KIT | KIT-Bibliothek | Impressum | Datenschutz

EuLerian Identification of ascending AirStreams (ELIAS 2.0) in numerical weather prediction and climate models - Part 2: Model application to different datasets

Quinting, Julian F. ORCID iD icon 1; Grams, Christian M. 1; Oertel, Annika ORCID iD icon 1; Pickl, Moritz ORCID iD icon 1
1 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Warm conveyor belts (WCBs) affect the atmospheric dynamics in midlatitudes and are highly relevant for total and extreme precipitation in many parts of the extratropics. Thus, these airstreams and their effect on midlatitude weather should be well represented in numerical weather prediction (NWP) and climate models. This study applies newly developed convolutional neural network (CNN) models which allow the identification of footprints of WCB inflow, ascent, and outflow from a limited number of predictor fields at comparably low spatiotemporal resolution. The goal of the study is to demonstrate the versatile applicability of the CNN models to different datasets and that their application yields qualitatively and quantitatively similar results as their trajectory-based counterpart, which is most frequently used to objectively identify WCBs. The trajectory-based approach requires data at higher spatiotemporal resolution, which are often not available, and is computationally more expensive. First, an application to reanalyses reveals that the well-known relationship between WCB ascent and extratropical cyclones as well as between WCB outflow and blocking anticyclones is also found for WCB footprints identified with the CNN models. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143098
Veröffentlicht am 16.02.2022
Originalveröffentlichung
DOI: 10.5194/gmd-15-731-2022
Scopus
Zitationen: 10
Web of Science
Zitationen: 7
Dimensions
Zitationen: 15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 27.01.2022
Sprache Englisch
Identifikator ISSN: 1991-959X, 1991-9603
KITopen-ID: 1000143098
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Geoscientific Model Development
Verlag Copernicus Publications
Band 15
Heft 2
Seiten 731-744
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page