.1.1 Charakterisierung der Eigenschaften

Der Einfluss der Temperatur auf die elektrische Leitfähigkeit der Proben wurde anhand des Spannungsabfalls an der Elektrode bei verschiedenen Kompressionen von 0 bis 20 % ermittelt und entsprechend in den elektrischen Widerstand R umgerechnet. Gleichzeitig wurde dabei der

Abbildung 4.2 a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression.

Anpressdruck an der Elektrode bei jeder eingestellten Kompression gemessen. In Abbildung 4.2 sind die elektrischen Widerstände sowie der Anpressdruck in Abhängigkeit von der Kompression dargestellt. Alle Proben zeigen in Bezug auf den Widerstand einen vergleichbaren Verlauf. Zunächst fällt der Widerstand im Bereich kleiner Kompressionen stark ab, mit steigender Kompression flacht dieser starke Abfall jedoch ab, so dass sich die Widerstände im Bereich von 10 bis 20 % einem konstanten Wert annähern. Im Vergleich der einzelnen Proben untereinander zeigt sich deutlich, dass wie erwartet V2500 den geringsten Widerstand zeigt, da ab etwa 2200 °C der Graphitisierungsprozess einsetzt und sich verstärkt eine kristalline Struktur mit einem wachsenden Anteil sp²-hybridisierten Kohlenstoff bildet.[74] Mit dem Anteil an geordneten Graphitschichten steigt parallel die elektrische Leitfähigkeit.[38, 74] In Tabelle 4.1 sind die

Tabelle 4.1 | Werte des flächenbezogenen Widerstandes ASR sowie des Anpressdrucks CP bei einer Kompression von 10 % und 20 %.

<table>
<thead>
<tr>
<th>Temperatur [°C]</th>
<th>ASR_{10%} [Ω cm²]</th>
<th>ASR_{20%} [Ω cm²]</th>
<th>CP_{10%} [N cm²]</th>
<th>CP_{20%} [N cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>0,202 ± 0,005</td>
<td>0,199 ± 0,004</td>
<td>7,755 ± 0,98</td>
<td>11,224 ± 0,14</td>
</tr>
<tr>
<td>1100</td>
<td>0,186 ± 0,004</td>
<td>0,171 ± 0,004</td>
<td>9,472 ± 0,86</td>
<td>12,057 ± 0,34</td>
</tr>
<tr>
<td>1500</td>
<td>0,198 ± 0,005</td>
<td>0,184 ± 0,004</td>
<td>8,367 ± 0,61</td>
<td>10,255 ± 0,53</td>
</tr>
<tr>
<td>2000</td>
<td>0,204 ± 0,005</td>
<td>0,184 ± 0,004</td>
<td>8,112 ± 0,43</td>
<td>9,031 ± 0,68</td>
</tr>
<tr>
<td>2500</td>
<td>0,171 ± 0,004</td>
<td>0,155 ± 0,003</td>
<td>9,03 ± 0,39</td>
<td>12,602 ± 0,21</td>
</tr>
</tbody>
</table>

Abbildung 4.3(a) Raman-spektren der verschiedenen Karbonisierungsstufen der imprägnierten Vliese mit PAN, b) D/G-Verhältnisse entsprechend zu den Raman-spektren in a).

Im Bereich von 1200 cm⁻¹ bis 1700 cm⁻¹ sind für alle Proben stark ausgeprägte Banden zu erkennen, die der D-Bande bei 1335 cm⁻¹ und der G-Bande bei 1580 cm⁻¹, sowie der D'-Bande bei 1620 cm⁻¹ entsprechen. Im höheren Wellenzahlenbereich bei 2660 cm⁻¹ ist eine 2D-Bande zu erkennen, die sensitiv für die Schichtstruktur einzelner Graphenlagen ist. Diese ist bei niedrigen

Die chemische Zusammensetzung der Faseroberfläche wurde mit Hilfe der Röntgenphotoelektronenspektroskopie (XPS) untersucht (Abbildung 4.4). Das O 1s Detailspektrum beinhaltet drei verschiedene Sauerstoffgruppen: O=C (Carbonylgruppe) bei ~531.6 eV, O-C (Hydroxylgruppen) bei ~532.8 eV und O=C-OH (Carboxylgruppen) bei einer Bindungsenergie von 533.9 eV. Im O 1s Spektrum ist zu erkennen, dass mit steigender Temperatur der Sauerstoffgehalt von 6 at% auf 0,5 at% stark abnimmt. Auch das N 1s-Detaispektrum zeigt mit steigender Temperatur eine Abnahme an Stickstoff von 6 at% bis zu einer nicht mehr nachweisbaren Konzentration. Dabei handelt es sich um graphitische C=N-Gruppen bei einer Bindungsenergie von ~431 eV, sowie pyridinischer Stickstoff bei ~398,7 eV. Die hohe Stickstoffkonzentration bei 900 °C zeigt, dass hier die Karbonisierung noch nicht vollständig abgeschlossen ist und somit noch Stickstoffatome des PANs in der Struktur verbleiben. Ab einer Temperatur von 1100 °C wird das PAN-basierte Vlies vollständig karbonisiert. Jedoch wurde immer noch eine Konzentration von 3 at% Stickstoff festgestellt. Dies könnte auf die Reaktion der stickstoffhaltigen Zersetungsprodukte des PANs zurückzuführen sein. Durch die Erhöhung der Temperatur werden Fremdatome aus der Struktur ausgetragen, was in einem höheren Kohlenstoffanteil resultiert. Dabei verschiebt sich
der sp²-Bindungsanteil von 61 at% auf 81 at%, da ab einer Temperatur von 2200 °C die Graphitisierung einsetzt.[8,73]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Abbildung 4.4|XPS-Messungen der imprägnierten Proben bei verschiedenen Karbonisierungstemperaturen. a) zeigt das O 1s Detailspektrum, b) N 1s und c) C 1s.}
\end{figure}

4.1.2 Charakterisierung der elektrochemischen Eigenschaften
Abbildung 4.5a) Zyklovoltammogramm mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbzelle der imprägnierten Proben, die bei unterschiedlichen Temperaturen karbonisiert wurden, b) Messung der elektrochemischen Doppelschichtkapazität, graphische Auftragung der Ströme bei einem Potential von 0,17 V vs. Ag/AgCl für jede Scangeschwindigkeit.

Für V1100 (6,2 mA) und V900 (5,4 mA) liegen die Peakstromintensitäten der VO²⁺-Oxidation deutlich über denen von V1500 (4,5 mA), V2000 (4,6 mA) und V2500 mit dem geringsten Wert von 4,1 mA. Für die Reduktion von VO₂⁺ zeigt sich dasselbe Verhalten, was aus den Werten in Tabelle 4.2 entnommen werden kann.

Tabelle 4.2 | Onsetpotentiale E_On, Peakströme I_Peak sowie die Peakseparation ΔE_P der imprägnierten Vliese mit PAN.

<table>
<thead>
<tr>
<th>Temperatur °C</th>
<th>I_Peak Ox</th>
<th>Red [mA]</th>
<th>E_On Ox</th>
<th>Red [mV]</th>
<th>ΔE_P [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>5,42</td>
<td>-4,77</td>
<td>842,2</td>
<td>932,57</td>
<td>164,56</td>
</tr>
<tr>
<td>1100</td>
<td>6,22</td>
<td>-4,76</td>
<td>846,46</td>
<td>942,48</td>
<td>170,71</td>
</tr>
<tr>
<td>1500</td>
<td>4,49</td>
<td>-2,08</td>
<td>903,93</td>
<td>886,8</td>
<td>247,65</td>
</tr>
<tr>
<td>2000</td>
<td>4,64</td>
<td>-2,35</td>
<td>896,37</td>
<td>902,41</td>
<td>213,8</td>
</tr>
<tr>
<td>2500</td>
<td>4,12</td>
<td>-2,05</td>
<td>900,17</td>
<td>896,74</td>
<td>229,3</td>
</tr>
</tbody>
</table>

Mit Hilfe der Erkenntnisse der Raman- und XPS-Untersuchung in Kapitel 4.1.1 lässt sich das elektrochemische Verhalten sehr gut erklären. Da mit steigender Behandlungstemperatur der Anteil an Kantenpositionen an der Faseroberfläche deutlich abnimmt, führt dies zu einer geringeren elektrochemischen Aktivität. Dies lässt sich anhand der Onsetpotentiale erkennen, da diese sich mit zunehmender Temperatur zu höheren Potentialen verschieben. Auch die Peakseparationspotentiale nehmen mit steigender Temperatur, von 264,6 mV für V900 bis zu 229,3 mV für V2500, zu. Da Probe V1100 das höchste D/G-Verhältnis zeigte und somit den
höchsten Anteil an Kantenpositionen besitzt, spiegelt sich dies unmittelbar in der elektrochemischen Aktivität wieder, da der Anteil an Defekten mit der katalytischen Aktivität korreliert. V900 zeigt ebenfalls eine deutlich höhere Aktivität gegenüber V1500, V2000 und V2500, obwohl das D/G-Verhältnis von V900 vergleichbar mit V1500 ist. Dies könnte auf das Vorhandensein von Stickstoffgruppen an der Faseroberfläche zurückzuführen sein, was bei einer Temperatur von 1500 °C nicht mehr der Fall ist. Stickstoffdotierte Fasern wirken als elektrochemisch aktive Zentren und können die VO₂⁺/VO²⁺-Reaktion katalysieren.

Zusammenfassend konnte festgestellt werden, dass V1100 aufgrund des größten Anteils an Defektstellen und infolge der stickstoffdotierten Fasern durch die Karbonisierung von PAN die vielversprechendste elektrokatalytische Aktivität besitzt. V900 zeigt ähnliche Resultate, ist aber wegen des geringeren D/G-Verhältnisses in Hinblick auf das Stromintensitätsmaximum schlechter als V1100. Im Vergleich dazu sind V1500, V2000 und V2500 deutlich kinetisch gehemmt gegenüber der VO₂⁺/VO²⁺-Reaktion, was sich durch eine Verschiebung des Onset zu höheren Potentialen sowie durch eine erhöhte Peakseparation äußerte.

4.1.3 Kapitelzusammenfassung

Aus diesen Gründen sind die Proben V1500, V2000 und V2500 gegenüber der VO$_2^+$/VO$_2^{2+}$-Reaktion deutlich kinetisch gehemmt, was durch kleine Strompeaks und einer Verschiebung der Onsetpotentiale zu höheren Potentialen gezeigt wurde. Da Probe V1100 sowohl elektrochemisch, als auch in Bezug auf den elektrischen Widerstand und der mechanischen Stabilität sehr gute Eigenschaften aufwies, wurde 1100 °C als die am besten geeignete Temperatur zur Karbonisierung der imprägnierte Vliese bestimmt. In den folgenden Kapiteln wurden deshalb alle zu untersuchenden Vlieselektroden bei einer Temperatur von 1100 °C karbonisiert.
4.2 Einfluss der Polymerkonzentration auf die Imprägnierung

4.2.1 Charakterisierung der Eigenschaften

<table>
<thead>
<tr>
<th>Konzentration PAN-Lösung [Gew.-%]</th>
<th>PAN-Anteil\textsubscript{80 °C} [mg]</th>
<th>[%] nach Trocknen</th>
<th>Kohlenstoffanteil\textsubscript{100 °C} [mg]</th>
<th>[%] nach Karbonisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>23,9</td>
<td>4,8</td>
<td>9,19</td>
<td>2,08</td>
</tr>
<tr>
<td>1</td>
<td>47,13</td>
<td>9,4</td>
<td>17,76</td>
<td>3,98</td>
</tr>
<tr>
<td>2</td>
<td>90,23</td>
<td>20,01</td>
<td>37,5</td>
<td>8,3</td>
</tr>
<tr>
<td>3</td>
<td>137</td>
<td>30,41</td>
<td>58,4</td>
<td>12,96</td>
</tr>
<tr>
<td>4</td>
<td>188,2</td>
<td>42,58</td>
<td>81,06</td>
<td>18,34</td>
</tr>
</tbody>
</table>

Tabelle 4.3: PAN-Anteil der getrockneten Vlies nach der Imprägnierung sowie der Anteil des karbonisierten PANs im Vlies. Werte links entsprechen der Masse in mg und Werte rechts der prozentuale Anteil bezogen auf die gesamte Vliesmasse. Die ursprünglichen Vliesmassen sind in Tabelle A.1 angegeben.
Der Massenanteil an PAN im Vlies nimmt linear mit steigender Konzentration der PAN-Lösung zu. Nach der Karbonisierung verbleiben ca. 43 % des PANs als Kohlenstoff im Vlies zurück. Dieser Wert ist in Übereinstimmung mit der in der Literatur bestimmten Werte für den Masseverlust von PAN durch die Karbonisierung.[88]

Abbildung 4.6 REM-Aufnahmen der imprägniern Vliese mit unterschiedlichen Konzentrationen: a) 0,5 Gew.%, b) 1 Gew.%, c) 2 Gew.%, d) 3 Gew.% und e) 4 Gew.%.

Die REM-Aufnahmen in Abbildung 4.6 zeigen, dass Quervernetzungen zwischen den einzelnen Fasern stattgefunden haben. Je höher der Anteil an PAN im Vlies, desto stärker ist die Vernetzung zwischen den einzelnen Fasern. In Abbildung 4.7a - d ist deutlich zu erkennen, dass die Kontaktfläche der Fasern durch die Imprägnierung vergrößert wurde. Mit zunehmender
Konzentration der Polymerlösung nimmt die Fläche der Vernetzungen somit zu. Ein weiterer Effekt der Imprägnierung ist, dass die einzelnen Fasern von einer hauchdünnen zusätzlichen Kohlenstoffschicht ummantelt werden, was aus Abbildung 4.7 e + f ersichtlich wird. Der Einfluss des Vernetzungsgrades auf die mechanische Stabilität und Steifigkeit der Proben wurde durch kompressionsabhängige Messungen des Anpressdrucks untersucht und ist in Abbildung 4.8 dargestellt. Es wird ersichtlich, dass mit steigendem Vernetzungsgrad bzw. steigendem Polymeranteil im Vlies die mechanische Stabilität deutlich zunimmt. Dabei hat das Vlies VPAN4

Abbildung 4.7 | a) Vernetzung mehrerer Fasern, b) Verbrückung parallel verlaufender Fasern, c) und d) Vergrößerung der Kontaktfläche am Berührungspunkt zweier Fasern, e) Ummantelung der Fasern durch karbonisiertes PAN und f) Querschnitt der ummantelten Fasern.
mit dem höchsten Vernetzungsgrad eine um 10,57 N cm⁻² gesteigerte Stabilität bei einer Kompression von 20 % im Vergleich zur Referenz. Die weiteren Werte des gemessenen Anpressdrucks sind in Tabelle 4.4 aufgelistet. Bei einer Imprägnierung mit einer 2 Gew.%-igen PAN-Lösung oder höher, ist in Abbildung 4.8b ein Abfall des Anpressdrucks zu beobachten. Dies lässt auf ein Brechen der Vernetzungen von VPAN2 bei einer Kompression von 12,1 %, sowie für Probe VPAN3 bei 10,7 % und für Probe VPAN4 bei einer Kompression von 9,6 % schließen. Mit steigendem Vernetzungsgrad verschiebt sich der Punkt des Zusammenbruchs hin zu geringeren Kompressionen. Allerdings wird davon ausgegangen, dass nur ein Teil der Vernetzungen durch die Kompression brechen, da nach einem kurzen Abfall des Anpressdruckes bei weiterer Kompression dieser wieder zunimmt, so dass die Versteifung der Vliese weitestgehend erhalten bleibt und diese selbst nach dem Bruch einiger Vernetzungen um ein vielfaches stabiler sind als das unbehandelte Vlies. REM-Aufnahmen in Abbildung 4.9 bestätigen die Annahme, dass die Abnahme des Anpressdrucks auf das Brechen der Quervernetzungen zurückzuführen ist.

Da die kommerziell erhältlichen Standardvliese bei einer Kompression von 20 % in einer Vollzelle eingebaut werden, sollte überprüft werden, ob die imprägnierte Vliese trotz des Brechens bei Kompressionen deutlich unter 20 % in die Zelle mit einer Kompression von 20 % eingesetzt werden können oder ob dies sich negativ auf die Zelleistung auswirkt. In diesem Fall müsste für jedes entsprechende Vlies die geeignete Kompression für den Einsatz in der Vollzelle ermittelt
Abbildung 4.9 a) und b) REM-Aufnahmen der gebrochenen Vernetzungen der Probe VPAN2 nachdem diese bis zu 20% komprimiert wurde.

werden. Dabei liegt die Herausforderung darin, trotz einer verminderten Kompression im Vergleich zum Standard, einen höheren Anpressdruck und besseren Kontakt zur BPP und dadurch einen geringeren elektrischen Widerstand zu erzielen.

Tabelle 4.4 Werte des Anpressdrucks (CP) bei einer Kompression von 10% und 20%.

<table>
<thead>
<tr>
<th>Vlies</th>
<th>CP_{10%} [N cm^2]</th>
<th>CP_{20%} [N cm^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>1,81 ± 0,24</td>
<td>4,71 ± 0,54</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>4,94 ± 0,03</td>
<td>7,44 ± 0,12</td>
</tr>
<tr>
<td>VPAN1</td>
<td>7,59 ± 0,19</td>
<td>9,98 ± 0,03</td>
</tr>
<tr>
<td>VPAN2</td>
<td>9,84 ± 0,86</td>
<td>11,63 ± 0,34</td>
</tr>
<tr>
<td>VPAN3</td>
<td>11,85 ± 0,75</td>
<td>13,25 ± 0,11</td>
</tr>
<tr>
<td>VPAN4</td>
<td>15,28 ± 0,97</td>
<td>15,28 ± 0,31</td>
</tr>
</tbody>
</table>
Der Einfluss der erhöhten Stabilität der imprägniarten Vliese auf den elektrischen Widerstand und somit auf den Kontaktwiderstand zwischen Elektrode und Bipolarplatte ist in Abbildung 4.10 dargestellt. Da die Imprägnierung keinen Einfluss auf die Dicke der Proben nimmt, zeigen alle Proben annähernd denselben Wert für die Dicke von 4,6 mm. Somit ist für einen Vergleich der Proben untereinander die Angabe des flächenbezogenen Widerstands ausreichend. Die ermittelten Werte für den flächenbezogenen Widerstand in Abhängigkeit von der Kompression sind in Tabelle 4.5 zusammengefasst. Durch die Imprägnierung konnte eine deutliche Verbesserung im Vergleich zur Referenz erzielt werden, was sich bereits in Abbildung 4.10a bei VPAN0,5 mit dem geringsten Anteil an Vernetzungen zeigt. Da die Untersuchungen zur Stabilität für VPAN0,5 einen deutlich höheren Anpressdruck im Vergleich zur Referenz zeigte (Abbildung 4.8), war zu erwarten, dass deshalb ein geringerer Kontaktwiderstand die Folge ist. Mit Probe VPAN0,5 konnte deshalb bei einer Kompression von 20 % bereits eine Verbesserung um 15 % erreicht werden. Mit einem höheren Anteil an Vernetzungen im Vlies steigt der Anpressdruck bei gleicher Kompression und der Kontaktwiderstand nimmt weiter ab. Probe VPAN4 zeigt somit den geringsten elektrischen Widerstand aller untersuchten Proben.

Alle Proben unterliegen jedoch einer relativ hohen Standardabweichung, so dass zwischen einzelnen Proben nicht deutlich unterschieden werden kann. Dieser große Fehler resultiert zum einen aus der sehr großen Streuung der unbearbeiteten Vliese selbst, bedingt durch das lose Fasergewebe. Auch die Imprägnierung ist zusätzlich noch mit einem systematischen Fehler behaftet, so dass unterschiedliche Mengen an Polymer im Vlies verbleiben und dies entsprechend
zu einer niedrigeren bzw. höheren Vernetzung führen kann, weshalb nicht exakt zwischen Proben mit geringen Konzentrationsunterschieden der PAN-Lösung unterschieden werden kann. Der gemessene Widerstand ergibt sich aus den Kontaktwiderständen zwischen Kupferstempel und Faser und dem internen Widerstand des Vliesmaterials. Um herauszufinden, ob die Verbesserung des elektrischen Widerstandes sich nur auf die Verringerung des Kontaktwiderstandes zurückführen lässt, oder ob auch die zusätzlichen Leitungspfade im Vlies aufgrund der Vernetzung zu einer Verbesserung des internen Widerstandes des Vlieses selbst führt, müssen die Widerstände der einzelnen Proben bei einem definierten Anpressdruck betrachtet werden, um so den Einfluss des Kontaktwiderstandes an der Vliesoberfläche vernachlässigen zu können.

Tabelle 4.5 | Werte des flächen spezifischen Widerstandes (ASR) bei einer Kompression von 20 % und einem Anpressdruck von 7 N cm².

<table>
<thead>
<tr>
<th>Vlies</th>
<th>ASR<sub>CR</sub> 20 % [Ω cm²]</th>
<th>ASR<sub>CP</sub> 7 N cm² [Ω cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>0,46 ± 0,11</td>
<td>0,46 ± 0,11 (5 N cm²)</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>0,39 ± 0,04</td>
<td>0,4 ± 0,04</td>
</tr>
<tr>
<td>VPAN1</td>
<td>0,36 ± 0,02</td>
<td>0,39 ± 0,05</td>
</tr>
<tr>
<td>VPAN2</td>
<td>0,33 ± 0,007</td>
<td>0,38 ± 0,02</td>
</tr>
<tr>
<td>VPAN3</td>
<td>0,32 ± 0,01</td>
<td>0,34 ± 0,02</td>
</tr>
<tr>
<td>VPAN4</td>
<td>0,3 ± 0,04</td>
<td>0,34 ± 0,02</td>
</tr>
</tbody>
</table>

Die Auftragung des flächen spezifischen Widerstandes in Abhängigkeit des Anpressdrucks ist in Abbildung 4.10b dargestellt. Im vergrößerten Ausschnitt ist zu erkennen, dass die Kurven sich unterscheiden, wodurch sich die Reduktion des Widerstandes nicht nur auf den Kontaktwiderstand zurückführen lässt. Somit wurde der interne Widerstand des Vliesmaterials selbst verbessert. Aufgrund der unterschiedlichen mechanischen Stabilität der Proben untereinander sind diese bei einem definierten Anpressdruck unterschiedlich komprimiert und zeigen somit unterschiedliche Probendicken. Demnach könnte eine geringere Dicke mit einem geringeren Widerstand einhergehen. Allerdings muss im Fall der Vliesmaterialien die komprimierte Probendicke für einen direkten Vergleich unterschiedlich behandelten Proben nicht berücksichtigt werden, da die Leitfähigkeit bei sehr porösen Materialien nicht durch das Volumen, sondern hauptsächlich durch die Tortuosität τ bestimmt wird. Die Tortuosität gibt
den Grad der Gewundenheit der Transportwege in den Poren poröser Materialien an. Sie ist durch folgende Gleichung geben:

\[\tau = \left(\frac{l_{eff}}{l} \right)^2 \]

(9)

Dabei gibt \(l_{eff} \) die effektive Länge des Transportweges durch eine poröse Schicht an und \(l \) ist die Dicke der Schicht. Da die Vlieselektroden hochporöse Materialien sind, weil sie eine Porosität von 95% besitzen, hängt die Leitfähigkeit selbst nur von den Kohlenstofffasern ab. Das Porenvolumen, das aus Luft besteht, trägt somit selbstverständlich nicht zur Leitfähigkeit bei. Durch die ansteigende Kompression wird demnach zunächst das Volumen der Poren verkleinert, der absolute Volumanteil des Kohlenstoffs selbst ändert sich dabei nicht und somit der Weg der Elektronen entlang der Fasern ebenfalls nicht. Die Leitfähigkeit von Fasermaterialien wird demnach größtenteils nur durch die Tortuosität bestimmt. Einen Zusammenhang zwischen der Tortuosität und der elektrischen Leitfähigkeit lässt sich mit Hilfe der Bruggeman-Gleichung beschreiben. Gleichung 10 zeigt die allgemeine Form:

\[\tau = \gamma \epsilon^{1-\alpha} \]

(10)

Dabei ist \(\epsilon \) die Porosität, \(\gamma \) und \(\alpha \) sind Konstanten, die von der Morphologie und der Porengrößenverteilung abhängen. Zur Berechnung der Leitfähigkeit in Zusammenhang mit der Tortuosität kann Gleichung 11 angewendet werden:

\[k_{eff} = \frac{k \epsilon}{\tau} \]

(11)

Dabei ist \(k \) die intrinsische Leitfähigkeit des Systems. Jervis et al. konnte bereits mit Hilfe von röntgentomographischen Aufnahmen komprimierter Vlieselektroden zeigen, dass erst ab einer Kompression von etwa 90% einer 4,6 mm dicken Vlieselektrode die Tortuosität abnimmt. Somit nimmt die Kompression der Elektrode im ausgewählten Kompressionsbereich keinen Einfluss auf die Leitfähigkeit des Materials selbst und kann deshalb vernachlässigt werden. Die geringere Änderung der Probendicke hat demnach keinen Einfluss auf den elektrischen Widerstand (\(R \)) bei einem definierten Anpressdruck und die Verbesserung von \(R \) lässt sich deshalb ausschließlich auf den erhöhten Vernetzungsgrad zurückführen, da aufgrund der Vernetzungen zusätzliche und kürzere Leitungspfade ermöglicht wurden. Die Verbesserung des Gesamtwiderstandes \(R_{\text{Ges}} \) basiert demnach nicht nur auf der Abnahme des Kontaktwiderstandes,
sondern beruht zum Teil auch auf der Verbesserung der Leitfähigkeit des Materials selbst, wobei allerdings dennoch der Kontaktwiderstand den größeren Einfluss auf den Gesamtwiderstand hat.

Aufgrund der Imprägnierung wurde in die Vliesstruktur zusätzliches Material eingebracht. Dadurch wurde das relative Volumen des Kohlenstoffanteils erhöht und somit die Porosität verringert. Damit im Hinblick auf den Elektrolytdurchfluss kann der so entstandene Nachteil der imprägnierten Vliese, aufgrund ihrer erhöhten Stabilität, durch das Einsetzen bei einer geringeren Kompression in der Batterie kompensiert werden. Deshalb sollte eine optimale Kompression für jede Probe gefunden werden, bei der ein erhöhter Anpressdruck, sowie ein geringerer Kontaktwiderstand im Vergleich zum Standardvlies dennoch gegeben ist und dabei der Durchfluss des Elektrolyten durch die Elektrode nicht beeinträchtigt wird. Dazu wurde der Bereich gesucht, bei dem der Anpressdruck und der Widerstand über bzw. unter den Werten des Standards bei 20 % Kompression liegen, was in diesem Fall 4,71 N cm² und 0,46 ± 0,11 Ω cm² entsprechen. Dieser Bereich wurde in den Graphen in Abbildung 4.11 gekennzeichnet. Es zeigt sich, dass bei allen imprägnierten Vliesen dieser Grenzwert des Standardvliesses bereits bei niedrigeren Kompressionen übertroffen wird. Je höher der Vernetzungsgrad, desto geringer ist der nötige Anpressdruck, um mindestens die Referenzwerte zu erreichen. Die Kompression, die mindestens angewendet werden muss, liegt bei 11 % für Probe VPAN0,5 bis zu nur 5 % für VPAN4. Dadurch kann vermieden werden, dass die Porosität der imprägnierten Vliese deutlich geringer ist als die der Referenz bei 20 %. Des Weiteren konnte anhand der REM-Aufnahmen gezeigt werden, dass hauptsächlich die Vliesoberflächen mit PAN imprägnierte wurden und sich weniger im Vliesinneren anlagerte. Da für die Vollzelttests der Elektrolyt durch das Innere der Elektrode gepumpt wird („flow through“), sollte die Vernetzung der Fasern noch einen geringeren Einfluss auf den Elektrolytdurchfluss haben.
Abbildung 4.11| Flächenspezifischer Widerstand und Anpressdruck in Abhängigkeit von der Kompression; rote Linie zeigt die Kompression die mindestens aufgebracht werden muss, um eine Verbesserung gegenüber der Referenz zu erzielen. a) VPAN0,5 mit einer Mindestkompression von 11 %, b) VPAN1 mit einer Mindestkompression von 7 %, c) VPAN2 mit einer Mindestkompression von 7 %, d) VPAN3 mit einer Mindestkompression von 6 % und e) VPAN4 mit einer Mindestkompression von 5 %.

BET-Messungen der imprägnierte Vliese haben ergeben (Anhang, Tabelle A.1), dass die Oberfläche aller imprägnierte Vliese im Vergleich zur Referenz verringert wurde. Dabei zeigte sich, dass VPAN0,5 die geringste Oberfläche besitzt. Da bei Probe VPAN0,5 kaum Vernetzungen
zu erkennen sind (Abbildung 4.6a, 4.7e), lässt sich die Verringerung der Oberfläche auf die Bedeckung der Fasern mit einer PAN-Schicht und somit der bereits vorhandenen Poren zurückführen. Ab VPAN1, also mit steigendem PAN-Gehalt, steigt die Oberfläche wieder leicht an. Grund dafür sind die Verbrückungen, die mit steigenden PAN-Gehalt vermehrt ausgebildet werden, da diese wieder zu einer Oberflächenvergrößerung führen.

4.2.2 Zusammenfassung Charakterisierung der Eigenschaften

4.2.3 Charakterisierung der Oberflächeneigenschaften

ein Rest an Stickstoffatomen in den Fasern verbleibt. Bei näherer Betrachtung des C 1s-Spektrums in Abbildung 4.12c wird deutlich, dass aufgrund der Karbonisierungstemperatur von 1100 °C, keine Graphitisierung des PAN auftritt und stattdessen ungeordnetes Graphit bildet. Deshalb verschiebt sich der C 1s-Peak analog zur eingebrachten Menge an karbonisierten PAN hin zur sp³-Bindungsenergie mit ~285,2 eV.

Der Anteil an Stickstoff auf den Fasern lässt sich karbonisiertem PAN zuordnen. Während der Karbonisierung werden Zersetzungsprodukte wie NH₃ frei, die in der Gasphase bei hohen

Abbildung 4.12| XPS-Messungen der imprägnierte Proben.

4.2.4 Elektrochemische Untersuchung

verringert. Trotz niedrigerer Onsetpotentiale und Peakseparation, ist die maximale Stromintensität geringer als die der Referenz. Am deutlichsten wird dies für Probe VPAN0,5, die hier im Vergleich zu allen anderen imprägnierten Proben am schlechtesten abschneidet. In Tabelle 4.6 sind die entsprechenden Werte für die Onsetpotentiale und Peakseparation, sowie die der Strommaxima aufgelistet. Mit steigender Konzentration der PAN-Lösung werden diese Eigenschaften deutlich verbessert. Probe VPAN3 zeigt hier den höchsten Peakstrom von 6,6 mA, was allerdings um 0,5 mA geringer ist

![Diagramme der Stromintensität in Abhängigkeit von der Potentialunterschied von Ag/AgCl für verschiedene Proben und Scangeschwindigkeiten.](attachment:image.jpg)

Abbildung 4.13 Elektrochemische Untersuchung der beiden Halbleitern in einem Dreielektrodenaufbau der mit PAN imprägnierten Proben im Vergleich zur Referenz. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbzelle; b) Vergrößerung des V⁺-Oxidationspeaks aus a), c) der negativen Halbzelle und d) Auftragung des Stroms bei einem Potential von 0,17 V vs. Ag/AgCl bei verschiedenen Scangeschwindigkeiten.

als der Wert für das Standardvlies. Eine Ursache hierfür könnte eine beobachtete geringere Benetbarkeit der Proben im Elektrolyt sein, welches mit der Zunahme an oberflächlichen sp³-

Tabelle 4.6 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der imprägnierten Vliese mit PAN.

| Vlies | E_{on} (Ox | Red) [mV] | I_{peak} (Ox | Red) [mA] | ΔE_p [mV] |
|---------|--------------|-------------|--------------|------------------|
| Referenz| 890,15 | 913,8 | 7,03 | -4,85 | 266,19 |
| VPAN0,5 | 875 | 918,24 | 4,46 | -3,15 | 195,25 |
| VPAN1 | 868 | 930,76 | 4,91 | -3,72 | 158,31 |
| VPAN2 | 856,22 | 939,76 | 6,23 | -4,76 | 170,73 |
| VPAN3 | 856,41 | 944,32 | 6,58 | -4,98 | 164,53 |
| VPAN4 | 856,22 | 934,1 | 5,96 | -4,54 | 170,64 |

Die geringere Peakseparation der imprägnierten Proben im Vergleich zur unbehandelten Probe resultiert aus den geringeren Kontaktwiderständen und der erhöhten Leitfähigkeit im Vergleich zur Referenz. Bei einem Potential von 0,75 V ist in Abbildung 4.13b ebenfalls ein Peak zu erkennen, welcher der Oxidation von V^{3+} zu VO^{2+} zugeordnet werden kann. Wegen der hohen Trägheit dieser Reaktion, wird diese nur bei katalytisch aktivierten Materialien sichtbar.\(^\text{93}\) Das frühere Ablaufen der VO^{2+}-Oxidation sowie der VO_2^{+}-Reduktion lässt sich auf zusätzliche
Stickstoffatome zurückführen. Durch diese zusätzlichen Reaktionszentren konnte eine höhere katalytische Aktivität gegenüber der Vanadiumspezies erzielt werden. Aufgrund dieser Dotierung wird die Anzahl der elektronischen Zuständen erhöht, weshalb der Elektronentransfer hier schneller ablaufen kann.\[87\]

Mit Hilfe der Impedanzspektroskopie konnte gezeigt werden, dass der Ladungstransferwiderstand der Proben im Vergleich zur Referenz deutlich abnimmt. Die aufgenommenen Impedanzspektren sind in Abbildung 4.14 gezeigt. Das Ersatzschaltbild (Abbildung 3.1) besteht aus dem Elektrolytwiderstand R_E, dem Vlieswiderstand R_{GF} und dem Ladungstransferwiderstand R_{CT}. Aus den Impedanzspektren erhält man den Ladungstransferwiderstand (Tabelle 4.6), der die Reaktionskinetik an der Elektrodenoberfläche bestimmt. Das unbehandelte Vlies zeigt dabei einen Wert für R_{CT} von 36,05 Ω. Werden die Vliese imprägniert, sinken die Widerstände um ein Vielfaches. Dabei kann eine Abnahme um 70,4 % für Probe VPAN3 erzielt werden. Auch hier zeigt Probe VPAN0,5 den höchsten Ladungstransferwiderstand aller imprägnierten, was die Ergebnisse der Zyklolvoltammetrie stützt. Aufgrund der Imprägnierung laufen die Redoxreaktionen am Vlies deutlich schneller ab, was durch die geringeren Ladungstransferwiderstände bestätigt werden konnte.

\[\text{Abbildung 4.14] Elektrochemische Impedanzspektroskopie aufgenommen bei einem Potential von 0,9 V vs. Ag/AgCl der imprägnierten Vliese im Vergleich zur Referenz.}\]
Tabelle 4.7 | Ladungstransferwiderstände R_{CT} der mit PAN imprägnierten Vliese, welche aus den Fits des Ersatzschaltbildes erhalten wurden.

<table>
<thead>
<tr>
<th>Vlies</th>
<th>R_{CT} [Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>36,05</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>27,95</td>
</tr>
<tr>
<td>VPAN1</td>
<td>13,63</td>
</tr>
<tr>
<td>VPAN2</td>
<td>13,42</td>
</tr>
<tr>
<td>VPAN3</td>
<td>10,68</td>
</tr>
<tr>
<td>VPAN4</td>
<td>13,93</td>
</tr>
</tbody>
</table>

4.2.5 Kapitelzusammenfassung

4.3 Thermische Aktivierung imprägnierter Vliese

4.3.1 Charakterisierung der Eigenschaften

![Abbildung 4.15](image)
\(a\) REM-Aufnahme einer VPAN3-Probe nach einer thermischen Aktivierung bei 400 °C für 10 h und \(b\) vergrößerte Aufnahme einer Faser.
Es sind wie vermutet keinerlei Vernetzungen zwischen den Fasern zu erkennen. Auch die Fasern selbst wurden durch die Oxidation an Luft stark angegriffen, so dass die Fasern an einigen Stellen nur noch eine Dicke von 1 - 2 μm aufweisen. Die imprägnierten Vliese verhalten sich aufgrund des nicht graphitischen Anteil des karbonisierten PANs sensibler gegenüber der Oxidation mit Luft, als die graphitischen Fasern der unbehandelten Vliese. Durch den höheren sp²-Anteil ist die Kohlenstoffkorrosion womöglich begünstigt, weshalb es zu einer raschen Zersetzung der eingebrachten Verbrückungen kommt. Auch die Untersuchung der mechanischen Stabilität in

Abbildung 4.16: Untersuchung der mechanischen Stabilität der für 10 h aktivierten PAN-Proben im Vergleich zur nicht aktivierten PAN-Probe und Referenz. a) Auftragung des Anpressdrucks in Abhängigkeit von der Kompression für VPAN0,5; b) VPAN1; c) VPAN2; d) VPAN3 und e) VPAN4.
Abbildung 4.16 der aktivierten Vliese zeigt deutlich, dass der Effekt der Imprägnierung für alle untersuchten Proben vollständig aufgehoben wurde. Es ist zu erkennen, dass für die aktivierten Proben VPAN0,5; VPAN1 und VPAN2 die mechanische Stabilität gleich der Referenz ist. Lediglich bei den Proben VPAN3 und VPAN4 lassen sich leichte Unterschiede zur Referenz erkennen. Die erzielten Anpressdrücke liegen jedoch weit unter denen der nicht aktivierten Proben. Aus diesem Grund ist das gewählte Standardverfahren zur thermischen Aktivierung auf die imprägnierte Vliese nicht anwendbar. Es wurde deshalb untersucht, welchen Einfluss die Aktivierungsdauer auf die mechanischen Eigenschaften hat und ob eine Verkürzung der Dauer die Auflösung der Vernetzungen verhindern kann. Es wurden die Haltezeiten 10 h; 5 h; 2,5 h; und 1,5 h untersucht. In Abbildung 4.17 ist der Verlauf des Anpressdrucks der imprägnierten Proben bei den jeweiligen Aktivierungszeiten in Abhängigkeit von der Kompression dargestellt. Für alle untersuchten Proben wird deutlich, dass die Abnahme der Aktivierungszeit mit einer Steigerung des Anpressdrucks einhergeht. Bei einer kürzeren Aktivierungszeit werden die Vernetzungen an den Fasern weniger stark oxidiert und der Effekt der Imprägnierung bleibt weitestgehend erhalten. Eine Aktivierungszeit von 1,5 h stellt dabei den besten Kompromiss aus Stabilität und Aktivierung dar und kommt den Werten der imprägnierten, nicht aktivierten Vliese am nächsten. Dabei ist VPAN0,5_1,5h fast identisch mit der nicht aktivierten Probe. Erst bei einer höheren Aktivierungsauer beginnen sich die Proben voneinander zu unterscheiden. Im Vergleich dazu versagt die Vernetzung der Proben VPAN0,5 bis VPAN3 nicht, die Werte des Anpressdrucks steigen mit zunehmender Kompression stetig an. Nur Probe VPAN4_1,5h bricht wie Probe VPAN4 im Bereich von 9%. Dabei konnte eine Verbesserung der mechanischen Stabilität im Vergleich zur Aktivierung bei einer Haltezeit von 10 h durchschnittlich um das 2,2-fache erreicht werden. Die Werte der Anpressdrücke bei einer Kompression von 20% sind für alle Proben und den entsprechenden Aktivierungszeiten in Tabelle 4.8 zusammengefasst.
Abbildung 4.17: Mechanische Stabilität der imprägnierten Proben nach unterschiedlichen Aktivierungsdauern. a) VPAN0,5; b) VPAN1; c) VPAN2; d) VPAN3 und e) VPAN4.
Tabelle 4.8| Die gemessenen Anpressdrücke in $[\text{N cm}^{-2}]$ bei einer Kompression von 20% der thermisch aktivierten Proben für unterschiedlichen Aktivierungszeiten.

<table>
<thead>
<tr>
<th>Vliesprobe</th>
<th>10 h</th>
<th>5 h</th>
<th>2,5 h</th>
<th>1,5 h</th>
<th>0 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,71</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>4,55</td>
<td>5,01</td>
<td>6,72</td>
<td>7,38</td>
<td>7,44</td>
</tr>
<tr>
<td>VPAN1</td>
<td>4,87</td>
<td>6,53</td>
<td>7,08</td>
<td>8,46</td>
<td>9,98</td>
</tr>
<tr>
<td>VPAN2</td>
<td>4,4</td>
<td>6,71</td>
<td>9,57</td>
<td>10,87</td>
<td>11,63</td>
</tr>
<tr>
<td>VPAN3</td>
<td>5,5</td>
<td>8,97</td>
<td>10,11</td>
<td>11,6</td>
<td>13,24</td>
</tr>
<tr>
<td>VPAN4</td>
<td>5,88</td>
<td>9,63</td>
<td>14,11</td>
<td>14,6</td>
<td>14,88</td>
</tr>
</tbody>
</table>

REM-Aufnahmen in Abbildung 4.18 bestätigen die Annahme, dass die Vernetzungen der Fasern bei einer Reaktionszeit von 1,5 h erhalten bleiben. Auch ist zu erkennen, dass es zu einer Bildung von zusätzlichen Poren auf den Fasern gekommen ist. Die neu entstandenen Poren liegen dabei in einem Größenbereich von 0,18 - 0,7 μm und sind somit deutlich kleiner als die bereits vorhandenen Poren auf den Fasern der nicht aktivierten Probe. Die eingebrachten Vernetzungen zeigen allerdings keinerlei Porenbildung. Die Oberfläche zeigt hier eine sehr glatte und

Abbildung 4.18| a) bis d) zeigen REM-Aufnahmen von VPAN3_1,5 bei unterschiedlichen Vergrößerungen.
gleichmäßige Struktur. Dennoch sollte durch die Ausbildung von zusätzlichen kleineren Poren auf den Fasern die Gesamtoberfläche der Elektrode vergrößert worden sein.

Abbildung 4.19|a) Flächenspezifischer Widerstand in Abhängigkeit von der Kompression und b) Anpressdruck in Abhängigkeit von der Kompression der Probe VPAN0,5 bei verschiedenen Aktivierungsduern.
sp²-Kohlenstoff eine schlechtere Leitfähigkeit besitzt kann somit der Elektronentransfer begünstigt werden. Ein weiterer Aspekt ist die Aufrauhung der Fasern durch die oxidative Aktivierung. Im Gegensatz zu einer sehr glatten, gewölbten Faseroberfläche können sich die Fasern etwas untereinander verhaken und mehr Kontaktpunkte ausbilden, womit ebenfalls der Elektronenübertrag zwischen den Fasern begünstigt wird.

Abbildung 4.20 zeigt die Messung des elektrischen Widerstands der aktivierten Proben von VPAN1. Ähnlich der aktiven VPAN0,5-Proben, werden auch hier sehr ähnliche Werte erhalten, so dass die Aktivierungsdauer keinen wesentlichen Einfluss auf den Gesamtwiderstand hat. Die Werte für R liegen dabei im Bereich von 0,35 bis 0,38 Ω. Betrachtet man nun die Leitfähigkeiten unabhängig von der Kompression (Abbildung 4.20b), besitzt Probe VPAN1_1,5 den höchsten Widerstand. VPAN1_5h, VPAN1_2,5h und VPAN1_10h haben nahezu identische Werte.

Für Probe VPAN2 und deren aktivierten Proben in Abbildung 4.21a ist zu erkennen, dass VPAN2_1,5h mit der höchsten mechanischen Festigkeit (Abbildung 4.17c) den geringsten Gesamtwiderstand zeigt. Dabei ergeben sich für die Proben VPAN2_5h; VPAN2_2,5h und VPAN2 ab einer Kompression von 13 % fast identische Werte. Aufgrund der geringsten mechanischen Festigkeit der 10h-Probe fällt hier der Gesamtwiderstand am höchsten aus. Aus Abbildung 4.21b ergibt sich, dass das am längsten aktivierte Vlies die höchste Leitfähigkeit besitzt. Hier liegen die Werte des Widerstands der Proben VPAN2_10h, VPAN_5h und VPAN_1,5h unter denen der nicht aktivierten Proben.

59

In Abbildung 4.22 sind die flächenabhängigen Widerstände in Abhängigkeit von der Kompression und des Anpressdrucks der Probe VPAN3 dargestellt. Für den Gesamtwiderstand zeigt sich, dass die Proben VPAN3 und VPAN3_1,5h den geringsten Widerstand besitzen. Bei einer Kompression von 20 % liegen die Werte aller Proben dabei in einem Bereich von 0,32 bis 0,35 Ω. Im Unterschied zu den vorangegangenen Proben ist Standardabweichung der Messwerte deutlich geringer, da für stabilere Proben die Messgenauigkeit geringer wird. Jedoch zeigt sich auch hier der Trend, dass mit steigender Aktivierungsduer die Festigkeit der Proben abnimmt und in einem höheren Kontaktwiderstand resultiert. Betrachtet man die Leitfähigkeit der Proben selbst in Abbildung 4.22b, fallen die Kurven wieder deutlich zusammen, so dass hier die Aktivierungsduer scheinbar keinen Einfluss auf die Leitfähigkeit der Proben hat. Die Werte der

einzeln Proben bei einem Anpressdruck von 5 N cm^{-2} liegen hier im Bereich von 0,375 bis 0,4 $\Omega \text{ cm}^2$ und sind somit nahezu identisch. Demnach zeigt sich auch hier dasselbe Verhalten wie bei VPAN2, dass die Aktivierungsduer auch hier keinen Einfluss auf die Leitfähigkeit mehr hat. Die Unterschiede in Hinblick auf den Gesamtwiderstand der aktivierten Proben ergeben sich aus diesem Grund nur durch die unterschiedlichen Steifigkeiten (Abbildung 4.17d) und somit den unterschiedlichen Kontaktwiderständen.

Auch die Aktivierungsreihe der Probe VPAN4 in Abbildung 4.23 zeigt ein ähnliches Verhalten für den Gesamtwiderstand wie die Probenreihen von VPAN2 und VPAN3. Ein Unterschied besteht darin, dass die Kurven noch enger zusammenrücken, was bedeutet, dass die Unterschiede der Gesamtwiderstände noch geringer ausfallen als bei VPAN2 und VPAN3. Bei einer Kompression von 20 % liegen die Werte für den Gesamtwiderstand bei 0,25 bis 0,35 Ω. Die 1,5 h-Probe zeigt hier den geringsten Widerstand, die 10 h-Probe den höchsten. Der flächenabhängige Widerstand in Abhängigkeit des Anpressdrucks (Abbildung 4.22b) zeigt auch hier wieder den Trend, dass die 10 h-Probe die höchste Leitfähigkeit besitzt und zwischen den weiteren Aktivierungszeiten keine Unterschiede erkennbar sind. Die Widerstandswerte bei einem Anpressdruck von 5 N cm^2 liegen im Bereich von 0,4 bis 0,45 $\Omega \text{ cm}^2$. Lediglich Probe VPAN4_10h liegt mit einem Wert von 0,33 $\Omega \text{ cm}^2$ darunter.

Da sich die mechanische Stabilität etwas von der der nicht aktivierten Probe unterscheidet, ist es notwendig, den geeigneten Kompressionsbereich für den Einsatz in der Vollzelle der jeweiligen Proben zu bestimmen. In Abbildung 4.24 ist der flächenpezifische Widerstand und der Anpressdruck in Abhängigkeit der Kompression für die für 1,5 h aktivierten Proben dargestellt. Für die aktivierte VPAN0,5-Probe ergibt sich hier eine Mindestkompression von 12 % die aufgebracht werden muss, um die Werte des Referenzvlieses zu erreichen und dadurch eine Verbesserung zu erzielen. Die Mindestkompression für die nichtaktivierte Probe in Kapitel 4.2.1 betrug bei 11 %. Die Werte der aktivierten Probe betrugen 5,21 N cm² und 0,42 Ω cm². Damit liegt der Anpressdruck der aktivierten Probe um 0,017 N cm² unter dem Wert der nicht aktivierten. Für die aktivierte Probe VPAN1 sollte eine Kompression von mindestens 8 % angewendet werden, um eine Verbesserung zu erhalten. Probe VPAN1 liegt mit einer Mindestkompression von 7 % nur ein Prozent darunter. Die Werte für die Mindestkompressionen und die daraus resultierenden Drücke und Widerstände für alle weiteren Proben sind im Vergleich zu den nicht aktivierten Proben in Tabelle 4.9 aufgelistet und werden nicht weiter im Detail diskutiert. Generell unterscheidet sich die Mindestkompression der nicht aktivierten Vliese zu den aktivierten um 1 %, die zusätzlich angewendet werden sollte, um den geringeren Anpressdruck aufgrund der Aktivierung ausgleichen zu können. Dabei sollte sich für das Durchflussverhalten des Elektrolyts keine Verschlechterung ergeben. Durch die geringen Unterschiede resultieren dadurch auch keine Verschlechterungen in Bezug auf die elektrische Leitfähigkeit. Aufgrund der geringen Aktivierungszeit von 1,5 h kann die mechanische

Tabelle 4.9 Die gemessenen Anpressdrücke in [N cm²] und flächenpez. Widerstände ASR bei einer Kompression CRₘᵢₙ, die mindestens angewendet werden muss, um den Widerstand und den Anpressdruck zu verbessern. Werte links beziehen sich auf die nicht aktivierte Probe, die Werte rechts auf die aktivierten Proben.

<table>
<thead>
<tr>
<th>Vlies</th>
<th>CRₘᵢₙ [%]</th>
<th>ASR [Ω cm²]</th>
<th>CP [N cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>20</td>
<td>0,46 ± 0,11</td>
<td>4,71 ± 0,54</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>11</td>
<td>12</td>
<td>0,45 ± 0,05</td>
</tr>
<tr>
<td>VPAN1</td>
<td>7</td>
<td>8</td>
<td>0,43 ± 0,08</td>
</tr>
<tr>
<td>VPAN2</td>
<td>7</td>
<td>6</td>
<td>0,38 ± 0,02</td>
</tr>
<tr>
<td>VPAN3</td>
<td>6</td>
<td>6</td>
<td>0,34 ± 0,02</td>
</tr>
<tr>
<td>VPAN4</td>
<td>5</td>
<td>5</td>
<td>0,34 ± 0,02</td>
</tr>
</tbody>
</table>
Versteifung weitestgehend erhalten bleiben, wodurch auch die aktivierten Proben eine viel geringere Kompression in einer Vollzelle benötigen und somit die Poren im Vlies nicht zwangsläufig um 20 % komprimiert werden müssen.

Abbildung 4.24 | Flächenpezifischer Widerstand und Anpressdruck in Abhängigkeit von der Kompression; rote Linie zeigt die Kompression die mindestens aufgebracht werden muss, um eine Verbesserung gegenüber der Referenz zu erzielen. a) VPAN0,5_1,5h mit einer Mindestkompression von 12 %; b) VPAN1,5_1,5h mit einer Mindestkompression von 8 %; c) VPAN2_1,5h mit einer Mindestkompression von 6 %; d) VPAN3_1,5h mit einer Mindestkompression von 6 % und e) VPAN4_1,5h mit einer Mindestkompression von 5 %.
Mit Hilfe der BET-Messung wurde die Oberflächen aller Proben bestimmt (Anhang: Tabelle A.3). Es zeigte sich, dass durch die oxidative Aktivierung die Oberfläche der aktivierten Vliese deutlich gesteigert werden konnte im Vergleich zu den nicht aktivierten Vliesen. Auch konnte die Oberfläche der Referenzprobe übertroffen werden, was auf die Ausbildung von zusätzlichen Poren auf der Faseroberfläche, wie in Abbildung 4.18d gezeigt, zurückgeführt werden kann.

4.3.2 Zusammenfassung der Stabilitäts- und Widerstandsbestimmung

4.3.3 Charakterisierung der elektrochemischen Eigenschaften
In diesem Abschnitt wird der Einfluss der getesteten Aktivierungszeiten auf die elektrochemische Aktivität untersucht. Verglichen werden dabei die aktivierten Proben mit den nicht aktivierten Proben, um zu überprüfen, ob die geringeren Ströme, verursacht durch die Imprägnierung, wieder gesteigert werden können. Die Messung der Zyklovoltammetrie der verschiedenen
In Abbildung 4.25a ist das Zyklovoltammogramm der positiven Halbzone der aktivierten Probe VPAN0,5_1,5h im Vergleich zu VPAN0,5 und der Referenz dargestellt. Die Werte sind in Tabelle 4.10 zusammengefasst. Die Aktivierung erhöht den Peakstrom der imprägnierten Probe um 4,65 mA für die Oxidation und um 4 mA für die Reduktionsreaktion. Im Vergleich zur Referenz ist die Peakstromintensität um 2,08 mA für die Oxidation bzw. um 2,3 mA für die Reduktion gesteigert worden. Eine Verschiebung des Onsetpotentiats zu kleineren Potentialen für die Oxidation um 38 mV bzw. zu höheren Potentialen für die Reduktion um 33 mV hat stattgefunden. Demnach hat die Aktivierung eine katalytische Wirkung gegenüber der VO$_2^+$/VO$_2^{2+}$-Redoxreaktion, was sich auf die Erhöhung der Oberfläche sowie der zusätzlichen Defektstellen zurückführen lässt. Die in Abschnitt 4.3.2 bereits gezeigte verbesserte Leitfähigkeit der thermisch aktivierten VPAN0,5-Probe, konnte durch die verringerte Peakseparation um

Abbildung 4.25 | Elektrochemische Untersuchung der VPAN0,5 Probe bei einer Aktivierungsduer von 1,5 h im Vergleich zur Referenz der beiden Halbzenen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s$^{-1}$ der positiven Halbzone; b) Vergrößerung des V$^{3+}$-Oxidationspeaks; c) der negativen Halbzone.
15,17 mV im Vergleich zur nichtaktivierten Probe bzw. 86,11 mV zur Referenz verbessert werden. Der Oxidationspeak von V$^{5+}$ zu VO$^{2+}$ (Abbildung 4.25b) ist für die aktivierte Probe deutlich ausgeprägter, was ebenfalls für eine deutlich höhere katalytische Aktivität spricht. Das Zyklovoltammogramm der negativen Halbzelle (Abbildung 4.25c) zeigt ebenfalls eine deutliche Verbesserung der Peakströme.

Die aktivierte Probe VPAN1_1,5h (Abbildung 4.26a) zeigt auch eine deutliche Verbesserung der Stromintensität um 4,6 mA. Die maximale Stromintensität der VO$^{2+}$-Reduktion wurde nochmals um 3,36 mA erhöht. Auch für VPAN1_1,5h konnte das Onsetpotential im Vergleich zur nicht aktivierten Probe und zur Referenz für die Oxidation zu kleineren Potentialen, sowie für die Reduktion zu höheren Potentialen verschoben werden (Tabelle 4.11). Der V$^{3+}$-Oxidationspeak ist deutlich erkennbar und im Vergleich zu VPAN1 geringfügig zu kleineren Potentialen verschoben (Abbildung 4.26b). Die Untersuchung der negativen Halbzelle ergab eine erhebliche Verbesserung der elektrochemischen Aktivität gegenüber der V$^{3+}$/V$^{2+}$-Redoxreaktion.

Tabelle 4.10 | Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der aktivierten VPAN0,5 Probe im Vergleich zur nicht aktivierten Probe und Referenz.

| Vlies | I_{peak} (Ox|Red) | I_{peak} (Ox|Red) | E_{on} (Ox|Red) | ΔE_p [mV] |
|-------------|----------------|-----------------|-----------------|-----------------|
| VPAN0,5_1,5h| 9,11|7,15 | 7,46|7,96 | 837|951,2 | 180 |
| VPAN0,5 | 4,46|3,15 | 1,51|1,63 | 875|918,2 | 195,2 |
| Referenz | 7,03|4,85 | 3,22|3,79 | 890,1|913,8 | 266,1 |
Tabelle 4.11 | Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der aktivierten VPAN1-Probe im Vergleich zur nicht aktivierten Probe und Referenz.

| Vlies | I_{peak} (Ox| Red) [mA] | I_{peak} (Ox| Red) [mA] (Neg.) | E_{on} (Ox| Red) [mV] | ΔE_p [mV] |
|-----------|----------------|--------------------------------|------------------------|----------------------|
| VPAN1_1.5h| 9,56|-7,08 | 7,9|-8,43 | 841,5|954,7 | 181 |
| VPAN1 | 4,91|-3,72 | 2,85|-3,05 | 868|930,7 | 158,3 |
| Referenz | 7,03|-4,85 | 3,22|-3,79 | 890,1|913,8 | 266,1 |

In Abbildung 4.27a ist das Zyklovoltammogramm der aktivierten VPAN2-Probe dargestellt. Durch die thermische Aktivierung konnte auch hier der Strompeak der imprägnierten Proben deutlich von 6,2 mA auf 8,9 mA erhöht werden. Das Onsetpotential der aktivierten Probe ist zu
kleineren Potentialen um 28,4 mA für die Oxidation und für die Reduktion um 17,9 mV zu höheren Potentialen verschoben, da auch hier die katalytische Aktivität, aufgrund der erhöhten Anzahl an Defekten, gesteigert werden konnte. In Tabelle 4.12 sind die Werte der Peakströme, Onsetpotentiale und der Peakseparation der Probe VPAN2_1,5h zusammengefasst.

![Graphen](attachment:graph.png)

Abbildung 4.27 Elektrochemische Untersuchung der aktivierten VPAN2-Probe bei einer Aktivierungsdauer von 1,5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbzelle; b) Vergrößerung des V²⁺-Oxidationspeaks; c) der negativen Halbzelle.

Tabelle 4.12 Onsetpotentiale E₀, Peakströme Iₚₑᵃᵏₚ und die Peakseparation ΔE₀ der aktivierten VPAN2-Probe im Vergleich zur nicht aktivierten Probe und Referenz.

| Vlies | Iₚₑᵃᵏₚ (Ox | Red) [mA] | Iₚₑᵃᵏₚ (Ox | Red) [mA] | E₀ (Ox | Red) [mV] | ΔE₀ [mV] |
|---------|--------------|------------|------------|-------------|-----------|----------|
| VPAN2_1,5h | 8,86| -6,98 | 7,55| -8,05 | 827,8| 957,7 | 152,1 |
| VPAN2 | 6,23| -4,76 | 3,75| -3,88 | 856,2| 939,7 | 170,7 |
| Referenz| 7,03| -4,85 | 3,33| -3,79 | 890,1| 913,8 | 266,1 |
Die Ergebnisse der CV-Messung in Abbildung 4.28a der aktivierten Probe VPAN3_1,5h zeigen auch hier eine Verbesserung hinsichtlich des Strompeaks. Die Werte sind in Tabelle 4.13 zusammengefasst. Die Aktivierung führt zu einer Erhöhung um 2,6 mA bezüglich der Oxidationsreaktion und 2,2 mA entsprechend der Reduktion. Das Onsetpotential wurde um 34,59 mV für die Oxidation und um 11,6 mV für die Reduktion verbessert. Hinsichtlich der Peakseparation konnte nur eine geringe Verbesserung von 6,1 mV erzielt werden, da der Gesamtwiderstand der aktivierten Probe dem der nicht aktivierten Probe stark ähnelt und ab einer Kompression von 16 % (Abbildung 4.22) sogar identische Werte annimmt.

Abbildung 4.28 | Elektrochemische Untersuchung der aktivierten VPAN3-Probe bei einer Aktivierungsdauer von 1,5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s⁻¹ der positiven Halbzelle; b) Vergrößerung des V⁺⁺/VO²⁺-Oxidationspeaks; c) der negativen Halbzelle.
Tabelle 4.13 | Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der aktivierten VPAN3-Probe im Vergleich zur nicht aktivierten Probe und Referenz.

<table>
<thead>
<tr>
<th>Vlies</th>
<th>I_{peak} (Ox/Red) [mA]</th>
<th>I_{peak} (Ox/Red) [mA] (Neg.)</th>
<th>E_{on} (Ox/Red) [mV]</th>
<th>ΔE_p [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPAN3- 1,5h</td>
<td>9,18</td>
<td>7,14</td>
<td>7,63</td>
<td>821,8</td>
</tr>
<tr>
<td>VPAN3</td>
<td>6,58</td>
<td>4,98</td>
<td>4,27</td>
<td>856,4</td>
</tr>
<tr>
<td>Referenz</td>
<td>7,03</td>
<td>4,85</td>
<td>3,22</td>
<td>890,1</td>
</tr>
</tbody>
</table>

Das in Abbildung 4.29a dargestellte Zyklovoltammogramm der Aktivierung von VPAN4 und die dazugehörigen Werte in Tabelle 4.14 zeigt auch hier eine deutliche Verbesserung des maximalen Stroms um 2,8 mA für die Oxidationsreaktion und 2,4 mA der Reduktion. Auch das Onsetpotential wurde durch die Erhöhung der Defektstellen zu niedrigeren Potentialen um

Abbildung 4.29 | Elektrochemische Untersuchung der aktivierten VPAN4-Probe bei einer Aktivierungsdauer von 1,5 h im Vergleich zur Referenz der beiden Halbzellen. a) Zyklovoltammetrie mit einer Scangeschwindigkeit von 1 mV s$^{-1}$ der positiven Halbzelle; b) Vergrößerung des V$^{3+}$-Oxidationspeaks; c) der negativen Halbzelle.
Tabelle 4.14 | Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der aktivierten VPA4-Probe im Vergleich zur nicht aktivierten Probe und Referenz.

| Vlies | I_{peak} (Ox|Red) [mA] | I_{peak} (Ox|Red) [mA] | E_{on} (Ox|Red) [mV] | ΔE_p [mV] |
|-----------|----------------|----------------|------------------|----------------|
| VPAN4_1,5h| 8,77|6,97 | 7,75|8,08 | 829,9|938,8 | 164,5 |
| VPAN4 | 5,96|4,54 | 6,10|6,15 | 856,2|934,1 | 170,6 |
| Referenz | 7,03|4,85 | 3,22|3,79 | 890,1|913,8 | 158,5 |

26,29 mV für die Oxidation und um 4,7 mV zu höheren Potentialen verschoben. Die Peakseparation ΔE_p beträgt 158,8 mV und ist damit um 12 mV geringer als der Wert der nicht aktivierten Probe. Die Proben VPAN4_1,5h und VPAN3_1,5h zeigen somit die geringste Peakseparation aller untersuchten Proben.

Messungen der Impedanz haben nochmals bestätigt, dass mit Hilfe der ther. Aktivierung die elektrochemische Aktivität der Proben deutlich gesteigert werden konnte, da die Werte des Ladungstransferwiderstandes R_{CT} im Vergleich zu den nicht aktivierten Proben nochmals verbessert werden konnten. Die Werte des R_{CT} der aktivierten sowie nicht aktivierten Proben sind in Tabelle 4.15 zusammengefasst.

Tabelle 4.15 | Ladungstransferwiderstände R_{CT} der mit PAN imprägnierten und aktivierten Vliese, welche aus den Fits des Ersatzschaltbildes erhalten wurden.

<table>
<thead>
<tr>
<th>Vlies</th>
<th>R_{CT} [Ω]</th>
<th>R_{CT} aktiviert [Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>36,05</td>
<td>-</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>27,95</td>
<td>6,43</td>
</tr>
<tr>
<td>VPAN1</td>
<td>13,63</td>
<td>6,1</td>
</tr>
<tr>
<td>VPAN2</td>
<td>13,42</td>
<td>3,96</td>
</tr>
<tr>
<td>VPAN3</td>
<td>10,68</td>
<td>4,53</td>
</tr>
<tr>
<td>VPAN4</td>
<td>13,93</td>
<td>4,17</td>
</tr>
</tbody>
</table>
4.3.4 Zusammenfassung der elektrochemischen Untersuchungen

4.3.5 Vollzelttest

Abbildung 4.30 | Ergebnisse des Vollzelttests. a) typische Lade- und Entladespannungskurven bei 50 mA cm², b) Entladekapazitäten aller imprägnierten Proben bei verschiedenen Stromdichten.
(Abbildung 4.30b). Dabei konnte die Kapazität durchschnittlich um das 2,8-fache verbessert werden. Aus den Lade- und Entladezyklen wurden die Coulombeffizienz (CE), die Spannungseffizienz (VE) und die Energieeffizienz (EE) berechnet (Gleichung 4.6), welche bei verschiedenen Stromdichten in Abbildung 4.31a - c dargestellt sind. Der CE-Wert beschreibt, wie reversibel Elektronen in ein System hinein und aus ihm heraus transportiert werden können. Er kann auch auf vorhandene Nebenreaktionen (z. B. Wasserstoffentwicklung) hindeuten und wird unter idealen Bedingungen nur durch den Vanadium-Cross-over begrenzt.\[14]\] In Abbildung 4.31 erreichen die Probe VPAN3_1,5h und VPAN4_1,5h höhere Coulomb-Effizienz als die Referenz. Die CE der anderen imprägnierten Proben liegen darunter. Abbildung 4.31b zeigt, dass die Spannungseffizienz gesteigert werden konnte für VPAN4 mit 71,9 %. Aus der Spannungseffizienz und Coulombeffizienz erhält man die Energieeffizienz der VRFB (Abbildung 4.31c). Dabei wird deutlich, dass aufgrund der höheren CE-Werte der Proben VPAN3_1,5h und

Abbildung 4.31 | a) Coulombeffizienz CE, b) Spannungseffizienz VE und c) Energieeffizienz EE bei einer Stromdichte von 250 mA, 500 mA, 750 mA und 1,25 A.
VPAN4_1,5h diese auch eine erhöhte EE von 7,4 % bzw. 4,7 % im Vergleich zur Referenz zeigen. Die höhere Kapazität resultiert aus einer vergrößerten Oberfläche, mehr Leitungspfade aufgrund der Vernetzung und aufgrund der höheren katalytischen Aktivität der imprägnierten Vliese. Durch die Modifizierung der Elektrode können somit 54,5 % der theoretischen Kapazität (3,2 Ah) genutzt werden anstelle von 19,4 % für die Standardelektrode. Die verringerte Coulombeffizienz der Proben VPAN0,5_1,5h; VPAN1_1,5h und VPAN2_1,5h ist auf die verringerte Porosität zurückzuführen, die zu einer Verringerung des Massentransports geführt hat. Bei VPAN3_1,5h und VPAN4_1,5h ist dies nicht der Fall, da diese Proben eine deutlich höhere Stabilität aufweisen und durch die eingestellte Kompression der Zelle kaum komprimiert werden und es dadurch zu keiner Verringerung der Porenräume kommt, weshalb die Durchströmung des Elektrolyten nicht beeinträchtigt, sondern sogar verbessert wurde. Vermutlich ist eine Kompression von 20 % für die imprägnierten Vliese mit einem geringen PAN-Anteil nicht geeignet. Eine geringere Kompression wäre von Vorteil, da die Verringerung der Porengröße durch eine zu starke Kompression die CE deutlich reduziert.\[12\] Da die imprägnierten Vliese auch bei geringerer Kompression einen viel höheren Anpressdruck gegen die Bipolarplatte ausüben, könnte somit eine Verbesserung der elektrischen Leitfähigkeit immer noch gewährleistet werden. Da für alle imprägnierten Proben durch ihre höhere mechanische Stabilität höhere Anpressdrücke gegen die Bipolarplatte generiert werden können, könnte die Spannungseffizienz für alle untersuchten Proben gesteigert werden. Aus diesem Grund können ohmsche Verluste reduziert und ein niedrigeres Startpotential für den Ladevorgang, sowie ein höheres Startpotential für den Entladevorgang erreicht werden.
4.4 Imprägnierung mit Poly(4-vinylphenol)

Abbildung 4.32 | Ausschnitt der Strukturformel des Poly(4-vinylphenol).
4.4.1 Oxidative Stabilisierung

Thermogravimetrische Untersuchungen haben gezeigt, dass sich P4VP in inerter Atmosphäre bei 1000 °C fast vollständig zersetzt und in einer Kohlenstoffausbeute von 6.79 % resultiert (Abbildung 4.33). Ohne eine Vorbehandlung kann P4VP nicht zur Imprägnierung genutzt werden, da die Ausbildung von Vernetzungen aufgrund der starken Zersetzung des Polymers bei Temperaturen über 900 °C nicht möglich ist. Viele Polymere, wie auch das bereits untersuchte Polymethylmethacrylat, müssen vor der Karbonisierung einer oxidativen Stabilisierung unterzogen werden, um die Kohlenstoffausbeute deutlich zu steigern.[36] Im Falle des PANs kommt es zu Vernetzungen der Struktur, die das Grundgerüst der Graphitstruktur ausbilden. Dadurch können höhere Ausbeuten erzielt werden und somit Zersetzungen des Polymers zu kleineren flüchtigen Molekülen verhindert werden.[73]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.33}
\caption{a) TG und DSC in Abhängigkeit von der Temperatur von P4VP; b) FTIR-Intensitäten der Zersetzungsprodukte im Abgasstrom.}
\end{figure}

Abbildung 4.33 | a) TG und DSC in Abhängigkeit von der Temperatur von P4VP; b) FTIR-Intensitäten der Zersetzungsprodukte im Abgasstrom.

Um geeignete Bedingungen zur Stabilisierung zu finden, wurde der Einfluss von Parametern wie der Temperatur, der Haltezeit und der Heizrate hinsichtlich der Kohlenstoffausbeute nach der Karbonisierung untersucht.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.34}
\caption{Allgemeines Temperaturprofil mit den zu überprüfenden Parametern für die oxidative Stabilisierung von P4VP.}
\end{figure}

Abbildung 4.34 | Allgemeines Temperaturprofil mit den zu überprüfenden Parametern für die oxidative Stabilisierung von P4VP.
Dabei ergab sich für das Temperaturprofil bei einer Endtemperatur von 330 °C mit einer Haltezeit von 5 h und einer Heizrate von 1 K min⁻¹ die höchste Kohlenstoffausbeute von 37,84 %. Diese lässt sich mit dem Wert für Polyacrylnitril (43 %) vergleichen.

4.4.2 Herstellung der imprägnierten Vliese mit Poly(4-vinylphenol)

![Graph](image)

Abbildung 4.35[a) TG und Gram Schmidt der Karbonisierung des stabilisierten P4VPs; b) Intensitäten der Zersetzungsprodukte während der Karbonisierung; c) 2D Plot der in b) dargestellten Intensitäten in Abhängigkeit von der Temperatur.]
sowie die Gram-Schmidt-Funktion des oxidativ stabilisierten P4VPs in Abhängigkeit von der Temperatur dargestellt. Dabei lässt sich das Temperaturprofil in drei Bereiche bei etwa 360 bis 460 °C, 460 bis 760 und ab 760 °C bis zur vollständigen Karbonisierung einteilen. Abbildung 4.32c zeigt, dass es sich bei den Zersetzungsprodukten um CO₂, H₂O und aliphatische Verbindungen handelt. Allerdings sind die Intensitäten von H₂O und den aliphatischen Verbindungen viel geringer als der dominierende Anteil an CO₂ (Abbildung 4.36b). Dementsprechend wurde folgendes Temperaturprofil zur Karbonisierung von P4VP gewählt:

![Temperaturprofil zur Karbonisierung von P4VP]

Abbildung 4.36 | Verwendetes Temperaturprofil zur Karbonisierung von P4VP.

Durch die Imprägnierung mit einer 2 Gew.-%-igen Polymerlösung wurde die gleiche Menge an Polymer in das Vlies eingebracht, nach der Karbonisierung ist allerdings aufgrund der höheren Ausbeute des PANs mehr Kohlenstoff im Vlies enthalten als bei der imprägnierten P4VP-Probe.

Tabelle 4.16 | Massenanteile des eingebrachten Polymers PAN und P4VP, nach der Imprägnierung (mitte) und nach der Karbonisierung (rechts).

<table>
<thead>
<tr>
<th></th>
<th>Polymer-Anteil_{50°C} [mg]</th>
<th>Polymer-Anteil_{100°C} [mg]</th>
<th>Kohlenstoffanteil_{100°C} [mg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP4VP_2</td>
<td>92,4 ± 0,9</td>
<td>21,1</td>
<td>30,83 ± 0,38</td>
</tr>
<tr>
<td>VPAN2</td>
<td>90,2 ± 1,8</td>
<td>20</td>
<td>37,5 ± 0,2</td>
</tr>
</tbody>
</table>

79
4.4.3 Charakterisierung der strukturellen Eigenschaften

Die REM-Aufnahmen in Abbildung 4.37 zeigen, dass Vernetzungen zwischen den einzelnen Fasern auch mit P4VP ausgebildet werden konnten. Dabei ist die Oberfläche des Vlieses nicht so stark mit karbonisiertem P4VP bedeckt wie bei VPAN2, was an der etwa 7% geringeren Ausbeute an Kohlenstoff im Vlies liegt. Das karbonisierte Polymer ummantelt auch hier die einzelnen Fasern und verknüpft diese an den Kreuzungspunkten miteinander. Ebenso wurden einzelne Verbrückungen bei parallel verlaufenden Fasern (Abbildung 4.37c) gebildet. An den

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{images/4.37}
\caption{a) bis d) zeigen REM-Aufnahmen der imprägniern Probe mit P4VP bei jeweils unterschiedlichen Vergrößerungen.}
\end{figure}

Verbrückungen selbst sind keine Grenzflächen an den Fasern zu erkennen, so dass hier ein fließender Übergang zwischen Verbrückung und Faser entstanden ist. Im Vergleich zur Probe VPAN2 lassen sich allerdings deutlich porösere Fasern erkennen, welche bei Probe VPAN2 nicht vorhanden waren. Dies ist deutlich in der Vergrößerung von Abbildung 4.37c in d zu erkennen. Diese stark ausgeprägte Porenbildung deutet bereits auf eine Aktivierung durch die Reaktionsgase der Fasern und eine vergrößerte Oberfläche hin. Die Poren liegen in der Größenordnung von etwa 0,2 bis 0,6 μm.
Um Veränderungen in der mechanischen Stabilität zu überprüfen, wurde diese anhand von kompressionsabhängigen Messungen des Anpressdrucks getestet (Abbildung 4.38). Bei Betrachtung des gesamten Kompressionsbereichs lässt sich erkennen, dass der Anpressdruck von Probe P4VP_2 auf bis 28,3 N cm² stark ansteigt und es bei weiterer Kompression zu einer Abnahme auf 17 N cm² kommt. Erst ab einer Kompression von 30 % beginnt der Anpressdruck wieder zu steigen. Dies lässt sich identisch zu VPAN2 mit den kollabierten Vernetzungen erklären. Deutlich wird auch, dass der erzeugte Anpressdruck von P4VP_2 deutlich höher ist. Der Bruch der Vernetzungen (Abbildung 4.28b) tritt erst bei einer Kompression von 17,5 % ein, weshalb hier ein deutlich größerer Kompressionsbereich genutzt werden kann. Diese Kompression ist mit 28,3 N cm² bei gleicher Kompression um das 7-fache höher als der Anpressdruck der Referenz, sowie um das 2,5-fache als VPAN2 und 2,8-fache höher als VPAN2_1,5h.

Abbildung 4.38 | a) Anpressdruck in Abhängigkeit von der Kompression der Proben imprägnierte mit unterschiedlich konzentrierter PAN-Lösung, b) vergrößerter Ausschnitt der Bruchstellen.

Da P4VP_2 einen geringeren zusätzlichen Kohlenstoffanteil von 6,5 % als Probe VPAN2 (8,3 %) relativ zur Gesamtvliesmasse enthält, kann davon ausgegangen werden, dass P4VP_2 einen geringeren Vernetzungsgrad als VPAN2 besitzt. Dennoch zeigt P4VP_2 eine viel höhere mechanische Stabilität, was darauf hindeutet, dass das karbonisierte P4VP eine deutlich höhere Stabilität besitzt als karbonisiertes PAN. Um den Einfluss des erhöhten Anpressrucks auf den Kontaktwiderstand zu untersuchen, wurde der Spannungsabfall bei verschiedenen Kompressionen gemessen. Die kompressionsabhängige Widerstandskurve sowie der Widerstand
in Abhängigkeit des Anpressdrucks sind zum Vergleich der Leitfähigkeiten der Proben untereinander sind in Abbildung 4.39a und b gezeigt.

Abbildung 4.39 | a) Flächenpezisfischer Widerstand in Abhängigkeit von der Kompression und b) Flächenpezisfischer Widerstand in Abhängigkeit des Anpressdrucks der P4VP-Probe im Vergleich zur VPAN2-Proben und zur Referenz.

4.4.4 Elektrochemische Untersuchung

Inwiefern die Aktivierung während der Karbonisierung von P4VP die elektrochemischen Eigenschaften verbessern konnte, wurde mit Hilfe von Zyklolvoltammetrie und der elektrochemischen Doppelschichtkapazität in Abbildung 4.40 untersucht.

In Abbildung 4.40a wird ersichtlich, dass die bloße Impregnierung mit P4VP eine deutliche Verbesserung im Vergleich zur PAN-Probe zeigt. Der maximale Peakstrom der Oxidation der positiven Halbelle (Abbildung 4.40a) erreicht einen Wert von 9,16 mA und zeigt auch gegenüber der thermisch aktivierten PAN-Probe einen erhöhten Peakstrom um 0,3 mA. Ein Vergleich der Onsetpotentiale (Tabelle 4.17) zeigt für Probe VPAN2_1,5h den geringsten Wert und somit auch die größte katalytische Aktivität. Die Peakseparation ΔE_p der aktivierten PAN-Probe ist um

![Graphen](image)

Abbildung 4.40 Elektrochemische Untersuchung der mit P4VP imprägnierten Proben im Vergleich zur Referenz sowie den PAN-Proben. a) Zyklolvoltammetrie mit einer Scangeschwindigkeit von 1 mV s$^{-1}$ der positiven Halbelle; b) Vergrößerung des V^{3+}-Oxidationspeaks; c) der negativen Halbelle und d) Auftragung des Stroms bei einem Potential von 0,17 V vs. Ag/AgCl bei verschiedenen Scangeschwindigkeiten.
30,8 mV geringer, als die der P4VP-Probe, was auf einen erhöhten Ladungstransferwiderstand seitens Probe P4VP_2 zurückgeführt werden kann. Aufgrund der geringeren Defektdichte von P4VP_2 im Vergleich zur aktivierten PAN-Probe, besitzt diese demnach auch ein höheres Onsetpotential und somit eine geringfügig schlechtere katalytische Aktivität. Bei näherer Betrachtung des Peaks der relativ trägen VO$^{2+}$/V$^{3+}$-Oxidation wird deutlich, dass dieser für VPAN2_1,5h am stärksten ausgeprägt ist, was ebenfalls für eine bessere katalytische Wirkung spricht.

Tabelle 4.17 Onsetpotentiale E_{on}, Peakströme I_{peak} sowie die Peakseparation ΔE_p der imprägnierte Vliese mit P4VP im Vergleich zu aktivierten und nicht-aktivierten VPAN_2 Probe.

Vlies	I_{peak} (Ox	Red) [mA]	E_{onset} [mV]	ΔE_p [mV]	
Referenz	7,03	-4,85	890,15	913,8	266,19
VPAN2	6,23	-4,76	856,22	939,76	170,73
VPAN2_1,5h	8,86	-6,98	827,86	957,75	152,13
P4VP_2	9,16	-6,82	843,09	948,7	182,97

Untersuchungen der Doppelschichtkapazitäten in Abbildung 4.40d zeigen, dass die P4VP-Probe eine erhöhte Kapazität (22 mF) im Vergleich zur aktivierten PAN-Probe (12 mF) besitzt. Dies bestätigt die Vermutung, dass durch die Carbonisierung mit P4VP die Gesamtoberfläche des Vlieses vergrößert wurde, was bereits durch den hohen Peakstrom angedeutet wurde. Erhöht wird die Oberfläche aufgrund der Porenbildung auf den Fasern sowie den eingebrachten Vernetzungen selbst. Diese waren auf den Vernetzungen der PAN-Proben nicht zu erkennen, weshalb der Peakstrom beider Proben geringer ausfällt. Um die Unterschiede hinsichtlich der Peakseparation besser verstehen zu können, wurde der R_C mit Hilfe der elektrochemischen Impedanzspektroskopie ermittelt. Die erhaltenen Werte für R_C sind in Tabelle 4.18 aufgelistet.

Dabei zeigt sich, dass P4VP_2 einen höheren Ladungstransferwiderstand, als die aktivierte VPAN2-Probe besitzt, was sich in der erhöhten Peakseparation wiederspiegelt. Obwohl VPAN2 eine vergleichbare Leitfähigkeit wie die thermisch aktivierte Probe besitzt, zeigt diese eine größere Peakseparation. Auch hier kann dies anhand des viel höheren Ladungstransferwiderstands erklärt.
Tabelle 4.18: Ladungstransferwiderstände (R_{CT}) der mit P4VP und PAN imprägnierten bzw. aktivierten Vliese, welche aus dem Fits des Ersatzschaltbildes erhalten wurden.

<table>
<thead>
<tr>
<th>Vliesprobe</th>
<th>R_{CT} [Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>36,05</td>
</tr>
<tr>
<td>VPAN2</td>
<td>13,42</td>
</tr>
<tr>
<td>VPAN2_1,5h</td>
<td>3,96</td>
</tr>
<tr>
<td>P4VP_2</td>
<td>7,53</td>
</tr>
</tbody>
</table>

werden. Daraus kann geschlossen werden, dass der Ladungstransferwiderstand einen größeren Einfluss auf die Peakseparation hat, als die Leitfähigkeit der untersuchten Elektroden selbst.

4.5 Kapitelzusammenfassung Imprägnierung der Vlieselektroden

Gesamtoberfläche wieder zu erhöhen. Dabei stellte sich heraus, dass andere Bedingungen gefunden werden müssen, da das Standardverfahren zur thermischen Aktivierung den Effekt der Imprägnierung vollständig aufhob und die Proben ihre mechanische Stabilität verloren. Um dies zu realisieren, wurden mildere Bedingungen getestet, indem die Aktivierungsduer herabgesetzt wurde. Als geeignet erwies sich dabei eine Aktivierungsduer von 1,5 h, da so die mechanische Stabilität der Vliese im Schnitt zu 93 % erhalten blieb. Durch die Aktivierung konnte die Defektdichte erhöht werden, was sich positiv auf die elektrochemische Aktivität auswirkte. Ebenfalls wurde die Oberfläche der Proben erhöht, was sich im Zyklovoltammogramm durch einen viel höheren Peakstrom im Vergleich zur Referenz äußerte. Der Nachteil bei der Verwendung von PAN ist, dass zur Herstellung der Elektroden ein zusätzlicher Ofenprozess benötigt wird.

Aus diesem Grund wurde das Polymer P4VP zur Imprägnierung untersucht, da dies während der Karbonisierung zur Aktivierung geeignete Zersetzungprodukte freisetzt. REM-Aufnahmen haben gezeigt, dass die Fasern sowie die Vernetzungen eine deutliche Porenstruktur aufweisen. Diese war bei der thermisch aktivierten PAN-Probe nur geringfügig auf den Fasern zu finden. Durch die Imprägnierung mit P4VP konnte im Vergleich zur PAN-Probe eine deutlich höhere mechanische Stabilität erhalten werden. Dabei war der erzeugte Anpressdruck trotz des 2 % geringeren Anteil an karbonisiertem Polymer im Vlies um das 2,5-fache höher. Dadurch können niedrigere Kontaktwiderstände für einen niedrigen zusätzlich eingebrachten Kohlenstoffanteil erreicht werden, was hinsichtlich der Permeabilität einen Vorteil mit sich bringt. Die P4VP-Probe zeigte eine mit den aktivierten PAN-Proben vergleichbare elektrochemische Aktivität, wobei der Peakstrom noch einmal verbessert werden konnte. Lediglich die Peakseparation der P4VP-Probe ist aufgrund von höheren Ladungstransferwiderständen um 30,8 mV größer. Ein Grund hierfür könnte das Fehlen der Stickstoffdotierung sein, da diese als aktive Zentren fungieren und so den Ladungstransfer begünstigen. Die Imprägnierung mit P4VP bietet eine vielversprechende alternative Methode zur Imprägnierung verglichen mit PAN, da auf den Prozess der thermischen Aktivierung verzichtet werden kann und Karbonisierung sowie Aktivierung in einem Schritt realisiert werden können.
5 Bipolarelektrodeneinheit

Kommerziell verfügbare Vlieselektroden generieren aufgrund ihrer geringen mechanischen Steifigkeit nur sehr niedrige Anpressdrücke gegen die Bipolarplatte, weshalb in einer Vollzelle eine Kompression von mindestens 20% notwendig ist, um zu hohe Kontaktwiderstände zu vermeiden. Auch die runde Fasergeometrie bedingt sehr wenige Kontaktpunkte, weshalb hohe Ohmsche Verluste in der Zelle die Folge sind. Um eine ökonomische Anwendung der Redox-Flow-Technologie langfristig zu ermöglichen, müssen deren Kosten deutlich gesenkt werden. Das höchste technologische Kostensenkungspotential liegt dabei im Stackbau bzw. bei den Materialien.173 Dazu werden zwei Ansätze verfolgt: Zum einen die Bereitstellung höherer Leistungen durch verringerte Innenwiderstände und zum anderen ein vereinfachtes Assembling durch vorkonfektionierte Bipolarelektroden (BPE), wodurch sich die Anzahl der notwendigen Komponenten pro Zelle von vier auf nur zwei reduziert. Im vorherigen Kapitel konnten durch die Imprägnierung der kommerziellen Vliese bereits die inneren Widerstände aufgrund der höheren mechanischen Steifigkeit deutlich reduziert werden. Eine weitere Strategie zur Minimierung der Kontaktwiderstände und Reduktion der Bauteile stellt das Verbinden der Vlieselektroden mit der Bipolarelektrode mit Hilfe von leitfähigen Klebern dar. Die Herausforderung besteht darin, eine geeignete Kleberzusammensetzung zu finden, was aufgrund der hohen Porosität des Materials eine hohe Viskosität voraussetzt. Ebenso ist eine ausreichend hohe Leitfähigkeit notwendig, um den Kontaktwiderstand trotz einer zusätzlich eingebrachten Schicht minimieren zu können. In diesem Kapitel wird eine Auswahl verschiedener Kleberkompositionen im Hinblick auf Binderanteil, Art und Menge des Leitadditivs beschrieben und mit Hilfe geeigneter Charakterisierungsmethoden wie REM, Stabilitäts- und Leitfähigkeitsmessungen, sowie CV-Messungen zur Überprüfung der elektrochemischen Aktivität, untersucht und mit dem konventionellen Aufbau einer nicht verklebten Standardelektrode auf der BPP, was als Referenz bezeichnet wird, verglichen. Zur Evaluierung der Funktionstüchtigkeit der Bipolarelektrodeneinheiten, werden diese in eine Vollzelle eingebaut und in Hinblick auf Zellwiderstände, Kapazitäten und Zyklenstabilität untersucht.
5.1 PAN/Graphit Kleber

Dieses Kapitel beschreibt die Charakterisierung einer mit einem Polyacrylnitril/Graphit-basierten Kleber verbundenen Bipolarelektrodeneinheit. Des Weiteren wurde der Kleber mit drei verschiedenen Zusammensetzungen getestet. Dabei wurde der Binderanteil von 10% (G/PAN1) auf 5% (G/PAN2) und 3% (G/PAN3) reduziert, um dessen Einfluss zu untersuchen.

Abbildung 5.1 | Schematische Darstellung einer Bipolarelektrode mit einem Graphit/PAN-Kleber.

5.1.1 Charakterisierung der physikochemischen Eigenschaften

Die kompressionsabhängige Messung des Anpressdrucks der Bipolarelektroden im Vergleich zu einem nicht verklebten Vlies auf einer Bipolarplatte haben ergeben (Anhang: Abbildung A.2), dass eine leichte Stabilisierung der Proben im Vergleich zur nicht verklebten Probe stattgefunden hat. Beim Vergleich der verklebten Bipolarelektroden G/PAN1, G/PAN2 und G/PAN3 untereinander lässt sich jedoch kein Unterschied feststellen. Der Anpressdruck hat dabei bei einer Kompression von 20% von 4,55 N cm⁻² auf 7,22 N cm⁻² erhöht. Die Zunahme der Stabilisierung kann dadurch erklärt werden, dass der Kleber die Vliesstruktur teilweise bis ins Vliesinnere benetzt und es zu einer Einbettung der Fasern in den Kleber kommt, wodurch die verklebte Vliesseite verstieft wird.

Messungen des flächenspezifischen Widerstandes (area specific resistance, ASR) bei einer Kompression von 20% ergaben, dass G/PAN1 den geringsten ASR von 0,42 ± 0,002 Ω cm² zeigt. Der Wert liegt dabei deutlich unter dem der Referenz (0,61 ± 0,02 Ω cm²). G/PAN2 und G/PAN3 mit einem Binderanteil von 5 bzw. 3% zeigen einen höheren ASR als die Referenz und G/PAN1, obwohl der leitfähige Anteil im Kleber erhöht wurde. Aufgrund des höheren Anteils von Graphit im Kleber, ist der Binderanteil zu gering, um eine erfolgreiche Anbindung an die
Fasern zu realisieren. Durch die geringfügige Verbindung der Fasern mit den Klebern bei G/PAN2 und G/PAN3, erfolgt eine schlechte Kontaktierung, was zu einem hohen Kontaktwiderstand führt.

Abbildung 5.2 | Flächenspezifischer Widerstand bei einer Kompression von 20 % der Proben G/PAN1, G/PAN2 und G/PAN3 im Vergleich zur Referenz.

5.1.2 Charakterisierung der elektrochemischen Eigenschaften

Zur Überprüfung der elektrochemischen Eigenschaften wurden diese mit Hilfe der Zyklovoltammetrie untersucht (Abbildung 5.3a). Dabei zeigt G/PAN1 die besten elektrochemischen Eigenschaften verglichen zu G/PAN2 und G/PAN3, da G/PAN1 eine um 1,2 mA höhere Strompeaks besitzt. Die ΔE_p ist für G/PAN1 und G/PAN2 fast identisch (270 mV), lediglich G/PAN3 zeigt eine um 50 mV höhere Peakseparation. Die nicht verklebte Referenz zeigt im Vergleich zu den verklebten Proben eine höhere Stromintensität und eine geringere Peakseparation von 50 mV. Aufgrund der geringeren Leitfähigkeit der Proben G/PAN2 und G/PAN3 war zu erwarten, dass diese eine höhere Peakseparation zeigen. Die Stromintensität der Proben G/PAN2 und G/PAN3 sind deutlich geringer im Vergleich zur Referenz und G/PAN1. Dies kann auf die geringere elektrochemisch aktive Oberfläche der Vliese nach der Einbettung der unteren Vliesfläche zurückzuführen sein. Da die Kleber G/PAN2 und G/PAN3 eine deutlich festere Konsistenz aufgrund des höheren Graphitanteils aufweisen, benetzen diese Kleber die Vliesstruktur schwächer als bei G/PAN1, was ebenfalls in den REM-Aufnahmen in Abbildung 5.12 zusehen ist. Die Untersuchung der elektrochemisch aktiven Oberfläche kann durch die Bestimmung der EDLC in Abbildung 5.3c angenähert werden. Die Proben G/PAN2 und G/PAN3 zeigen dabei eine höhere EDLC als G/PAN1. Dies bestätigt, dass durch die höhere Viskosität weniger Kleber in das Vliesinnere gelangt, wodurch eine größere aktive Oberfläche
zurückbleibt. Abbildung 5.3b zeigt, dass die R_{CT} in der Reihenfolge Referenz $<$ G/PAN1 $<$ G/PAN2 $<$ G/PAN3 zunehmen. Da der Ladungsaustausch größtenteils an der Grenzfläche zwischen Bipolarplatte und Vlies stattfindet, bewirkt das Verkleben der Fasern eine Erhöhung des Widerstandes R_{CT}, weshalb hier die nicht verklebte Probe den geringsten Widerstand zeigt.

Abbildung 5.3 a) CV, b) elektrochemisches Impedanzspektrum und c) Auswertung der Doppelschichtkapazität der verklebten Proben G/PAN1, G/PAN2 und G/PAN3 im Vergleich zur nicht verklebten Referenz.

5.1.3 Antrocknen von G/PAN1
Durch die vorherigen Messungen konnte gezeigt werden, dass durch das Verkleben der Vlieselektrode an die Bipolarplatte aufgrund der hohen Porosität des Vlieses ein Teil des Klebers
in die Vliesstruktur aufgenommen wird, weshalb ein zu schwach viskoser Kleber sich als ungeeignet erweist. Jedoch führt eine zu viskose Paste, wie es bei G/PAN2 und G/PAN3 der Fall ist, zu einer geringen Anbindung, was sich in hohen Kontaktwiderständen niederschlägt. Da G/PAN1 bereits sehr gute Eigenschaften bezüglich der Leitfähigkeit zeigte, wurde versucht, die Aufnahme des Klebers im Vlies durch vorheriges Antrocknen der Klebeschicht zu minimieren.

Die Aufnahme des Zyklovoltammogramms in Abbildung 5.4a zeigt, dass das Antrocknen von G/PAN1 zu einer signifikanten Verbesserung der elektrochemischen Eigenschaften führt. Die Stromintensität konnte um 2,2 mA für die Oxidation bzw. um 1,6 mA für die Reduktion gesteigert werden. Die Peakseparation ΔEₚ ergab ebenfalls einen Wert von 270 mV für die angetrocknete Probe. Abbildung 5.4b zeigt, dass Rₗₚ von 59,3 Ω auf 30,2 Ω reduziert werden konnte, was die Messergebnisse der Zyklovoltammetrie nochmals bestätigen.

Abbildung 5.4 | a) CV, b) elektrochemische Impedanzspektrum der angetrockneten G/PAN1-Probe im Vergleich zur nicht angetrockneten Probe.
5.2 PAN/Graphit/Carbonblack-basierte Kleber

Um die Leitfähigkeit des Klebers G/PAN1 zu erhöhen, wurde carbon black (CB) als zusätzliches Leitadditiv zur PAN-Graphit-Mischung hinzugefügt. Da CB eine geringere Partikelgröße als Graphit aufweist, soll durch die Einlagerung der kleinen CB-Partikel weitere Leitungspfade zwischen den Graphitpartikeln und somit eine bessere Kontaktierung in der Bindermatrix geschaffen werden (Abbildung 5.5). Aufbauend auf den Kleber mit einem 10 %-igen PAN-Anteil (G/PAN1) wurden drei verschiedene Zusammensetzungen mit variierenden CB-Anteil in Hinblick auf ihre elektrische Leitfähigkeit und elektrochemische Performance untersucht.

\[\text{Abbildung 5.5} \] Schematische Darstellung einer Bipolarelektrode mit einem Graphit/CB/PAN-Kleber.

5.2.2 Untersuchung der elektrischen Leitfähigkeit

Abbildung 5.6 zeigt die Messung des flächenbezogenen Widerstandes (ASR) bei einer Kompression von 20 %. Für alle verklebten Proben konnte eine Verbesserung um 0,1 Ω cm² im Vergleich zur Referenz erzielt werden. Die Proben untereinander unterscheiden sich nicht in ihrer

\[\text{Abbildung 5.6} \] Flächenbezogener Widerstand bei einer Kompression von 20 % der Proben G/CB/PAN1, G/CB/PAN2 und G/CB/PAN3 im Vergleich zur Referenz.
Leitfähigkeit, so dass eine Erhöhung des Anteils an CB keine merkliche Verbesserung der Leitfähigkeit bewirkt.

5.2.3 Charakterisierung der elektrochemischen Eigenschaften

In Abbildung 5.7a ist das Zyklovoltammogramm der verklebten Proben G/CB/PAN1, G/CB/PAN2 und G/CB/PAN3 im Vergleich zur Referenz dargestellt. Alle drei Proben zeigen ein sehr ähnliches Verhalten, es werden dabei fast identische Strommaxima für die Oxidation, sowie für die Reduktion erreicht. Die Strommaxima sind etwas niedriger als die der Referenz, was auch durch die verringerte aktive Oberfläche an der Klebefläche resultiert. Für die Reduktion ist das Onsetpotential deutlich zu geringeren Potentialen verschoben. Die Auswertung der elektrochemischen Impedanzspektroskopie in Abbildung 5.7b ergibt, dass die R_{CT} in der Reihenfolge Referenz $>$ G/CB/PAN1 $>$ G/CB/PAN2 $>$ G/CB/PAN3 abnehmen. Alle Proben zeigen somit eine Verbesserung gegenüber der nicht verklebten Probe. G/CB/PAN3 zeigt den geringsten Ladungsüberwiderstand, da aufgrund der Sprödigkeit der Klebepaste wegen des geringsten Binderanteils, weniger Klebemasse in das Vlies aufgesaugt wurde, als dies bei Probe G/CB/PAN1 und G/CB/PAN2 der Fall ist.

Abbildung 5.7 (a) CV, (b) elektrochemische Impedanzspektrum der Proben G/CB/PAN1, G/CB/PAN2 und G/CB/PAN3 im Vergleich zur Referenz.
5.3 PAN/Graphit/Graphitfaser-basierte Kleber

Da die Charakterisierung der Kleber in den vorherigen Abschnitten gezeigt hat, dass durch das Verkleben der Vlieselektrode an die Bipolarplatte die elektrochemisch aktive Oberfläche verringert wurde, wird nun versucht durch Graphitfasern die Oberfläche an der Klebefläche zu erhöhen. Wie in Abbildung 5.8 schematisch dargestellt wurde versucht, zum einen verschiedene Anteile (5 % und 45 %) zerkleinerte Fasern der Kleberpaste beizumengen (G/GF/PAN1 bzw. G/GF/PAN2) und zum anderen die zerkleinerten Graphitfasern auf der nassen Klebefläche zu verteilen (G/GFO/PAN).

![Abbildung 5.8](image)

Abbildung 5.8 | Schematische Darstellung einer Bipolarelektrode mit einem Graphit/Graphitfaser/PAN-Kleber.

5.3.1 Untersuchung der elektrischen Leitfähigkeit

Abbildung 5.9 zeigt die Ergebnisse des flächenspezifischen Widerstandes. Alle verklebten Bipolarelektroden zeigen dabei geringere Werte für den ASR als die Referenz. Die einzelnen Proben untereinander weisen allerdings nur sehr geringe Unterschiede auf, weshalb davon

![Abbildung 5.9](image)

Abbildung 5.9 | Flächenspezifischer Widerstand bei einer Kompression von 20 % der Proben G/GF/PAN1, G/GF/PAN2 und G/GFO/PAN im Vergleich zur Referenz.
ausgegangen werden kann, dass die Erhöhung des Anteils an Graphitfasern im Kleber keine wesentliche Verbesserung der Leitfähigkeit bewirkt.

5.3.2 Untersuchung der elektrochemischen Eigenschaften

Das Zyklovoltammogramm in Abbildung 5.10a zeigt, dass für die Proben G/GF/PAN2 und G/GFO/PAN im Vergleich zur Referenz eine Erhöhung des Stroms erzielt werden konnte. G/GF/PAN1 zeigt hingegen geringere Peakströme und einen höheren Onset. Für G/GFO/PAN

Abbildung 5.10 a) CV, b) elektrochemische Impedanzspektrum und c) Auswertung der Doppelschichtkapazität der Proben G/GF/PAN1, G/GF/PAN2 und G/GFO/PAN im Vergleich zur Referenz.

verschiebt sich das Onsetpotential der Oxidation zu einem niedrigeren Potential, allerdings scheinen die Reduktionsreaktionen aller verklebten Proben kinetisch gehemmt zu sein. Dies resultiert in einer erhöhten Peakseparation für alle BPEs im Vergleich zur Referenz. Die Auswertung der EIS in Abbildung 5.10b mit Hilfe eines Fits des Ersatzschaltbildes ergibt, dass
lediglich G/GFO/PAN einen geringeren R_{CT} von 40,6 Ω besitzt, was dafür spricht, dass die Graphitfasern an der Klebefläche zu einer Vergrößerung der Kontaktfläche geführt haben. Dieses Ergebnis ist in Übereinstimmung mit den aus der Zyklovoltammetrie erhaltenen Ergebnissen. Die Proben G/GF/PAN1 und G/GF/PAN2 zeigen höhere R_{CT} wobei der Unterschied von G/GF/PAN2 zur Referenz gering ausfällt.

5.4 Vergleich der Klebersysteme

Welches Vliesmaterial sich als bestes zur Herstellung einer BPE eignet, wird im Folgenden untersucht. Dazu wurden die Kleber der vorausgegangenen Abschnitte mit den vielversprechendsten Eigenschaften miteinander verglichen. In Abbildung 5.11a ist der ASR der Proben bei einer Kompression von 20% dargestellt. Probe G/PAN1 mit einem 10%-igen PAN-Anteil zeigt von allen getesteten Proben den geringsten Widerstand von 0,42 Ω cm². Trotz der Beimengung von zusätzlichen Leitadditiven von 20% Leitrüß (G/CB/PAN2) bzw. Graphitfasern (G/GFO/PAN) konnte die Leitfähigkeit nicht weiter gesteigert werden. Grund dafür ist die hohe Viskosität der Kleber, da aufgrund des hohen Feststoffanteils der Kleber die Fasern nicht vollständig benetzen kann, wie es bei einem flüssigeren Kleber wie G/PAN1 der Fall ist. Dies

Abbildung 5.11[a] Flächenspezifischer Widerstand bei einer Kompression von 20% und b) CV der verklebten Proben G/PAN1, G/CB/PAN2 und G/GFO/PAN im Vergleich.

führt zu einer schlechten Kontakttierung und somit zu höheren Widerständen. Das Zyklovoltammogramm in Abbildung 5.11b zeigt, dass die Proben G/PAN1 und G/GFO/PAN die beste elektrochemische Performance zeigen, da die maximalen Ströme und die Oxidationspotentiale im Vergleich zur Referenz deutlich verbessert werden konnten.
In Abbildung 5.12 sind REM-Aufnahmen der Querschnitte der Bipolarelektroden G/PAN1, G/CB/PAN2 und G/GFO/PAN dargestellt. Bei G/PAN1 ist zwischen Bipolarplatte und Klebeschicht kein Übergang zu erkennen, so dass eine optimale Kontaktierung zur Bipolarplatte gewährleistet ist. Im Gegensatz dazu ist bei G/CB/PAN2 und G/GFO/PAN eine Grenzfläche zwischen Bipolarplatte und Kleber zu sehen, was zu keiner gleichmäßigen Anbindung führt und im Folgenden zu einer schlechten Kontaktierung geführt hat.

5.5 Vollzellen Test

Die Effizienz der VRFB mit den Bipolarelektroden wurde mittels Lade- und Entladezyklen ermittelt. Abbildung 5.13 zeigt jeweils den dritten Zyklus der verklebten Probe im Vergleich zur Referenz bei einer Stromdichte von 50 mA cm\(^{-2}\). Die Lade- und Entladedauer konnte deutlich gesteigert werden und somit eine Entladekapazität von 2148,6 mAh erhalten werden (Entladekapazität nicht verklebte Probe: 701,3 mAh). Die Coulombeffizienz ist mit dem konventionellen Aufbau vergleichbar (Abbildung 5.14a), allerdings konnte die Spannungseffizienz um 7% gesteigert werden (Abbildung 5.14b), was sich positiv auf die Energieeffizienz auswirkt,
Abbildung 5.13 | Ergebnisse des Vollzelttests Lade- und Entladespannungskurven bei 50 mA cm² der Probe G/PAN1 im Vergleich zur Referenz.

wodurch diese einen Wert von 70,8 % annimmt, im Vergleich dazu beträgt die EE des konventionellen Aufbaus 61,8 % und ist damit deutlich geringer (Abbildung 5.14c). Die

Abbildung 5.14 | a) Coulombeffizienz CE, b) Spannungseffizienz VE und c) Energieeffizienz EE bei einer Stromdichte von 250 mA, 500 mA, 750 mA und 1,25 A.
Verbesserung der VE ist auf geringere Kontaktwiderstände zurückzuführen, da durch die Verklebung eine großflächige Kontaktierung geschaffen wurde. Im konventionellen Aufbau hingegen beschränkt sich die Kontaktierung aufgrund der hohen Porosität der Vlieselektrode auf einzelne Punkte.

5.6 Zusammenfassung

Durch das Ankleben der Vlieselektrode an die Bipolarplatte konnten elektrische Kontaktwiderstände deutlich reduziert werden. Dabei stellte sich heraus, dass die Viskosität des Klebers eine entscheidende Rolle bei der Leistung der Bipolarelektrode spielt. Ein zu flüssiger Kleber bedingt eine zu hohe Aufnahme in das Vlies aufgrund der hohen Porosität. Dadurch wird die aktive Oberfläche stark vermindert, was sich negativ auf die elektrochemische Performance auswirkt. Andererseits führt ein zu dickflüssiger bzw. fester Kleber zu einer schlechten Kontaktierung der Fasern, was zu höheren Kontaktwiderständen führt. Dabei zeigte G/PAN1 mit einer Zusammensetzung von 9:1 (Graphit : Binder) die besten Eigenschaften hinsichtlich der Leitfähigkeit und der elektrochemischen Aktivität, sodass eine deutliche Verbesserung gegenüber einer nicht verbundenen Vlieselektrode erreicht werden konnten. Vollzellentests der Bipolarelektrode G/PAN1 haben gezeigt, dass durch die Verklebung beider Komponenten die Lade- und Entladezyklen deutlich verlängert werden konnten. Daraus resultierte eine um das Dreifache gesteigerte Kapazität. Auch die Spannungseffizienz konnte verbessert werden, was zu einer erhöhten Energieeffizienz von 70,8 % geführt hat.
Um die Technologie der VRFB wettbewerbsfähig zu gestalten, sind Optimierungen zur Steigerung der Leistung und Kostensenkung notwendig. Da das größte Kostensenkungspotential bei den Materialkomponenten und dem Stackbau liegt, sind sowohl die Optimierung der Elektroden als auch des Zelldesigns Gegenstand aktueller Forschung. Da die Batterieeinheit der VRFB aus mehreren Einzelkomponenten zusammengesetzt ist, führt dies zu hohen Zellwiderständen, die die Leistung der VRFB reduzieren. Ein Ansatz zur Minimierung der Innenwiderstände ist die Modifizierung des Elektrodenmaterials zur Erhöhung der Leitfähigkeit und Steigerung der Reaktionskinetik gegenüber der Vanadium-Redoxpaare. Dabei sind bereits viele Methoden, wie die thermische Behandlungen, die Dotierungen und chemische Modifizierungen bekannt. Durch die Erhöhung der Kompression der Elektrode in der Vollzelle kann der elektrische Widerstand ebenfalls minimiert werden, was zu höheren Coulombeffizienzen und höheren Kapazitäten führt. Allerdings bedingte eine hohe Kompression der Elektrode eine Reduzierung der Porosität und generierte somit hohe Durchflusswiderstände, welche die Energieeffizienz des Systems wiederrum deutlich herabsenken.

gesteigert werden. Dabei konnte gezeigt werden, dass eine verringerte Aktivierungsdauer von 1,5 h ausreicht, um die imprägnierten Vliese zu aktivieren und zusätzliche Poren auf der Oberfläche zu erzeugen. Durch die Erhöhung der elektrischen Leitfähigkeit wurde die Peakseparation minimiert. Durch das Einbringen von aktiven Zentren wurden die Redoxreaktionen katalysiert. Vollzelltests haben gezeigt, dass durch die Verwendung der imprägnierten Proben verlängerte Lade- und Entladezyklen und somit eine deutlich höhere Kapazität realisiert werden kann. Die erhöhte mechanische Stabilität der Vliese erlaubte einen gesteigerten Anpressdruck gegen die Bipolarplatte, was zu einer verbesserten Spannungseffizienz (VE) und einem geringeren Zellwiderstand führt. Dabei erreichte die Coulomb-Effizienz im Vergleich zur Referenz deutlich bessere Werte, wodurch eine verbesserte Energieeffizienz von 69,2 % erzielt werden konnte (EE der kommerziellen Vlieselektrode: 61,8 %). Da die imprägnierten Vliese aufgrund ihrer erhöhten Steifigkeit auch bei geringeren Kompressionen in der Zelle eingesetzt werden können, wäre es für künftige Arbeiten interessant, Zelltests mit reduzierter Kompression durchzuführen, sowie die Durchströmung des Elektrolyten durch die Elektrode bei Kompressionen < 20 % zu untersuchen.

Ein weiterer Ansatz zur Minimierung der Innenwiderstände und Verringerung der Batteriekomponenten wurde durch das Zusammenfügen der Bipolarplatte und Elektrode zu einer Einheit in dieser Arbeit verfolgt. Dabei konnte bereits in vorherigen Studien gezeigt werden, dass
die Verwendung einer leitfähigen Klebeschicht zwischen BPP und Vlies bereits vielversprechende Ergebnisse lieferte. In dieser Arbeit wurde darauf aufbauend eine vereinfachte Kleberherstellung entwickelt und der Fügeprozess optimiert. Dabei war die Viskosität des Klebers der entscheidende Parameter für eine erfolgreiche Anbindung an die Bipolarplatte. Aufgrund der hohen Porosität des Vliesmaterials muss das vollständige Aufsaugen des Klebers in das Vlies verhindert werden, umgekehrt kann bei einer zu festen Konsistenz nur eine schlechte Kontaktierung mit den Fasern und der BPP erreicht werden. Durch die Absorption des Klebers in die Vliesstruktur kommt es zu einer Reduzierung der elektrochemisch aktiven Oberfläche, was sich in Halbzellentests zeigt. Ein Graphit/ PAN (9:1)-Kleber erwies sich als besonders geeignet. Die Bipolarelektrodeneinheit zeigte im Vergleich zum konventionellen Aufbau einen um 31 % geringeren Widerstand. Vollzellentests der Bipolarelektrode G/PAN1 haben gezeigt, dass durch die Verklebung beider Komponenten die Lade und Entladekapazität um das Dreifache gesteigert werden kann. Auch die Spannungseffizienz kann so verbessert werden, was zu einer gesteigerten Energieeffizienz von 70,8 % führt.

Darauf basierend kann in weiterführenden Arbeiten, die aktive Oberfläche der Bipolarelektrode erhöht werden, indem auf die Klebeschicht nanoskalige Materialien wie Kohlenstoffnanoröhren oder reduziertes Graphenoxid aufgebracht werden. Die elektrochemische Performance der BPE kann so weiter verbessert und die Gesamteffizienz der Batterie für einen ökonomischen Einsatz gesteigert werden.
7 LITERATUR

(11) Puiki Leung; Xiaohong Li; León, C. P. de; Leonard Berlouis; John Low, C. T.;

(62) Lee, H.; Kim, H. Development of Nitrogen-Doped Carbons Using the Hydrothermal
https://doi.org/10.1007/s10800-013-0539-0.

Nitrogen-Doping Through Two-Step Pyrolysis of Polyacrylonitrile on Graphite Felts for
https://doi.org/10.1021/ACS.ENERGYFUELS.0C00689.

(64) Hannes Radinger; Ahmad Ghamlouche; Helmut Ehrenberg; Frieder Scheiba. Origin of

(65) Radinger, H.; Scheiba, F. Influence and Electrochemical Stability of Oxygen Groups and
Edge Sites in Vanadium Redox Reactions Vanadium Redox Flow Batteries View Project

(66) Hagg, C. M.; Skyllas-Kazacos, M. Novel Bipolar Electrodes for Battery Applications. J.
https://doi.org/10.1023/A:1021228304148.

(67) Lim, J. W.; Lee, D. G. Carbon Fiber/Polyethylene Bipolar Plate-Carbon Felt Electrode
Assembly for Vanadium Redox Flow Batteries (VRFB). Compos. Struct. 2015, 134,

(68) Qian, P.; Zhang, H.; Chen, J.; Wen, Y.; Luo, Q.; Liu, Z.; You, D.; Yi, B. A Novel
Electrode-Bipolar Plate Assembly for Vanadium Redox Flow Battery Applications. J.
Power Sources 2008, 175 (1), 613-620.

(69) Parry, K. L.; Shard, A. G.; Short, R. D.; White, R. G.; Whittle, J. D.; Wright, A.

https://doi.org/10.1007/978-3-642-37788-4.

(71) Flox, C.; Rubio-García, J.; Skoumal, M.; Andreu, T.; Morante, J. R. Thermo–Chemical
Treatments Based on NH3/O2 for Improved Graphite-Based Fiber Electrodes in
https://doi.org/10.1016/J.CARBON.2013.04.038.

(72) Menshykau, D.; Compton, R. G. The Influence of Electrode Porosity on Diffusional
https://doi.org/10.1002/ELAN.200804334.

(83) Carol Kozlowski; A. Sherwood, P. M. X-Ray Photoelectron Spectroscopic Studies of

(93) Radinger, H.; Scheiba, F. Influence and Electrochemical Stability of Oxygen Groups and Edge Sites in Vanadium Redox Reactions Layered Oxides View Project Water Splitting

8 ANHANG

Massenangabe der imprägnierten Vliese

Tabelle A.1 | Gewichtsangabe der verwendeten Vliese vor der Imprägnierung, nach der Imprägnierung und nach der Karbonisierung.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 wt.%</td>
<td>441,5 ± 8,4</td>
<td>465,5 ± 8,6</td>
<td>450,7 ± 7,0</td>
</tr>
<tr>
<td>1 wt.%</td>
<td>445,4 ± 9,8</td>
<td>492,6 ± 9,3</td>
<td>463,2 ± 9,6</td>
</tr>
<tr>
<td>2 wt.%</td>
<td>450,8 ± 5,7</td>
<td>541,0 ± 6,1</td>
<td>488,3 ± 5,7</td>
</tr>
<tr>
<td>3 wt.%</td>
<td>450,6 ± 7,5</td>
<td>587,5 ± 5,3</td>
<td>508,9 ± 7,0</td>
</tr>
<tr>
<td>4 wt.%</td>
<td>441,9 ± 4,2</td>
<td>630,1 ± 4,8</td>
<td>523,0 ± 3,9</td>
</tr>
</tbody>
</table>

BET-Messung der imprägnierten Vliese

Tabelle A.2 | Übersichtstabelle der Daten der BET-Messung der imprägnierten Vliese im Vergleich zur Referenz.

<table>
<thead>
<tr>
<th>Vliesprobe</th>
<th>BET [m² g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>0,76</td>
</tr>
<tr>
<td>VPAN0,5</td>
<td>0,39</td>
</tr>
<tr>
<td>VPAN1</td>
<td>0,54</td>
</tr>
<tr>
<td>VPAN2</td>
<td>0,55</td>
</tr>
<tr>
<td>VPAN3</td>
<td>0,61</td>
</tr>
<tr>
<td>VPAN4</td>
<td>0,52</td>
</tr>
</tbody>
</table>

BET-Messung der imprägnierten und thermisch aktivierten Vliese

Tabelle A.3 | Übersichtstabelle der Daten der BET-Messung der imprägnierten und aktivierten (1,5 h) Vliese im Vergleich zur Referenz.

<table>
<thead>
<tr>
<th>Vliesprobe</th>
<th>BET [m² g⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>0,76</td>
</tr>
<tr>
<td>VPAN0,5 1,5h</td>
<td>0,72</td>
</tr>
<tr>
<td>VPAN1 1,5h</td>
<td>2,46</td>
</tr>
<tr>
<td>VPAN2 1,5h</td>
<td>1,97</td>
</tr>
<tr>
<td>VPAN3 1,5h</td>
<td>7,57</td>
</tr>
<tr>
<td>VPAN4 1,5h</td>
<td>4,8</td>
</tr>
</tbody>
</table>
Zyklovoltammetrie der aktivierten Proben – Vergleich aller getesteten Aktivierungszeiten untereinander

Abbildung A.1 (a) – (e) Zyklovoltammogramme der aktivierten Proben der positiven Halbzelle: Vergleich der verschiedenen Aktivierungszeiten untereinander.
Tabelle A.4

<table>
<thead>
<tr>
<th>Vlies</th>
<th>I_{peak} [mA]</th>
<th>E_{onset} [mV]</th>
<th>ΔE_p [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenz</td>
<td>7.03 [-4.85]</td>
<td>890.15 [913.8]</td>
<td>266.19</td>
</tr>
<tr>
<td>VPAN0.5</td>
<td>4.46 [-3.15]</td>
<td>875 [918.24]</td>
<td>195.25</td>
</tr>
<tr>
<td>10 h</td>
<td>9.43 [-7.60]</td>
<td>830.53 [957.00]</td>
<td>170.70</td>
</tr>
<tr>
<td>5 h</td>
<td>9.31 [-7.57]</td>
<td>824.94 [957.00]</td>
<td>167.60</td>
</tr>
<tr>
<td>2.5 h</td>
<td>8.77 [-7.06]</td>
<td>835.00 [951.25]</td>
<td>170.66</td>
</tr>
<tr>
<td>1.5 h</td>
<td>9.11 [-7.15]</td>
<td>837.00 [951.25]</td>
<td>180.08</td>
</tr>
<tr>
<td>VPAN1</td>
<td>4.91 [-3.72]</td>
<td>868 [930.76]</td>
<td>158.31</td>
</tr>
<tr>
<td>10 h</td>
<td>8.87 [-7.27]</td>
<td>828.89 [951.92]</td>
<td>168.3</td>
</tr>
<tr>
<td>5 h</td>
<td>8.87 [-7.19]</td>
<td>825.70 [948.32]</td>
<td>168.3</td>
</tr>
<tr>
<td>2.5 h</td>
<td>9.36 [-7.05]</td>
<td>839.26 [949.76]</td>
<td>180.60</td>
</tr>
<tr>
<td>1.5 h</td>
<td>9.56 [-7.08]</td>
<td>841.54 [954.79]</td>
<td>181.0</td>
</tr>
<tr>
<td>VPAN2</td>
<td>6.23 [-4.76]</td>
<td>856.22 [939.76]</td>
<td>170.73</td>
</tr>
<tr>
<td>10 h</td>
<td>9.18 [-7.91]</td>
<td>780.10 [954.30]</td>
<td>155.16</td>
</tr>
<tr>
<td>5 h</td>
<td>8.29 [-7.00]</td>
<td>796.85 [954.33]</td>
<td>136.73</td>
</tr>
<tr>
<td>2.5 h</td>
<td>8.75 [-7.23]</td>
<td>827.86 [960.26]</td>
<td>145.91</td>
</tr>
<tr>
<td>1.5 h</td>
<td>8.86 [-6.98]</td>
<td>827.86 [957.75]</td>
<td>152.13</td>
</tr>
<tr>
<td>VPAN3</td>
<td>6.58 [-4.98]</td>
<td>856.41 [944.32]</td>
<td>164.53</td>
</tr>
<tr>
<td>10 h</td>
<td>9.04 [-7.76]</td>
<td>757.98 [942.45]</td>
<td>143.00</td>
</tr>
<tr>
<td>5 h</td>
<td>9.03 [-7.81]</td>
<td>753.99 [944.37]</td>
<td>143.00</td>
</tr>
<tr>
<td>2.5 h</td>
<td>9.25 [-7.76]</td>
<td>763.68 [948.20]</td>
<td>149.10</td>
</tr>
<tr>
<td>1.5 h</td>
<td>9.18 [-7.14]</td>
<td>821.82 [955.95]</td>
<td>158.43</td>
</tr>
<tr>
<td>VPAN4</td>
<td>5.96 [-4.54]</td>
<td>856.22 [934.1]</td>
<td>170.64</td>
</tr>
<tr>
<td>10 h</td>
<td>8.77 [-7.53]</td>
<td>760.00 [937.46]</td>
<td>152.58</td>
</tr>
<tr>
<td>5 h</td>
<td>9.13 [-7.72]</td>
<td>768.35 [934.61]</td>
<td>152.78</td>
</tr>
<tr>
<td>2.5 h</td>
<td>8.71 [-7.36]</td>
<td>777.93 [937.46]</td>
<td>146.30</td>
</tr>
<tr>
<td>1.5 h</td>
<td>8.77 [-6.97]</td>
<td>829.91 [938.83]</td>
<td>158.58</td>
</tr>
</tbody>
</table>
Mechanische Stabilität der verklebten Bipolarelektrodeneinheiten (BPE)

Abbildung A.2 | Anpressdruck in Abhängigkeit von der Kompression der verklebten Probe G/PAN1 im Vergleich zur nicht verklebten Probe.
9 DANKSAGUNG

An dieser Stelle möchte ich mich bei allen bedanken, die mich im Laufe meiner Promotion unterstützt und zum Gelingen beigetragen haben.

Ein besonderer Dank geht an Prof. Dr. Helmut Ehrenberg für die Ermöglichung dieser Arbeit im Institut für Angewandt Materialien - Energiespeichersysteme (IAM-ESS) und seine Unterstützung mit all seiner Erfahrung. Mein Dank gilt auch Prof. Dr. Annie Powell für die Übernahme und das Erstellen des Zweitgutachtens.

Ebenso möchte ich mich bei meinem Betreuer Dr. Frieder Scheiba für Diskussionen, Korrekturen und Anmerkungen bedanken.

Ein besonderer Dank geht an Hannes Radinger für die Durchführung unzähliger Messungen wie REM, XPS und Raman, sowie für die immer hilfreichen Diskussionen und Korrekturen und die tolle Zusammenarbeit.

Ich möchte dem gesamten IAM-ESS für die schöne Zeit danken, die ich zusammen mit allen erlebt habe. Besonders möchte ich mich bei Elke Herrmann für die gute Zusammenarbeit und

Zuletzt möchte ich dem Geldgeber, das Bundesministerium für Wirtschaft und Energie danken, welches das Projekt „HiCo-BiPEC“ (Förderkennzeichen: 03ET6130C) förderte, sowie den beteiligten Partnern der FU Berlin, Fraunhofer UMSICHT, Schunk Kohlenstofftechnik GmbH und Enerox GmbH.
10 WISSENSCHAFTLICHE BEITRÄGE

10.1 Publikationen

10.2 Konferenzbeiträge
