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a b s t r a c t

Decision support systems like computer-aided energy system analysis (ESA) are considered one of the
main pillars for developing sustainable and reliable energy strategies. Although today's diverse tools can
already support decision-makers in a variety of research questions, further developments are still
necessary. Intending to identify opportunities and challenges in the field, we classify modelling topics
into modelling capabilities (32), methodologies (15), implementation issues (15) and management issues
(7) from an extensive literature review. Based on a quantitative expert survey of energy system modellers
(N ¼ 61) mainly working with simulation and optimisation models, the Status of Development and the
Complexity of Realisation of those modelling topics are assessed. While the rated items are considered to
be more complex than actually represented, no significant outliers are determinable, showing that there
is no consensus about particular aspects of ESA that are lacking development. Nevertheless, a classifi-
cation of the items in terms of a specially defined modelling strategy matrix identifies capabilities like
land-use planning patterns, equity and distributional effects and endogenous technological learning as
“low hanging fruits” for enhancement, as well as a large number of complex topics that are already well
implemented. The remaining “tough nuts” regarding modelling capabilities include non-energy sector
and social behaviour interaction effects. In general, the optimisation and simulation models differ in their
respective strengths, justifying the existence of both. While methods were generally rated as quite well
developed, combinatorial optimisation approaches, as well as machine learning, are identified as
important research methods to be developed further for ESA.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A rapid shift to climate neutrality of the global economy is
required due to finite energy resources and the need to limit
climate change. In particular, this requires a shift to low-carbon
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technologies across the energy system, including renewable en-
ergy supply and increased efficiency on the demand side. One of the
main pillars for supporting global energy transitions involves wide-
ranging energy system analysis (ESA) and modelling (ESM) [1].
Depending on the structural characteristics of the system under
investigation and the purpose of the analysis, the spatial and
temporal matching of supply and demand can result in highly
complex problems, with a wide range of socio-techno-economic
assumptions and different levels of detail at hand [2]. This chal-
lenge is hardened by the exploitation of renewable energy sources,
which require parallel increases in the spatial and temporal
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resolution of ESMs. In such cases, optimum unit commitments and
dispatch for energy systems often cannot be determined analyti-
cally but require the use of mathematical optimisation models [3].
The same applies for studying social interactions of unrealistic
rational actors on the demand side with the help of agent-based
models [4] or for comparing policy measures that differ concern-
ing various key parameters such as costs, emissions, energy supply,
and others with simulation models [5].

Since assessment findings might be influenced by a wide range
of factors, rather holistic frameworks and profound models are
needed to sufficiently map the system complexities [6]. For
example, ESMs require sufficient consideration of uncertainties
[7,8] or socio-technical factors for improved realisation of optimal
transition pathways [9]. Groissb€ock [10] demanded a greater detail
in terms of modelling ramping of power plants as well as physical
and thermodynamic capabilities to not underestimate the
complexity of the energy system. Furthermore, Mohammadi et al.
[11] suggest that future multi-generation systems need a broader
perspective in terms of energy sources and Hansen et al. [12] see a
greater focus on the joint analysis of multidimensional flexibility
options along the energy value chain as important. Ringkjøb et al.
[13] request a better representation of short-term spatiotemporal
variability in long-term studies. In cases that high-resolution
modelling reaches the limits of being soluble in a reasonable
time, the planning and operational step might be divided con-
cerning different time scales with different levels of detail [14].
Keirstead et al. [15] call for the utilisation of computational ad-
vances like cloud computing for higher complexity modelling, e.g.
in terms of activity- and agent-based modelling. However, a higher
complexity might also lead to extra data collection efforts due to
more specific input parameters [15] and data uncertainty handling
since data quality is important [6].

In the past, energy researchers have developed and applied their
ownmodels to answer as many research questions as possible [16].
Due to a lack of transparency in modelling exercises, for example,
about assumptions, data sources, and uncertainties, the energy
system modelling field has attracted a lot of criticism [17,18].
Recently, there have been increasing calls to make ESM and ESA
more transparent or even publicly available [19,20]. Nevertheless,
existing open-source and commercial energy system models still
do not account for all aspects that are necessary for determining
successful transition pathways [10]. Moreover, politicians should
receive alternative options and recommendations for debating
desired energy futures [5]. A recent study on the trends in tools and
approaches of energy systemmodels has also shown that key issues
of the models continue to be mainly tool coupling, accessibility and
perceived policy relevance [21]. In the future, therefore, numerous
further research challenges will have to be tackled to respond to the
future system [8,22].

Indeed, the strong interest in ESA and ESM in recent decades has
inspired many reviews about ESA and ESM to present available
tools for different questions, classify model representations and
outline future challenges. Building on the classifications, findings
and conclusions of 28 review papers of ESA, partially introduced
above and systematically compiled in the Supplementary Material
A, this paper aims to identify future research opportunities and
challenges for ESA. The focus of the analysis is on modelling topics
as measured throughmodelling items related to different aspects of
energy system modelling and not specific models. For this, we
conducted a quantitative expert surveywith a sample size of N¼ 61
in the summer of 2020 to provide insights regarding the criteria
Status of Development and the Complexity of Realisation of 96
identified and classified question items. The compilation and clas-
sification of actual representations and future needs from the
analysed review papers in terms of modelling capabilities,
2

methodological options, implementation approaches, and man-
agement challenges serve as the foundation for our survey.
Although there are individual expert-based or rather developer-
based surveys for reviewing selected energy modelling tools [23],
classifying complexity of ESMs [16], and assessing current trends
and challenges in ESA [21], our survey-based study employs a
broader approach focusing not on representations of specific
models but general representations of the research field. Thus, our
results enable the identification of key modelling aspects that have
been neglected in the past but might be easy to implement in the
future, as well as those that will be very challenging. These insights
can support researchers, practitioners and policymakers to select
suitable focus areas for future research projects. This paper also
complements and builds on a parallel bibliometric analysis of the
ESA field [24].

To achieve this, the paper is structured as follows: the meth-
odology used to create and evaluate the survey is presented in
Section 2. Subsequently, our results are presented in Section 3
before the implications and main opportunities and challenges
are discussed in Section 4. The paper then concludes in Section 5.

2. Methodology

In the present study, future modelling needs are explored with
the help of a computer-aided survey. The focus of the surveywas on
methodologies and modelling items related to different aspects of
energy systems, while the purpose of specific models was out of the
scope of this study. The form of data acquisition is a central chal-
lenge in every research project, as it influences survey design,
sampling strategy, recruitment procedures, and statistical evalua-
tion techniques. While Section 2.1 presents the data acquisition
method and the survey design, Section 2.2 describes the recruit-
ment procedure and section 2.3 the applied evaluation procedure.

2.1. Form of data acquisition and design of the survey

As an appropriate technique of data acquisition, a web-based
survey was chosen. The structure of the survey was largely deter-
mined by the research objective to assess the most urgent im-
provements and most relevant challenges for ESA. The
corresponding question items (modelling topics) were systemati-
cally derived from a review of various ESM reviews (cf. Section 1)
and a comprehensive bibliometric analysis of the field [24]. An
overview of the results of the literature analysis concerning the
research scope and future needs is outlined in the Supplementary
Material A. During the development process, modelling challenges
and future needs were clustered, defined and classified by the
research team. The survey started with a selection of socio-
demographic questions. Since the participants were asked to
answer the questions according to their background information,
the model type used and the associated temporal and spatial scale
are of particular importance. While every participant could choose
different characteristics concerning temporal and spatial scale, they
had to select exactly one model type they were mainly working
with. The selectable model types were optimisation, simulation,
multi-agent, partial equilibrium, system dynamics, game-theoretic,
and other bottom-upmodels. Despite the possible overlap between
the models, we decided that this is the best possibility to compare
the modelling topic ratings regarding the different model types. In
most real-world examples, based on our review of the literature,
one of the above model types generally tends to dominate. Sub-
sequently, several challenges needed to be assessed by the re-
spondents. The 96 challenges derived from the synthesis of peer-
reviewed energy system analysis reviews were arranged into four
sections: 1. Capabilities, 2. Methodology, 3. Implementation, and 4.
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Management (cf. Table 1). A complete overview of the survey
questions is provided in the Supplementary Material B.

In the four survey sections, we invented and employed two
main criteria to assess the 96 different items related to different
aspects of energy systemmodelling, namely Status of Development
and Complexity of Realisation. While the first criterion Status of
Development was related to the question “Which of the following
modelling topics would you consider as already represented
adequately in the field of energy system analysis and which ones
need improvement?”, the second criterion Complexity of Realisa-
tion was related to the question “Which of the following modelling
topics has been/can be realised without significant difficulties in
the field of energy system analysis and which ones not, due to a
high level of complexity”. Both criteria were queried on an ordinal
scale with a five-point Likert scale ranging from 1-very low to 5-
very high.1 Even though the survey consisted mainly of closed
questions, all parts included an option called ‘I don't know’ or ‘not
applicable’. Since the questionnaire comprised items derived from
the literature body, one open question was asked to the ESM ex-
perts to state innovative future modelling directions. In the survey,
the term framework was defined as a generic program that can be
applied for different use cases (e.g. code and structure). In contrast,
a model was defined as a corresponding application of a framework
(e.g. for a certain set of countries and time resolution including
appropriate data). To reduce confusion, we only applied the term
“model” in the questions, although we are aware that the
mentioned challenges could only be tackled on the framework
level.
2.2. Recruitment procedure

In line with the research objectives, we aimed to obtain re-
sponses from leading experts in the field of ESA from all over the
world. Potential respondents were identified through the authors’
combined networks. Furthermore, key authors in the field were
selected in a parallel bibliometric analysis on energy system anal-
ysis based on publication numbers and citation indices [24]. In this
context, we analysed the exponentially growing number of publi-
cations in the field of ESA for the last two decades by employing
different statistical techniques and identified among others the
most productive andmost referenced authors of different countries
and institutions. To reduce the potential bias of our network, we
included these top authors from the most productive countries in
our list of potential participants. In total, 571 potential participants
and their email addresses were collected. By prioritising the expert
knowledge of respondents over the number of respondents, we aim
for a more homogeneous selected group of participants with a
profound background in ESM. This should lead to a greater com-
mon understanding of the modelling topics and the two aspects
queried.

The web-based survey was created and processed with the aid
of the LimeSurvey service. To determine the effectiveness of our
survey, a pretest was carried out with experts in our closer net-
works at the end of June and the beginning of July 2020. The
feedback was used to specify the two assessment criteria more
precisely and to combine, revise or eliminate question items. Even
though we cannot completely exclude any bias in interpreting the
criteria and answering the questions, we tried to reduce a different
1 In the management section of the survey (survey section 4) the criterion
Complexity of Realisation was replaced with Difficulty of Realisation. Thereby, the
related question was “Which of the following management aspects can be realised
without difficulties in the field of energy system analysis and which ones have a
high level of difficulty?”.
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understanding by incorporating their feedback in the provided final
definition. Also, we discussed the meaning amongst the authors.
While the potential participants were addressed personally, the
cover letter of the invitation mail (c.f. Supplementary Material C)
explained the intention and background of the study and provided
personal contact information. The first invitation was sent out on
July 24th. Besides, the study results were offered as an incentive for
participation. On September 21st, the addressees received one
reminder to participate in the survey. The final sample consisted of
61 completed questionnaires. This corresponds to a response rate of
around 11%. Fieldwork was completed on October 31, 2020.
Although the response rate is low, it is still comparable to similar
survey studies [25] and our sample size is greater than in similar
studies [21,23,26]. Sincewe had a quite long survey and because the
invitations were directed to experts of the ESA field who are
generally invited to similar surveys more often, the response rate
seems reasonable.

An overview of the expert sampleworking in 23 countries of the
world (N ¼ 61) in absolute numbers is outlined in Table 2 and
Table 3. The respondents’ countries cover 70% of the top 20 most
productive countries in terms of the total number of publications in
the field of ESA [24]. Around 75% of the respondents were (senior)
researchers or (assistant/associate/full) professors. More than half
of the respondents were experts workingwith optimisationmodels
(62%, cf. Fig. 1). A further 20% of the respondents mainly worked
with simulation models, and the final 18% used different types of
bottom-up models. These proportions align with the identified
keywords “simulation” and “optimisation” in our bibliometrics
analysis [24]. Due to the low number of participants, we also
summarised these types under the category “others” for further
analyses (multi-agent, partial equilibrium, system dynamics, game-
theoretic). Despite the overlap between some model types, we
assumed that the participants made a conscious decision against
the common categories of optimisation and simulation when
choosing, e.g., partial equilibrium models. In terms of the temporal
and spatial scale, the models were distributed quite well between
the choices. While around 23% of the models were related to short-
term analyses, 30% were related to mid-term analyses, and 47%
were related to long-term analyses. Furthermore, 23% focused on a
plant or building scale, 41% on a district, municipality or regional
scale, and 36% on a national or international scale. Even if the
temporal and spatial scale does not provide a precise definition of
the purpose of the modelling activities, it gives a rough indication
of the kind of models. In addition, Fig. 2 shows the methods used
concerning the working position of the respondents. Most of the
respondents worked within public universities (68%) or research
institutions (17%) and were male (80%). Around half of the re-
spondents (45%) also reported that they already followed some
kind of open source strategy in energy system modelling (fully
open data and code: 25%; fully open code but data not or only partly
open: 14%; fully open data but code not or only partly open: 7%).

2.3. Statistical evaluation procedure

Data analysis was conducted using the software package SPSS
(IBM). In this context, four analysis steps were carried out. The
order of analysis presented below also corresponds to the structure
of the result sub-sections in Section 3.2, Section 3.3, and Section 3.4.

First, the mean ratings of the modelling items regarding the two
main criteria Status of Development and Complexity of Realisation
were calculated for each survey section. An overview of the results
is provided in Appendix A Tables A1, A2, and A3 from the
perspective of the whole survey sample as well as the sub-samples
of optimisation model users, simulation model users, and other
model users. For a quick orientation, the mean of the rated items



Table 1
Composition and structure of the main parts of the computer-aided survey. The modelling topics to be assessed were derived from the literature and arranged into four sections. In this context, sixty-nine items were queried
concerning the Status of Development and the Complexity of Realisation. Furthermore, one open questionwas asked to the ESM experts. The structure of the categories (A, B, C,…) for each section and the numbering of the items
(1,2,3,..) is used to describe the results.

# Section title Section description Question items

1 Capabilities This section deals with the concrete capabilities of models for modelling various
relevant aspects of energy systems. To facilitate a detailed analysis, the focus of energy
systemmodels typically lies in the simplified techno-economic representation of reality.
Relevant model capabilities relate to all parts of the energy value chain.

8 categories, 32 items;
A) Social aspects and human behaviour modelling:
1. technology acceptance and adoption, 2. lifestyle aspects, 3. stakeholder dynamics and coordination, 4.
technology diffusion, 5. equity and distributional effects
B) Demand-side modelling: 6. Energy service demands, 7. demand-side technology heterogeneity, 8.
consumption process models
C) Transmission and distribution system modelling:
9. microgrid and autonomy aspects, 10. power network characteristics, 11. gas network characteristics, 12. heat
network characteristics, 13. virtual power plants, 14. ancillary services and spinning reserve
D) Supply generation modelling:
15. ramping capabilities, 16. detailed technology process models, 17. supply-side technology heterogeneity, 18.
non-conventional energy supply sources
E) Flexibility, sector coupling and energy system integration modelling:
19. cross-sectoral approaches, 20. multi-energy services and carriers, 21. innovative storage modelling, 22.
supply-side flexibility options, 23. demand-side flexibility options
F) Markets and regulations framework modelling:
24. inter-market modelling, 25. market design, 26. regulatory and policy frameworks
G) Environmental and resources modelling:
27. land-use planning patterns, 28. material resource assessments and limitations, 29. nexus issues: for example,
land/energy/water/food
H) Feedback and interaction effects:
30. endogenous technology learning, 31. elastic demand, 32. non-energy sector impacts

2 Methodology This section deals with the methodological approaches of energy system models. Given
the analysis purposes and the complexity of the system, a variety of approaches have
been developed to define and analyse the planning issues, each with its advantages and
limitations. Crucial methodological choices are related to the model type, mathematical
class, spatial and temporal resolution.

3 categories, 15 items; 1 open question
A) High-resolution modelling:
1. high(er) level of spatial disaggregation, 2. high(er) level of temporal disaggregation, 3. foresight approaches, 4.
decomposition methods, 5. soft- or hard-coupling of models
B) Programming formulations:
6. new general mathematical frameworks, 7. Non-linear programming formulations, 8. mixed-integer
programming formulations, 9. linear programming formulations, 10. stochastic optimisation
C) Model characteristics:
11. consistent and high-quality data sources, 12. higher focus on uncertainty analysis, 13. sustainability indicator
assessment, 14. technology neutrality, 15. integrated assessment of multiple capabilities

3 Implementation This section deals with the implementation of a model, including its usability in general
as well as how themodel can be applied by different users. Furthermore, documentation
standards, as well as technical development options such as standardisation, validation
and benchmarking options, affect the implementation options of a model.

4 categories, 15 items;
A) Development activities:
1. adequate programming language selection, 2. adequate solver selection, 3. modular and adaptable modelling
systems, 4. availability of model coupling interfaces
B) Model validation and benchmarking:
5. well-documented model validations, 6. well-documented benchmarks for solving common problems
C) Model usability:
7. (graphical) user interfaces, 8. scenario management tools, 9. web-based and cloud computing environments,
10. master data management systems
D) Documentation standards:
11. installation and application instructions, 12. equation documentations, 13. standards for documentation of
data records, 14. clear licensing for code, 15. clear licensing for data

4 Management This section relates to all operational functions dealing with research projects
employing energy system analysis. It covers personnel management, contractual
arrangements and can include any functions related to intellectual property, project
development, and results dissemination.

3 categories, 7 items;
A) Human resources management:
1. the possibility of recruiting adequately trained staff, 2. the existence of continuous training
B) Research infrastructure:
3. presence of continuous model maintenance and version control, 4. presence of technical infrastructure
C) Results dissemination:
5. appropriate journals for the publication of the project results, 6. compliance with requirements for open
access, open data, and open-source code, 7. public presentation of the project results
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Table 2
Overview of the survey sample structure. The number of respondents is shown in
total and concerning their type of model, they are mainly working with and the
institution they are working for. Furthermore, the sex of the respondents is dis-
played. The survey focuses on bottom-up energy system models: optimisation
models (Opt), simulation models (Sim), multi-agent models (Agent), partial equi-
librium models (Equil), system dynamics models (Dynm), game-theoretic models
(Game), and other bottom-up models (Ors). Due to the low level of respondents and
the main focus of this publication, the later models (*) are summarised in further
analyses. The institutions are abbreviated as follows: university (Uni), research
institution (Inst), private company (Comp), public authority (Auth), and others.

Sample Institution Gender

N Uni Inst Comp Auth Others Male Female Others

Opt 38 26 7 6 1 0 33 4 1
Sim 12 12 1 0 0 0 9 3 0
Agent* 1 1 0 0 0 0 1 0 0
Equil* 4 0 2 2 0 0 3 1 0
Dynm* 2 2 0 0 0 0 2 0 0
Game* 1 1 0 0 0 0 0 1 0
Ors* 3 2 1 0 0 1 1 2 0
Total 61 44 11 8 1 1 49 11 1

F. Scheller, F. Wiese, J.M. Weinand et al. Smart Energy 4 (2021) 100057
across the whole sample is also presented with the help of our
specially defined modelling strategy matrix. While an initial over-
view of all items of all sections is given in Fig. 3, a modelling
strategymatrix for each section is outlined in Fig. 4 and Fig. 6, Fig. 8,
respectively. The 2 � 2 (two-by-two) matrix diagram is a decision
support technique where a simple square is divided into four equal
Table 3
Overview of the specifiedmodel type the respondents areworking with. The number of re
of the temporal (from short to long term) and spatial scale (from plant level to internati
models (Sim), multi-agent models (Agent), partial equilibriummodels (Equil), system dyn
(Ors). Due to the low level of respondents and themain focus of this publication, the latter
model sub-groups in the actual analysis: optimisation models (Opt), simulation models

Temporal scale Spatial scale

Short term Mid term Long term Plant level Building scale

Opt 11 18 31 14 12
Sim 6 5 6 2 4
Agent* 1 0 1 1 0
Equil* 0 0 4 0 0
Dynm* 1 1 0 1 0
Game* 1 1 0 0 1
Ors* 1 3 1 2 2
Total 21 28 43 20 19

Fig. 1. Overview of the temporal and spatial scales of the models of the sample with simu
simulation models (Sim), multi-agent models (Agent), partial equilibrium models (Equil), sy
models (Ors)).

5

quadrants. Each axis represents one of our decision criteria, such as
Status of Development (bottom horizontal axis) and Complexity of
Realisation (left vertical axis). This makes it easy to classify the
rated items and visualize the modelling items of the different
sections that are poorly developed and easy to implement (low
hanging fruits), poorly developed and complex to implement (tough
nuts), highly developed and easy to implement (long runners), and
highly developed and complex to implement (top stars). In this
context, the mean ratings in tables and matrices allow initial
statements about current and future modelling approaches, thus
regarding the least and most adequately represented items and the
easiest and most difficult realisations of them. Table 4 gives more
detailed insights regarding the quadrants.

Second, pairwise Spearman coefficients between the rating of
the Status of Development and the Complexity of Realisation were
determined for each of the sub-groups, which provide insights into
the interrelations of the main criteria. Thereby, the correlation was
defined to be significant at the 10% level. As with the mean ratings,
the results are provided in Appendix A Tables A1, A2, and A3.

Third, to underpin the differences between various mean ratings
within the distinct sub-groups of respondents who work with
optimisation, simulation or other model types, statistically signifi-
cant relationships between the reported model type and rated
criteria were examined using the Kruskal-Wallis H test. The Mann-
Whitney U test was then utilised post-hoc to compare each of the
identified relationships. Moreover, Mann-Whitney U tests were
conducted for other non-distinct sub-groups such as different
spondents is shown in total and themode type is furthermore specifiedwith the help
onal scale). The model types are divided into optimisation models (Opt), simulation
amics models (Dynm), game-theoretic models (Game), and other bottom-up models
models (*) will be summarised in further analyses. Thus, there are only three distinct
(Sim) and other models (Agent, Equil, Dynm, Game, Ors).

District scale Munici-pality Region. scale Nation. scale Intern. scale

12 11 21 27 18
4 4 5 3 3
0 0 0 1 0
1 2 1 3 3
1 1 0 0 0
1 1 0 0 0
1 2 2 2 2
20 21 29 36 26

ltaneous consideration of the energy system model type (optimisation models (Opt),
stem dynamics models (Dynm), game-theoretic models (Game), and other bottom-up



Fig. 2. Overview of the positions of the sample with simultaneous consideration of the energy system model type (optimisation models (Opt), simulation models (Sim), multi-agent
models (Agent), partial equilibrium models (Equil), system dynamics models (Dynm), game-theoretic models (Game), and other bottom-up models (Ors)).

Fig. 3. Overview of the modelling strategy matrix for the average ratings of the modelling capabilities (red), modelling methodologies (blue) and implementation approaches (grey)
regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole
survey sample. The centroids of each item section are depicted with the cross in the respective colour (modelling capabilities (2.9,3.2); modelling methodologies (3.2,3.4);
implementation approaches (3.1,3.1)). The meaning of the quadrants is described in Table 4. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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temporal scales, spatial scales, and respondent's positions. Partic-
ular dependencies were highlighted and interpreted in the
respective sub-sections. As with the correlation, the 10% confidence
level was also used here as the level of significance. In this regard,
we used the various scales to determine whether individual
modelling items are assessed differently for different kind of
models and thus for different purposes.

Fourth, a pairwise Spearman correlation matrix of all of the
rated items was determined in terms of the whole sample and for
6

the two main assessment criteria. Figs. 5 and 7 summarise the
coefficients for the modelling capabilities and modelling method-
ologies. The analysis results allow a description of dependencies
between items in one category but also across categories for the
two criteria and, thus, answers questions about whether certain
items have always been rated similarly. Since there should not be
logical dependencies between the items in the last two survey
sections (Implementation and Management items, respectively),
only the first two survey sections (Capability and Methodology



Fig. 4. Overview of the modelling strategy matrix for the average ratings of the modelling capabilities regarding the Status of Development (ordinal scale very low 1- very high 5)
and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole survey sample. The categories of the capabilities are social aspects and
human behaviour modelling (A), demand-side modelling (B), transmission and distribution system modelling (C), supply generation modelling (D), flexibility, sector coupling and
energy system integration modelling (E), markets and regulations framework modelling (F), environmental and resources modelling (G), as well as feedback and interaction effects
(H). The meaning of the quadrants is described in Table 4.

Table 4
Definition and explanation of the different quadrants of the specifically designed modelling strategy matrix to visualize and classify the rated modelling items queried in the
survey. The matrix is divided into four quadrants with a vertical line down the middle and a horizontal line across the middle of the box. The four quadrants are named low
hanging fruits, tough nuts, long runners, and top stars. Subsequently, the rated modelling items have been be assigned to one quadrant. With this in mind, a future modelling
strategy concerning the different modelling items can be defined.

Quadrant Definition Interval “Status of
Development”

Interval “Complexity of
Realisation”

Strategy

Low hanging fruits (bottom-
left quadrant)

Poorly developed and easy to
implement

[0; 3] [0; 3] Modelling items represent straightforward
model extensions

Tough nuts (upper-left
quadrant)

Poorly developed and complex to
implement

[0; 3] (3; 5] Modelling items represent fundamental model
extensions

Long runners (bottom-right
quadrant)

Highly developed and easy to
implement

(3; 5] [0; 3] Modelling items represent common model
components

Top stars (upper-right
quadrant)

Highly developed and complex to
implement

(3; 5] (3; 5] Modelling items represent specific model
features
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items) were taken into account.
Fifth, the answers to the one open question on innovative future

modelling directions are discussed and summarised in the
discussion.
3. Findings

The survey findings are presented individually for each survey
section. While Section 3.1 gives an initial insight into the general
ratings of all items, the following sections present the rated items in
more detail: Section 3.2 deals with the modelling capabilities,
Section 3.3 with the modelling methodology, Section 3.4 with the
implementation approach, and Section 3.5 with the project man-
agement. The structure of each sub-section follows the analysis
steps as described in Section 2.3.
7

3.1. Modelling topics overview

The average (mean) ratings across the whole sample of the
modelling capabilities, modelling methodologies, and imple-
mentation approaches are provided in Fig. 3. While we show all the
results rounded to one decimal, the vast majority assessed the
different modelling topics of the different survey sections in a quite
similar way without big outliers. The mean overall is 3.0 in terms of
the criteria Status of Development and 3.2 in terms of the criteria
Complexity of Realisation. Thereby, the items related to the
modelling capabilities demonstrate the lowest average (2.9) and
the items related to the modelling methodology the highest
average (3.2) concerning the assessment criteria Status of Devel-
opment. In terms of the Complexity of Realisation, the imple-
mentation items are rated lowest (3.1) and the methodology items



Fig. 5. Pairwise Spearman correlation matrix (r) of the modelling capabilities concerning the Status of Development ratings among each other (lower triangle of the correlation
matrix) and the Complexity of Realisation ratings among each other (upper triangle of the correlation matrix). The coefficients are shown for the total sample and only for sig-
nificant values (correlation is significant at the 10% level). Based on the significant coefficients a colour transition from red over white to blue or rather lower coefficients over
medium coefficients to higher coefficients is applied in this table. The categories of the capabilities are social aspects and human behaviour modelling (A), demand-side modelling
(B), transmission and distribution system modelling (C), supply generation modelling (D), flexibility, sector coupling and energy system integration modelling (E), environmental
and resources modelling (F), feedback and interaction effects (G). The numbers (1e32) are related to the question items of the modelling capabilities (c.f. Table 1). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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again highest (3.4). At the same time, the standard deviation of the
ratings of the Status of Development is higher than the ratings of
the Complexity of Realisation for each survey section (Capability:
0.45 vs. 0.17; Methodology: 0.37 vs. 0.23; Implementation: 0.35 vs.
0.34). Thus, there is a lower agreement between the experts on the
Status of Development than on the Complexity of Realisation.

Most of the items are assessed as top stars according to our
modelling strategymatrix, followed by various items which are seen
as tough nuts. Only a few items are rated as low hanging fruits or long
runners. Since our survey questions are related to well-known
modelling aspects, which have been identified with the help of a
bibliometric analysis and a literature review as outlined in Section
2.1, these results seem plausible. While there are hardly any outliers,
individual capability items are rated lowest in terms of the Status of
Development (lifestyle aspects, equity and distributional effects,market
design, non-energy sector impacts). In contrast, one single method-
ology item is considered to be the most developed (linear program-
ming formulations). Further detailed insights into the assessment of
the individual item ratings are given in the following sections.

Nevertheless, the participants used the full five-point Likert
scale for rating the modelling topics. While for the capability sec-
tion, the ordinal scale response very low (“1”) was given on average
by 12% with a maximum of 35% for the different items, the ordinal
scale response very high (“5”) was given on average by 13% with a
8

maximum of 29%. For the methodology items, implementation
items, and for the management items, the response very low was
given on average by 8%, 11%, 9% and very high by 17%, 14%, 20%,
respectively. The respective maxima were for very low 16%, 24%,
and 19% and for very high 17%,14%, 20%. Additionally, therewere no
items from the methodology, implementation, and management
section that did not get a very low or very high assessment.
3.2. Capability items

The average ratings of the modelling capabilities (cf. Table A1,
Fig. 4) demonstrate a heterogeneous picture. The two capability
items lifestyle aspects (2.3 ± 1.0, n ¼ 55),2 as well as equity and
distributional effects (2.3 ± 1.0, n¼ 49) of the category social aspects
and human behaviour modelling (A), are assessed as the least
adequately represented in the field of ESA. With nearly the same
average rating, market design (2.3 ± 1.2, n ¼ 54) and non-energy
sector impacts (2.3 ± 1.2, n ¼ 52) rank close behind them. The
associated categories markets and regulations framework model-
ling (F) and feedback and interaction effects (H) are also are the
worst rated. In contrast, supply-side technology heterogeneity
(mean ± standard deviation, sample size).



Fig. 6. Overview of the modelling strategy matrix for the average ratings of the modelling methodologies regarding the Status of Development (ordinal scale very low 1- very high
5) and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole survey sample. The categories of the methodologies are high-resolution
modelling (A), programming formulations (B), model characteristics (C). The meaning of the quadrants is described in Table 4.

Fig. 7. Pairwise Spearman correlation matrix (r) of the modelling methodologies concerning the Status of Development ratings among each other (lower triangle of the correlation
matrix) and the Complexity of Realisation ratings among each other (upper triangle of the correlation matrix). The coefficients are shown for the total sample and only for sig-
nificant values (correlation is significant at the 10% level). Based on the significant coefficients a colour transition from red over white to blue or rather lower coefficients over
medium coefficients to higher coefficients is applied in this table. The categories of the methodologies are high-resolution modelling (A), programming formulations (B), model
characteristics (C). The numbers (1e15) are related to the question items of the methodological approaches (c.f. Table 1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 8. Overview of the modelling strategy matrix for the average ratings of the implementation approaches regarding the Status of Development (ordinal scale very low 1- very
high 5) and Complexity of Realisation (ordinal scale very low 1- very high 5) from the perspective of the whole survey sample. The categories are related to development activities
(A), model validation and benchmarking (B), model usability (C), and documentation standards (D).
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(3.7 ± 1.1, n¼ 58) and energy service demands (3.7 ± 1.2, n ¼ 56) are
examined to be best represented. The associated categories supply
generation modelling (D) and demand-side modelling (B) are also
considered to be best represented on the average of all item ratings.

In terms of the realisation difficulties, all capability items of the
category flexibility, sector coupling and energy system integration
modelling (E) are assessed with the highest complexity (e.g., de-
mand-side flexibility options: 3.6 ± 1.1, n ¼ 60; cross-sectoral ap-
proaches: 3.5 ± 1.2, n ¼ 57). Technology diffusion (2.9 ± 1.1, n ¼ 51),
micro-grid and autonomy aspects (3.0 ± 1.3, n ¼ 52) and virtual
power plants (3.0 ± 1.1, n ¼ 49) are considered as easiest to
implement. It should be noted, however, that the assessments of
the Complexity of Realisation are associated with a lower variance.
While the differences for the highest and lowest-ranked capabil-
ities is only 0.74 for this criterion, the difference is 1.44 for the
Status of Development.

As visualised in the modelling strategy matrix in Fig. 4, with
moderate realisation complexity and low development status,
land-use planning patterns, virtual power plants, equity and
distributional effects, and endogenous technological learning could
represent low hanging fruits for future model enhancements. On
the other hand, non-energy sector impacts, stakeholder dynamics,
market designs, and lifestyle aspects are viewed as poorly devel-
oped but also complex to implement. These tough nuts might
represent future features of individual models.

Despite the various mean ratings between the sub-groups of
respondents who work with optimisation, simulation or other
models (cf. Table A1), statistically significant relationships between
the reportedmodel type and rated criteria are found concerning six
items for each criterion. While the null hypothesis of the
KruskaleWallis H test suggests that all the medians are equal, a
rejection indicates a statistically significant relationship. In this
regard, the null hypothesis is rejected for the items technology
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acceptance and adoption, ramping capabilities, detailed technology
process models, supply-side flexibility options, regulatory and policy
frameworks, and elastic demand in terms of the Status of Develop-
ment. The same is valid in terms of the Complexity of Realisation for
the items technology diffusion, multi-energy services and carriers,
supply-side flexibility options, market design, endogenous technology
learning, and elastic demand. The post-hoc pairwise comparisons of
each model type with the ManneWhitney U test shows that
simulation models are more advanced than optimisation models to
represent technology acceptance and adoption. In contrast, optimi-
sation models are more developed concerning ramping capabilities
compared with simulation models, detailed technology process
models compared with simulation models and other models, and
supply-side flexibility options compared with simulation models.
Other models demonstrate a higher development status concern-
ing regulatory and policy frameworks and elastic demands towards
optimisation and simulation models. Besides, unexpectedly the
ManneWhitney U test revealed that all six listed capabilities are
indicated as significantly more complex to realise for simulation
than optimisation models. Due to the small sample size of indi-
vidual sub-groups, all comparisons between them, however, need
to be treated with caution.

A closer investigation of the impact of different temporal scales
(short-term, mid-term, long-term) shows hardly any peculiarities.
While the short-term experts report on average a slightly higher
Status of Development of capabilities related to the categories
transmission and distribution system modelling (C), demand-side
modelling (B), and social aspects and human behaviour modelling
(A), the long-term experts report a slightly higher Status of
Development of capabilities related to the categories markets and
regulations framework modelling (F), and flexibility, sector
coupling and energy system integration modelling (E). In this
context, the capabilities with the highest mean differences are
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microgrid and autonomy aspects, cross-sectoral approaches, ancillary
services, and consumption process models. A significant dependency
is shown for the items consumption process models and microgrid
and autonomy aspects when we conduct the ManneWhitney U test
from short term and long term perspective. At the same time, the
items cross-sectoral approaches and ancillary services demonstrate
only a significant dependency from the perspective of long term
modelling or short term modelling, respectively. A similar result is
obtained for the items lifestyle aspects, stakeholder dynamics as well
as regulatory and policy frameworks, which show a significant
relationship with the long term modelling focus towards other
responses.

Moreover, a higher average development status rating dependent
on the spatial scales (small scale, medium scale, large scale) is
indicated for smaller than larger scales for the categories social as-
pects and human behaviour modelling (A) and transmission and
distribution system modelling (C). In contrast, flexibility, sector
coupling and energy system integration modelling (E) is rated on
average slightly higher by large scale model experts. The capabilities
with the highest mean differences are micro-grid and autonomy as-
pects, lifestyle aspects, stakeholder dynamics, and cross-sectoral ap-
proaches. This time, the conducted ManneWhitney U test reveals a
significant difference between the ratings of the mentioned items.
The pairwise test showed a significant difference from the point of
view of the small scale experts and from the point of view of the
large scale experts. Thus, large-scale model experts really rate these
items higher. The same is true for equity and distributional effects,
power network characteristics, and detailed process models.

The importance of the capabilities of the same category is again
demonstrated with a correlation analysis of the ratings of all ca-
pabilities (c.f. Fig. 5). Various capabilities of the same category are
rated similarly by the total sample. On the one hand, this underlines
the focus on certain categories in the past and the importance of
other categories in the future. On the other hand, this shows that
the capabilities of the same category are conceived together. The
interrelations between the modelling capabilities are examined
using Spearman's rank correlation coefficient. On the one hand,
modelling capabilities of the categories social aspects and human
behaviour modelling (A), sector coupling and energy system inte-
gration modelling (E), as well as feedback and interaction effects
(G) show several significant and strong correlation coefficients
regarding the Status of Development and Complexity of Realisation.
On the other hand, capabilities of the environment and resources
modelling (F) show a significant and strong correlation coefficient,
especially regarding the Complexity of Realisation. In terms of the
Status of Development, the strongest significant correlations are
between the capabilities lifestyle aspects and equity and distribu-
tional effects (A2, A5: r ¼ 0.674), power network characteristics and
gas network characteristics (C10, C11: r ¼ 0.663), ramping capabil-
ities and supply-side flexibility options (D15, E22: r ¼ 0.658), inno-
vative storage modelling and supply-side flexibility options (E21, E22:
r ¼ 0.657). In terms of the complexity of realisation, the strongest
significant correlations are betweenmarket design and inter-market
modelling (F24, F25: r ¼ 0.837), nexus issues and material resource
assessments and limitations (G28, G29: r ¼ 0.761), regulatory and
policy frameworks and market design (F25, F26: r ¼ 0.751).

3.3. Methodology items

Similar to the capabilities, different approaches to themodelling
methodology are rated by the experts (c.f. Table A2, Fig. 6). On
average over the entire sample, the category programming for-
mulations (B) includes the items with the highest as well as the
lowest development status. While new general mathematical
framework aspects (2.8 ± 1.1, n ¼ 38) and Non-Linear Programming
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(NLP) formulations (2.9 ± 1.2, n ¼ 48) are viewed as underdevel-
oped, Mixed Integer Programming (MIP) (3.7 ± 1.3, n ¼ 50) and
Linear Programming (LP) formulations (4.0 ± 1.3, n ¼ 55) are
considered as highly developed. The last item of the category Sto-
chastic Optimisation (SO) formulations (2.9± 1.2, n¼ 50) is also seen
as not yet fully exploited. In this regard, only the decomposition
methods (2.9 ± 1.2, n ¼ 53) and the focus on uncertainty analysis
(2.9 ± 1.0, n ¼ 59) are rated slightly lower. While there is no clear
trend in terms of individual categories, more complex mathematical
structures are seen as tough nuts for future models. In terms of the
Complexity of Realisation, different capabilities such as NLP for-
mulations (3.8 ± 1.1, n ¼ 44) or decomposition methods (3.6 ± 1.0,
n ¼ 49), which have been rated rather low in the Status, are
considered difficult. At the same time, keeping consistent and high-
quality data sources is seen throughout as most complex to realise
(3.9 ± 1.1, n ¼ 59) but also as quite advanced (3.7 ± 1.0, n ¼ 60) in
the field. Thereby, the ratings regarding the Complexity of Real-
isation again exhibit a smaller variance as in the previous section.

Modelling methods that might be most suitable for future
research in terms of both criteria are sustainability indicator as-
sessments and stochastic optimisation. At the same time, the
modelling strategy matrix does not show any low hanging fruits (cf.
Fig. 6). The same is valid for the long runners, even though the
ratings of the items LP formulations and sustainable indicator as-
sessments are in a similar range. One reason is the relatively high
average rating in terms of Complexity of Realisation. Similar to the
capabilities, common items are also assigned a high level of
complexity. The various positive Spearman's rank correlation co-
efficients between the ratings of the Status of Development and the
Complexity of Realisation (exception for LP formulations; see
Table A2) again demonstrate that the higher the respondents rated
the development status, the higher they also rated the realisation
complexity. This is evenmore pronounced concerning optimisation
models. We might assume that experts who directly work with
these approaches experienced a higher problem complexity with
each advancement. This is also in line with the fact that more items
with low rated status demonstrate a moderate to high and thus
significant correlation between the two criteria.

Regarding the sub-groups and the Status of Development, the LP
(andMIP) formulationswere rated on average 1.2 (0.8) points higher
by the experts of optimisation modelling than the experts of
simulation modelling. The same applies to the assessment of sto-
chastic optimisation in terms of other models towards the simula-
tion model. Nevertheless, according to the KruskaleWallis H test,
there are only statistically significant relationships between the
reported ratings of LP formulations and the sub-groups optimisation
and simulation models. Furthermore, the tests also demonstrate a
dependency regarding general mathematical frameworks for the
Complexity of Realisation. Further pairwise comparisons show that
especially the implementation status of foresight approaches and
technology neutrality are assessed significantly differently in terms
of the spatial and temporal focus of the experts. For realisation
complexity, this relationship is demonstrated for both disaggrega-
tion items as well as decomposition methods. From the long term
perspective, the experts see a lower complexity level for disag-
gregation but a higher level for decomposition. From the large scale
perspective, the experts report a lower complexity level for the
disaggregation and decomposition.

Similar to the capabilities, various methodological items of the
same category are rated in the same way (c.f. Fig. 7). The analysis
with Spearman's rank correlation coefficient show, for example,
that experts who report a high(er) level of spatial disaggregation also
indicate a high(er) level of temporal disaggregation for both the
status (A1, A2: r ¼ 0.582) as well as the complexity (A1, A2:
r ¼ 0.851). The disaggregation items also demonstrate positive
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correlations with various other methodology items. This could lead
to the assumptions that the spatial and temporal modelling level
directly influence the status and complexity perception. Various
interrelations are also visible for the status assessment of category
B regarding the programming formulations (e.g., B8, B9: r ¼ 0.693
and B8, B10: r ¼ 0.498).

3.4. Implementation items

The ranked implementation approaches (c.f. Table A3, Fig. 8)
show the lowest status for three items of the category model us-
ability (C) on average. While web-based and cloud environments are
considered as worst represented in today's modelling systems
(2.6 ± 1.2, n ¼ 51), master data management systems (2.8 ± 1.4,
n ¼ 51) and graphical user interfaces (2.8 ± 1.3, n ¼ 54) are similarly
viewed as underrepresented. This is followed by documentation
standards (D). Thereby, clear licensing for data (2.9 ± 1.2, n¼ 49) and
standards for documentation of data records (2.9 ± 1.2, n ¼ 56) are
seen as important. The other items of the category equations
documentation (3.5 ± 1.0, n ¼ 57) and clear licensing for code are, in
contrast, considered to be better developed (3.3 ± 1.2, n¼ 50). Only
two items are even rated higher than equations documentation
within the criterion Status of Development: adequate solver
(3.7 ± 1.0, n ¼ 55) and adequate programming language selection
(3.7 ± 1.0, n¼ 57). Both belong to the category development activity
(A). Despite the high-status ratings of the items in category (A), the
experts throughout recognise their complexity. This might be
traced back to strong activity in the field over the past decade(s).
Modular and adaptable modelling systems (3.8 ± 1.0, n ¼ 57), avail-
ability of model coupling interfaces (3.7 ± 1.0, n ¼ 55), and adequate
solver selection (3.5 ± 1.0, n ¼ 52) are rated on average as the most
complex aspects to realise. On the other hand, e.g. web-based and
cloud computing environments, graphical user interfaces, clear
licensing for data and standards for data documentation are seen as
low hanging fruits according to our Modelling Strategy Matrix.

The interrelations between the Status of Development and
Complexity of Realisation (c.f. Table A3), however, also show that
the realisation of especially poorly assessed items of the criterion
Status of Development of category (C) might be underestimated.
Experts who rate the status higher also perceive the complexity
higher, as the positive and significant Spearman's rank correlation
coefficients demonstrate, e.g., for the web-based environment
(r ¼ 0.418) or the master data management systems (r ¼ 0.273). We
assume again that the experts also encounter new difficulties in
models with a higher degree of progress. The same applies to well-
documented benchmarks (r ¼ 0.311) and scenario management tools
(r ¼ 0.325). Moreover, statistically significant relationships be-
tween the reported model type and rated criteria are only found
concerning the status item equations documentations (Krus-
kaleWallis H test). In this context, experts from the optimisation
field consider the documentation as more advanced than experts
working with simulation (ManneWhitney U test). Additionally, a
pairwise comparison shows that the modularity of the system is
assessed significantly worse from the perspective of small-scale
experts than by the sample of medium- and large-scale experts.

While PhD students again rank the development status of nearly
all implementation approaches lower than other respondents, the
ManneWhitney U test shows significantly lower ratings for all items
of the category model usability (C) and most of the items of the
category documentation standards (D). This might highlight the dif-
ficulties a PhD student has to understand and apply existing models.

3.5. Management items

In the final section of the survey, the experts report the lowest
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status ratings concerning human resources management (A).
Thereby, both the existence of continuous training (3.1 ± 1.3, n¼ 54)
and the possibility of recruiting adequately trained staff (3.2 ± 1.1,
n ¼ 51) are rated lowest on average concerning the actual devel-
opment status. This is directly followed by the issues regarding
compliance with requirements for open access, open data, and open-
source code (3.2 ± 1.3, n ¼ 55), as well as the presence of continuous
model maintenance and version control (3.4 ± 1.3, n ¼ 54) and
technical infrastructure (3.5 ± 1.1, n ¼ 56). The availability of
appropriate journals (4.0 ± 1.1, n ¼ 59) and the possibility of public
presentation of the project results (3.7 ± 1.2, n ¼ 59) are hardly seen
as a current problem by all respondents. Interestingly, experts from
universities rate the status of all management issues lower than
experts from research institutions or companies. The highest dif-
ficulty of realisation is reported for the possibility of recruiting
adequately trained staff (3.8 ± 1.0, n ¼ 51) and the presence of
continuous model maintenance and version control (3.4 ± 1.2,
n ¼ 56). In this context, respondents from universities are more
confident and rated the difficulty of realisation for nearly all the
issues slightly lower than institutional respondents. This is espe-
cially true regarding the difficulty of recruiting future staff (uni:
3.7 ± 1.1, n ¼ 37; inst:4.6 ± 0.5, n ¼ 9). That is surprising, as one
challenge of universities, in general, is to compete with industry,
where good employees can typically earn much more.

4. Discussion

The analysed survey responses and the elaborated modelling
strategy matrix demonstrate the current states and future needs of
various items in ESM. In the following, we embed the key results
into the body of literature.While Section 4.1 discusses cross-cutting
aspects of all survey sections, Section 4.2 and Section 4.3 discusses
results related to capability and methodology aspects as well as
implementation and management aspects, respectively. Finally, we
present the limitations of this paper in Section 4.4.

4.1. Cross-cutting aspects

The field of ESA is becoming increasingly complex, which in-
cludes the models themselves as well as coupling exercises [3,27].
Evidence for this is in the number of modelling topics or rather
items extracted from the reviews and included in the survey, as
well as the overall high complexity ratings in the results. Including
more and more capabilities into the models themselves can involve
trade-offs with regard to the understandability of the models. As
one of the experts commented in the survey, “there is a difficult
balance between simplicity and detail in energy modelling”. A so-
lution for that problem would be, as another expert suggests, a
modular approach where the user can customise just the relevant
part of the model while applying pre-defined settings and data for
the other sectors.

While the factors of complexity are not widely viewed in the
same way (Gell-Mann 2002), according to Remington und Pollack
(2016) there are four sources of complexity which influence the
realisation of a project: structural complexity, technical complexity,
directional complexity, and temporal complexity. Thus, the
abstraction, formulation, and implementation of conceptual or
mathematical models is dependent on the difficulty in managing
the high number of individual and interconnected tasks, finding an
unknown solution to the problems, identifying the right focus and
objectives, and working in an uncertain environment. In line with
the reported assessments, we might assume that experts who
directly work with specific modelling topics experience a higher
problem complexity with each advancement as one has to deal
withmore specific and in-depth problems. This is also supported by
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the fact that unfamiliar modelling topics or rather modelling topics
which have not beenwell developed yet are seen as more complex.
At the same time, younger researchers rate the complexity higher
in general, which leads to the assumption that experience in a
certain field might lead to a lower complexity assessment. When
we relate these results to the different sources of complexity, we
can assume there is a different assessment of these sources with
experience. However, through experience one also recognizes the
underlying problems, which in turn leads to a higher complexity
assessment. An initial analysis of different energy system models
with respect to four complexity dimensions (temporal, spatial,
mathematical, modelling content) is provided by Ridha et al. [16].

The question remains, to what extent the modeller has to and is
able to fully understand the whole model. Our results show that
PhD-students rate items of model usability significantly lower than
more senior researchers, which might indicate that ESMs have
become so complex that it is a time-consuming and demanding
task to fully understand them. To improve the knowledge of the
mechanisms of the model functionalities and interdependencies
between input and output, simultaneous visualisation of results
when changing model input was suggested by one expert. This
could on the one hand help the modeller to understand the model
better, but also improve the dialogue between the modeller and
stakeholder/decision-maker. Indeed, Chang et al. [21] point the
latter out as one of the main current challenges of ESM.

As other research also confirms, the lack of transparency is still
an issue for ESM [28,29] and our survey confirms that difficulties
regarding compliance with requirements for open access, open
data and open source are present. However, although there is a
growing number of openly available models3 [30], many re-
searchers still program and use their own ones. Regarding data,
keeping consistent and high-quality data sources is seen as highly
advanced but also the most complex to realisee it is still a complex
and time-consuming part of the modelling work. This is especially
true since input data is not only extensive and frommany different
sources, but also frommany different fields. Depending on the type
of model, data about, e.g., climate change, social dynamics, popu-
lation, economy, technology development and adoption, resource
pricing, policy is required. Thus, modelers not only have to deal
with the challenge regarding consistency of the data but also
regarding the different types and levels of uncertainty the data
involves. Presenting the influence this uncertainty has in the result
is an extremely complex task. However, already sharing the data in
a transparent way is a necessary but obviously difficult task itself.

The outlined challenges by David Stuart et al. [31] support the
results that data sharing is difficult and at the same time required
data for energy models are so extensive and from so many different
sources that this is actually the main part of the time-load in the
modelling life. According to their survey, half of the researchers see
challenges in organising data in a presentable and useful way.
Furthermore, more than one-third are unsure about the copyright
and licensing of the data. Additionally, one quarter also reported
that there is a lack of time to share and deposit data [31]. At the
same time, there are a rising number of projects where modellers
try to free time for their modelling work by sharing the data-work-
load.4 Furthermore, there has been some development regarding
sharing of the tedious data work for ESM5 and also a provision of
data from official sources (e.g. ENTSO-E for electricity generation,
3 for initial insights see https://wiki.openmod-initiative.org/wiki/Open_Models.
4 for an example see https://open-power-system-data.org/.
5 for an overview see https://wiki.openmod-initiative.org/wiki/Data; for exam-

ples for projects or platforms see https://open-power-system-data.org/; https://
openenergy-platform.org/.
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transport and consumption data; OpenStreetMap for building and
other infrastructure data), freeing time for the modellers to focus
on the analyses. Thus, there are initiatives for data sharing and
open-source models available, but what is lacking is e as one of the
experts suggestse open source as a structured approach. This could
be a data and model hub, maintained by the EU or other central
administration. A good example of how this could be realised is the
Danish Energy Technology Catalogue, provided by the Danish En-
ergy Agency in collaboration with different experts.6 A more far-
reaching suggestion is a global structure (network or platform)
for discussing results, stakeholder engagement, policy modelling,
scenario structures and data sources for all energy system analysis/
models. From a European point of view, the Energy Modelling
Platform Europe7 could be a starting point for that. Some of the
current Horizon 2020 (H2020) projects are contributing to that
forum for exchanging research, development and practice of en-
ergy system modelling. The explicit goal of the OpenEntrance8

project is to develop, use and disseminate an open, transparent
and integrated modelling platform. In the US, the National
Renewable Energy Laboratory has initiated workshops on the use of
open data and open software tools in the energy modelling com-
munity in North America.9 An US-based open energy data portal is
developed within OpenEI10. Also noteworthy are some of the open-
source frameworks like PyPSA [32], oemof [33], Balmorel [34],
Calliope [35], TEMOA [36] or Backbone [37].

Benchmark tests for models derived from different modelling
frameworks covering the same scope have a long history [38] and
are common in projects nowadays (e.g. European Energy and
Climate Modelling Forum11). However, the Status of Development
of well-documented benchmark tests have been rated below">
average but their Complexity of Realisation above average. This
might be due to the challenge of comparing models that may cover
similar things but are each designed for specific research questions
that might be similar but not exactly matching. Another aspect
further complicates comparison and benchmarking of models:
Ellenbeck und Lilliestam [39] argue that models are discursive
structures, reproducing particular discourses and thus the question
is not only whether they are correct, but also what they represent.
Benchmarking might also support the requested reflection upon
the discursive character of models.

An obvious question arises in the context of cross-sectional
items: do we need innovative new methods or rather incremental
progress bycombining alreadyexistingmethods and ideas? In terms
of novel or groundbreaking methods with the potential to revolu-
tionise the ESA field, there was some diversity in opinion amongst
the experts. Some pointed towards multi-objective and near-
optimal solutions with Pareto fronts, as well as leader-follower
equilibria with bi-level optimisation models. Others only referred
to partial solutions with themain challenge being to integrate these
in the most effective way and with an acceptable effort.

Whilst individual modelling approaches are already some of the
most advanced in terms of complexity and development, there has
been a strong trend towards coupling diverse models in order to
exploit their respective benefits [12,40,41]. Such approaches were
further emphasised by the experts as continued avenues to achieve
models/technology-data.
7 for more information see https://www.energymodellingplatform.eu/.
8 for more information see https://openentrance.eu/.
9 for more information see https://www.nrel.gov/analysis/open-energy-

modeling-north-america-workshop.html.
10 for more information see https://openei.org/wiki/.
11 for more information see https://cordis.europa.eu/programme/id/H2020_LC-
SC3-CC-7-2020.

https://wiki.openmod-initiative.org/wiki/Open_Models
https://open-power-system-data.org/
https://wiki.openmod-initiative.org/wiki/Data
https://open-power-system-data.org/
https://openenergy-platform.org/
https://openenergy-platform.org/
https://ens.dk/en/our-services/projections-and-models/technology-data
https://ens.dk/en/our-services/projections-and-models/technology-data
https://www.energymodellingplatform.eu/
https://openentrance.eu/
https://www.nrel.gov/analysis/open-energy-modeling-north-america-workshop.html
https://www.nrel.gov/analysis/open-energy-modeling-north-america-workshop.html
https://openei.org/wiki/
https://cordis.europa.eu/programme/id/H2020_LC-SC3-CC-7-2020
https://cordis.europa.eu/programme/id/H2020_LC-SC3-CC-7-2020


F. Scheller, F. Wiese, J.M. Weinand et al. Smart Energy 4 (2021) 100057
developmental advances, for example with multi-scale energy
system modelling and coupling of system dynamics and optimi-
sation models. Whilst there has been no clear answer to the above
question from our survey, what definitely becomes clear is that
many questions cannot be answered by models directly but are
rather part of the scenario process and the way results are inter-
preted. Here interdisciplinarity (energy analysts, environmental-
ists, economists, social sciences) is essential for analyzing and
questioning the framework ESM is embedded in and thus restricted
to. As already pointed out decades ago, the key benefit in ESA is not
the ESM itself, but the knowledge the experts gain while working
with the models e the model being rather the tool to help the
expert understand the system than to provide concrete answers:
modelling for insights, not for numbers [42].

4.2. Capability and methodology aspects

The capability results show that especially some of the wider
and socioeconomic aspects of ESA can be considered tough nuts.
This includes items like stakeholder dynamics and lifestyle aspects
(with technology acceptance and adoption as moderately devel-
oped top stars), as well as non-energy sector impacts, market design
and inter-market modelling. For these topics at least, the high
complexity can be understood as the main reason for a lack of
development. Lower down the matrix, however, there are topics
such as equity and distributional effects and material resource as-
sessments, for which the lack of development is apparently not
solely due to complexity. Instead, these research questions are
related to relatively recent topics within the ESM community,
which for this reason have not yet reached a high stage of
development.

Socioeconomic aspects of energy systems, especially relating to
behaviour, decision making and acceptance, have become more
important in the ESA field recently and also feature strongly in the
survey. Indeed, the originally mainly techno-economic focus of ESA
in terms of energy systems and markets continues to be extended
into the social domain, especially but not only within the frame-
work of socio-technical transitions [43]. In this context, equity and
distributional effects have also come to the fore in recognition of
the fact that energy transitions not only impact coal miners but
instead have a wider and more diverse set of impacts on equally
different stakeholders [44]. But there is still a large scope for
improvement in terms of the ways in which the ESA community
accounts for distributional effects in its models if this is done at all.
One reason for this lack of attention (at least in a European context)
might be consistent metrics and datasets for energy poverty, fuel
poverty and energy vulnerability, which have not been available
until recent years [45]. The importance of such aspects is
emphasised by one of the experts, who suggests that spatial justice
could be linked to project finance and social physics techniques
could be included in numerical models. Indeed, there have been
some attempts to do include distributional impacts in long terms
energy scenarios [46].

Several aspects of capability and methodology can be broadly
interpreted in the context of widening the ESM scope or system
boundary. This especially applies to material resource assessments,
land-use planning patterns and non-energy sector impacts. Whilst
the former two lie on the boundary between low hanging fruits and
tough nuts with a complexity score of 3.0, with a score of 3.4 the
latter is definitively a tough nut. Land use planning patterns are
typically considered in broader ESAs such as Integrated Assessment
Models (IAMs) and are particularly relevant where questions
relating to agricultural land for food, chemicals and/or energy are
posed. Especially where net-zero scenarios are being explored with
bioenergy with carbon capture and storage, Gambhir et al. [47]
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conclude that IAMs benefit most from couplings with other models
and approaches. With the increase in modern bioenergy exploita-
tion in recent decades, the relevance of land-use competition issues
for these applications has also come to the fore. In addition, there is
a trend in the ESA community towards combining ESMs with LCA
methods, in order to account for the impact of energy technologies
beyond their operational phase [45]. But such endeavours present
several challenges, including different temporal horizons or system
boundaries, data quality and availability, and the underrepresen-
tation of industrial processes [48]. In terms of non-energy sector
impacts, one of the experts suggested studying the investments (or
opportunities) outside the energy sector, which might explain
some lack of investment in energy-related infrastructure for energy
efficiency.

Related to the above-mentioned challenges of stakeholder dy-
namics and lifestyle aspects, simulation models are viewed as
significantly more advanced than optimisation models to represent
technology acceptance and adoption by sub-groups whowork with
optimisation or simulation models. For example, two separate ex-
perts highlighted the combination of agent-based methodologies
(ABMs) to study consumer preferences and technology diffusion
with optimisation modelling to analyse optimal technology paths
for future energy systems. In contrast, optimisation models are
significantly more developed concerning ramping capabilities,
detailed technology process models, and supply-side flexibility
options according to the modellers using them. Furthermore, a
higher average status rating is reported for smaller than larger-
scale modelling experts for the categories social aspects and hu-
man behaviour modelling and transmission and distribution sys-
tem modelling. In contrast, flexibility, sector coupling and energy
system integration modelling is rated on average slightly higher by
large scale modelling experts. These findings are in line with the
features of simulation and optimisation models as such. Optimi-
sation models are good when relationships can be described in
simple, often linear terms, thus are well suited especially for supply
side modelling and supply-side flexibility [5,49]. Since simulation
models have fixed assumed capacities and can be thought of as if-
then decisions in ESM, they are capable of taking into account more
complex, often non-linear relationships, which makes them a good
choice for demand-side modelling, including for demand-side
flexibility. This also includes modelling acceptance and adoption,
as well as end-user behaviour [5].

Furthermore, simulation models are well suited for modelling
different approaches, which then ask for more active involvement
of stakeholders in the decision-making process [50]. However,
detailed representations of demand-side modelling with complex
non-linear relationships, as well as the vast amount of input data
needed, makes it burdensome to apply the same methodologies to
the large-scale models. As pointed out by one of the respondents, a
combined analysis of sociological and technological dynamics
might be helpful to assess transformation pathways more realisti-
cally by providing insights into the interactions between the deci-
sion processes of market actors and the performance of the supply
system. Such approaches have been followed, e.g. with empirically
grounded agent-based modelling and optimisation models by
Wittmann [51], Chappin und Dijkema [52], and Scheller et al. [53].

Many experts also mentioned combinatorial optimisation ap-
proaches (e.g. graph theory) or machine learning (ML) as important
future research methods in the field of ESA. The energy research
field is indeed one of the most important areas for which combi-
natorial optimisation methods are applied and developed today
[54], e.g., for optimal power flow planning [55] or designing of
district heating networks [56]. However, the underlying combina-
torial problems are often NP-hard, i.e. very difficult to solve exactly
[57]. ML-based approaches which show promising results in
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different applications by making decisions that were otherwise
made by handcrafted expert knowledge-based heuristics in a more
principled and optimised way could help to solve these problems
[58]. In a recent collaborative study of some of the most important
experts of theML community, MLmethods to tackle climate change
have been proposed [59]. The article contains a compilation of ML
methods, which could be used for various problems like “opti-
mising buildings”, “urban planning” or “modelling social in-
teractions”. Specific examples, include designing energy systems
[60], determining long-term dependencies in occupant behaviour
[61] or price forecasting in electricity market simulations [62].

4.3. Implementation and management aspects

The most important implementation items are related to the
usability and documentation of models as well as model modu-
larity, whereas themanagement items are focused on requirements
for open access, open data, and open-source code and the recruit-
ment of adequate staff. While various items regarding model us-
ability and documentation standards have scope for improvement,
experts from the optimisation field considered the equation doc-
umentations significantly more advanced than experts working
with simulation models. This is probably due to the constraints
imposed by employing an optimisation model, whereby the model
should have a pre-defined structure and concerns about solvability
and run times may lead to more rigorous documentation.
Simulation-based approaches, on the other hand, arguably offer
more freedom for experimentation, with less of a clearly defined
structure and objective [63]. Higher usability might be achieved by
adding data management systems and graphical user interfaces to
the existing models.

The high-status ratings but also the recognition of the
complexity of items such as the modularity and adaptability of
models as well the adequate solver selection suggest strong activity
in the field over the past decade(s) [14]. Thereby, the actual
modularity of the system is rated significantly lower from the
perspective of small-scale experts and higher from long-term ex-
perts. This may show that the diversity in research questions to be
answered has increased, whereby large ESMs are required to be
modular to remain feasible. This is also related to adaptability,
whereby a model should be easily tailored (and tailorable) to a
specific research question or application. When it comes to docu-
mentation of models and data, it seems that the former is consid-
ered more advanced than the latter. In other words, aspects such as
master data management systems, well-documented benchmarks,
graphical user interfaces, clear licensing for data and standards for
data documentation all exhibit lower than average levels of
development. This goes in line with the suggestion of Keirstead
et al. [15]. On the other hand, the model- and code-related aspects
appear on the right-hand side of Fig. 8. This may reflect advances in
making models transferable, open-source and/or validated, all with
good supporting documentation, but which is lacking for their data
framework [64].

In terms of themanagement items, PhD students reported lower
ratings for model usability and documentation standards than
more senior researchers. This may highlight the difficulties of
young researchers applying models. In addition, since professors
even indicate a significantly higher status in data documentation
standards, this may indicate that particular tasks might be under-
estimated in terms of their complexity. Indeed, PhD projects in the
ESA field often invest large amounts of effort to get a full picture of
the model. Probably this also relates to stepwise model de-
velopments over longer periods of time, each adding additional
layers of complexity, whereby the senior scientist(s) and/or group
leaders are the only ones who still have (or are still able to keep) an
15
overview.

4.4. Study limitations

An inherent limitation of survey-based research is that re-
spondents may assess their own perceptions differently in different
contexts. For instance, a tendency exists to assess one's own
research field more positively or more complex in such a public
setting [65,66]. This also might contradict our assumption in terms
of the correlations between the two evaluation criteria that experts
who directly work with these approaches experienced a higher
problem complexity with each advancement. Although the
compilation and classification of the queried items in terms of the
different survey sections are derived from a comprehensive review
process, we might have missed relevant items. Furthermore, our
terms for the items might be understood in different ways by the
different experts. Since it is challenging to agree on a specific vo-
cabulary for all respondents, we expressed our understanding of
each item with an additional definition included in the survey.
While survey formats are not perfectly suited to capturing granular
information of how the terms are interpreted and why the answer
is given in this exact way, surveys provide more quantifiable and
more generalisable results. All participants are faced with exactly
the same formulation without any other influences.Thus, the re-
sponses may be more objective, certainly more so than interviews.
At the same time, other methods like focus groups are helpful to
investigate complex topics and to capture perceptions. Neverthe-
less, they are in some way also interpretive and subjective by na-
ture. Since focus groups consist of group discussions that are
stimulated by information input on a specific topic and are
moderated by a skilled moderator, participants, for instance, will be
influenced by the salience of the research agenda and their re-
sponses could be sub-consciously manipulated [67]. Additionally,
following the recommendations, focus groups should be conducted
with a group size of around six [68,69]. In this context, a data
collection with the help of a comparable method would have pro-
duced a massive overhead or would even be an impossible task due
to the internationality of the experts and their tight schedules.

Although we defined each of the key criteria in the survey and
aligned our understanding with participants in our pretest, it is
conceivable that different participants interpreted these criteria
differently. According to our understanding, the first criteria, Status
of Development, is related to assessing the research progress or
development of the respective modelling topic in the ESA field.
Despite the different modelling emphases of the sample partici-
pants, it is likely that experts of the research field have a quite
similar overview and thus assess the modelling topics with a
similar internal scale. However, this seems more difficult with our
second criterion.

The abstraction, formulation, and implementation of conceptual
or mathematical models of given real-world situations are often
described as being complex. However, the factors which make the
realisation difficult are not widely viewed in the same way (Gell-
Mann 2002). According to our assumption, one can categorise the
complexity of abstraction, formulation, and implementation into
different groups like simple, moderate, difficult based on the
required resources and capabilities. Since we did not relate our
definition to a specific individual complexity, our understanding
comprised different aspects of the realisation of the model, e.g.,
structural, technical, directional, and temporal complexity (Rem-
ington und Pollack 2016). While the perceived complexity in terms
of the different aspects is clearly dependent on the abilities of the
participants, we can still assume that the internal scale regarding
self-reporting on this criterion is not completely different since a lot
of the researchers in the ESA area share a similar educational
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background.
Another limitation is connected to the frame of modellers when

answering the survey. Models usually have a focus on specific areas
and are built for a specific purpose. Consequently, modellers based
their answers on the particular modelling framework they are used
to. On the other hand, this survey collected all the answers under
the same umbrella, which leads to a higher uncertainty relating to
the quantitative results.

Related to the empirical design, we prioritised the expert
knowledge of respondents over the number of respondents. The
sample size and bias is quite small. Nevertheless, the respondents
of the sample cover various countries of 20 most productive
countries in the field of ESA [24]. Furthermore, our sample size is
comparable to similar studies [21,23]. While there are even more
answers available for optimisation models, the small size is
particularly visible for all other models. In this regard, the deter-
mination of statistically significant relationships between the re-
ported model type and rated criteria should be taken with caution.
The same applies to other modelling sub-groups such as temporal
and spatial scales. Additionally, the survey does not sufficiently
allow for interdisciplinary studies since each respondent had to
choose a single model type to rate the items, as one respondent
correctly remarked. For instance, energy analysts working along-
side environmentalists, economists and social scientists using soft-
linked models can hardly assess the questionnaire from their
comprehensive view. Nevertheless, we could hardly find any sig-
nificant differences in the context of the average ratings between
experts of different modelling types. While this made it even more
difficult to clearly identify future modelling challenges and op-
portunities, our specially-created matrix revealed valuable insights
by comparing the items regarding the two criteria and classifying
them in the different quadrants.
5. Summary and conclusion

This paper seeks to contribute to the literature on future
research opportunities and challenges for ESA. For this, we con-
ducted a quantitative expert survey with a sample size of N ¼ 61 to
provide insights regarding the criteria Status of Development and
the Complexity of Realisation of 96 identified and classified question
or rather modelling items from various reviews in the ESA and ESM
field. With the two criteria in mind, a specially defined 2 � 2
modelling strategy matrix is applied to determine modelling items
that are poorly developed and easy to implement (“low hanging
fruits”), poorly developed and complex to implement (“tough
nuts”), highly developed and easy to implement (“long runners”),
and highly developed and complex to implement (“top stars”). The
expert survey does not show precise results regarding the main
challenges for ESM. Although there are tendencies for low hanging
fruits and tough nuts, there are hardly any outliers. In more detail,
we identify capabilities like land-use planning patterns, equity and
distributional effects and endogenous technological learning as low
hanging fruits for enhancement and a large number of complex
topics that are already well implemented. The remaining tough nuts
regarding modelling capabilities include non-energy sector and
social behaviour interaction effects.
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The general level of complexity in the field of energy system
modelling is rather high, as well as the diversity of modellers,
model types and applications. Instead of converging model types,
the combination of advantages of model techniques by model
coupling is high on the agenda. However, this further increases the
complexity of result interpretation and the respective result
communication, which has the potential to become a research field
on its own. Considering the already high level of complexity of
many models, the true art seems to be choosing a manageable level
of complexity instead of necessarily adding more. In general,
openness is a way forward and on top of transparency, accessibility
of models and collaboration could open the way for more inter-
disciplinary ESA, which can combine the specialities of the different
modelling techniques and types.

Our results show a large range in terms of complexity and
development status for model capabilities and methodologies.
Logically, further research should focus on the “low-hanging fruits”
quadrant, but very few of the items are to be found here. Thus,
future model enhancements should concentrate on land-use
planning patterns, equity and distributional effects and endoge-
nous technological learning. Nevertheless, for any given modelling
item, efforts should be directed towards advancing the status of
development e which may also indirectly result in higher
complexity. This implies focusing attention on the leftmost part of
the matrix, where human-centric aspects such as market design,
stakeholder dynamics, lifestyle and distributional effects (Fig. 4) are
located. In terms of methods, especially non-linear, decomposition
and stochastic formulations should be concentrated on. But such a
prioritisation may overlook the relevance of such issues to specific
problems, and certainly should not be generalized too widely.
Instead, future developments in the ESA field need to consider the
specific research question(s) and objective(s) and develop the
research strategy accordingly.
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Table A1
Average rating of themodelling capabilities regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very low 1-
very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from the
perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The
modelling capabilities are sorted in ascending order from the perspective of the whole survey sample (capabilities with the lowest Status of Development are at the top). The
pairwise Spearman coefficient (r) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (* correlation is
significant at the 10% level). The categories of the capabilities are social aspects and human behaviour modelling (A), demand-side modelling (B), transmission and distribution
systemmodelling (C), supply generationmodelling (D), flexibility, sector coupling and energy system integration modelling (E), markets and regulations frameworkmodelling
(F), environmental and resources modelling (G), as well as feedback and interaction effects (H). The numbers (1e32) are related to the question items of the modelling ca-
pabilities (c.f. Table 1).
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Table A2
Average rating of the methodological approaches regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very
low 1- very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from
the perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The
modelling methodologies are sorted in ascending order from the perspective of the whole survey sample (methodologies with low Status of Development are at the top). The
pairwise Spearman coefficient (r) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (* correlation is
significant at the 0.1 level). The categories of the methodologies are high-resolution modelling (A), programming formulations (B), model characteristics (C). The numbers
(1e15) are related to the question items of the methodological approaches (c.f. Table 1).

Table A3
Average rating of the implementation approaches regarding the Status of Development (ordinal scale very low 1- very high 5) and Complexity of Realisation (ordinal scale very
low 1- very high 5; based on the scale a colour transition from red over white to blue or rather lower ratings over medium ratings to higher ratings is applied in this table) from
the perspective of the whole survey sample (N) as well of the sub-sample of optimisation model users (Opt), simulation model users (Sim), and other model users (Ors). The
modelling methodologies are sorted in ascending order from the perspective of the whole survey sample (methodologies with the lowest Status of Development are at the
top). The pairwise Spearman coefficient (r) between the rating of the Status of Development and the Complexity of Realisation is also presented for each of the groups (*
correlation is significant at the 0.1 level). The categories are related to development activities (A), model validation and benchmarking (B), model usability (C), and docu-
mentation standards (D). The numbers (1e15) are related to the question items of the implementation approaches (c.f. Table 1).
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Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.segy.2021.100057.
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