KIT | KIT-Bibliothek | Impressum | Datenschutz

How voice retailers can predict customer mood and how they can use that information

Halbauer, Ingo; Klarmann, Martin 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

In two studies we investigate how voice shopping may provide access to meaningful data on customer mood and how retailers may use such data. In Study 1 we explores the use of a machine learning approach to predict customer mood based on customer commands in the voice shopping process. We compare it to a heuristic approach to customer mood prediction based on situational correlates of mood that that a smart speaker can access (weather, music choice, day of week, and daylight). In Study 2 we explore how a voice retailer could use the potential capability to predict customer mood. Our results provide evidence that a customer’s good mood is associated with purchases of higher-priced premium brands. In addition, retailers can use mood prediction to adapt the presentation of product information to fit customer mood, thus helping customers optimize their decisions. In a sensitivity analysis, we examine what accuracy of mood prediction could enable retailers to use the explored effects.


Originalveröffentlichung
DOI: 10.1016/j.ijresmar.2021.09.008
Scopus
Zitationen: 8
Web of Science
Zitationen: 7
Dimensions
Zitationen: 9
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0167-8116, 1873-8001
KITopen-ID: 1000143147
Erschienen in International journal of research in marketing
Verlag Elsevier
Band 39
Heft 1
Seiten 77-95
Vorab online veröffentlicht am 31.10.2021
Schlagwörter Voice shopping, Mood, Mood prediction, Choice architecture
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page