KIT | KIT-Bibliothek | Impressum | Datenschutz

Correlated Sample-based Prior in Bayesian Inversion Framework for Microwave Tomography

Yadav, Rahul; Omrani, Adel ORCID iD icon 1; Link, Guido 1; Vauhkonen, Marko; Lahivaara, Timo
1 Karlsruher Institut für Technologie (KIT)

Abstract:

When using the statistical inversion framework in microwave tomography (MWT), generally the real and imaginary parts of the unknown dielectric constant are treated as uncorrelated and independent random variables. Thereby, in the maximum a posteriori estimates the two recovered variables may show different structural changes inside the imaging domain. In this work, a correlated sample-based prior model is presented to incorporate the correlation of the real part with the imaginary part of the dielectric constant in the statistical inversion framework. The method is used to estimate the inhomogeneous moisture distribution (as dielectric constant) in a large cross-section of a polymer foam. The targeted application of MWT is in industrial drying to derive intelligent control methods based on tomographic inputs for selective heating purposes. One of the features of the proposed method shows how to integrate lab-based dielectric characterization, often available in MWT application cases, in the prior modeling. The method is validated with numerical and experimental MWT data for the considered moisture distributions.


Download
Originalveröffentlichung
DOI: 10.1109/TAP.2022.3145433
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0018-926X, 0096-1973, 1558-2221, 1558-3643
KITopen-ID: 1000143102
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in IEEE Transactions on Antennas and Propagation
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 70
Heft 7
Seiten 5860 - 5872
Vorab online veröffentlicht am 28.01.2022
Externe Relationen Abstract/Volltext
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page