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Abstract: This review discusses an area of expertise that is at the intersection of three large parts
of materials science. These are phase transformations, severe plastic deformation (SPD), and high-
entropy alloys (HEA). First, SPD makes it possible to determine the borders of single-phase regions of
existence of a multicomponent solid solution in HEAs. An important feature of SPD is that using these
technologies, it is possible to obtain second-phase nanoparticles included in a matrix with a grain size
of several tens of nanometers. Such materials have a very high specific density of internal boundaries.
These boundaries serve as pathways for accelerated diffusion. As a result of the annealing of HEAs
subjected to SPD, it is possible to accurately determine the border temperature of a single-phase solid
solution area on the multicomponent phase diagram of the HEA. Secondly, SPD itself induces phase
transformations in HEAs. Among these transformations is the decomposition of a single-phase solid
solution with the formation of nanoparticles of the second phase, the formation of high-pressure
phases, amorphization, as well as spinodal decomposition. Thirdly, during SPD, a large number of
new grain boundaries (GBs) are formed due to the crystallites refinement. Segregation layers exist
at these new GBs. The concentration of the components in GBs differs from that in the bulk solid
solution. As a result of the formation of a large number of new GBs, atoms leave the bulk solution
and form segregation layers. Thus, the composition of the solid solution in the volume also changes.
All these processes make it possible to purposefully influence the composition, structure and useful
properties of HEAs, especially for medical applications.

Keywords: high entropy alloys; severe plastic deformation; precipitation; phase transitions; phase
diagrams

1. Introduction

This paper is at the crossroads of three large areas of materials science. These are
phase transformations, severe plastic deformation, SPD (and, in particular, high-pressure
torsion, HPT), as well as multicomponent alloys without the main component (they are
also called high-entropy alloys, HEAs). Each of these areas is truly immense: thousands,
and in the case of phase transformations, dozens of thousands of articles are devoted to
them. Nevertheless, the area of their intersection is not too large and is quite accessible
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for presentation in a small review. In this case, we are not talking about their simple,
mechanical superposition. All three areas, intersecting, do not just overlap one another, but
cause something like mutual fertilization (or pollination). It seems to us that in the near
future such combined studies will arise great interest and lead not only to unusual results
but also to serious advances in materials science.

2. The Borders of the Single-Phase Region of Existence of HEAs

An important feature of HEAs is that the atoms of five, six, or more components
included in them form a single, disordered and homogeneous solid solution [1–4]. This
solid solution is formed already during solidification, and after homogenizing annealing, it
loses all residual inhomogeneities. However, an essential question arises: how wide is the
temperature range in which this homogeneous solid solution remains thermodynamically
stable? In other words, below what temperature do precipitates of the second phase begin
to appear in the solid solution? It would seem that the answer to this question is very
easy: you only need to carry out long-term annealing at different temperatures, and then
measure and interpret the X-ray diffraction (XRD) patterns. However, if the formation of
second phase precipitates occurs by the volume diffusion and is determined by its rate,
then such annealing needs a very long time. For example, a similar direct experiment for
the equiatomic CoCrFeMnNi Cantor alloy, which has a face-centered (fcc) lattice of the
γ-phase, was carried out in just one work [5]. The authors of [5] homogenized samples of
the Cantor alloy at 1200 ◦C for 2 h, and then annealed at 900, 700, and 500 ◦C for 500 days.
After annealing at 900 ◦C, the alloy remained homogeneous. At a temperature of 700 ◦C,
particles of the σ-phase rich in chromium were formed in it. However, these particles
appeared mainly at the grain boundaries (GBs) of the fcc matrix (see Figure 1). At 500 ◦C,
in addition to the particles of the σ-phase, the precipitates with a body-centered cubic (bcc)
lattice, rich in nickel and manganese, appeared at GBs as well (see Figure 2).
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Figure 1. Microstructure of the CrMnFeCoNi HEA after a 500-day anneal at 700 °C. (a) Representa-
tive BSE image showing the presence of blocky faceted precipitates on a grain boundary. (b–f) Ele-
mental energy dispersive X-ray (EDX) maps showing significant enrichment of Cr in the precipitates 
(relative to its concentration in the HEA) and depletion of all other elements. The dashed line delin-
eating the GB in (a) was added as a guide for the eye. There appears to be a slight enrichment of Mn 
and Ni near the GB in (e) and (f). Reprinted with permission from Ref. [5]. Copyright 2016 Elsevier. 

Figure 1. Microstructure of the CrMnFeCoNi HEA after a 500-day anneal at 700 ◦C. (a) Representative
BSE image showing the presence of blocky faceted precipitates on a grain boundary. (b–f) Elemental
energy dispersive X-ray (EDX) maps showing significant enrichment of Cr in the precipitates (relative
to its concentration in the HEA) and depletion of all other elements. The dashed line delineating the
GB in (a) was added as a guide for the eye. There appears to be a slight enrichment of Mn and Ni
near the GB in (e,f). Reprinted with permission from Ref. [5]. Copyright 2016 Elsevier.
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from Ref. [5]. Copyright 2016 Elsevier. 
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900 °С [5,18–24]. Simultaneously with the growth of grains, particles of the σ-phase and 
bcc-phase rapidly appeared at GBs in such samples. Figure 3 shows typical XRD patterns 
of Cantor alloy after HPT (6 GPa, 5 rpm, 1 rpm) and short annealing (60 min) [20]. 

Figure 2. Microstructure of the CrMnFeCoNi HEA after a 500-day anneal at 500 ◦C. Representative
BSE image showing multiple precipitates on a GB (a) and elemental EDX maps showing the distribu-
tion of Co (b), Cr (c), Fe (d), Mn (e) and Ni (f) in the area shown in (a). Reprinted with permission
from Ref. [5]. Copyright 2016 Elsevier.

Fortunately, the experiments to determine the borders of the existence of a single-
phase solid solution in HEAs can be significantly facilitated if samples with fine grains and,
accordingly, a large specific GB area is created. In this case, the growth of second phase
precipitates will be controlled by GB rather than bulk diffusion, and the thermodynamic
equilibrium can be achieved much faster. Small grains in HEAs can be created using the
so-called severe plastic deformation (SPD), and in particular, the high-pressure torsion
(HPT), equal channel angular pressing (ECAP), or hot-pressing sintering [6–17]. Thus, the
TiZrNbMoV and NbTiAlTaV HEAs after hot-pressing sintering contained in addition to
the solid solution a small number of complex metal compounds like Mo9Ti4, Nb9Ti4, or
Mo2Zr [17]. In a number of studies, Kantor’s alloys were deformed using HPT or ECAP.
After SPD, the resulting polycrystals with a grain size of 10–20 nm was annealed for a
relatively short time at different temperatures in the range from 200 to 900 ◦C [5,18–24].
Simultaneously with the growth of grains, particles of the σ-phase and bcc-phase rapidly
appeared at GBs in such samples. Figure 3 shows typical XRD patterns of Cantor alloy after
HPT (6 GPa, 5 rpm, 1 rpm) and short annealing (60 min) [20].
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Figure 3. XRD patterns near the edges of the disk after HPT processing followed by post-deformation
annealing at 200–900 ◦C for 60 min. Reprinted with permission from Ref. [20]. Copyright 2016
Elsevier.

Figure 4 summarizes the results of such works [5,18–24]. It is clearly seen from the
graph that a bcc-phase exists in the Cantor alloy at temperatures below 800 ◦C. The bcc-
phase was observed even upon annealing at 200 ◦C. Thus, the region of existence of a
bcc-phase does not have an obvious lower temperature border. In contrast, the σ-phase
exists in a limited temperature range. The σ-phase appears at about 800 ◦C and disappears
again below 450 ◦C. A similar phenomenon is often observed for σ-phases in binary alloys
(for example, in iron-chromium ones). In binary alloys, the σ-phase usually arises between
metals, one of which has a bcc lattice, and the other has a fcc lattice, and the difference in
atomic diameters of the metals included in the σ-phase does not exceed 8%. The σ-phase
has a complex tetragonal crystal lattice with a unit cell of 30 atoms, similar to the crystal
lattice of uranium. The σ-phase is usually characterized by a wide homogeneity region.
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Figure 4. The diagram shows the presence (filled symbols) or absence (open symbols) for bcc-phase
(squares) and σ-phase (circles) at various temperatures. The diagram is constructed using the data of
Refs. [5,18–24]. The numbers on the horizontal axis denote the literature source for the data: 1 [18],
2 [19], 3 [20], 4 [5], 5 [20], 6 [19], 7 [21], 8 [5], 9 [18], 10 [22], 11 [23], 12 [24].

It is interesting that in the modified Cantor alloy Co20Cr26Fe20Mn20Ni14 where the ratio
of nickel and chromium is changed, the σ-phase exists up to higher temperatures [25,26]. In
particular, it is observed after annealing at 1050 ◦C for 24 h [26]. In another modified Cantor
alloy, Co40Cr40Fe10Mn10, the σ-phase is not observed after homogenization at 900 ◦C, which
is consistent with the diagram in Figure 4 [27].

3. Phase Transformations in HEAs under the SPD Action

It was found relatively recently that phase transformations can occur under the influ-
ence of SPD. This means that the phases in the sample after SPD will not be the same as
they were before SPD [28–31]. For example, under the action of SPD, crystalline materials
can transform into amorphous ones [32–42]. After SPD, they can contain one, two, or even
several amorphous phases and vice versa, in amorphous materials under the influence of
SPD, the formation and growth of a crystalline phase can occur [43–59]. If the initial sample
consists of two different solid solutions, then SPD almost always changes the concentration
in these solid solutions [60–79]. For example, the concentration of element B in a solid
solution based on element A can either increase or decrease. SPD is always accompanied
by grain refinement and an increase in microhardness [80–92]. If various intermetallic
compounds are present in the sample together with the solid solution, then under the influ-
ence of SPD, some intermetallic phases can be replaced by others [93–95]. Moreover, the
disordering of ordered phases [96–106] can occur. Under the action of SPD, not only phase
transformations associated with barrier mass transfer can occur but also martensitic phase
transformations take place. During martensitic transformations, the nearest environment
of atoms remains practically unchanged and there is no mass transfer over distances larger
than interatomic [107–112].

The so-called effective temperature Teff can serve as a formal tool for describing such
phase transformations [61–71]. Usually, one can find the phrases that appear in the sample
after SPD in the equilibrium phase diagram at a certain temperature. Then, this state after
SPD can be attributed to the value of this temperature called the effective temperature
Teff. Usually, the effective temperature Teff is higher than the temperature TSPD at which
the SPD treatment takes place. One can explain this fact with increased concentration of
crystal structure defects (such as vacancies) arising upon SPD. The same thing happens
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when one heats the sample. Thus, the set of phases in the sample after SPD is similar to
the set of phases after annealing at this increased effective temperature Teff. A significant
difference, of course, is that high-temperature annealing usually leads to grain growth,
while SPD leads to grain refinement [80–87]. In this section, we will show that phase
transformations under the action of SPD can occur not only in binary or ternary systems
but also in multicomponent HEAs.

In the modified Cantor alloy Co20Cr26Fe20Mn20Ni14, prepared by vacuum arc melting
and annealed at 1050 ◦C for 24 h [26], σ-phase precipitates appear in the γ-matrix with
fcc lattice. In the unmodified equiatomic Cantor alloy Co20Cr20Fe20Mn20Ni20, the σ-phase
exists in the range from 450 to 800 ◦C (see Figure 4). HPT at room temperature, 5 GPa
and 1, 3, 5 plunger revolutions leads to the disappearance of the σ-phase. A single-
phase fcc solid solution is formed again from the two-phase sample (see XRD patterns
in Figure 5a [25]. Using the diagram in Figure 4 and the data in Figure 5a [25], we can
assume that the effective temperature Teff of such a process exceeds 1050 ◦C, since above
this temperature the σ-phase becomes unstable and only a single-phase fcc solid solution
remains in equilibrium.
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1, 3, and 5 anvil turns were conducted (a) at 300 K and (b) at 77 K. The peak intensity is shown in
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It is interesting that if HPT of the Co20Cr26Fe20Mn20Ni14 alloy annealed at 1050 ◦C
is carried out at 77 K, then the σ-phase also disappears (Figure 5b). In this case, the alloy
does not remain single-phase with the fcc-lattice (as after HPT at room temperature, RT)
but an additional phase with a hexagonal close-packed (hcp) lattice appears (Figure 5b). In
the equiatomic Cantor alloy, ε-phase appears only upon annealing at a very high pressure
of 14 GPa [113]. A similar γ→ ε phase transformation is observed, for example, in steels
and is facilitated by the presence of twin GBs [114]. In the Co40Cr40Fe10Mn10 alloy, HPT
causes the γ→ ε phase transformation, and with strain increase, the fraction of the ε-phase
increases as well (see Figure 6). Transmission electron microscopy (TEM) shows that the
crystals of the γ and ε phases have the Shoji–Nishiyama (S–N) orientation relationship.
This indicates the martensitic nature of the γ→ ε transformation. Interestingly, with an
increase in the HPT deformation, the ratio of the lattice constants c/a in the ε-phase does
not change. It is close to the optimal c/a ratio required to fulfill the Shoji–Nishiyama
(S–N) conditions. A similar martensitic transformation of the cubic β-phase with the
bcc-lattice into the hexagonalω-phase is observed during HPT in many Ti- and Zr-based
alloys [109–111,115,116]. For example, by changing the concentration of iron in titanium, it
is possible to choose such a lattice constant of the β-phase that the necessary Nishiyama
orientation relations will be fulfilled very accurately, and after HPT almost 95% of the
β-phase is converted to theω-phase [111].
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With equal channel angular pressing (ECAP), a different deformation scheme is im-
plemented in comparison with HPT. Nevertheless, during ECAP of the Cantor alloy of 
equiatomic composition at a temperature of 300 or 900 °C, a martensitic ε-phase is also 
formed [118]. Another option for SPD is multiaxial swaging. In [119], the Cantor alloy was 
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If HPT of the equiatomic Cantor alloy is carried out at a pressure of 5–6 GPa, then the
initial fcc alloy remains single-phase with fcc structure [5,18–24]. If the pressure of HPT
treatment is increased up to 10 GPa, then phase transformations occur in the initial fcc-alloy
and not only the high-pressure ε-phase, but also the bcc-phase appears (see Figure 7). In
this case, the portion of ε- and bcc-phases in the sample increases not only with an increase
in the number of revolutions from 0.25 to 5 but also with a decrease in the HPT temperature
from RT to 77 K (Figure 7).
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With equal channel angular pressing (ECAP), a different deformation scheme is im-
plemented in comparison with HPT. Nevertheless, during ECAP of the Cantor alloy of
equiatomic composition at a temperature of 300 or 900 ◦C, a martensitic ε-phase is also
formed [118]. Another option for SPD is multiaxial swaging. In [119], the Cantor alloy was
subjected to a multiaxial swaging with 80% deformation in each pass. As a result, there was
a complete amorphization of the alloy. This means that the crystal lattice was completely
disordered due to the increased concentration of defects that do not have enough time to
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relax. Consequently, from the point of view of the effective temperature Teff, this means
that Teff exceeds the melting temperature of the Cantor alloy (~1350–1400 ◦C [120,121]).

In Ref. [122], the change in structure and properties under the influence of HPT was
studied for the equiatomic alloy AlCrFeCoNiNb. This alloy in the as-cast state consists of
two phases, namely, a phase with a bcc lattice and a hexagonal Laves phase C14 with lattice
constants a = 0.484 nm and c = 0.789 nm. Their volume ratio is roughly 40:60. It is interesting
that in the as-cast and in the as-homogenized state (1000 ◦C, 1 h), the bcc-phase forms
continuous interlayers along the GBs of the Laves phase (see Figure 8). This is due to the
phenomena of GB wetting, which is frequently observed not only in binary alloys [122–125]
but also in HEAs [126,127]. It is interesting to note that the structure with the distribution of
the bcc phase along the GBs of the Laves phase is partially retained after HPT (see Figure 8).
This behavior of the GB phase was observed also after HPT in magnesium alloys [128]. In
this case, the grain size in each of the phases decreases to several hundred nanometers
independently of each other.
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Copyright 2021 Elsevier.

HPT of AlCrFeCoNiNb alloys at 6 GPa and RT (0.25 and 4 plunger turns) leads to
spinodal decomposition of the bcc phase [122]. During spinodal decomposition, regions
enriched and depleted in chromium are formed. At the same time, they retain the bcc-lattice.
The size of these regions is small, it is about 80 nm. The decomposition of a solid solution
caused by HPT has also been observed many times in binary systems such as Al–Zn and
Al–Mg [60,70,71], Cu–Co [61–64,74], Cu–Ag [65–68], Cu–Sn [68], Cu–Ni [75], Cu–In [76]
and Cu–Cr [78]. Comparison of the concentration in the solid solution after HPT with the
equilibrium phase diagram allowed one to determine the effective temperature Teff for
such HPT effect in binary alloys [68,74]. Moreover, we found that the effective temperature
Teff increases proportionally with an increase in the activation energy for the diffusion of
the second component in the matrix [74]. Unfortunately, in the case of HEA, the phase
diagrams have not yet been sufficiently studied. This does not allow us to estimate the
effective temperature in the case of spinodal decomposition, which was observed in [122].
However, a rough estimate of Teff is possible. Typically, spinodal decomposition is observed
in binary systems at a temperature of about 50% of the melting point of the alloy. In our
case, it will be approximately 700–800 ◦C.

In Ref. [129] the AlTiFeCoNi alloy with the addition of 0.45% carbon has been studied.
In the as-cast state, this alloy contained large grains of an iron-rich ordered L21 phase
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(about 77%), surrounded by interlayers of an iron-depleted disordered bcc phase (about
22%), with individual carbide inclusions with a fcc structure. Figure 9 shows the SEM
micrographs and distribution of components in the as-cast state and after HPT (6 GPa for
5 turns, 1 rpm, RT).
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It is clearly seen that, as in the previous case [122], the phenomenon of GB wetting is
observed, namely, the grains of the matrix L21 phase are almost completely separated from
each other by interlayers of a disordered bcc phase depleted in iron. A similar phenomenon
of GB wetting by a melt or a second solid phase was observed in other works [126,127].
After HPT, such a structure of GB wetting, when the interlayers of the bcc phase separate the
grains of the L21 phase from each other, almost did not change (see Figure 9). At the same
time, as the results of XRD studies show (see Figure 10b), a phase transformation of the
ordered phase L21 into the disordered bcc phase B2 took place. In [129], the thermodynamic
calculations of the phase diagram were performed using the CALPHAD program (see
Figure 10a). The results obtained show that the ordered L21 phase transforms into the
disordered B2 phase at a temperature of about 400 ◦C. This means that the disordering
caused by HPT makes it possible to determine the effective temperature Teff of the HPT
process as Teff = ~ 400 ◦C.

Crystals 2022, 12, x  10 of 22 
 

 

 
 

Figure 10. (a) Phase diagram calculated by CALPHAD program, and (b) XRD profiles of AlTi-
FeCoNi-0.45%C before and after HPT processing. Reprinted with permission from Ref. [129]. Cop-
yright 2021 Elsevier. 

4. Equilibrium between the Composition of Bulk Phases and GB Segregation 
Any polycrystal consists of crystallites of bulk phases and GB or interphase bounda-

ries (IBs) between them. It is well known that the composition of a thin (1–2 nm) layer at 
a GB or an IB significantly differs from the composition of the surrounding bulk phases. 
This phenomenon is called GB segregation. In equilibrium, there is a certain relationship 
between the composition of bulk phases and segregation at GBs and IBs. During SPD, 
significant refinement of grains usually occurs [80–87]. If the grain size before SPD can be 
tens, hundreds, or even thousands of micrometers, then after SPD the crystallite size drops 
to hundreds or tens of nanometers. Obviously, in this case, the specific area of GBs and 
IBs increases by several orders of magnitude. At the same time, at each new GB or IB, a 
segregation layer should form, the composition of which differs from that of the volume. 
If there are many such new interfaces, then the formation of respective segregation layers 
will require many atoms from bulk phases. The thickness of such segregation layers in 
HEAs after HPC can reach 5–10 nm [130]. In this case, the composition of the bulk phases 
can change significantly. These changes can become visible in XRD patterns since they 
should affect the lattice constant in a bulk solid solution. For example, it was observed 
that the composition of the solid solution in the bulk of copper-silver alloys or carbon 
steels significantly changes during HPT [131–135]. Segregation of the second component 
at GBs in nanocrystalline materials can lead to the fact that the total solubility of the sec-
ond component in such a substance can be several times higher than the solubility of the 
second component in bulk [131–142]. 

An equiatomic five-component AlFeCoNiCu alloy was studied in [143]. After melt-
ing and casting it was homogenized at 1000 °C for 1 h, and then subjected to HPT under 
6 GPa, RT, 1 rpm, for various turns of N = 0 (only compression), 1/16, 1/4, 1 and 4. In the 
initial state, the alloy consisted of two phases, with fcc and bcc lattice. They were enriched 
and depleted in aluminum, respectively. At the beginning of the HPT process, with simple 
compression, as well as with 1/16 turns, the X-ray peaks remain in the same place. Then 
they begin to diverge in different directions. The peaks of the bcc-phase are shifted to-
wards higher diffraction angles (this corresponds to a decrease in the lattice constant), and 
the peaks of the fcc-phase are shifted towards low diffraction angles (which corresponds 
to an increase in the lattice constant). As in all other cases, HPT led to a significant decrease 
in the grain size from tens of microns to tens of nanometers. In this case, the specific den-
sity of GBs increased, and segregation layers are formed on them due to the escape of 
atoms from the bulk to the GBs These layers are different in two different phases, bcc and 
fcc, respectively. Therefore, their formation has a different effect on the concentration of 
atoms in the volume of these two phases. As a result, the lattice constant of the bcc-phase 
decreases, while the lattice constant of the fcc-phase increases. 

Figure 10. (a) Phase diagram calculated by CALPHAD program, and (b) XRD profiles of AlTiFeCoNi-
0.45%C before and after HPT processing. Reprinted with permission from Ref. [129]. Copyright 2021
Elsevier.



Crystals 2022, 12, 54 10 of 20

4. Equilibrium between the Composition of Bulk Phases and GB Segregation

Any polycrystal consists of crystallites of bulk phases and GB or interphase boundaries
(IBs) between them. It is well known that the composition of a thin (1–2 nm) layer at a
GB or an IB significantly differs from the composition of the surrounding bulk phases.
This phenomenon is called GB segregation. In equilibrium, there is a certain relationship
between the composition of bulk phases and segregation at GBs and IBs. During SPD,
significant refinement of grains usually occurs [80–87]. If the grain size before SPD can be
tens, hundreds, or even thousands of micrometers, then after SPD the crystallite size drops
to hundreds or tens of nanometers. Obviously, in this case, the specific area of GBs and
IBs increases by several orders of magnitude. At the same time, at each new GB or IB, a
segregation layer should form, the composition of which differs from that of the volume. If
there are many such new interfaces, then the formation of respective segregation layers
will require many atoms from bulk phases. The thickness of such segregation layers in
HEAs after HPC can reach 5–10 nm [130]. In this case, the composition of the bulk phases
can change significantly. These changes can become visible in XRD patterns since they
should affect the lattice constant in a bulk solid solution. For example, it was observed
that the composition of the solid solution in the bulk of copper-silver alloys or carbon
steels significantly changes during HPT [131–135]. Segregation of the second component at
GBs in nanocrystalline materials can lead to the fact that the total solubility of the second
component in such a substance can be several times higher than the solubility of the second
component in bulk [131–142].

An equiatomic five-component AlFeCoNiCu alloy was studied in [143]. After melting
and casting it was homogenized at 1000 ◦C for 1 h, and then subjected to HPT under 6 GPa,
RT, 1 rpm, for various turns of N = 0 (only compression), 1/16, 1/4, 1 and 4. In the initial
state, the alloy consisted of two phases, with fcc and bcc lattice. They were enriched and
depleted in aluminum, respectively. At the beginning of the HPT process, with simple
compression, as well as with 1/16 turns, the X-ray peaks remain in the same place. Then
they begin to diverge in different directions. The peaks of the bcc-phase are shifted towards
higher diffraction angles (this corresponds to a decrease in the lattice constant), and the
peaks of the fcc-phase are shifted towards low diffraction angles (which corresponds to
an increase in the lattice constant). As in all other cases, HPT led to a significant decrease
in the grain size from tens of microns to tens of nanometers. In this case, the specific
density of GBs increased, and segregation layers are formed on them due to the escape of
atoms from the bulk to the GBs These layers are different in two different phases, bcc and
fcc, respectively. Therefore, their formation has a different effect on the concentration of
atoms in the volume of these two phases. As a result, the lattice constant of the bcc-phase
decreases, while the lattice constant of the fcc-phase increases.

In Ref. [144], the five-component equiatomic alloy HfNbTaTiZr in the as-cast state was
subjected to HPT at 2.5 GB with a different number of plunger revolutions from 0 (simply
with the application of pressure), and then a quarter turn, half a turn, one, 5 and 15 plunger
turns. Both in the as-cast state and after HPT, the alloy consisted of one bcc phase. HPT
resulted in grain refinement from about 200–500 µm to 50 nm. Figure 11 shows the XRD
patterns for the as-cast sample and all samples subjected to HPT with a different number
of revolutions. It is clearly seen that the peaks gradually broaden as the grains are refined
and shift to the left, which corresponds to an increase in the lattice constant. Figure 12
shows the change in the lattice constant, the size of the coherent diffraction domains and
the magnitude of microstrain with the number of plunger revolutions. As in the previous
cases, such an increase in the lattice constant in the absence of phase transformations can
only be explained by grain refinement, namely, by the formation of segregation layers at
new GBs, which required the outflow of atoms from the bulk to the boundaries.
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In Ref. [145], an equiatomic mixture of powders of cobalt, chromium, iron, nickel and
manganese was taken as a starting material. This mixture was placed between the plungers
of the HPT installation, compressed to a pressure of 5 GPa and subjected to torsion with
the number of revolutions reaching 100. The XRD patterns (Figure 13) show that after
one revolution, the fcc solid solution phase is formed from the powder mixture, and after
10 revolutions the peaks of the bcc-phase completely disappear. The initial particle size was
about 10 µm. The grain size in the homogeneous fcc-phase after one hundred revolutions
was about 50 nm. In Figure 13 it is clearly seen how the peaks for the fcc solid solution
shift to the left with an increase in the number of revolutions. This shift corresponds to an
increase in the fcc lattice constant. This effect, as in other studies considered above, can
be explained by the formation of new GBs and the segregation of individual elements on
them from the bulk solid solution. In addition, in [145], the microstructure of the samples
was analyzed using atomic force tomography (APT). These high-resolution measurements
showed, in particular, that the GBs in the solid solution after HPT are markedly enriched
in manganese.
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Figure 13. XRD patterns of “as-mixed” multicomponent powder (bottom curve) and CoCrFeNiMn
alloys after HPT for n = 1, 10 and 100 rotations (from lower to upper curves). Tilted dashed lines
indicate the changes of peak positions for fcc solid solution. Reprinted with permission from Ref. [145].
Copyright 2019 Elsevier.

In Ref. [146], a three-component iron-cobalt-nickel alloy was subjected to HPT. Both
before and after HPT, the alloy consisted of one fcc phase. After HPT, the grain size was
approximately 50 nm. Then a series of samples of this alloy was annealed at temperatures
of 600–800 ◦C. The alloy remained single-phase, but the grain size increased at the same
time by about 5–10 µm. The XRD patterns shown in Figure 14 demonstrate that although
the alloy remains single-phase with the fcc structure, the lattice constant changes. Peaks
being wide after HPT become narrow (due to grain growth) and noticeably shift to the
right. This corresponds to a decrease in the lattice constant in volume. This phenomenon
can be explained by the fact that with an increase in the grain size by two and a half orders
of magnitude, the specific area of GBs drops sharply and the atoms that formed segregation
layers at the boundaries are released and passed into the volume. In this case, the lattice
constant changes noticeably.
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So far, in our reasoning, we have not taken into account individual differences between
GBs. Meanwhile, the GB structure and properties substantially depend on their misori-
entation angles and the orientation of the GB plane [147–149]. There is ample evidence
that HEAs also contain different types of GBs. In particular, many of them can contain a
large number of deformation and annealing twins [150–152]. On the other hand, it is well
known that twin GBs differ greatly in structure, composition and properties from general
GBs and other coincidence GBs [153–155]. For example, the number and morphology
of twins in HEAs strongly depend both on the composition of these alloys and on their
pretreatment [23,156–158]. In addition, the faceting-roughening GB phase transitions lead
to the fact that the spectrum of GB properties also depends on temperature, as well as on
the composition of the alloy [159,160]. Thus, we demonstrated that SPD can significantly
expand the spectrum of the structure and properties of HEAs, and the simultaneous use of
the features of phase transformations gives material scientists and engineers an important
tool for purposefully changing the properties of WESs [161–170].

The area of HEAs is very broad; however, this review appears quite short. Neverthe-
less, we really discussed or mentioned here all papers from the intersection of areas “HEAs”,
“SPD” and “phase transformations”. It is because the combination of these approaches
is quite new and concerns mainly the Cantor alloy and similar HEAs. The goal of this
review is to demonstrate how fruitful can be the application of ideas of bulk and GB phase
transitions and SPD to various HEAs. Therefore, we can expect the new breakthrough
results in similar investigations, for example for novel HEAs obtained by the additive
manufacturing (like AlCoFeNiTiV0.9Sm0.1 and AlCoFeNiV0.9Sm0.1 HEAs with high corro-
sion resistance [171], hybrid HEAs based on AlCoFeNiSmTiVZr system [172], as well as
titanium-free AlCoCrFeNiMn, CoCr1.3FeMnNi0.7, AlCoCrFeNi1.3, and AlCoCr1.3FeNi1.3
HEAs [173]). Even more promising can be the studies of high-entropy oxides and other
ceramics [174,175].

5. Conclusions

We have shown that SPD makes it possible to determine the borders of single-phase
regions of the existence of a multicomponent solid solution in HEAs. The GBs that are
formed in t HEAs during SPD serve as pathways for accelerated diffusion, and during the
annealing of such samples, the precipitates of the second phase are rapidly formed. Such
accelerated mass transfer makes it possible to accurately determine the border temperature
for the single-phase solid solution area in the multicomponent phase diagram of HEAs.
In addition, SPD causes a variety of phase transformations in HEAs. These include the
decomposition of a single-phase solid solution with the formation of second-phase particles,
the formation of high-pressure phases, amorphization, and spinodal decomposition. As
we have already noted, during SPD, a large number of new GB are formed due to grain
refinement. These new GBs have segregation layers, the composition of which differs
from the composition of the bulk solid solution. For the formation of segregation layers
at new GBs, atoms from the bulk are required. As a result, the composition of the solid
solution in the volume changes during SPD. All these SPD processes make it possible to
adapt the composition, structure and useful properties of HEA to solve a wide range of
problems in various fields of industry, science and health care. In particular, the possibility
of modifying individual properties of HEA (especially those with titanium, zirconium and
hafnium), which have already proven their safety and reliability during a long history of
use in clinical practice, can significantly diversify the range of medical devices developed
on their basis, expanding the scope of their application in medicine.
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Cu–8wt.%Ag alloy deformed by high pressure torsion. Materials 2019, 12, 447. [CrossRef]

67. Straumal, B.B.; Kilmametov, A.R.; Kogtenkova, O.A.; Mazilkin, A.A.; Baretzky, B.; Korneva, A.; Zięba, P. Phase transitions in
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