KIT | KIT-Bibliothek | Impressum | Datenschutz

Quality-Aware Learning to Prioritize Test Cases

Omri, Safa ORCID iD icon

Abstract (englisch):

Software applications evolve at a rapid rate because of continuous functionality extensions, changes in requirements, optimization of code, and fixes of faults. Moreover, modern software is often composed of components engineered with different programming languages by different internal or external teams. During this evolution, it is crucial to continuously detect unintentionally injected faults and continuously release new features. Software testing aims at reducing this risk by running a certain suite of test cases regularly or at each change of the source code. However, the large number of test cases makes it infeasible to run all test cases. Automated test case prioritization and selection techniques have been studied in order to reduce the cost and improve the efficiency of testing tasks. However, the current state-of-art techniques remain limited in some aspects. First, the existing test prioritization and selection techniques often assume that faults are equally distributed across the software components, which can lead to spending most of the testing budget on components less likely to fail rather than the ones highly to contain faults. ... mehr


Volltext (Version 2) §
DOI: 10.5445/IR/1000143079/v2
Veröffentlicht am 17.11.2022
Volltext (Version 1) §
DOI: 10.5445/IR/1000143079
Veröffentlicht am 18.02.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Hochschulschrift
Publikationsdatum 18.02.2022
Sprache Englisch
Identifikator KITopen-ID: 1000143079
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xiii, 118 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Theoretische Informatik (ITI)
Prüfungsdatum 28.01.2022
Schlagwörter Software Testing, Regression Testing, Continuous Integration (CI), Test Case Prioritization, Learning to Rank, Test Case Scheduling, Defect Prediction, Reinforcement Learning
Referent/Betreuer Sinz, Carsten
Schaefer, Ina
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page