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Abstract

Cardiac diseases are the number one reasons for death in the western world. Computa-
tional simulations provide the opportunity to conduct experiments and predictions that
are not possible in humans due to ethical and other reasons. High performance computa-
tion allows the use of demanding coupled computational models of high complexity and
a high level of detail, complying with a wide range of experimental data from the human
heart. In this thesis, different aspects of computational heart modeling are covered:
models describing passive tissue behavior, active contractile behavior, circulatory system
modeling, influences of the pericardium and surrounding tissue on the heart as well
as methods to obtain suitable parameters for these models. For each aspect, several
modeling approaches are presented and compared. Finally, a scalability evaluation of
the highly-parallelized implementation and an evaluation of the proper choice of mesh
resolution for credible numerical results are covered. Concludingly, this thesis allows the
reader to gain insights into the complexity of computational heart modeling and to make
an appropriate choice of models and parameters suitable for specific applications.
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Zusammenfassung

Herzkrankheiten sind die häufigste Todesursache in der westlichen Welt. Computersimu-
lationen bieten die Möglichkeit, Experimente und Vorhersagen durchzuführen, die am
Menschen aus ethischen und anderen Gründen nicht möglich sind. Hochleistungsrechner
ermöglichen den Einsatz anspruchsvoller gekoppelter Rechenmodelle von hoher Komplex-
ität und hohem Detaillierungsgrad, die mit einer Vielzahl von experimentellen Daten
aus dem menschlichen Herzen übereinstimmen. In dieser Arbeit werden verschiedene
Aspekte der rechnergestützten Herzmodellierung behandelt: Modelle zur Beschreibung
des passiven Gewebeverhaltens, des aktiven kontraktilen Verhaltens, der Modellierung
des Kreislaufsystems, der Einflüsse des Herzbeutels und des umgebenden Gewebes auf
das Herz sowie Methoden zur Ermittlung geeigneter Parameter für diese Modelle. Für
jeden Aspekt werden mehrere Modellierungsansätze vorgestellt und bewertet. Zusätzlich
wird eine Bewertung der parallelen Skalierbarkeit und der richtigen Wahl einer passenden
Gitterauflösung für verlässliche numerische Ergebnisse vorgenommen. Somit ermöglicht
diese Arbeit dem Leser, einen Einblick in die Komplexität der rechnergestützten Herz-
modellierung zu gewinnen und eine geeignete Auswahl von Modellen und Parametern für
spezifische Anwendungen zu treffen.
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1. Introduction

1.1. Motivation
The motion of the human heart during contraction is the result of a complex process
involving an equilibrium of a variety of forces acting at the same time. Activity of the
human fetal heart can be detected as early as six weeks of pregnancy (Hertzberg et al.,
1988), on the other hand cardiac diseases are the leading cause of death in the western
world for people over 65 (Heron, 2019; Kotzeva, 2019). Its pumping function drives the
circulatory system, metabolism and nutrition of the organs. Computational simulation of
the human heart can be of great benefit for success prediction during therapy planning
and allows experimental insights that are otherwise not possible due to ethical reasons.
Moreover, model-enhanced measurements give access to otherwise inaccessible parameters
valuable for diagnostics.

State of Research Challenges in modeling cardiac motion arise from a number of
seemingly independent involved components: Passive tissue, active contraction, blood
pressure (circulatory system) and the heart’s environment all are areas with large
uncertainties in almost all models’ parameters. Designed for specific phenomena in an
isolated context, a model does not necessarily work as expected in a combined context,
the modeling choices need to fit together. During the cardiac cycle, chamber volumes
change by more than 50 % and heart deformation is similarly considerable. Linearized
approaches in modeling or the numerical solution process therefore can not be used.

Passive tissue models describe local forces due to local deformation and don’t necessarily
fulfill a global behavior. These models are naturally designed around measurements of
local deformation (e. g. ex-vivo shear data by Dokos et al. (2002)). According parameters
for the different models were determined by Schmid et al. (2008, 2009) or in recent years
from tagged MRI (Hadjicharalambous et al., 2015). The global behavior in humans
however is also known to follow a certain pressure-volume relationship (Klotz et al.,
2006), independent from sex, age or health state. Additionally, different from electrical
excitation modeling, anisotropic properties are mandatory as fiber orientation prescribes
the direction of contraction, and incompressibility prolongation in the other ones. Models
for active tension depend on a specific amount of local cell strain to develop sufficient
tension (Sachse et al., 2003; Land et al., 2017). Another important role plays the time
course of calcium development or the calcium transient, which needs to be at least periodic
and even then does not necessarily work as expected. Since electrical excitation activation
happens much quicker than the mechanical motion, it is often computed separately on a
higher resolution structured grid and predefined in models of the whole heart (Fritz et al.,
2014; Gurev et al., 2015). Circulatory system models interact with mechanical motion
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1. Introduction

via exchange of pressure and volume changes. Local pressure information is normally not
used unless the focus is specifically on intraventricular blood flow patterns, which then
requires fluid structure interaction (Watanabe et al., 2004). Models for the surrounding
pericardium are still in an early state and difficult to validate (Fritz et al., 2014; Kerckhoffs
et al., 2007a). Data acquired during in-vivo measurements is exposed to a number of
tertiary effects (passive, active forces, blood pressure), ex-vivo measurements are not
ethically obtainable from healthy humans. Hearts donated to science often have altered
elastic behavior, animal experiments on the other hand have pitfalls besides the obviously
different dimensions. Pig hearts for example are mostly surrounded by very deformable
lung tissue, whereas the lower half of human hearts is in the direct touch with liver
tissue and diaphragm, with a more restricted motion in that area. Ideally, multiple heart
beats are computed that reach a state where one beat behaves identical to the previous
one (quasi-periodic static state), which requires periodically working models and easily
increases simulation time from hours to days or weeks (Lassoued and Boubaker, 2020).
Besides interdependencies between specific models and the computational challenge of
multi model coupling itself, the number of unknowns thereby is very limited (mesh
resolution) and numerical accuracy is difficult to obtain (e. g. by higher order elements,
shell elements). Also, the creation of the geometric model is a laborious task and often
only done for one or two chambers. Averaged cine MRI images are acquired over multiple
heart beats and thus show smear. During segmentation, the typical resolution of cine
MRI for humans is insufficient to show atrial and right ventricular walls, and even left
ventricular myocardium is hard to distinguish from liver tissue. Wall thickness however is
an essential factor for force development, ejection volume and driving of circulation and
metabolism. A good quality of each of the deforming elements is essential to be pretained
throughout the whole cardiac cycle. Problems during simulation of a fully-featured whole
heart simulation are often caused by specific aspects of the geometric model, and require
multiple iterations through the whole process of segmentation, mesh, fiber and model
generation.

Currently, only few full heart simulation models are published that include more than
one chamber and a circulatory system modeling. Sugiura et al. (2012) present a model
involving biochemistry and fluid-structure interaction, which was used by Okada et al.
(2017) with focus on the electrophysiological aspect to identify patients suitable to cardiac
resynchronization therapy. Fritz et al. (2014) use a three-dimensional pericardium model
to improve motion of the atrio-ventricular valve plane and the outer shape. Gurev et al.
(2015) present a high resolution two-ventricle model exploring the limits of mesh resolution
using advanced linear equation solvers. Land et al. (2017) worked on a ventricular tension
model that specifically resolves the discrepant behavior of fiber-level models on organ
level. Used as an atrial contraction model, Land and Niederer (2017) compared the
results of different atrial model parameters on ventricular contraction, which showed
surprisingly little effect with ejection fraction decreasing by less than 5%. In a similar
study, Gerach et al. (2021) published a model which uses a very similar mesh, circulatory
system modeling and patient-specific passive parameter estimation as developed in this
thesis, but with a different tension development modeling to show effects of atrial ablation
scars on hemodynamic parameters.

7



1. Introduction

Aims and Solution Idea The main purpose of this thesis is to identify, describe and
evaluate elastomechanic modeling approaches in each component suitable for application
in fully-featured whole heart simulations. These models ideally provide periodic solutions
(periodicity) and easy-to-determine parameters that are independent of a specific patient.
A reproduction of certain component-specific aspects on a general level ensures a well-
working interplay between different models.

Therefore, a tetrahedral mesh of the four-chamber geometry is generated for one
specific patient outgoing from an MRI data set. New material parameters for passive
tissue will be estimated by mathematical optimization techniques to obtain a better
global behavior of the ventricle. Once the passive tissue behaves as expected, this allows
to implement the active component by a length-dependent model of active tension and
evaluate its results. As endocardial boundary condition, a new circulatory system model
is developed and implemented that allows multiple heart beats until convergence. Due
to lack of validation for the existing pericardium model, an alternative, reduced-order
approach is implemented, which allows to evaluate both against each other and against
measurement data. The computational demands make parallelization of the code with an
efficient scalability necessary. Uncertainties in the required mesh resolution are resolved
by conducting a study with different resolutions on a simple model of the left ventricle.

1.2. Structure of the Thesis
The remainder of the thesis is structured as follows. Part I presents the necessary
background of physiological, mathematical, modeling and implementational fundamentals.
Section 1 presents the general motivation behind numerical heart modeling as well as
current challenges on the topic and the state-of-the art. Section 2 gives the description
of the physiology of the human heart at multiple levels of detail as well as the vascular
system. Section 3 introduces the mathematical fundamentals of the continuum mechanics
approach and the discretization methods in general that are necessary to solve the problem
using a computer. Additionally, the second half of Section 3 collects modeling approaches
that are specifically suitable for describing passive and active properties of heart tissue
as well as forces acting on the myocardial walls from the interior (circulatory system)
and exterior (pericardium and surrounding tissue). Section 3 finally closes with a short
overview of the Fritz heart model, created in an important preceding thesis, that serves
the base of this thesis. Section 4 gives descriptions of implementing the previous sections
realized in a software framework named “CardioMechanics”, the adaptive choice of
temporal step size, strategies used to couple the different modeling components, software
parallelization up to super computer scale, as well as the workflow used to generate a
geometric mesh from a specific patient’s data.
Part II presents several projects that aim towards a modeling setup of the human

heart where each isolated component is validated as well as the behavior of the coupled
system as a whole. Besides modeling aspects, this includes aspects like mesh choice or
validation of the FEM solver. Section 5.1 clarifies the necessary mesh resolution that is
quantitatively needed when aiming to achieve a specific numerical accuracy, and Section
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1. Introduction

5.2 measures the performance benefit of the software parallelization, using up to 256
cores. Section 6.1 treats the isolated behavior of a ventricle to estimate parameters for
the passive material model using mathematical optimization. Section 6.2 investigates two
different models for active contraction forces, introduces a length-dependent model and
evaluates its influences on the level of a muscle fiber as well as of the heart as a whole.
Section 6.3 describes the modeling of a closed-loop circulatory system and uses these
models to add external forces onto the interior surface of the myocardial wall using strong
iterative coupling. Section 6.4 investigates two different models of the heart-surrounding
pericardium that is used to further add external forces onto the exterior surface, resulting
in the proposition of a new zero-dimensional model. Finally, Section 7 summarizes the
results obtained in this thesis and gives an outlook of future works.
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2. Physiological Fundamentals

2.1. Cardiac Anatomy
The human heart is a muscular organ located in the center of the chest and has approxi-
mately the size of a fist. It is neighbored in the upper part by the lungs and skeleton,
and in the lower part by the liver and diaphragm (Figure 2.3). In healthy persons, the
heart is surrounded by the pericardium, a sac-like structure (Figure 2.1).

The purpose of the heart is to drive the cardiovascular circulatory system which itself
ensures the supply of the organs with oxygen, hormones, minerals and nutrients, and
the evacuation of waste products as well. The heart consists of four chambers, usually
separated in two functional parts, consisting of one atrium and ventricle each. The
right half consists of the right atrium and the right ventricle and drives the pulmonary
circulation with the purpose to oxygenate deoxygenated blood in the lungs. The left half
consists of the left atrium and left ventricle which have more muscle mass to develop a
higher pressure needed in the systemic circulation. In order to ensure an unidirectional
blood flow, the blood exchange between atrium, ventricles, pulmonary and the aorta
is regulated via heart valves that work mostly passively. Between atrium and ventricle
are the atrioventricular valves located, called mitral valve (left half) and tricuspid valve
(right half). The ventricles are thereby bounded on both sides to regulate inward as
well as outward flow (Figure 2.2). Moreover, the ventricles contain papillary muscles to
prevent bulging of the valves towards the atria during contraction, which cover around
23% of the chamber volume (Chuang et al., 2012).

The heart contraction can be described by two phases. The systolic phase or systole
denotes the contraction of a specified chamber, usually the ventricle if not denoted
otherwise, and the heart ejects blood. During the diastolic phase or diastole, the heart
chamber relaxes by a lowering contraction force and a release of previously stored passive
energy, and refills with blood. Important temporal marks of the cardiac cycle are the
end-diastole and end-systole as these specifically denote opening and closing events of
certain valves as well as beginning and ending of active contraction. The wall thicknesses
differ in the four chambers and depend on the pressures that need to be produced by
them. Normal peak pressures in the atria are around 20 mmHg and the wall thickness
fairly is thin. Ventricular walls are thicker, in the right ventricle the peak pressure is
around 30 mmHg and the thickness up to 10 mm, in the left ventricle the pressure goes
up to 140 mmHg with a thickness of 20 mm (Schmidt et al., 2007). These wall thicknesses
describe the end-diastolic state and increase considerably during contraction.
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2. Physiological Fundamentals

Figure 2.1.: The heart enclosed by the pericardium, from Schünke et al. (2009).

Figure 2.2.: Schematic four-chamber view of a human heart. Left and right half are
separated by a septum and the ventricles are bounded by valves on both
ends, allowing to direct the blood flow during the different phases of the
cardiac cycle, from Fritz (2015).
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2. Physiological Fundamentals
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Figure 2.3.: Cross sectional view of the human heart in a torso surrounded by lungs and
the diaphragm, picture adapted from Schünke et al. (2009).
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Figure 2.4.: Close view of the myocardium and the structure of the adjacent pericardial
layers (adapted from OpenStax (2017), Chapter 19, Figure 5).

2.2. Meso- and Microstructure of the Heart
The myocardial wall consists of several layers, called endocardium, mid-wall and epi-
cardium in the order from inside to outside. Myocardium is enclosed by the pericardium,
a multi-layer structure, which itself again is built up of two main layers (Figure 2.4).
The purpose of the outer, fibrous pericardium is to fix the position of the heart within
the thorax. The serous pericardium is constructed of two subsequent layers. While the
visceral pericardium is attached to the epicardium, the parietal pericardium is connected
with the fibrous pericardium. The pericardial cavity located in-between the visceral
and parietal layers is filled with lubricating fluid to reduce friction during the heart
contraction.
In the myocardium, 70% of the volume consists of layers of fibrous muscle fibers.

These are arranged in layers combining multiple fibers to sheets, which can be seen on
microscope (Figure 2.5). These layers are connected to each other by perimysial collagen.
Each myofiber is build up of several sarcomeres, which form the contractile element.
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2. Physiological Fundamentals

Figure 2.5.: Close-up view of myocardial tissue in a dog. Picture taken from LeGrice
et al. (1995).

Figure 2.6.: Schematic view of a myocyte (left) and the action of the crossbridge actin
heads (right), from Fritz (2015).

Each sarcomere has a length of approximately 2µm and consists of actin filaments
attached to Z-discs, as well as myosin filaments attached to M-discs (Figure 2.6). Each
myosin filament has a number of myosin heads that are responsible for the interaction
between actin and myosin filaments. At rest, binding sites on the actin filaments are
blocked by tropomyosin proteins. An increase in calcium concentration however causes
tropomyosin to uncover the binding sites, and thereby allows the myosin heads to attach
to them, creating a motion of the heads along the actin filament. In total, the overlap
between actin and myosin filaments will change and a force develops between the Z-discs,
which is the same as the fiber direction.

Physiologically, the length of a myosin filament is constant at around 1.6µm, while the
sarcomeres have a length of 1.9µm in the unloaded state, and 2.1µm at the end-diastole.
Therefore, the length of a sarcomere is lower bound by the length of the myosin filament.
During contraction, the shortening of a sarcomere is limited to at most 1.6/1.9 ≈ 84% of
the unloaded length (or 1.6/2.1 ≈ 76% of the end-diastolic length).

13



2. Physiological Fundamentals

2.3. Cardiac Physiology and Tension Development
Contraction of muscle cells in the heart is triggered by electrical stimulation. In normal
healthy sinus rhythm, electrical excitation starts at the sinus node located in the right
atrium. An electrical excitation wave spreads over the atria, reaches the atrioventricular
(AV) node, located between atria and the ventricles. The AV node adds a delay of
around 100 ms to give the atria time to contract and the ventricles time to fill with blood.
Subsequently, the activation distributes over the bundle of His to the apex and from there
via Purkinje fibers further over the ventricles. The electrical activation of the ventricles
is inhomogeneous, the delay between earliest (apex) and latest activation (near the valve
plane) corresponds to the length of the QRS complex in the ECG diagram and lasts
between 80 ms and 120 ms.

On the cell level, a single heart muscle cell gets triggered by a stimulus current through
the membrane. When the cell gets triggered, ion channels in the membrane open and close,
and cause ion concentrations (Ca2+, K+) to change, building up the transmembrane
potential, an electrochemical gradient between intracellular and extracellular space. The
transmembrane voltage is usually at −70 mV at resting state and increases (depolarizes)
up to 20 mV during activity, reaches a plateau phase and decreases (repolarizes) to the
resting potential. After that, the normal, healthy cell is in a refractive phase and cannot
be activated again for a short period of time to lead the electrical activation into a single
direction (different from physical waves, two waves cannot ‘cross’) and suppress heart
frequencies too high to eject blood (above 180 bpm). Ions can be exchanged directly
from cell to cell through gap junctions, eventually causing a depolarization of neighboring
cells.
During depolarization, the Ca2+ flow into the cell and the change of concentration

causes an increased binding of Ca2+ to troponin-C proteins. These cause tropomyosin
proteins to change their structure and finally a motion of myosin heads along actin
filaments, also known as contraction.

2.4. Vascular System and the Cardiac Cycle
The blood flow – used to transport nutrients and waste products – is driven by contraction
of the heart connected to a closed network of vessels. The circulatory system is separated
into two non-connected parts, the systemic circulation and the pulmonary circulation
(Figure 2.7). The pulmonary system transports blood from the right half of the heart to
the lungs, where it gets oxygenated, and back to the left half. The systemic circulation
transports blood from left half over the arterial system (aorta, arteries and arterioles) to
the organs, and back to the right half using the venous system (venules and veins), where
the circulation is closed. Larger vessels near the heart (aorta and pulmonary arteries) are
elastic, allowing them to smooth out pressure spikes from the blood ejection and yielding
a continuous blood flow (Windkessel effect). With distance from the heart, the diameter
of the vessels decreases and the number of branches increases. This effectively reduces
the velocity of blood flow at the organs, allowing for more time to exchange nutrients
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2. Physiological Fundamentals

and waste products. Only the small vessels have the ability to actively influence their
diameter and thereby resistance, giving them the possibility to control arterial blood
pressure and distribution of blood to the different organs. Most of the blood is stored in
the venous system, the larger veins hold about 70% of total blood volume (Klabunde,
2011).

The cardiac cycle is separated into systole or contraction phase and diastole or relaxation
phase. The mechanical systole is defined as the interval between closure of AV valve and
closure of semilunar (aortic/pulmonary) valve. It can be further subdivided. During
isovolumetric contraction, where all valves are closed, the volume stays constant and the
pressure rises. At that time, the AV valve deforms due to the large ventricular pressure
towards atrium, which can be seen as “c” wave in the atrial pressure. The ejection phase
follows the isovolumetric contraction. When a pressure threshold at the semilunar valve
gets exceeded, the valve opens and blood is ejected from the ventricle. The ventricular
volume decreases and the AV valve moves towards the apex. Thereby, the atrial volume
increases and atrial pressure decreases (“x” descent). The ejection is called rapid before
reaching the ventricular peak pressure and reduced afterwards. An additional “v” wave
can be observed in atrial pressure during refilling with the closed AV valve. The total
volume change during systole is called stroke volume (SV), and denotes the blood ejected
during one cardiac cycle.

The mechanical diastole is defined as the interval between closure of the semilunar and
closure of the AV valve. It can be subdivided into four phases: During isovolumetric
relaxation AV valve is still closed, the ventricles relax due to decreasing contraction
forces and decreasing overall stiffness, and the ventricular pressure decreases abruptly. It
is followed by the phase of early or rapid filling. The AV valve opens and ventricular
volume increases. First the ventricular pressure is below the atrial pressure and the
ventricle sucks blood from atrium, then the atrial pressure follows the ventricular pressure
(“y” descend). The third phase is the diastasis or slow filling phase, where the ventricles
are almost filled with blood and experience only a slight volume increase. In the last
phase, the atria contract and late filling occurs. The atrial pressure increases (“a” wave),
the valve plane gets pulled towards the atria and ventricular volume increases since the
atria actively pump blood into the ventricle. While for humans at rest the filling of the
ventricles is mostly passive and atrial contraction only contributes 10-20% of the stroke
volume, the passive filling phase shortens and the atria contribute up to 40% during
exercise (Mitchell and Wang, 2014).

Pressure-volume loops (pV loops) are often used to visualize pressure against volume
within a chamber in order to get a quick overview of diagnostic information. Figure 2.9
shows typical pV loops of the left ventricle including stroke volume, valve action events
and systolic phases. For different loading conditions, a family of pV loops can be plotted.
During the filling phase, it includes information about the passive properties of the
chamber via the non-linear end-diastolic pressure volume relation (EDPVR). The linear
end-systolic pressure volume relation (ESPVR) on the other hand tracks the pressure
at the state of maximal contraction for a given volume. The slope elastance EES is an
indicator of the stiffness in contracted state and thereby contains information about the
active properties. Concerning the atrium, Figure 2.8 shows a pV loop including the
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2. Physiological Fundamentals

complex interaction between atrial and ventricular contraction expressing in a typical
double loop structure. During atrial contraction, volume decreases and pressure increases
causing the “a” loop. During ventricular contraction, atrial volume increases and pressure
increases due to passive filling. Ventricular relaxation finally causes the release of blood
into the ventricle, seen by a decrease in atrial pressure and volume and expressed by the
“v” loop.
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Figure 2.7.: Visualization of the human vascular system with arteries in red and veins in
blue. Adapted from Wikimedia Commons (2016).
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3. Mathematical Modeling

Modeling of cardiac motion is divided in two parts. Mathematical modeling describes
the concepts of non-linear continuum mechanics that peak into the space-time-dependent
governing equations. These can be solved using the method of finite elements for spatial
discretization, and a generalized alpha method for temporal discretization. Various
models for the multitude of present internal and external forces form the second part. An
important aspect to the concept of continuum mechanics is the tissue-specific relationships
between stress and strain, denoted as material law. Additionally, time-varying active
forces are required to reflect the specific, non-static cardiac motion. The internal forces are
complemented by mandatory boundary conditions that ensure mathematical uniqueness,
and a number of optional boundary conditions, external surface forces that technically
are not required to obtain a solution, but – if done correctly – vastly improve quality
and validity of the solution. These are endocardial forces due to blood pressure from
the circulatory system, and epicardial forces due to surrounding tissue and the rather
restrictive pericardial sac the heart is embedded in. Contributing to the complexity, all of
these forces are influenced by the cardiac deformation itself. Third, this chapter describes
available methods to solve the discrepancy between a simulation-driven requirement to
start with a stress-free geometry and the inherently not stress-free geometry obtained
from in-vivo MRI imaging. Finally it completes with a description of the work by Fritz
(2015), which lead to the systematic investigations of modeling approaches in this thesis.

3.1. Continuum Mechanics and Description of Deformation
and Stress

Continuum mechanics is the theory of mathematically describing deformation of arbitrary
objects due to internal and external forces. This chapter introduces the basic terms,
definitions and concepts needed to describe the behavior of the soft tissue of the heart in
the context of a computational elasticity simulation.

3.1.1. Stress vs Strain
An important aspect of modeling with continuum mechanics are the concepts of stress
and strain. Strain denotes the part of deformation that ‘is visible’ from outside, by
displacement of points on the surface (and within the material) in relation to a reference
deformation. This is purely the actual deformation, without any respect of the inner
forces. Stress denotes the inner forces that are either caused by a deformation (passive
stress) or that causes a deformation (active stress). The relation between stress and
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reference configuration Ω0 current configuration Ωt

X

x(X,t)F = ∂x
∂X

Figure 3.1.: The relationship between reference configuration X and the time-dependent
current configuration x is given by the deformation tensor F .

strain is given for a certain material by an empirical relationship, called material law or
constitutive law, which describes the reaction forces of a specified material to an imposed
deformation. Two patches showing the same strain, can have very different inner forces
depending on their material. A rather stiff piece of concrete or metal will produce a high
stress already at a deformation of a few percent, a piece of soft tissue in contrast behaves
fairly soft and will react with a lot lower forces by the material, or – when applying the
same force – undergo a larger deformation.
In the human heart, the myocardial tissue is of a rather soft type and deformations

are large. The enclosed ventricle volume changes during a normal heart beat roughly by
50 %, and the myocardial strain is accordingly high.

3.1.2. Measures of Deformation
For describing the current state of an object, a so-called reference configuration is defined.
The reference configuration describes the undeformed state, mostly chosen at t = 0. The
current configuration denotes the state after deformation at time t. The domain Ω is
called Ω0 in the reference configuration and Ωt in the current configuration. The bijective
movement function ϕ : Ω0 → Ωt, (X, t)→ ϕ(X, t) transforms a point’s coordinates X in
the reference configuration, denoted with a capital letter, to the deformed coordinates
x = ϕ(X, t) at time t. The deformation tensor F is a matrix describing the deformation
of an infinitesimal small line element in the reference configuration dX in the current
configuration, given by its components

F = dx

dX
,

Fi,j = ∂Fi
∂Xj

, i, j, k = 1, 2, 3.

The deformation of area and volume elements can be derived analogously.
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Since the deformation tensor contains rotational components, it is rather unsuited to
use it directly. A better measure that depends on deformation should not change under
simple rotation or translation. For these applications, additional deformation measures
exist and are introduced in the following. The left Cauchy-Green Tensor C is given by

C = FTF,

and the Green-Lagrange strain tensor E

E = 1
2(C− I)

with identity matrix I. The Cauchy-Green tensor is rotational invariant, i.e. independent
from the rotational component R of the deformation tensor, which is an advantage over
the deformation tensor. This can be seen by applying a polar decomposition F = RU
and C = UTRTRU = UTU. The Green-Lagrange strain tensor has the additional
property that it reflects an undeformed configuration by only zeros in it’s components.
One important application of the deformation tensor in cardiac simulations is deter-

mining the change of fiber length. In its original coordinate system, the fiber is aligned
with the local x-axis and has the orientation f0 = [1, 0, 0]. In its deformed state, the fiber
has a new orientation, given by ft = Ff0. The relative change of fiber lenght can be
computed by

λf = ‖ft‖2
‖f0‖2

=

√
(Ff0)T (Ff0)√

fT0 f0
=
√
fT0 Cf0

and is also called the stretch ratio. This has the properties λf = 1 in the undeformed
state, λf > 1 in positive stretched states and λf < 1 in shortened states. A similar value
is the engineering strain

εf = λf − 1,

which is located around 0.
The second important application covers the computation of deformation energies.

For formulation of isotropic material laws, the following characteristic ‘invariants’ of the
Cauchy-Green tensor C can be used, these do not depend on the choice of coordinate
system:

I1 = tr(C) = (λ1)2 + (λ2)2 + (λ3)2,

I2 = 1
2((tr(C))2 − tr(C2)) = (λ1λ2)2 + (λ2λ3)2 + (λ1λ3)2,

I3 = det(C) = (λ1λ2λ3)2,
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~n t

Figure 3.2.: The Cauchy stress tensor illustrated by a small cube. On the intersection
area with normal ~n acts the traction force t.

whereby here the eigenvalues of the deformation tensor F are denoted by λ1,2,3.
Anisotropic material laws however are designed to depend on the coordinate system,
these need to use the entries of the Green-Lagrange tensor directly.

The third application is the measure of volume change, which can be incorporated by
a penalty formulation. The volume change dv

dV can be derived by dV = dX1dX2dX3 and
the corresponding deformations dx1,2,3 = FdX1,2,3 and is given by

dv

dV
= det F = J =

√
I3.

A simple possible formulation penalizing volume change is K(J−1)2 with a given penalty
factor K.

3.1.3. Measures of Stress
Stress describes the inner forces, that occur inside a material. It is defined as the forces
on the faces of an infinitesimal small unit cube. These forces do not necessarily need to
be orthogonal to surface. Thereby the unit of stress is N/m or Pa.
The Cauchy stress tensor σ gives the stress in relation to the current configuration

and is thereby also known as real or physical stress:

σ = (t1 t2 t3 )

where t1,2,3 are the traction vectors corresponding to the unit surfaces. The relationship
between Cauchy stress and force on an arbitrarily oriented surface with normal n is
linear:

tn = σn

In general, the stress vector on a surface with orientation n is defined as t(n) =
lim∆A→0

∆f
∆A = df

dA . Due to conservation of angular momentum, the stress tensor is
symmetric (σ = σT ).
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Table 3.1.: Conversion formula between the different stress tensors.
Cauchy PK1 PK2

σ = – J−1PF J−1FSFT

P = JσF−1 – SFT

S = JF−1σF−T PF−T –

For the implementation of a finite element code, it is useful to measure stress related
to the undeformed state. Therefore additional stress measures exists, which can be
converted from one to another using the formula given in Table 3.1.
The unsymmetric first Piola-Kirchhoff tensor (PK1) P measures the forces in the

current configuration and the surface in the reference configuration:

P = f
A0

The symmetric second Piola-Kirchhoff stress (PK2) S measures force as well as area in
the reference configuration:

S = f0
A0

3.2. Governing Equations
The behavior of non-linear continuum mechanics is dominated by the three conservation
laws for mass, linear momentum and angular momentum.

1. Conservation of mass:

ρ0 = Jρ, J = det(F) (3.1)

2. Balance of linear momentum:

ρa − div σ − ρb = 0 (3.2)

with acceleration forces a, body forces b and a hyperelastic material law that relates
deformation E to an energy potential W (E), its derivative gives path-independent
traction forces S = dW (E)/dE.

3. Conservation of angular momentum, which imposes symmetry on the second Piola-
Kirchhoff tensor S:

S = ST (3.3)
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3. Mathematical Modeling

These equations together are called the equilibrium equations since they describe a state
at which all forces at all points are in balance for the whole domain.
Additionally, a set of boundary conditions defining the behavior on Γ is needed to

obtain uniqueness. These are usually one of or a combination of

• displacement boundary condition, where displacements u are prescribed, or

• surface traction boundary condition, where surface forces t are defined

on parts of the domain. Examples are node fixations for the former and surface pressures
for the latter.

3.3. Spatial Discretization
Outgoing from the equilibrium equations in section 3.2, a linearized matrix formulation,
solvable with a computer, is needed. For spatial discretization, the equilibrium equations
are discretized with the “principle of virtual work”, by multiplication with test functions
wI or “virtual displacements”. The remainder gives the total change of energy in the
system δW . The strong formulation of the linear momentum conservation equation (3.2)
gets first discretized with ansatz functions NI and from there a weak formulation is
derived by multiplication with arbitrary test functions w (this known as principle of
virtual work in the context of engineering mechanics) and further discretization of w. In
a Galerkin approach, the same space is used for ansatz and test functions. Tetrahedra
of first and second order were used, the latter show less volumetric locking. These
are denoted according to their number of nodes as T4 or T10 elements and shown in
Figure 3.3.

Starting with Newton’s second law of motion in its integral representation, the equation

∫
x∈Ω

ρa(x, t) dΩ =
∫

x∈∂Ω
t(n,x, t) dΓ +

∫
x∈Ω

ρb(x, t) dΩ

needs to be fulfilled by the acceleration forces ρa(x, t) in any deformed domain Ω, with
surface tractions t(n,x, t) and body force density b(x, t).

With the approximations u ≈∑uiINI , w ≈ wiINI and transformation to the reference
domain Ω0 (this introduces the first Piola Kirchhoff stress tensor P ), this leads to the
discrete equations of the weak form of the total Lagrangian formulation:

δW = wiI

∫
Ω0
ρ0NINJ üjJdΩ0 + wiIf

int
iI + wiIf

ext
iI = 0
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Figure 3.3.: Node numbering of a linear surface element (T3), a quadratic surface element
(T6), a linear tetrahedron (T4) and a quadratic tetrahedron (T10). From
Fritz (2015).

where f intiI =
∫

Ω0
∂NI
∂Xj

PjidΩ0 and fextiI =
∫

Ω0
NIρ0bi dΩ0 +

∫
Γ0
NIt

0
i dΓ0. This holds true

for arbitrary wi, so it follows:∫
Ω0

∂NI

∂Xj
Pji dΩ0︸ ︷︷ ︸

f int

−
(∫

Ω0
NIρ0bi dΩ0 +

∫
Γ0

ti

NI t̄0i dΓ0

)
︸ ︷︷ ︸

fext

+
∫

Ω0
ρ0NINJ dΩ0︸ ︷︷ ︸

M

üjJ = 0

With internal forces f int, often called stiffness matrix, external forces f ext, and mass
matrix M this can be written in the abbreviated form:

Mü + f int(u, t)− f ext(u, t) = 0 (3.4)

External forces are influenced by boundary conditions, e.g. forces on the myocardial
surface due to blood pressure on endocardium or penalty forces to ensure frictionless
contact on epicardium. Since the nodal forces f int (c.f. Section 3.6) and fext (c.f.
Section 3.7) depend non-linearly on u, the arising system is solved iteratively using a
Newton method.

In the implementation, this equilibrium of forces is extended by a damping matrix C
and writes in matrix notation as

Mü + Cu̇ + f int(u, t)− f ext(u, t) = 0 (3.5)

25
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with u containing all coordinates of all points. The dependency of f int and f ext on
u makes the system non-linear. For hyperelastic materials, the passive forces in f int
are path-independent and “memoryless”, they depend only on the current deformation
state u but not on past ones. A temporally changing dependency between f int and u is
introduced by active contractile forces.
One possible choice for the damping matrix is Rayleigh damping, which introduces

damping depending on mass and passive stiffness (internal nodal forces):

C = α1M + α2K

with the linearization of the passive forces

f int(u) ≈ K · u, K := ∇uf int(u)

using the stiffness matrix K.
Since the internal forces f int depend non-linearly on u and are influenced by active

contractile forces as well, Raleigh damping has the nice property of being an “adaptive”
damping during the cardiac cycle, however it requires re-computation of K in each step.
During systole, the increasing active contraction forces lead to an increasing amount of
damping. In that situation, the eigenfrequency of the tissue is large (active and stored
passive stress is high) and the corresponding damping matrix as well (∇uf int). Later
on, quickly decreasing active forces however might become problematic at the beginning
of relaxation: A high amount of stored passive energy and quickly decreasing active
forces cause a high acceleration and requires a comparatively large amount of permanent
damping via α1 to remain computable. It is difficult to choose the parameter α2 to have
sufficiently enough adaptive damping during the relaxation, but not too much during
contraction. For some parameter combinations it could be observed that the system
begins to oscillate heavily and becomes unstable. Lowering β helped in some of these
cases. Typical values used in the simulations are α = 1000 and β = 0.01, or β = 0.005 in
those problematic cases1.

Rajagopal et al. (2007) give a good brief overview of the general discretization approach,
a more thorough description can be found in Belytschko et al. (2014) for the theory and
Fritz (2015) for the implementation of the equations.

3.4. Temporal Discretization
In order to implement equation (3.5), the temporal derivatives u̇ and ü need to be
discretized as well. Given the current state of all node positions, this gives us the
next state of all node positions and thereby secondary values like velocity, acceleration,
deformation as well. Throughout this section, displacement increments d̃ are used (which
is change of node coordinates relative to previous time step), instead of the displacements

1This was observed in a simulation with only left ventricle and left atrium, fixed at apex and atrial
orifices, only passive and prescribed active forces, but neither blood pressure nor pericardium modeling.
The same setup with a four chamber geometry worked fine though.
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u itself (which is relative to the undeformed state). Computation-wise, this has the
advantage of better numerical accuracy. Two different solvers are used in this work.

The first solver is the called the static or equilibrium solver. It omits all time derivatives
in the differential equations and yields a steady-state solution under the respective
boundary conditions for the current time step (active tension, blood pressure) without
depending on previous solutions:

r(d) := f int(d)− f ext(d) = 0

In that case, time integration is not necessary and the nonlinear system of equation
is solved using Newton’s method by linearizing the deformation- and potentially time-
dependent terms f int(d) and f ext(d) in each Newton step. In theory, the solution d does
not depend on previous steps. In the implementation however, the node displacements
could be found faster and more reliable by reusing the displacement increments from the
previous time step as initial guess of Newton’s method for the current time. In case of a
changing time step size, it needs to be adapted accordingly. This effectively corresponds
to a constant-velocity extrapolation from the previous time step as initial guess and
improves convergence behavior especially for larger time step sizes.
The Newmark-beta solver is the second solver and respects all time derivatives in the

momentum equation. It additionally tracks velocity v and acceleration a to improve the
initial guess for the displacement d in next time step (Belytschko et al., 2014). This
method is designed for elasticity problems and is a special case of the generalized alpha
method introduced by Chung and Hulbert (1993). Depending on the choice of the
algorithm parameters β and γ, the Newmark-beta method represents an explicit or an
implicit method and can introduce additional numerical damping. In contrast to the
equilibrium solver, including time derivatives now reflects effects due to mass inertia and
damping over the matrices M and C:

r(d) := Md̈ + Cḋ + f int(d, t)− f ext(d, t) = 0

At tn+1, the following system of nonlinear equations is solved iteratively for dn+1 using
Newton’s method:

r(dn+1) = M an+1 + C vn+1 + f int(dn+1, tn+1) + f ext(dn+1, tn+1) != 0 (3.6)

The update formula are given by (Belytschko et al. (2014), sec 6.3.3, p 339):

dn+1 = dn + ∆tvn + ∆t2
2
(
(1− 2β) an + 2β an+1

)
, (3.7)

and with the definitions

d̃n+1 : = dn + ∆tvn + ∆t2
2 (1− 2β)an, (3.8)

ṽn+1 : = vn + (1− γ)∆tan (3.9)
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for acceleration and velocity by

an+1 = 1
β∆t2 (dn+1 − d̃n+1) (3.10)

= 1
β∆t2

(
dn+1 − (dn + ∆tvn + ∆t2

2 (1− 2β)an)
)
, (3.11)

vn+1 = ṽn+1 + γ∆tan+1 (3.12)
= (vn + (1− γ)∆tan) + γ∆tan+1 (3.13)

= vn + ∆t
(
(1− γ) an + γ an+1

)
. (3.14)

Inserting these in equation (3.6) leads to the following system of nonlinear equations that
depends only on dn+1, but not on an+1 and vn+1 anymore:

r(dn+1) =M
(

1
β∆t2

(
dn+1 − (dn + ∆tvn + ∆t2

2 (1− 2β)an)
))

+C
(

(vn + (1− γ)∆tan) + γ∆t 1
β∆t2

(
dn+1 − (dn + ∆tvn + ∆t2

2 (1− 2β)an)
))

+f int(dn+1, tn+1)− f ext(dn+1, tn+1)
=0

The Jacobian of r is given by

A = 1
(∆t)2β

M + γ

(∆t)βC + K

whereby internal and external forces K are linearized in each Newton iteration

Kdn+1 ≈ f int(dn+1, tn+1)− f ext(dn+1, tn+1).

A good initial guess for Newton’s method is to use the approximated displacement
increments d̃n+1 from (3.8) as proposed by Hughes et al. (1979). Finally, dn+1 is known
and an+1, vn+1 can be updated using (3.11) and (3.14).
Initial values for both solvers are chosen such that v0 = a0 = 0 everywhere and the

initial node positions correspond to the node positions in the reference state for t 6 0.
Regarding the choice of algorithm parameters, this method corresponds for β = 0, γ = 1

2
to the explicit central difference method, for β = 1

4 , γ = 1
2 to the undamped trapezoidal

rule and for γ > 1
2 to a numerically damped integrator with damping proportional to

γ − 1
2 . All simulations in this thesis used the parameter set β = 0.5 and γ = 1.

3.5. Force Modeling Overview
Various forces dominate cardiac motion during each phase of the cardiac cycle. Figure 3.4
gives an overview of the main force components.
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For each component exist different complexity levels of mathematical modeling. While
more complexity generally adds more accuracy to a specific behavior, it usually has
the drawback of more parameters that are more difficult and less reliable to determine.
Moreover, most of these models loose comprehensibility of each of the involved parameters,
combined with more subtle limitations that are harder to understand. This increases the
danger of using them in a context they were not designed for, and therefore are not able
to show the expected qualitatively improved behavior. Opposite from what was actually
intended, the produced results are even worse than when using simpler models with clear
but fulfilled limitations.
The main contributors to the mechanical cardiac function are the following forces.

Active forces are directly related to the contraction of muscle fibers in the myocardium.
The range of model complexity starts at simple, explicit functions adapted to measurement
data, that can be computed in a fraction of a millisecond. The other end on the complexity
scale are sophisticated differential equation-based models of ion channels in the cell
membranes, currents through them, gap junctions in-between separate myocardial cells
together with Maxwell equations for the propagation. The calcium concentration in each
cell is additionally paired with a model of sarcomere interaction including the current
state of deformation, finally giving the force value of each single computational cell. The
passive forces are counteracting active forces, representing material properties like the
softness, volume conservation or memory-dependency of the tissue. An other type of
internal forces are introduced by the dynamic behavior of the tissue, the dynamic forces
comprise forces due to damping and mass inertia. The remaining two sources of forces
are related to external forces due to the surrounding of the heart. The endocardial forces
act on the blood-oriented side of the myocardium and are caused by blood pressure. The
epicardial forces are also surface forces, but act on the outwards-pointing surface and
summarize all forces created by (passive) motion of the surrounding like neighboring
organ tissue or the pericardial sac.
While computational simulations without endocardial or epicardial surface forces are

perfectly possible, active forces are needed to generate the motion of the heart, and
passive forces generate the reactive forces and limit the motion as stated by Newton
third law of action and reaction.

3.6. Modeling of Passive Stress
Up to here, stress and strain can be seen as completely independent, in reality however
this is not the case. The relationship strongly depends on the material and its properties
like stiffness, plasticity or an anisotropic structure. The relationship between the two
describes a constitutive or material law. In hyperelastic material laws, the stress depends
only on the current state of deformation and has no memory or path-dependency. Stress
can then be derived from a potential describing the deformation energy, called an energy
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Figure 3.4.: Complexity diagram of the different force components involved in modeling
the motion of the heart. Color intensity and number of model parameters
increase with model complexity.
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density function W (E):

S(E) = dW

dE ,

Sij = dW

dEij
, i, j = 1, 2, 3

Anisotropy of a material is the property of a stress tensor depending on preferred directions
of deformation. If the behavior is in two directions the same, the material is called
bi-isotropic or transversal isotropic. Myocardial tissue has a filamentous micro-structure
and has an anisotropic passive behavior.
In this work, two constitutive models are used, both are non-linear and hyperelastic.

The Mooney-Rivlin material is used for the atria and is a simple but commonly used
isotropic material law. The energy density function is

W = C1(I1 − 3) + C2(I2 − 3)

with material parameters C1, C2 and the invariant I1, I2 of Cauchy-Green tensor E. In
the current code, a more general formulation is implemented

W = c10(I1 − 3) + c01(I2 − 3) + c20(I1 − 3)2 + c02(I2 − 3)2 + c11(I1 − 3)(I2 − 3).

The transversely isotropic Guccione material law is used for the ventricles, since it is a
material law specifically designed for ventricular tissue (Guccione et al., 1991, 1995). Its
energy density function is given by:

W = C
(
eQ(E) − 1

)
with

Q(E) = b1E
2
11 + b2(E2

22 + E2
33 + E2

23 + E2
32) + b3(E2

12 + E2
21 + E2

13 + E2
31)

and the four model parameter C, b1, b2 and b3.
A number of similar material laws for soft tissue was developed by other authors as well,

all of which having an exponential relationship in common (Fung, 1965; Fung and others,
1993). The Costa material law uses six parameters to additionally respect anisotropic
behavior between sheet and sheetnormal directions (Costa et al., 2001). The Holzapfel
material uses an own exponential term for each component of E (Holzapfel and Ogden,
2009). Schmid et al. (2008) give a nice comparison between different laws for soft tissue.

To realize a penalization of volume change, both laws were extended by an additional
penalty term

0.5b ln(I3)2 (Mooney-Rivlin)
0.5K(J − 1)2 (Guccione)
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Table 3.2.: Different parameters for myocardial heart tissue found in literature. Since at
least two versions exist of the Guccione energy potential exists (W = Ce(...)

and W = C
2 e

(...)), the ‘pre-factor’ denotes the scaling factor in front of the
exponent. Costa law actually has seven parameters, but can be ‘reduced’ to
be used with the Guccione formula. The pre-factor is given in Pa and the
shape-factors b1,2,3 are unitless.

pre-factor b1 b2 b3 source, subject type
C 1200 26.7 2 14.7 Omens1993, dog
C 831 14.3 4.48 0.762 Nash2000/Wang2009, canine
C 876 18.48 3.58 1.627 McCulloch1989, canine
C/2 57.5 14.4 5.76 10.08 Tmax = 143 kPa Genet2014, in-vivo human
C/2 94.5 28.9 13.5 13.3 6 pig hearts, Xi2011 (actually Costa parameters

estimated by schmid2008, Dokos measurements)

with penalty parameters b and K, respectively, and the third invariant of the Cauchy-
Green tensor I3 = det(C) = (det(F))2 = J2 indicating the relative volume. It has to
be noted that in reality it can be observed that the volume of myocardial tissue is not
constant, moreover it is compressible and changes in the range of ten percent during one
heart cycle due to blood perfusion and other factors (Waldman et al. (1985); Ashikaga
et al. (2008)). So an exact volume conservation (e.g. by Lagrange multipliers) is neither
needed nor realistic.

Different parameters for the Guccione law were used in literature. An overview is given
in Table 3.2.

3.7. Modeling of Active Stress
Modeling active stress is probably the most important part to reproduce the dynamic
behavior of the heart, since these are the forces that trigger the motion. The active stress
depends on fiber direction and is incorporated by adding an additional contribution to
the second Piola-Kirchhoff stress tensor:

S = dW (E)
dE +

T (t,E) 0 0
0 0 0
0 0 0

 (3.15)

The first summand represents the impact of passive force due to deformation, the second
part the impact of active force due to contraction forces.
The active tension T may depend on time t and deformation expressed by E. Strain

in fiber direction λf is expressed by λf =
∥∥∥F ( 1 0 0 )T

∥∥∥
2
.

In this work, three different tension models are used.

• An electrophysiological tension model without stretch dependency, based on cell
models by Fritz et al. (2014); Fritz (2015),

32



3. Mathematical Modeling

Figure 3.5.: Chamber elastance of the left ventricle as measured by Senzaki et al. (1996)
in normal humans and defined by Mynard and Smolich (2015) (left), and
construction of the DoubleHill function by Mynard (2011) (right). Taken
from Schuler (2016).

• a Double Hill tension model, without stretch dependency Stergiopulos et al. (1996),
and the

• Lumens tension model with stretch dependency (Lumens et al., 2009).

A second tension model with stretch dependency by Land et al. (2017) was implemented
as well, but not essential to the findings in this thesis.

Electrophysiological tension model For the tension development based on electro-
physiological excitation, the mono-domain equation is solved for transmembrane voltages
Vm using a separate simulation framework acCELLerate as described in Fritz et al. (2014);
Fritz (2015):

∇ · (σi∇Vm) = (κ+ 1)β
(
Cm

dVm
dt

+ Iion(Vm)
)

with model parameters σi, κ, β, Cm and transmembrane ion current density Im. The ten
Tusscher model (ten Tusscher et al., 2004) in the ventricles and the Courtemanche model
(Courtemanche et al., 1998) in the atria yield the contributions to the transmembrane ion
current density Iion on right hand side. The intracellular calcium concentration arising
from the cell models is transformed to a time-dependent force-per-cell value using the
hybrid tension development model developed by Sachse et al. (2003). That value is
then taken as static time- but not deformation-dependent input T (t,E) = T (t) to (3.15).
Since in that case the geometry did not change over time, the developed tension does not
depend on the current deformation.

DoubleHill tension model The Double-Hill tension model is based on an analytical
function replicating the measurable ventricular elastance over time

E(t) = P (t)
V (t)− V0
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Table 3.3.: Parameters for the DoubleHill tension model. The rates mc and mr are
unitless, τc, τr, t0 and T are given in s.

Mynard and Smolich (2015) Reduced relaxation
Ventricles Atria Ventricles

Contraction rate const. mc 1.32 1.99
Relaxation rate mr 21.9 11.2 12.0

Contraction time offset τc 0.269 · T = 0.215 0.053 · T = 0.042
Relaxation time offset τr 0.452 · T = 0.362 0.173 · T = 0.138

Onset time t0 0.15 0.0
Period T 0.8 0.8

by a normalized elastance

e(t) = E(t)− Emin
Emax − Emin

= 1
k

(
gc

1 + gc

)( 1
1 + gr

)
with

gc =
(
t′

τc

)mc

, gr =
(
t′

τr

)mr

, t′ = mod(t− t0, T ), k = max(k, e(t))

and pressure-free volume V0 (Stergiopulos et al., 1996). Mynard and Smolich (2015)
propose to apply tension based on such an elastance

T (t) = Tmax e(t)

also for the atria. Parameters for ventricles and atria are given in Table 3.3. Justification
of such a model is, that the contraction is dominated by the active forces. Using a
tension following a specific time course imposes a specific time course of elastance as
depicted in figure 3.5 as well. When coupling with a system of the circulatory system,
all that circulation “sees” are the chamber elastances and since these are imposed based
on measurements, the chambers in the finite element model “behave correctly” from the
viewpoint of the circulatory system.

Lumens tension model The Lumens tension model in contrast is a phenomenological
model directly based on measurements of the length-dependent tension in myocardial
cells (Lumens et al., 2009). It respects the current length of the muscle cell, which makes
it interesting because of a possible reproduction of the Starling effect. The original
formulation of the model is triggered by a prescribed function Frise(t) that computes
the activation C, a parameter that is “physiologically related to intracellular calcium
concentration”. Figure 3.6 shows its time course. Hence calcium concentration effectively
is assumed to follow the same time course in all cells. The original formula are:
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Table 3.4.: Parameters for the tension model from Lumens et al. (2009). The value for
Crest was needed to be set to 0 in the 3D FEM simulations, in order to get a
stress-free initial state.

Symbol Unit Value Description
Crest −− 0.02 diastolic resting level of activation
Lsc0 µm 1.51 Contractile element length with zero active stress
Ls,ref µm 2.0 Reference sarcomere length at zero strain
Lse,iso µm 0.04 Length of isometrically stressed series elastic element
vmax µs−1 7 Sarcomere shortening velocity with zero load
τD ms 32 Factor for scaling time of contraction decay
τR ms 48 Factor for scaling time of contraction rise
τsc ms 425 Factor for scaling duration of contraction
σact kPa 120 Factor for scaling active myofiber stress

Frise =0.02x3(8− x)2e−x

with x = min(8,max(0, t/τR))

CL(Lsc) = tanh
(
4.0(Lsc − Lsc0)2

)
T (Lsc) =τsc(0.29 + 0.3Lsc)

dC

dt
= 1
τR
CL(Lsc)Frise(t) + 1

τD
· Crest − C

1 + e(T (Lsc)−t)/τD

dLsc
dt

=
(
Ls − Lsc
Lse,iso

− 1
)
vmax

σf,act =σactC · (Lsc − Lsc0)Ls − Lsc
Lse,iso

Parameters for the Lumens model are given in Table 3.4.
In contrast to the original paper, however some of the constants inside the formula

needed to be converted such that the units represent time and space with m and s instead
of µm and ms, respectively. Affected are the formula for CL (4e12 instead of 4), T (0.3e6
instead of 0.3) and σf,act (the whole formula needs to be scaled with 1e6). Moreover, for
the 3D FEM simulations Crest was set to 0 for being able to start in an equilibrium state
with zero force (otherwise start of the simulation is not possible at all). The formula in
the implementation are taken from the “appendix B” of the publication by Lumens et al.
(2009) and compute the force σf,act from strain εf :
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Figure 3.6.: Plot of Frise, the invariable “rise of mechanical activation” as used in the
tension model by Lumens et al. (2009).

Ls(εf ) =Ls,ref e(εf )

strain to sarcomere length,
Frise(t) =0.02x3(8.0− x)2e−x

with x = min(8.0,max(0.0, t/τR)),
and t denoting the time relative to the current heart beat

dLsc
dt (Lsc, εf ) =(Ls(εf )−Lsc

Lse,iso
− 1)vmax

CL(Lsc) = tanh
(
4 · 1e12 · (Lsc − Lsc0)2

)
1e12: needed if Lsc, Lsc0 passed in SI units

Tfun(Lsc) =τsc(0.29 + 0.3 · 1e6 · Lsc)
1e6: needed if Lsc passed in SI units

dC
dt (C, Lsc, εf , t) = 1

τR
CL(Lsc)Frise(t) + 1

τD
· (Crest − C)/(1 + e(Tfun(Lsc)−t)/τD )

with t as result of: {while (t > tcycle) : t = t− tcycle}
σfact(Lsc, C, εf ) =σactC(Lsc − Lsc0) · 1e6 · (Ls(εf )− Lsc)/Lse,iso

1e6: due to SI units
if (Lsc < Lsc0) : return 0
if (Lsc > Lsc0) : return σfact

These formula can be motivated fairly well. The first equation converts a fiber strain
value εf to the current physical length Ls of the sarcomere. Actually that is already given
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by the stretch ratio Ls = λfLs,ref and the definition of εf = 1 − λf , but the authors
preferred an exponential formulation, which–according to Taylor series expansion–is very
similar and does not make a big difference nevertheless. As described in section 2.2,
the local strain in fiber direction εf is physiologically restricted to the range between
-0.2 and 0.3, where the exponential approximation is almost perfectly linear with a
difference below 2% for εf < 0.2 and below 5% for εf < 0.3. All formula incorporating
sarcomere length Lsc could not be directly used but had to be scaled from mm to m
to become applicable in the FEM simulations. The formula for Frise and dC

dt take t as
input, but work just for the first heart beat correctly. Instead of t, these are fed with
a “modulo-divided” equivalent time shifted to be within the first heart beat (“while
t > tcycle: t = t− tcycle”). Additionally, in the last two lines the force σf,act is set to 0
if the sarcomere length becomes unphysiologically small (Lsc < Lsc0) in order to prevent
negative active forces. This also ensures the minimum-length restriction is mostly fulfilled
in the FEM simulations.

For the implementation, state variables need to be stored and restored in a replaceable
manner accordingly, which gets more complex with an increasing number of state
variables. The tension model is called multiple times during a single solver step of the
time integration by Newton’s method. In case of a failed solver step, the implementation
needs to be able to detect and perform a “step back” of all state variables on its own. For
easier handling, a state variable object was introduced which contains all state variables
at once. A function “SaveAndResetStateVariablesAsNeeded” analyzes the time step size
on every call of the tension model in order to detect a progress in time or a step back,
and then saves or restores the state variable object with help of the copy constructor in
case of a progress in time or a step back.

3.8. Modeling of the Pericardium
The pericardium is a semi-rigid, sac-like structure enclosing the four chambers of the
myocardium. It restricts motion of the heart’s outer shape and evokes a hemodynamic
impact especially through the thin-walled atrial region. Currently, two different modeling
approaches of pericardial effects in simulations of heart mechanics are known: Kerckhoffs
et al. (2007a) and Fritz et al. (2014).

3.8.1. Kerckhoffs Pressure Pericardium
Kerckhoffs et al. (2007a) used the pericardial influence in a 3D FEM elasticity simulation
of a bi-ventricular canine heart coupled to a closed-loop model of the vascular system.
Atria are only represented and modeled as time-varying elastance in the circulatory
system part. The pericardial effects are incorporated by computing a single scalar-valued
pressure term depending on the total heart volume enclosed by the pericardial sac. The
total heart volume Vtotal is given by ventricular blood from the finite element mesh, atrial
blood volumes from the circulation model, and a constant parameter for the myocardial
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volumes:

Vtotal = VLV + VRV + VMYO + VLA + VRA

The pressure volume relationship is exponential in its nature (and thereby similar to
what Freeman and LeWinter (1984) observed in measurements of dogs). The computed
pressure is added in two different manners. Its value gets added to the atrial pressures in
the circulatory system, and applied as epicardial surface force onto the ventricles in the
finite element simulation. Kerckhoffs et al. (2007a) gave for the pressure an exponential
relationship

p(Vtotal) = α (exp(β( Vtotal
Vtotal,0

− 1)− 1))

with a “pressure scaling factor” α = 0.031 (unit: mmHg) and an “exponential shape
factor” β = 6.76 (unitless) for healthy hearts. That formula however did not work as
described, the plausibility check p(Vtotal,0) does not yield the intended zero pressure.

After revisiting the brackets, the corrected and from now on used formula is

p(Vtotal) = α(eβ( Vtotal
Vtotal,0

−1)
− 1)

with the last -1 being moved out of the exponent. This neutralizes the exponential
function in case of Vtotal = Vtotal,0 and creates the expected p(Vtotal,0) = 0.
The pericardium in this model creates a positive pressure (compression effect) at the

end-diastolic state and a strictly positive but decreasing inward-pointing pressure during
the progressing contraction.

3.8.2. Fritz’ Volumetric Contact Pericardium
To approximate the influence of the pericardium and the surrounding tissue, the mesh
contains besides the myocardium of the four chambers a thin, approximately 2 cm thick
layer of volume elements surrounding the myocardial elements. The inner surface of that
surrounding tissue matches the outer myocardial surface. For each myocardial surface
element (master element), a corresponding surface element on the surrounding tissue
surface (slave element) is found in normal direction of each quadrature point xm and an
additional surface force gN is computed depending on the distance to the intersection
point xs and a global penalty parameter ε (Fritz et al., 2014).

gN (ξ) = ε(xs(ξ)− xm(ξ)) · nm(ξ)

In order to stabilize the algorithm, especially with myocardial tissue parameters behaving
less stiff than the ones used in Fritz et al. (2014); Fritz (2015), an additional scaling
depending on the angle between the normals of the two elements needed to be introduced.
A second improvement is a better search order of slave elements for an improved and
significantly faster runtime on larger meshes. Exploiting the fact that there is at most
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Figure 3.7.: Contact forces from the volumetric pericardium model acting on the epi-
cardial surface during end-systolic state. Near the apex is a pronounced
pressure peak, while in other areas the pressure seems to be distributed more
homogeneously.

one corresponding slave element, the search can be aborted when it is found. This is now
done such that the possible slave elements are traversed in an order depending on the
proximity to the slave element found in the previous time step instead of the full vector
of all elements. The neighborhood relationship map needs to be computed only once
during initialization and before starting the loop over all time steps.
Fritz et al. (2014) incorporate the pericardial effects by extending the mesh. Their

volumetric mesh of all four chambers (without volumetric representation of the valves) is
extended by an additional volumetric mesh of approximately 2cm thickness representing
the surrounding tissue. Between the two meshes, a contact interface problem gets solved
throughout each computed time step. Thereby, the pressure forces needed to minimize
the distance between the pericardial surface and the inner surface of the surrounding
tissue. For each element on a manually defined subset of the heart surface (“master
element”) a corresponding element on the inner surface of the surrounding mesh needs
to be found in normal direction (corresponding “slave element”). The epicardial surface
used to define the master elements of the contact problem was not closed and covers
only an arbitrarily chosen part of the upper atria as well as most parts of the ventricular
epicardium. The simulations were found to be highly unreliable and their success depends
a lot on the addition and choice of these holes in the master elements surface, which
have no physical representation. The end-systolic state matches the stiffness of the
surrounding tissue by design of the surrounding mesh as a convex hull. The parameters
of the surrounding mesh were chosen to be isotropic (Neo-Hook material, Mooney-Rivlin
material with C2 = 0) with stiffness C1 chosen such that the end-systolic state matches
visually to some slices in the same state from corresponding CINE-MR measurements.

However, the original publication Fritz et al. (2014) has a number of questionable
points susceptible to criticism. Neither material properties like passive parameters,
thickness of the mesh nor the general behavior of the surrounding tissue were based
on physiological thoughts or with a certain justified behavior in mind. Many of these
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necessary assumptions are neither described nor mentioned in that paper but still are
important or even essential for a credible, correct, or at least reproducible modeling. As
an example, an experimentally observed 8.8% change of pericardially enclosed volume
(Carlsson et al., 2004) is so small that for that deformation the differences between linear
and non-linear material law is mostly insignificant. Nonlinear tissue requires unnecessary
additional computational overhead, but is still used with a seemingly arbitrary choice of
parameters. As an other example, the impact of the amount of volume conservation in
the surrounding tissue on deformation is huge with fixation of the outer surface combined
with a thickness of only a few centimeters (volumetric locking). Finally, thickness of the
surrounding mesh itself plays an important role as well. Twice the thickness allows the
double amount of “amplitude” or orthogonal surface displacement under the same surface
pressure created by the pericardial layer (compliance), but the choice of thickness was
never mentioned and seems to be chosen arbitrarily. These points of criticism however do
not inherently translate to the modeling approach itself, but rather indicate that further
systematic investigations are required.

In this model, the pericardium creates no surface forces at all during the end-diastolic
state, and an outward-pointing surface force increasing with progressing contraction
(expansion effect), which is fundamentally different from the previously described pressure
model.

3.9. Modeling of Circulatory System
A basic property of the aorta and the arterial system is a certain mechanical elasticity
as described in section 2.4. Its vascular purpose is to create a smooth blood flow by
storing part of the ejected volume during systole and releasing it during diastole, known
as the Windkessel effect. An often used model to describe this behavior is the three-
element Windkessel model (WK3), consisting of a compliance paired with two resistances.
Figure 3.8 shows the analogy between its modeling as hydraulic system and electrical
circuit, the arising differential equations are the same. Blood flow Q corresponds to
electric current, blood pressure P to electric potential and stored blood volume V to
electrical charge. Electrically, Kirchhoff’s junction and loop rules are used to derive the
differential equations and analogously ensure conservation of blood volume and continuity
of flow. The characteristic values are named correspondingly as aortic characteristic
impedance ZC , total peripheral resistance R̃ and total arterial compliance C̃.

The amount of blood volume VC stored in the capacitance depends on the pressure
drop PC = Pin − Pout and is related via the compliance C as

PC = 1
C
VC .
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Figure 3.8.: Three-element Windkessel model in its representation as hydraulic system
(left) and electrical circuit (right). Adapted from Schuler (2016); Westerhof
et al. (2009).

Similarly, in- and outflows Qin = QZC
and Qout = QR are related to the respective

pressure drops by the corresponding resistance values

Qin = 1
ZC

PZC
Qout = 1

R
PC .

Finally, the stored blood volume changes with the difference between adjacent inflow and
outflow

V̇C = Qout −Qin.

The inverse of compliance E := 1/C is called chamber elastance and can be measured
experimentally via the required pressure change to obtain a certain volume change
E ≈ δP/δV . In case of an actively contracting chamber, the corresponding component is
characterized by a time-varying elastance E = E(t), with its time course either prescribed
by an explicit function or approximated by the coupling algorithm with E ≈ δP/δV via
pressure perturbations within the FEM model.
In order to model the whole cardiovascular system, separate Windkessel models are

needed for arterial system, venous system and the heart chambers (with separate VArt,
VV en and VV entr, respectively). These are either connected to ground (open-loop) or
combined in a closed system (closed-loop). Diodes between the different parts of a closed-
loop system restrict flows to one direction and can be used to model the unidirectional
flow property of the heart valves, expressed by min/max functions in the respective
equations for Qin and Qout.
Fritz et al. (2014) used two separate and unconnected open-loop Windkessel models

to simulate left and right ventricular afterload. By the nature of such an open-loop
approach, flow rates between the two chambers and ejection volume are not synchronized.
Furthermore, parameters of the systemic circulation were used for the pulmonary circu-
lation as well, with the consequence that the (usually weaker) right ventricle produced
a significantly lower ejection volume than the left one. Santamore and Burkhoff (1991)
therefore used a number of Windkessel models connected to each other to create a
closed-loop system of the cardiovascular system. Each Windkessel model represents one
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Figure 3.9.: Visualization of the end-diastolic in-vivo pressures acting on the endocardial
surfaces during image acquisition, from Schuler (2016).

of the systemic and pulmonary arterial and venous systems. Blood conservation and
equal ejection volumes are then automatically fulfilled by the electrical principles of
charge conservation.

3.10. Stress-free State Estimation
During in-vivo image acquisition of living patients, the heart is exposed to the full set
of internal and external forces – even if the segmentation is done at end-diastolic state
(Figure 3.9). These forces comprise end-diastolic blood pressure and probably forces
due to the pericardium and surrounding tissue as well (target state). Removing these
forces results in a different state in which no endocardial pressures are applied (pressure-
free state). Experiments show that even when removing all external forces, there still
exists residual stress causing an opening of a ring of the left ventricle by a certain angle
(Rodriguez et al., 1993; Costa et al., 1997). A strategy is needed to incorporate residual
stresses, either by applying strain directly or increasing strain by applying stretch.
An elementary assumption often made for finite element simulations is that pressure-

free state is approximately equal to the stress-free state. In that case, the task “reduces”
to finding one pressure-free state, that yields the segmented state after inflation. This
state is taken as (stress-free) reference state relative to which deformation and hence
stress are computed. End-diastolic volume of the left ventricle lowers to about 55%
when removing pressure (Klotz et al., 2006). In this section, unloading describes the
determination of a pressure and stress-free reference state, preloading describes the
whole process to obtain a target state with residual stress, i. e. including consecutive
inflation. In a heart geometry comprising of several chambers, unloading is only possible
simultaneously for all chambers at once since residual strains influence each other.
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Unloading by image acquisition

This is surely a very elegant way since it does not involve any kind of “computational
guessing”. Instead of using the end-diastolic state, Genet et al. (2014) used a whole-heart
MRI data set from end-systolic state. This state is then taken as pressure-free state and
inflated to the expected end-diastolic volumes, which creates the residual stress. The
drawbacks is that this method needs to be taken into account already during image
acquisition. Furthermore the heart’s state at time of acquisition (end of systole) is not as
much in rest as it would be at the end of relaxation phase (end of diastole) and motion
artifacts are more likely to occur.

Unloading by negative pressure

This is a simple one-shot method used by Fritz et al. (2014). It works as follows: (1) A
negative pressure is applied to the endocardial surface, (2) that state is set as stress-free
reference state, (3) a positive pressure is applied. The negative pressure needed to be
adjusted manually to obtain a state approximately fitting the target state after inflating
the chambers with their respective end-diastolic pressures. Often negative and positive
pressures are set similar. It allows to control neither the global amount of residual
stress (influenced only by passive properties), nor the actual shape of the surface after
reinflation.
This works fine as long as material parameters are stiff and negative pressure causes

only small deformation and a comparatively large unloaded volume (92% in Fritz et al.
(2014)), which on the other hand is not a physiological case. In the right ventricle, where
the myocardial wall is thinner and geometry is not distinctively convex, the resulting
pressure-free state shows considerable unnatural self intersections and is not able to build
up stress after inflation, with a shape very different from just a smaller-scaled version of
itself. Similarly, the atrial walls are fairly thin compared to end-diastolic pressures and do
not generate much passive stress either that could help to keep a stable shape under the
negative pressure. In case of additionally required fitting meshes (e. g. a three-dimensional
pericardium layer), these have to be created afterwards. Additionally, these have to be
recreated whenever parts of the mesh or passive properties even slightly change (e. g.
locally stiffer tissue due to modeling ablation scars), which makes comparison studies
difficult.

Preloading by active stress

Another idea to create residual stress is to permanently add a small amount to the stress
tensor, similar to an offset permanently applied to the active contraction force. This is
also a one-shot algorithm, however it does not need to generate a separate, stress-free
state. This way, residual stress is not modeled as passive material property (different
reference system) but as part of the active material. While this might be a viable
approach to generate the static equilibrium of forces in the fairly static end-diastolic
state, the course of the passive forces behaves differently during motion of the heart.
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A permanently active residual contracting force is an inherent property of the Lumens
model, if the parameter related to calcium concentration at rest Crest is not chosen to
be zero (Lumens et al., 2009). The latter however was necessary to be able to start
the simulation in an equilibrium state. Similarly, the atrial tension model by Land
and Niederer (2017) has a permanently active residual force. The authors state that
their contractile forces are sufficient to balance out pressure forces, so they did not use
significant unloading in the atria. This method allows to control the amount of residual
stress, but not the shape after inflation to end-diastolic pressure.

Unloading by Bols iterations

Iterative methods have the advantage that they reduce an error measure up to a desired
accuracy, and were published by several authors (Rajagopal et al., 2007; Sellier, 2011; Bols
et al., 2013). Rajagopal et al. (2007) developed their method specifically to “determine
the reference state from a loaded configuration”. While Rajagopal et al. (2007) use a
Newton method to determine the reference coordinates that minimize the error between
inflated and target state of breast-imaging, less expensive fixpoint-based methods were
developed later (Bols et al., 2013; Sellier, 2011). Bols et al. (2013) use it for blood vessels,
their method is presented here. Applications however are not limited to soft-tissue
mechanics, and comprise car tire manufacturing as well (Sellier, 2011). Sellier (2011)
moreover gives a thorough literature overview and convergence analysis.
The Bols unloading algorithm starts with the segmented state as initial guess for the

unloaded state. In each step, a new guess of the unloaded state is computed by: (1)
applying positive pressure to the current unloaded state, (2) measuring the (positive)
displacement of each node, (3) applying the displacement in negative direction to the
node positions of the current unloaded state. Ideally, the error between this state plus
inflation and the target state reduces in each step. Different from the previous methods,
final node positions under chamber pressure and residual stress are arbitrarily close to
the ones of the initial mesh.
The algorithm was found to work fine on mostly regular, convex geometries, like a

mesh containing only the left ventricle. Problems occurred mostly in non-convex regions
of the heart, especially in a thin-walled and almost flat part of the right ventricle. As a
typical behavior, the error in the right ventricle (maximum node difference, but l2 norm
of all node differences as well) decreases during the first 5 iterations down to a range of
10-20 mm, but then increases for all following iterations. This has several reasons, some
of which are the non-linear passive material properties and a non-convex geometry. Step
(1) basically does a linearization of the passive behavior under inflation. Introducing a
scaling factor to lower the negative displacement in step (3) of the algorithm was found
to add a certain level of robustness. Such a damping evokes that displacements are
more reliably predicted by the previous inflation in step (1). Since the displacements
of question result from inflating a smaller geometry than the target state, they have
to be slightly smaller. Another improvement was obtained by applying the positive
pressure only in small increments of the full end-diastolic pressure, thereby improving
the approximation of the linearized passive behavior under inflation. The problem might
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be that the original algorithm basically does a fixpoint iteration, which only converges if
the underlying function has a contracting property, i.e. the displacements become lower
for each iteration.

In the atrial region the algorithm worked less problematic, probably due to a generally
more convex shape. In the atria however model reliability is generally low due to
considerable uncertainties in several areas such as in-vivo passive material parameters,
wall thickness and wall position from MRI, resulting effective compliance, and even
numerical error from a low number of transmural elements (which was only one element
throughout the wall). Another problem regarding the convergence problems with a
four-chamber heart mentioned above are certain properties of the target state. In general,
a thin geometry with positive pressure on its inner surface tends to have a smooth outer
surface, even under the presence of residual stress. Unprocessed surfaces segmented
from MRI images are not in general smooth, segmentation inaccuracies and fairly coarse
voxels contribute to that. It is however known that the geometry was exposed to positive
pressure at the time of acquisition. Thereby as a second, different application, Bols
unloading method could be used as a tool to smooth out segmentation errors (sufficient
inflation makes everything convex). After segmentation and meshing of the target state,
simply applying one Bols iteration with a small (linearization) amount of positive pressure
should improve the convexity of the mesh. Segmentation inaccuracies could be detected
by investigating regions with a high local node position discrepancy before and after that
first iteration. A reasonable aim should be to get an error of the segmented target state
in the range of measurement error from MRI, i.e. 1-2mm.

An open question is which effects should be respected during the procedure to determine
the unloaded state. While in reality, residual stress from active tension models, or forces
of the epicardial surface from the pericardium and surrounding tissue might be present
during image acquisition, these definitely have an effect on the unloading procedure and
its results. Activating a contact pericardium prevents the ventricles to become non-convex
like they usually do during negative pressure unloading. However it is still unclear if
pericardial forces are present at all at end-diastole and in which direction they point.
Before that, the general role of the pericardium needs to be fundamentally investigated.

3.11. The Heart Model by Fritz2014
The model published by Fritz et al. (2014) is the base for the work in this thesis and is
therefore described shortly here.

3.11.1. Modeling components
Fritz et al. (2014) used an MRI-segmented mesh of a human four-chamber model and a
second mesh representing a truncated volumetric layer of the surroundings to show the
effects of the pericardium, realized by a contact handling algorithm between two meshes
as described in Section 3.8.2. Passive forces were represented by the Guccione material
law with Omens parameters (Omens et al., 1993) for the ventricles, and Mooney-Rivlin
material with parameters averaged from left atrium anterior (LAant) and left atrium
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posterior (LApost) from the publication of Di Martino et al. (2011) for the atria. Active
forces were precomputed on a fixed and static geometry by solving the bidomain equation
in combination with a tension model of high complexity developed to reflect the feedback
mechanisms during electro-mechanical coupling (Sachse et al., 2003), which however does
not use length-dependency due to the fixed geometry. Blood pressure was computed by
a non-looped WK3 model for the left ventricle (the afterload of the aorta is connected
to a zero-pressure condition instead) and for a single heartbeat. The same model and
identical parameters were used for the right ventricle as well. No pressure was assumed
in the atria in Fritz et al. (2014). In a later version, atrial pressures were also computed
by a simple resistance R1 and an assumed representative compliance of the ventricle C
(Fritz, 2015), however without any exchange of blood flow rates between the separate
models of the single chambers pressures. The afterloads of the single pressure models
were defined by four discrete states that run through in a prescribed order by passing
fixed pressure thresholds, again without information interchange. As consequence, the
states do not fit (e. g. AV valve is open for the atrium, but closed from the ventricle’s
perspective), and the simulations could comprise at most one heart beat.

The essential modeling of the pericardium was realized by their own modeling approach
(“contact pericardium” in Section 3.8) and validated by visual comparison of the end-
systolic and end-diastolic outer shape against cine MRI of the same patient. In (Fritz,
2015), the model was used to determine tension values over time in each cell. Instead of
prescribing a tension model, tension values in each cell and time step are free parameters
to be estimated by a specifically developed solver algorithm. Aim was, to measure
the motion of the surface from MRI, and compute corresponding tension values that
produce this specific motion, which are not directly measurable. Another application
of the later model in Fritz (2015) was the evaluation of the outcome of atrial ablation
scars. Therefore, five different ablation patterns were created with modified electrical
and mechanical properties over the control case, and the effect on the atrial outcome
(volume, pressure) was measured. The more scar tissue is present, the less force the
atrium develops, with the consequence of reduced volume change and peak pressures.

3.11.2. A critical view on the Fritz2014 model
The Fritz model was designed for the purpose to show that two new developed methods –
these are the pericardium modeling by contact and the inverse determination of tension
values – principally can be realized. It served well for that sole purpose, but had some
major flaws concerning already the physiological behavior of a healthy heart and the
ones with ablation scars. For using the simulated behavior to draw real conclusions, a
further development of the model towards a more plausible behavior is necessary. The
major points are described here.
Available validation of global behavior showed that it lacks in enough displacement

of the AV plane compared to cine MRI data (Fritz et al., 2014), and that the pressure-
volume behavior of the isolated pericardium even contradicts the measurements “in-vivo
pericardium” including impact from the surrounding areas from Freeman and Little
(1986). While the original pressure pericardium by Kerckhoffs et al. (2007a) used volume
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measurements of the pericardial sac as base, the original contact pericardium by Fritz
et al. (2014) compared against cine MRI images. It is not directly obvious which of the
two behaviors is the correct, to-be-expected one. Moreover, it is not directly clear why a
preloading of the pericardium with a literally inverted direction of forces would not have
a different drastic impact on the simulation outcome with the contact model.
In the modeling of the circulatory system, separate open-loop models were used for

each chamber with the result that the ejection volumes of the right and the left ventricle
are different. Moreover, the parameters of the pulmonary circulation were chosen to be
the same as in the systemic circulation, although the pressures therein are one magnitude
smaller. In order to reach the LV ejection volume, compliance, resistances, etc. are
necessarily different with the lower pressure and force generated by the right ventricle.
These approaches are acceptable when the aim is to produce an internal pressure load
over no pressure boundary, but leave room for improvement and do clearly not represent
a satisfying physiological case.
In the modeling of the contractile behavior, the tension values were pre-computed

on a static geometry. While the spread of electrophysiological activation in a healthy
heart is significantly faster and mostly finished when the mechanical deformation starts,
it is definitely not true for everything happening after the electrical activation. The
assumption is only possible when the parameters of interest depend on the beginning
of activation e. g. the local activation time or the activation pattern. Neglecting length-
dependency necessarily leads to a locally wrong temporal behavior in terms of deformation.
The heart however is exposed to a non-trivial amount deformation, the enclosed left
ventricular volume changes by 60-70% during one beat. The amount of developed tension
as well as its time course are highly dynamic and depend on the current stretch in
fiber direction much more than e. g. transmembrane voltage or intracellular calcium
concentration (Sachse et al., 2003). Accordingly, the Starling effect, an increase of stretch
leading to a larger developed tension and hence overall deformation and ejection volume
after an increase in LV volume, cannot be reflected. Similarly, the lower bounds of
deformation due to the physiological microstructure of myocytes, cannot be reflected by a
pre-computed tension modeling as well. Adapting model parameters on a static geometry
might be able to hide a wrong behavior of the model on one static geometry, but does
not replace the necessary dynamic effects of length-dependency on a dynamic geometry.
Regarding passive material parameters, evaluating the isolated behavior is the least

complex. The chosen parameters by Omens et al. (1993) are outliers amongst most other
parameter sets found in literature (see Table 3.2). The resulting isolated passive behavior
is almost certainly wrong, which comprise the pV response, relative volume increase
under a certain pressure or unloaded volume (which all are only global parameters). The
unloaded volume depends a lot on the stiffness behavior of the ventricle and changes
significantly when the parameters behave weaker. This however makes different methods
necessary that are able to handle non-linear pV response, the non-linearity lets the
negative pressure unloading approach fail. In the model by Fritz et al. (2014) the
unloaded volume was as high as 92% of the loaded volume, while it should be rather
around 50% of the loaded volume (Klotz et al., 2006).
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Figure 3.10.: Simulated pressure and volumes curves in the left (LVP, LVV) and right
(RVP, RVV) ventricle with (WP) and without (NP) using a contact peri-
cardium, from Fritz et al. (2014).

Concerning the behavior of surrounding tissue, a number of points were left unclear.
The advantage of the modeling idea over simpler modeling were not clear besides the sole
purpose of having “more complexity”. Evaluation of the isolated behavior was completely
left aside, instead the outer motion of the fully-featured heart simulation was compared
against the motion visible on cine MRI from the same patient. This similarity is not
surprising, since the global stiffness and incompressibility parameters of the surrounding
tissue (Mooney-Rivlin material) were modified until the motion fitted as a whole and
possibly existing local errors are too small to be still visible. Contact problems are
actually very common in the field of elasticity computations and widely available in
commercial standard software like ABAQUS or COMSOL, but only rarely applied to
cardiac mechanics. Due to the complexity of each involved component in a full-featured
simulation, a plausible behavior of the model as a whole does not necessarily attest
the isolated behavior of pericardium and surrounding tissue to be correct. These could
be the passive pV response of a model comprising only the mesh of the pericardium
and surrounding tissue. Measurements of the isolated, non-linear behavior are available
by Freeman and LeWinter (1984); Freeman and Little (1986), or of the non-isolated
volume variation of the whole heart by Carlsson et al. (2004). Preloading of the contact
pericardium was left aside and mentioned as a limitation. Besides the publication by Fritz
et al. (2014), a highly relevant but generally unanswered question are the fundamentally
different behaviors of the contact approach and the pressure approach. A pushing or a
pulling effect of the pericardium during contraction is completely opposite, and choosing
the wrong one is twice as bad as leaving the pericardial forces away. Finally, while
obtaining plausible local and global behaviors should be the aim, a whole-organ model
should at least reflect the general expectancies found in measurements on organ level.
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Difficulties for modeling improvements

Modifying most components towards a more correct isolated behavior did lead to an
even worse behavior than before in combination of all modeling components. A resulting
awkward behavior of the model can be observed by the volume diagram of the left
ventricle in Figure 3.10. During relaxation phase, the simulated LV volume increases
in the plot approximately linear (blue line in the right plot). Measurements however
show that the relaxation is steep at the beginning and less steep at the end, similar to
an inverted exponential function. A steeper slope at the beginning of the relaxation is
needed. The total duration of the relaxation fits and is not too long.
In case of using a more correct passive material, the behavior of the left ventricle

is less stiff and has less stored tension energy that can be released. As a consequence,
the slope would be less steep in the beginning of relaxation, and less steep in the end,
which is the opposite from what is needed! In case of a more correct unloaded state with
significantly smaller volume, the passive material needs to be stretched during relaxation
and counteracts the volume increase. Energy is stored in the passive material instead
of being released, so the slope would be less steep in the beginning and way less steep
in the end, which is again the opposite from what is needed! In case of a different and
probably more correct preloaded pericardium, the pericardial forces are pushing the
epicardial surface inwards during the end-diastolic state instead of pulling. Hence, the
inward-pointing pericardium forces counteract the volume increase during relaxation.
As a result, the slope would be less steep in the beginning and at the end, which is
the opposite from what is needed! In all three cases, improving the respective passive
behavior lead to a worse volume time course during relaxation and an unsuccessful
improvement of overall relaxation behavior.
Since at each arbitrary point in time, the equilibrium of forces needs to be fulfilled,

the direction of the forces vectors from the single modeling components is not irrelevant.
For drawing conclusions not only from the forward simulation, but also from approaches
that make use of a forward model e. g. the inverse determination of active tension (Fritz,
2015) or an estimation of passive material parameters as demonstrated in Section 6.1,
the quality of the results can be only as good as the quality of the forward model, and a
correctly behaving forward simulation is essential.
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The most limiting factor of any multi-component modeling are the computational costs
required to obtain even a coarse representative solution. In order to achieve this aim, a
number of essential factors were developed, realized, and are described in this chapter: An
object oriented programming framework with well-designed interfaces for an extensible
implementation, coupling of the different model components, a fast solution with an
efficient use of computational resources through software parallelization and adaptive
time increments. Even though cardiac modeling is a considerable software engineering
challenge, the combination with a “good mesh” is key to obtain a working simulation.
Hence, a brief description of the workflow to create a suitable geometric model starting
with MRI data and the geometric models used in this thesis is added as well.

4.1. The Biomechanical Framework CardioMechanics
In this section, the most important components of “CardioMechanics”, the framework for
cardiac biomechanics (CB) simulations are described. It relies on two external libraries,
the VTK library for data export and the PETSc library for solving the evolving linear
and non-linear equation systems. Its first implementation was written as in-house code by
Thomas Fritz (Fritz et al., 2014; Fritz, 2015). CardioMechanics is implemented in C++
and makes extensive use of an object oriented programming structure. It is intended as a
multiscale electromechanical simulation framework that uses the method of finite elements
to solve the equilibrium of forces. At the state of Fritz (2015) however, it was never
used with more than single-core due to a number of bugs in its parallel implementation.
Figure 4.1 and Figure 4.2 show its main components, these are:

CBCardioMechanics provides the command line interface to the user. It parses the user
input and starts the other main components depending on the user input in a reasonable
manner. Configuration files are passed in the xml format and can contain parameters
for configuring the Model/Mesh, Solver, Exporter, Materials and all SolverPlugins. All
parameters can be overwritten from command line e.g. for quick testing of a different
time step. Moreover different levels of verbosity can be chosen for the logging data to
facilitate debugging but not clutter the output on production runs.

CBModel handles all the data containing geometric information. It gets filled during
mesh loading by CBModelLoader and is used to pass the geometry information to the
solver. It’s second purpose is during export of simulation data to vtk files. Therefore
it gets updated with the latest node positions, and augmented with other additional
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information like active stress, relative fiber length and Cauchy deformation tensor, passed
to the CBModelExporter and finally converted to the VTK.

CBSolver solves a non-linear problem in each time step (using PETSc’s SNESSolve
function for solving non-linear equation systems) and implements the time integration
in one of its derived classes (CBSolverStatic and CBSolverNewmarkBeta). It handles
big-picture stuff like step size computation, calling solver plugins and mesh exporting
in the Run() function (Figure 4.1). CBSolver has its own special data structures in a
suitable format for efficient computation (parallel PETSc matrices and vectors), that need
to be converted to a CBModel object prior to exporting. Instead of directly computing
new node coordinates, in each time step displacements are computed in the actual
SolverStep() function and added to node positions from the previous time step.

CBSolverPlugin provides a general interface for adding additional functionality to
the solver. Examples of solver plugins are CBContactHandling plugin for realizing
permanent contact to the Pericardium, or CBCirculation for coupling in a Model of the
blood pressures in the circulatory system. This class provides the interface to functions
like Init(), Apply(), StepBack() and Export() that are called before starting the
simulation, for updating its own information during each solver step, for returning to
the previous state after each non-successful solver step and for writing information into
the model and/or a text file after each successful solver step matching an export time
condition. SolverPlugins can influence the next time step in the Solver using return
codes like CBStatus::SUCCESS (solver is allowed to proceed to the next time step),
CBStatus::FAILED (solver should reduce time step because plugin was not satisfied with
the result) or CBStatus::REPEAT (solver should compute the current time step again,
so the plugin can do multiple iterations like CBCirculation does).

CBElement consists of two different type of elements, CBElementSolid and CBEle-
mentSurface. CBElementSolid provides functions to fill the stiffness matrix with node
derivative entries in a proper petsc format. These are only called implicitly from PETSc’s
SNESSolve() function that uses the solver’s NodalForcesHelperFunction() to call each
solid element’s CalcNodalForces(), which computes the element’s contribution to the
system matrix. This complicated structure is prescribed by PETSc’s SNESSolve(), so
unfortunately this core functionality of the solver needed to be implemented in a confusing
manner. Each solid element knows about its own current and initial node positions, fiber
directions, material model and tension model and uses these information to compute
its deformation tensor and the resulting contribution to the global energy derivatives,
respectively. Each solid element has a CBConstitutiveModel for computing the passive
part and a CBTensionModel for computing the active part of the stress tensor during its
CalcNodalForces() (Figure 4.2).

In contrast to CBElementSolid, CBElementSurface provides functions to apply surface
forces, compute enclosed volumes and find contact partners for the contact Handling
algorithm.
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CBElementAdapter is a global object carrying pointers to all important global and/or
element-specific components within CardioMechanics, mainly due to efficiency reasons.
Examples are a pointer to the solver, to the constitutive model, to the time stepping
object, etc. This is used on the one hand to give each element read access to information
that is actually technically not available within an element (global variables). To keep
memory consumption low, node positions are stored only once in the memory in form of
the solver’s solution vector. The location in memory is provided by CBElementAdapter.
On the other hand, it allows the elements to add their contributions to mass and stiffness
matrix directly to the solver’s data objects.

CBConstitutiveModel provides the functions CalcEnergy() and CalcPK2Stress() to
allow each solid element to compute its deformation energy from a given deformation
tensor due to the passive material properties. The structure is very similar to CBAc-
tiveStressModel.

CBTensionModel provides functions to calculate active energy contributions due to
contracting muscle fibers from a given deformation tensor. CalcTension() yields the
tension in the fiber direction and CalcActiveStressTensor() yields the contribution to
the PK2 stress tensor. It is similar in structure to CBConstitutiveModel.
Due to the inheritance of object oriented languages, specializations of each module

can be exchanged and extended by a different one of the same type without needing
to rewrite large parts of the code. As specializations of the CBElement class there are
CBElementSolidT4 and CBElementSolidT10. Specializations of the CBConstitutiveModel
are CBConstitutiveModelGuccione and CBConstitutiveModelMooneyRivlin, all of them
providing the same interface functions, respectively.

4.2. Adaptive Time Increments
For a chosen time step length, Newton’s method sometimes does not converge (diverge)
within a certain number of Newton steps. The reason is often that the initial guess
for the node displacements is too far away from final solution for the chosen time step.
During the opening and closing events of the valves in the systole, the acceleration is high
and demand a small step size, while the diastole is more relaxed. One possible solution
is to re-run the whole simulation with a smaller step size, that is however only needed
at certain points in the heart cycle. So the more efficient and elegant way is to use an
adaptive step size that is small only when needed, freeing computational resources for
other parts (multiple heart beats, stronger coupling of the systems, finer mesh size).
The requirements for an adaptive time increment algorithm are:

• Modify the step size depending on the solver return code (which is one out of
“success” – system solved, “fail” – no solution with the current step size found and
“repeat” – system solved, but coupling condition not yet fulfilled),

• avoid a large number of failing step sizes,
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Figure 4.1.: Structure of the solver and interaction with the Elements and SolverPlugins.
In the implementation, all class names additionally have the prefix “CB”
(CBSolver, CBCirculation, . . . ).
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Figure 4.2.: Existing Elements in the CardioMechanics Framework and their interaction
with the solver.
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• reach specific steps exactly.

It is important to hit certain points in time exactly, such that periodic export and
the final simulated time are predictable and exactly comparable. Failing time steps
usually compute a larger number of Newton iterations, so these are way more expensive
than successful steps and need to be avoided. Therefore, the step size should be allowed
to increase only when a certain number of successive steps were computed successful.
A proper handling of all solver return codes (SUCCESS, FAIL and REPEAT) was
done, to be compatible with the plugins of the solver structure that are doing iterative
computations (circulatory system, unloading, see Section 4.1).
The developed algorithm needs only two internal variables, a floating point number

containing the current “step size” and an additional integer-valued “counter”. The counter
variable changes by a factor of two each time the step size changes, and increments by one
if the step size does not change. The design of the counter variable facilitates to check if
there is a corresponding point in time one level above, or if an increase would lead to a
non-fitting time “in-between”, by checking the last bit of the binary representation.

The developed step size control algorithm works as follows: In the REPEAT case, all
internal variables stay untouched for the next solver run. In the SUCCESS case, the
counter increments by one and gets subsequently checked if an increase of the step size is
possible for the next solver run as shown in Figure 4.4. For a FAILED case, the step size
reduces by a factor of two and the counter variables doubles by the same factor for the
next solver run.
In a non-optimal scenario, the chosen initial step size is slightly too large and never

yields a solution, but every step on the reduced level is successful. The algorithm needs
to stick to the step size one level below, periodically checking if the larger step size is
possible. Without modification, the overhead of additional steps is 50% (one failing large
step followed by two successful small steps). In reality, the computational overhead is
higher since time steps take longer to fail (tolerance not met after a maximum number of
Newton steps) than to succeed (tolerance met before that limit). Therefore, a certain
number of successful steps on that specific level should be enforced to avoid trying the
possibly failing larger step size too often. Introducing a modulo division (check e.g.
only each fourth step) by an additionally given factor “MinSteps” mostly enforces that
behavior and reduces the overhead in this scenario to 25%.

Picture 4.3 depicts an example case in which only two successful steps already caused
trying a larger step size, despite “MinSteps” being set to four. The exception happens
only after an immediate reduction, if a failing step followed by two successful steps leads
to a modulo divisible counter variable, even though the last failing step size is less than
four steps away. For these cases, an additional counter “lowestLevelCounter” was added
to ensure a minimal number of steps also on the lowest level. The lowestLevelCounter
needs to be active only after an immediate reduction of step size. After an increase, the
necessary number of successful step sizes was realized with the help of smaller steps, so
it is likely that a larger step size could work successfully.
An additional parameter enables the fastRelaxation mode, that allows to increase by

multiple levels at once. It is useful for simulations where only single points in time need
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Table 4.1.: Maximal number of representable time steps depending on the chosen counter
variable type. “Relative steps” gives the number of max time steps that can
be represented when using the smallest time step. “Absolute time” assumes
a typical configuration with min and max step size of [1e − 3, 1e − 8], run
exclusively on the level of min steps, and “Heartbeats” assumes a frequency
of 180 bpm or 0.333 s to reflect a worst case scenario on purpose.

variable type bits value range relative steps absolute time heartbeats
int 16 [−215+1, 215−1] 215−1 ≈ 3.28e4 0.326 s 0.98
unsigned int 16 [ 0, 216−1] 216−1 ≈ 6.55e4 0.655 s 1.97
unsigned long long 64 [ 0, 264 − 1] 264−1 ≈ 1.84e19 1.84e14 s 5.52e14

a small step size, but can be an unwanted effect if larger step sizes are likely to fail,
because all step sizes up to maximal time step length are re-checked at each export step.

Numerical considerations When the number of levels is large, the counter variable
might exceed numeric limits during step size reduction. Since computers data types
typically stick to a fixed number of bits, the maximal representable value of the counter
must be kept in mind. With the default int type (only 16bit guaranteed), this can
happen already at 1/(216) ≈ 1.53e− 5 times the initial time step size, or 16 relative levels.
Typically used step size limits (in s) are 1e− 2 to 1e− 3 for a normal step size and 1e− 8
for the smallest step size, covering a range of 1e6 ≈ 219.93, or 19 possible relative levels.
Computing more than one step at normal step size, or even multiple beats increases
the needed range of the counter variable further. To represent 1 s of simulated time
(one heart beat at rest) with a normal step size of 1e − 2, the counter value thereby
can go up to 100 · 1e6 ≈ 226.58 for one heart beat, in the very last step at the smallest
possible step size. Unsigned long long was used instead of int, which is according to the
C++11 standard at least 64 bit, the largest representable value is 264 − 1 ≈ 1.84e + 19.
This corresponds to 237.43 heartbeats when using the typical limits from above, and is
enough even for simulating hundreds of heart beats as they occur to reach quasi-static
periodic beats. For comparison, the heart of a 100 year old person (5.26e7 minutes) only
undergoes at most 9.48e9 ≈ 233.14 beats at an extremely fast heart rate of 180 bpm –
which is representable by the counter even at the lowest step size.

Computations of the variable for the step size in contrast is always exact due to
the internal base-2 characteristic of the double precision floating point representation
(step size = ±a · 2b, 1 sign bit, 52 bit for the mantissa a, 11 bit for the exponent b = 64
bit). Multiplication and division with two only change the exponent b by one, which
needs only 6 of the available 11 bits for 32 level reductions.

Moreover, the implementation allows to start with a smaller than maximum step size,
that automatically increases over time until maximal time step length gets reached. This
is a big benefit for ventricle inflation simulations. These have a volume change that is
large in the beginning (small step size needed) and decreases rapidly (large step size
possible) when the volume approaches the final volume. Typical use cases that benefited
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Figure 4.3.: An example case of a sequence of successful and unsuccessful (noted with an
‘f’) time steps which makes is necessary to introduce the additional variable
lowestLevelCounter. The large arrows visualize the possible steps at three
different step size levels, the black numbers denote the contents of the step
counter variable. In the shown case, a value of 28 (in level 3) should not
cause a change to 14 (in level 2) albeit 28 is a multiple of 4, because just
two successful steps were computed on level 3.

a lot from such a behavior are the determination of unloaded state (Section 3.10), and of
passive material parameters (Section 6.1.4), that require both a large number of ventricle
inflations.

4.3. Coupling of Multiple Systems
Most of the more complex models for tension development or the circulatory system
base on a set of ordinary or partial differential equations needing input from the current
deformation. Since the result of the elasticity equations depends on these components as
well, coupling is necessary. The choice of the type of coupling has great impact on the
computational overhead, but on the credibility of the results as well.

The term coupling denotes the combined solution of two or more systems of equations,
based on the fact that the result from one system is needed as input for the others, and
vice versa. Different specific strategies for coupling in CardioMechanics exist:

The weak coupling strategy first solves one system and transfer the results as input or
boundary condition to the other system. Drawback is that no control of the error between
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// advance to next i t e r a t i o n , inc rea se t imes t ep i f p o s s i b l e
else i f ( s h a l l I n c r e a s e ) {

counter_++;
lowestLevelCounter_++;
bool d id Inc r ea s e = fa l se ;

// modulo d i v i s i o n s ensure ony f i t t i n g s t e p s
while ( counter_%2 == 0 &&

counter_%minNumCnt_ == 0 &&
lowestLevelCounter_ >= minNumCnt_) {

counter_ = counter_ /2 ;
i f ( timeStep_ < maxInitTimeStep_ ) {

timeStep_ ∗= 2 ;
// f a s t r e l a x a t i o n : inc rea se by mu l t i p l e l e v e l s i f p o s s i b l e
i f ( ! fa s tRe laxat ion_ )

break ;
}

}

Figure 4.4.: Code to check if an increase of the step size is possible. This only needs to be
done in case of the solver return code SUCCESS (shallIncrease=true), and
ensures fitting points in time (counter), maximal step size (maxInitTimeStep),
a certain number of consecutive steps (minNumCnt and lowestLevelCounter),
and the fast relaxation mode (fastRelaxation).
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Step() {
while (!finished) {
for (p : plugin) {

p->solve();
if (status_repeat) 
break;

if (status_failed) 
return status_failed;

} 
} 

}

Me-
chanics

Contact
Blood-
Pressure

Electro-
Physio

In each timestep: For each timestep:

Figure 4.5.: Strong partitioned coupling of two and more systems (left) using the Solver-
Plugin structure. Each plugin needs to accept the found solution before the
next time step can be computed.

the two systems is possible. In CardioMechanics, active forces or cavity pressures can
be read in from a pre-computed file (using TensionFromFile and PressureFromFile from
Figure 3.4) if feedback is not necessary or desired, and was the method of choice by Fritz
et al. (2014) for ‘coupling’ with active forces.
Strong coupling strategies can further be subdivided into the implicit, monolithic

approach and the explicit, iterative or partitioned approach. In the monolithic approach,
the discretized equations of all systems are collected in one common system matrix and
solved simultaneously. While this seems wise because no additional specific coupling
iterations are needed, there is no isolated control over the coupling error possible. Instead,
the tolerance of the solver ensures that the residual error of the overall system is small,
which however consists of an average value of each system like computed displacements
and pressure differences besides the coupling error. This approach is realized in CardioMe-
chanics for the ContactHandling (Fritz et al., 2014) by filling the ApplyToNodalForces()
and ApplyNodalForcesJacobian() functions. They observed the gap (below 0.15mm)
to be small enough to retain “practically permanent contact”. The partitioned approach
uses a separate solver for each system and iterates between the systems by explicitly
minimizing the coupling error using e.g. fixpoint iterations or a Newton method. Thereby
the coupling error is under direct control, and, moreover, highly specialized methods can
be used to solve each of the separate systems (e.g. specific preconditioning, different time
step lengths, explicit/implicit solvers, parallelization strategies). This strategy can be
realized in CardioMechanics by implementing a CBSolverPlugin with appropriate return
codes, solving the system in the Apply() method and returning SolverStatus::REPEAT
until a tolerance is reached (see Figure 4.5). One example of this is the newly developed
circulatory system plugin, which allows an exact control of the volume difference between
the models for elasticity and hemodynamics to be permanently below 1 mm3.
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4.4. Parallelization
Parallelization of the code consists of two main aspects. First, distributed storage of the
nodes and elements. Nodes are equally distributed over the processors, whereby nodes
corresponding to the same element are assigned to the same processor. Each processor
computes only the contribution of the elements it has access to. Other element-wise
aspects like tension and constitutive models inherit that parallel capability. This way,
assembly of the matrices could be implemented in parallel. Computation of global values
that need information from all nodes, needs to be implemented explicitly using the
message passing interface (MPI). One example for this is the computation of cavity
volumes. Each process can calculate only the partial volumes obtainable from its own
data, sends that volume contribution to the first process, where it gets summed up
afterwards using MPI’s send, receive and reduce routines.
Decomposition of the domain can be done either by the node index, by a principal

components analysis (PCA) of initial node coordinates, or using information from the
stiffness matrix of the first time step as connectivity matrix (Figure 4.6). The latter tries
to minimize communication cost between less-related nodes and becomes relevant when
using more than a single-digit number of cores.
Second, solving the equation systems relies on an external library (PETSc). That

library provides distributed and sparse data types for vectors and matrices, and an
interface to a number of “scalable nonlinear equation solvers” (SNES) like Newton,
quasi-Newton and multigrid methods. PETSc was used with one of the parallel external
libraries “mumps”, “superlu_dist” and “pastix” for distributed solving the arising linear
equation systems with a direct solver. “Mumps” usually showed the fastest performance
on single and multicore, however on multiple cores it produced slightly different and
non-reproducible results on each run. PETSc itself allows to use both, distributed memory
(message passing interface MPI, for communication between nodes) and shared memory
(OpenMP, pthreads, for communication between processes within a node) approaches.
On larger meshes, available memory becomes the limiting factor and the arising linear
equation systems can only be solved with iterative approaches. Efforts were undertaken
to find optimized parameters for iterative solvers using the SMAC library, however a
combination of an iterative solver and parameters working faster than a direct solver
could not be found.

Parts that are not implemented in a parallel manner are data reading, model initializa-
tion and data export, which needs to be done only once or a few times per simulation.

4.5. Geometric Model Generation
Besides these described parts of modeling used to create the equations, there is yet
another numerical aspect that becomes important when trying to solve these equations
using a computer. Mesh generation of the geometry is an essential part of the spatial
discretization and solving the model equations in the real application. The heart undergoes
large deformations and a good mesh quality needs to be kept throughout the whole heart

60



4. Implementational Aspects

Figure 4.6.: Automatic domain decomposition of a high resolution left ventricle (850k
nodes, 150k linear elements) into 16 sub-domains using stiffness matrix as
connectivity information.

beat. The type of spatial and temporal discretization, higher convergence orders and
an efficient use of space- and time resolutions can help with the needed to exploit the
always limited computational resources. The choice of the spatial discretization however
is also bound by the feasibility to generate meshes for it.

Deviations between the computer model and measurement data can have their root in
both parts. Highly complex model equations in theory give correct results. These can in
reality be only achieved with a good-quality mesh, sufficiently small step sizes in space
and time, and a capable numerical solver. On the other hand, computational demands rise
quickly with model and discretization complexity. The problem is not only limited by the
available computational power, but – even worse – from the computational perspective
the arising matrices loose their ability to being solved. From a specific spatial resolution
onwards, appropriate algebraic reformulation becomes necessary (e.g. by problem-specific
preconditioning) to get the matrix condition within numerically solvable limits.
Details about the model generation is usually not mentioned in scientific works, but

still an essential and time consuming part. Since computation time is a factor during
development, mesh size (total number of nodes) plays an important role. Aim is usually to
get tetrahedron edges of equal length, the quality of the worst tetrahedron decides if the
system is solvable or not. The model gets continuously deformed by a considerable amount
throughout a heartbeat, so not only sufficient mesh quality of the initial tetrahedral
mesh, but also all deformed states needs to be pertained. This results often in a large
number of mesh generation–simulation iterations. Typical characteristic lengths of a
four-chamber heart are 3–10mm for the edges of a second-order tetrahedron (two to
three elements transmurally in the LV), resulting a mesh containing 16.5k cells and 31.7k
nodes for all four chambers. The final full heart model including ventricles, atria, valve
plane, and truncated veins and surrounding tissue contains 24k cells and 44k nodes.
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Figure 4.7 gives a rough guidance of the work flow and the involved data formats. The
general process chain is as follows: medical images (DICOM) → segmentation → volume
mesh → surface mesh → tetrahedral mesh → tetrahedral mesh with material and fibers.
A short overview of the used tools and their purpose in the meshing process:

• ITK-SNAP. Create surface meshes of the endocardial surfaces (blood volume) and
– if visible in the MR images – epicardial surfaces. ITK-SNAP has an option to use
active contours with a classification-based pre-segmentation, exploiting intensity,
neighboring intensity, intensity gradients and patterns of labeled pixels (Yushkevich
et al., 2006) . This allows a quick processing of image data by demanding only
a small number of partly labeled slices (‘some’ blood, ‘some’ myocardium, ‘some’
background, in 10-20 slices) as input data for the algorithm. Figure 4.8 gives a
visual example of such a segmentation and the provided input data.

• Blender is a tool that allows modification of triangular surface meshes (Blender
Online Community, 2017) . It is used to modify the segmented surface meshes,
apply surface thickness to blood-only meshes (atria), define surfaces for boundary
conditions like Dirichlet boundary, pressure boundary, cavity volumes and contact
interfaces.

• Instant-meshes is a tool for automatic coarsening or refining of surface meshes to a
desired target triangle size, while maintaining topology and improving quality of
the triangles all at the same time (Jakob et al., 2015) .

• Tetgen and Gmsh are both tools that allow to convert triangular surface meshes
to tetrahedral volume meshes. Both do not modify given surface meshes, making
an input mesh of good triangle quality essential. Since the myocardial thickness
is in a similar magnitude as the targeted mesh resolution size, the final number
of nodes/elements is mostly determined by the resolution of the surface mesh.
Gmsh can be used as CAD tool to create volumetric meshes of good quality from
triangular meshes as well (Si, 2015) . In the latter case it needs closed, non-manifold
and non-overlapping surfaces of one single material, each. In order to allow manual
merging of the meshes in an additional step with a separate tool, all triangles
and nodes of the triangles between the material interfaces need to match. Tetgen
accepts also non-manifold surfaces and assigns material number automatically to
each cavity (Geuzaine and Remacle, 2009) . This was used to create truncated
veins consisting of three surface, with one matching endocardial, epicardial and
truncation area, each.

• Python, Matlab, C++ are programming languages (van Rossum, 1995; Moler et al.,
1982; Stroustrup, 2013) used for self written code, mostly in combination with
the VTK library (Schroeder et al., 2006). Tools exist for data conversion (tetgen
to vtk format and vice versa), setting of Dirichlet boundary conditions (node
fixation), finding node correspondents between a Blender-extracted stl surface and
a tetgen-based volume mesh (e. g. for defining cavity surface triangles), conversion
between first and second-order tetrahedra, generation of fiber orientations, etc.

62



4. Implementational Aspects

MRI images (DICOM) Surface mesh (STL)
itk_snap

Volume mesh (msh,vtk)

Volume mesh (node, ele)

Gmsh

Atrial fibers (vtk) Ventricular fibers (.bases)

Heart fibers (.bases)

Blender + InstantMesh

msh2tetgen.py
SetAtrialAblation

Msh2tetgen +
GenerateFiberOrientation

ArrayMapperNearestNeighbor

Surface
mesh (sur)

ParaView + Blender

Surface mesh
Pericardium, veins (stl)

OUTPUT 
DATA

INPUT DATA

Blender
Gmsh

„Manual interaction“

Figure 4.7.: Overview of the mesh generation workflow. Input data is in red, output
data in green and steps involving manual interaction (non-scriptable) are
highlighted with a yellow background.
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Figure 4.8.: Example of a classification-based segmentation. For the training input, parts
of blood, myocardial and background volume were labeled in red, green and
lilac (left) and result in a highly-detailed surface mesh containing endo- and
epicardium (right).
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For all the simulations in this thesis, two different geometries were used. One contains
an analytical description of an ellipsoid and resembles a left ventricle, the other geometry
contains all four chambers of the heart and is based on MRI data of a real person.

Geometry of the left ventricle This is the same geometry that was used for code
validation of ventricle inflation and ventricle inflation under active contraction in (Land
et al., 2015). Myocardial volume is defined using the parametrization of an ellipsoid

x =

xy
z

 =

rs sin(u) cos(v)
rs sin(u) sin(v)

rl cos(u)


with ranges for radius in short axis direction rs ∈ [7, 10]mm, in long axis direction
rl ∈ [17, 20]mm, azimuth angle v ∈ [−π, π) and an inclination angle u such that the
ellipsoid truncates at the base plane z = 5mm or u ∈ [−π,− arccos(rs/rl)]. Fiber
orientation were defined from −90◦ at epicardial to +90◦ at endocardial surface using
derivatives of the ellipsoid parametrization. Such an analytically described geometry had
the big advantage that mesh generation could be fully automated – with mesh resolution
as the only parameter – and allowed to generate reproducible meshes of different size useful
for a number of investigations (mesh convergence, necessary resolution, parallelization,
domain decomposition, limiting parts of the solver).

Geometry of the whole heart The geometry used for simulations of the whole heart
are based on the work by Fritz et al. (2014); Fritz (2015). It is based on the segmentation
of a 28 year old healthy male provided by the University clinics of Heidelberg. Three
different meshes (Figure 4.9) were used and are the result of certain improvements over
the time: The 1st version is the one used by Fritz et al. (2014) and Fritz (2015), and
contains the myocardium of all four chambers. The resolution “through-the-wall” is one
element in the atria and the right ventricle, and between one and two elements in the left
ventricle. Dirichlet boundary conditions were applied at the orifices and ventricular apex.
The 2nd version adds truncated representation of aorta and veins to the 1st version in
order to allow some range of movement for the atrium. Dirichlet boundary conditions
were moved away from the orifices to the more remote ends of the “veins”. The 3rd
version is a complete rework of the second version to overcome many of the previous
geometry’s limitations, sharing only the same segmentation:

• Added volumetric representation of the valve plane, to allow better interaction
between atrial and ventricular pressure difference on the motion, and to obtain
pressure surfaces that are closed and thereby do not generate an overall force
towards the apex only due to “applying a pressure”.

• Added volumetric representation of fat around the valve plane, such that my-
ocardium + fat have a convex outer shape.

64



4. Implementational Aspects

• Introduced a two-level truncated representation of the veins, with the intermediate
plane fitting the epicardial surface,

• Use a closed, convex surface of master elements without any holes to vastly improve
reliability of the contact pericardium algorithm. This is only possible due to added
fat and fitting intermediate planes at the orifices from the previous two points.

• Overall, the mesh has slightly more elements, and especially in the left ventricle an
increased resolution of two to three elements through the wall.

All three meshes have a tightly-fitting volumetric mesh of roughly 2 cm thickness
surrounding the myocardial mesh to represent pericardial layers and surrounding tissues.
In the 1st and 2nd version of the mesh, the contact master surface was not closed (orifices,
fat) and cause arbitrarily failing simulations for some combinations of parameters, whilst
other actually more demanding parameters (e. g. larger time step size, weaker tissues,
larger pressures) worked fine.
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Figure 4.9.: Evolution steps of the four-chamber mesh. The top row shows the version
used by Fritz et al. (2014) with node fixations in red, the middle one has
additional truncated representations of the veins, and the bottom mesh
is a complete rework at the same patient with a different surface grid, a
volumetric representation of the valve plane, the addition of fat for a convex
contact surface and slightly higher resolution. The pericardium layer is
available in all three meshes.
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5. Validation of the FEM Solver

One of the most important aspects of numerical solutions is validation. This chapter
presents investigations to clarify the technical limitations of the numerical methods
(discretization errors) that are independent from the limitations of the models (modeling
errors). Thin walls surrounding comparatively large compartments are well known in civil
engineering (e.g. silo walls) and construction engineering (e.g. ship hulls) as shell-type
problems Belytschko et al. (2014). These are known to demand a large number of
elements to get a sufficiently accurate numerical solution.

The first section answers the question of needed mesh resolution to get a confidential
solution, evaluating simulation results on the same geometry at different resolutions in
order to show mesh convergence. The difference in the solutions between the meshes
gives a hint what resolution is needed to get in the range comparable to image resolution
of current MRI acquisition. Due to the three-dimensional structure, improving the
mesh resolution by a factor of two increases the number of unknowns and hence the
computational effort drastically.
In the second part therefore, the parallel performance of the solver is evaluated.

Amdahl’s law makes a high fraction of parallel execution time a necessity to obtain
a significant speedup. A scalable code does not only reduce computation time for a
specific mesh size, but also allows to increase the problem size to obtain sufficiently fine
resolutions. This allows proper use of several hundred processing units available on high
performance computing clusters.
Besides the results presented in this chapter, additional validation was done by the

author of this thesis and published in the publication Land et al. (2015) by means of three
simple heart-related test cases on an ellipsoidal ventricle (inflation, active contraction,
inflation and active contraction). Additionally, Fritz (2015) showed a convergence analysis
of linear and quadratic tetrahedron on a bending beam with the initial implementation
of the finite element code.

5.1. Necessary Mesh Resolution for Mesh Convergence
5.1.1. Introduction
Consistent results are one of the major properties that a numerical solution should
provide, independent of the specific method or the applied method parameters. Mesh
resolution plays a special role, it has a large influence on computation time, while the
accuracy of the result still is vastly influenced by the type of finite element chosen
for discretization. Due to the complexity of the meshing process, anything but simple
geometries is a domain mostly exclusive to tetrahedral meshes. A still open question in
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cardiac computation is the necessary mesh resolution to reach a sufficient numerically
accurate solution.

Most of the existing groups participating in the comparison paper by Land et al. (2015)
on the field of cardiac deformation use either a high resolution mesh with low order
elements (high memory demands) or a lower resolution mesh with higher order elements
(high implementation demands) (Augustin et al., 2016; Gurev et al., 2015). From the
modeling perspective, high resolution meshes have the advantage to represent physiology
in detail like transmural fiber rotation, material inhomogeneities on a small scale (fibrotic
tissue, scar tissue, infarcted regions) and the geometric shape itself. From the computa-
tional perspective, this makes certain non-trivial points a necessity: parallelization to be
able to use enough computation power, matrix preconditioners to get solvable equation
systems, or iterative solvers to better cope with memory limitations. All this still goes
at the cost of a longer computation time, and a more difficult code development and
debugging cycle.

Even the geometry creation process needs to be carried out with more care, accuracy
and elaborateness to take real advantage of the higher mesh resolution. This also
prohibits to exclusively rely on model-based methods that usually provide ‘general
information’ averaged from multiple individual patients via a template mesh. Currently
there are two major use case scenarios, that would benefit from an adequate accuracy
to computation time ratio: Large scale study on a significant number of patients, and
model parameter estimation. Both need a large number of forward calculations to draw
reasonable conclusions with confidence.

5.1.2. Methods
This study focuses on the numerical mesh convergence, so the design keeps the geometrical
influence as small as possible. A truncated parametrized ellipsoid is used to define the
geometry of a left ventricle, it is the same as used in “Problem 2” in Land et al. (2015):

~x =

xy
z

 =

rs sin(u) cos(v)
rs sin(u) sin(v)

rl cos(u)


Myocardium is defined as the volume between endocardial surface (rs = 7 mm, rl = 17 mm,
u ∈ [−π,− arccos 5

17 ], v ∈ [−π, π]), epicardial surface (rs, rl, u ∈ [−π,− arccos 5
20 ], v ∈

[−π, π]) and the base plane (z = 5 mm). The material properties are chosen to obey the
Guccione material law

W = C
(
eQ(E) − 1

)
Q(E) = b1E

2
11 + b2(E2

22 + E2
33 + E2

23 + E2
32) + b3(E2

12 + E2
21 + E2

13 + E2
31)

with the isotropic material properties C = 5 kPa, b1 = b2 = b3 = 1. The isotropic
property of the chosen material parameters removes the influences by more detailed
fiber representation, while the nonlinear Guccione material law still reflects the specific
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Table 5.1.: Number of nodes and elements (T10) for the analytical left ventricle at
different resolutions. Additionally, computation time ([hh:]mm:ss) is given for
each simulation. The mesh with resolution 16 was aborted after 48h without
solution.

resolution 1 2 4 8 16
nodes 1.280 4.235 23.601 152.004 1.107.874

elements 1.013 3.408 18.613 117.889 846.673
cores 4 4 4 16 64/256
time 1:42 2:57 39:28 9:36:50 –

non-linear passive behavior of heart tissue. The mesh was generated using Gmsh, which
takes the parametric description as input and generates accurate meshes of arbitrary
resolution with good triangle quality using one parameter controlling a characteristic
discretization length. Second order tetrahedra (T10) can be generated directly within
Gmsh, which means that non-corner nodes are located on the actual surface, rather
than being averaged from adjacent corner nodes as when converted from linear elements.
As solver, the static solver gets used, which ensures completely converged final states
by omitting time-dependent effects like damping or mass inertia. The ventricle gets
inflated to a pressure of 10 kPa in 100 equally-spaced pressure increments. Four meshes of
different resolutions were generated, characterized by 1, 2, 4 and 8 transmural elements.
Doubling the resolution in all three dimensions means that the number of nodes is
expected to increase roughly by a factor of eight, which only becomes prevalent at the
higher resolutions due to the shell-type structure. Table 5.1 gives information about the
used meshes and the number of computing cores and computation times. As reference
of the computational effort, with linear elements (T4) the resolution 8 setup took only
around 10 minutes instead of more than 9 hours (T10), however its number of nodes is
significantly lower and more comparable with the second-order resolution 4 mesh. All
simulations were carried out at the super computing center of KIT on the uc1 cluster
and took between 2 minutes and 10 hours for the successful simulations.

5.1.3. Evaluation criteria
Resolution is defined as the number of transmural elements through the ventricular wall,
which can be controlled using a discretization parameter during mesh generation with
Gmsh. Aim of this study is to quantify the numerical error of different mesh resolutions
and answer the question of needed transmural elements for an accurate representation.
The used evaluation criteria thereby are designed to measure common key values in the
simulation of cardiac mechanics.

1. The apex z position, defined as the z-coordinate of the point with the initially most
negative z-coordinate,

2. the enclosed volume, obtained by integrating over the surface using Gauss law and
a density of % = 1, and
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3. the surface distance between two different resolutions, determined by the vtk filter
DistancePolyDataFilter which defines an implicit function to allow computing
distances between a surface and arbitrary points in 3d space. It measures the
distance from each point on the lower resolution mesh to the higher resolution
mesh. These distances are then linearly interpolated to the triangles in-between,
and integrated over the whole surface domain using first-order Gauss quadrature.

Certain of these values have special meaning: The displacement of the epicardial apex
reflects the displacement of the valve plane. At the same time, it is the most remote
point from any boundary condition in this simulation and serves an upper limit of the
positional error. The enclosed endocardial volume represents the chamber volume and is
an important factor when coupled to a circulatory system model or used during parameter
adaption to the Klotz curve. The epicardial surface distances represent the error of
approximating the outer shape, important when coupling to a pericardium representation
via a surface contact handling.

All evaluation criteria are measured on the initial mesh, describing the principal or
minimal reachable error through a discrete representation of the geometry (“initial”),
and after inflation, which describes the error introduced by the finite element formulation
(“inflated”). Since the exact solution after inflation is unknown, the error of each
criterion is determined twice, once between two consecutive mesh resolutions, reflecting
the accuracy gain by choosing the next higher resolution (denotes as “change”), and once
with respect to the finest computed resolution 8 as an approximation to the absolute
error (“error”).

5.1.4. Results
Generally, all criteria were observed to decrease with increasing number of transmural
elements. The relative “change” values were in all criteria slightly below the absolute
“error” values, but in the same order of magnitude.

Figure 5.1 shows the errors of the apex displacement in z-direction. Before inflation, the
endocardial and epicardial apex positions are directly given by the ellipsoidal description
and are represented exactly (−17 mm and −20 mm), hence in both cases the discretization
error is 0.0 mm. After inflation, the maximum change in apex position starts at 0.11 mm
between resolution 1 and resolution 2 for both, endo- and epicardial apex position.
Figure 5.2 focuses on the enclosed volumes. Here, an effect of the discretization becomes
visible, and the volume change is with 0.04 ml on the epicardium larger than on the
endocardium with 0.03 ml between the meshes of resolution 1 and resolution 2. After
inflation, the volume change is the largest on the endocardium and starts at 0.25 ml, but
quickly drops to 0.05 ml between resolution 2 and resolution 4, which is the discretization
error of the resolution 1 mesh. Figure 5.3 gives the distance errors on the endo- and
epicardial surfaces. Here again, an effect of the discretization becomes visible and is most
pronounced on the endocardium, starting at 0.011 mm between resolution 1 and 2, and
reducing to 0.004 mm between 2 and 4 and further down to 0.001 mm between 4 and 8.
After inflation, the largest distance change is observed on the epicardium with 0.044 mm
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Figure 5.1.: Apex location on the long axis over mesh resolution. Shown is the difference in
apex positions when switching to the next higher mesh resolution (“change”,
left) and to the highest available mesh resolution (“error”, right).
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Figure 5.2.: Enclosed volume over mesh resolution. Shown is the difference to the next
higher mesh resolution (left) and the highest available mesh resolution (right).

between resolution 1 and 2 and reducing down to 0.004 mm between resolution 4 and
8, the same as the discretization error of the coarsest mesh. Interestingly, the distance
error – measured in relation to the resolution 8 mesh – appears to be negligible, which
was not the case for the criterion of distance change.

Absolute values on the finest computed mesh are given as follows. The inflated
apex positions are located at −26.6174 mm on the endocardium and −28.2829 mm on
the epicardium. The absolute enclosed volumina before inflation are 2.4914 ml on the
endocardium and 5.7260 ml on the epicardium, and the absolute volumina after inflation
are 10.7297 ml and 13.9629 ml.

5.1.5. Discussion and Conclusion
The dimensions of the ventricle were chosen according to the analytically described
geometry from the benchmark paper Land et al. (2015). Its original purpose was to define
a simple-to-describe common geometry useable by a number of groups. Its size however
is significantly smaller than a human heart. The ellipsoidal ventricle has a volume of
2.5 ml before inflation, and represents probably rather a rat or rabbit heart than a human
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Figure 5.3.: Epicardial surface distance over mesh resolution. Shown is the difference
to the next higher mesh resolution (left) and the highest available mesh
resolution (right).

ventricle. Therefore, the results can not directly be applied to human heart simulation
and need conversion to allow an adequate interpretation. Simulations from Section 6.3
showed 60-70ml ESV and 130-160ml EDV e. g. in Figures 6.31, 6.32 or 6.33. Assuming a
human ventricle volume of 60 ml before inflation and 120 ml after inflation, the volume is
about 17 times larger and the dimension about 2.6 times the size in each direction. Since
the FEM solver’s convergence criteria internally work with relative errors, scaling of this
study’s results with the respective factors is viable.

As a reference, the MRI data set used for segmentation had a resolution of 0.72 mm×
0.72 mm×1.8mm per voxel, which will be considered as limit for the geometric error (due
to discretization, before inflation) and sufficient for the numerical error (due to approxi-
mation, after inflation). A simulation staying significantly below that threshold would
pretend to contain information that is actually not available due to the characteristics
of the input data. Already the resolution 1 mesh reaches an apex location change in a
similar range of 0.11 mm · 2.6 = 0.29 mm after inflation, and an inflated volume change of
0.25 ml · 17 = 4.25 ml on the endocardium (which is there the largest). However, a change
from the mesh of resolution 2 to resolution 4 was needed to get the apex location change
an order of magnitude below the reference (0.036 mm · 2.6 = 0.094 mm on endocardium
after inflation). In order to obtain an accurate apex position, thereby a mesh with a
resolution of at least 4 transmural elements is needed. A geometric error of the measured
apex locations was not present in any of the generated meshes, the meshing tool placed
the apex always exactly.
Obtaining a reference for volumetric accuracy is more difficult. The accuracy used

for the coupling condition of the circulatory system in Section 6.3 was 10−7 ml which is
much smaller but necessary to prevent side effects (numerical oscillations on the time
scale). A second, probably better volumetric reference could be derived from the MRI
accuracy, which itself limits the possible accuracy of the segmentation. Assuming an
uncertainty of 1 voxel on the boundary, i. e. two voxels per dimension (one at beginning
and ending of a slice, each), this adds 1.44 mm/1.8 mm per dimension. Assuming further
that a human ventricle is bounded approximately by a box sized 5 cm×5 cm×10 cm, this
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gives an “inaccurate” volume of 5.144× 5.144× 10.36 cm3 = 274 ml instead of 250 ml, an
increase of 9.6% or 24 ml. This is more than five times the observed volume change even
on the coarsest grid (4.25 ml on endocardium after conversion) and also any of the other
simulations stayed below that threshold as well. Due to the definition of the “change”
values, thereby for accurate results at least a mesh of resolution 2 should be used.

Surface distance is a special case as it is not directly related to a physiological meaning
and more of relevance for the contact handling algorithm. As reference, Fritz et al. (2014)
state that the surface distance stayed below 0.15 mm throughout a whole cardiac cycle.
Surface distance shows a considerable effect of geometric discretization in relation to the
numerical accuracy, given by the necessarily large triangle size compared to the curvature
on the resolution 1 mesh (0.011 mm ∗ 2.6 = 0.026 mm on the endocardial surface). An
explanation is that surface distance actually uses the curvature, which gets represented
better, the more elements are used. This is an important observation for the choice of
the contact handling’s penalty factor, as the surface distance in general does not go
beyond the discretization error for a given mesh. That mesh of resolution 1 also reached
only an accuracy increase similar to the reference when going from resolution 1 to 2
(0.043 mm∗2.6 = 0.11 mm after inflated on the epicardium), which however still increased
when comparing resolution 2 with resolution 4 mesh by 0.0135 mm ∗2.6 = 0.0351 mm and
resolution 4 with resolution 8 mesh (0.045 mm ∗ 2.6 = 0.0117 mm). In an MRI dataset
none of these would be visible, however as even the change between resolution 2 and 4 is
only 5 times smaller than the contact surface distance, a volumetric contact pericardium
should be used with a resolution of at least 4 transmural elements.
As finite elements ensure accuracy only in the weak formulation, these results are no

surprise. By solving a volume integral representation, the solver has no direct control
over a single point’s accuracy. The authors expectations thereby were to require the
finest mesh resolution in apex position (single-point evaluation), followed by the two-
dimensional surface distances, and coarsest mesh for the enclosed cavity volume. Only
the required high resolution for the surface distance opposes these expectations, however
in that case a different reference was used.
Concludingly, the necessary mesh resolution strongly depends on the value interest,

averaged values like the volume need less elements than the position of a single point.
This is totally clear, since finite element method determines the solution of underlying
equations from a weak formulation, that is only true in the sense of a volume integral
average.

The real-life geometry used in this thesis had a typical resolution of at least 2 transmural
elements in the left ventricle, which according to these results was found to be sufficient
for volume evaluation, and at the lower limit for point evaluation as well as surface
distance determination. This lets conclude that the results obtained from evaluation
of e. g. valve displacement, circulatory system’s cavity volumes or pericardial contact
problem do not contain significant errors larger than the errors present due to resolution
of the underlying MRI data set.
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Limitations One of the drawbacks of this study is the unavailability of a ground-truth
solution, which is why a relative comparison was done. Simulations with the generated
mesh at resolution 16 unfortunately did not provide a solution within 48 hours on 256
cores (hard limits of the used computing cluster). The finest resolution that yield a
solution (resolution 8) did not yet show an extraordinarily good accuracy of the surface
distance.
However, it has to be kept in mind that besides the computational aspect of better

approximating the analytical solution, higher resolution in MRI-based data will contain
more detail especially in irregular structures, both in better approximating the real
shape like showing the papillary muscles, trabeculae or the valve planes as well as on the
material assignment side needed for the addition of ablation scars modeling or irregular
fiber orientation often found in pathological tissue. In the same manner, the inclusion of
realistic fiber directions that change their orientation transmurally and the ability of an
accurate representation of these depend a lot on the chosen resolution (and thereby even
with interpolation needs at least representations at two transmurally different locations
due to Nyquist-Shannon sampling theorem).

Future works As this work is based on the second benchmark case of Land et al. (2015),
a simple and straight-forward extension of this work is the inclusion of active contraction
as in the third benchmark case. Switching to anisotropic material parameters and adding
active contraction impacts the process of mesh generation as it requires the definition of
a fiber direction and at least two transmural points for an adequate representation. Due
to incompressibility the tissue will shorten in that direction and elongate in the other
two directions during contraction. The results will be different due to the introduced
anisotropy, even if only passively inflating such a model. The expected additional benefits
for the question of required resolution is modest, since contraction counteracts inflation
and yields to less deformation, not more. Thereby the expected outcomes will be in a
similar range or even less pronounced, but due to the variety of involved effects, more
difficult to see.

As remedy for the required high resolution of the mesh and the associated computational
effort to obtain an accurate solution for some of the values could be to change the
underlying type of finite element. Two-dimensional elements called “shell elements” were
specifically developed to solve similar problems in mechanical or construction engineering
with reasonable computational effort (Belytschko et al., 2014, Chapter 9), and even
exist in variants supporting multi-layered composite materials (Hauptmann et al., 2001)
applicable to large deformation in car crash analysis. These could provide substantially
better results especially in the region of the very thin-walled atria, that are known to
comprise of at least two physiologically very different layers, and where meshes of good
quality are difficult to create due to an almost vanishing thickness.
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5.2. Scalability Study and Parallel Performance
5.2.1. Introduction
As heart simulations are the combination of a number of complex models, they demand
a non-trivial amount of computational power. On a current Desktop computer from the
year 2014 (Core i7-4771 4x3.5GHz, 32 GB RAM), the typical duration of a simulation of
the model used by Fritz et al. (2014) takes up between twelve and 24 hours for one heart
beat. Improving aspects of modeling e. g. by a different tension model (Section 6.2), an
increased mesh resolution (Section 5.1), running multiple heart beats to obtain convergence
(Section 6.3), or realizing inverse-type applications that need multiple forward simulations
like parameter estimation of passive material (Section 6.1) or determination of contraction
forces (Fritz, 2015) and different combinations of these (Coupling, Section 4.3) are all
use cases that have the potential to dramatically increase the simulation time towards a
non-practical level. Parallelization of the main parts of the code is a way to cope with
this problem of increased computational demands, by using multiple cores for the same
simulation (Section 4.4). Speedup is defined as the quotient between sequential runtime
on a single core (time1) and runtime on N cores (timeN ) via speedup = time1/timeN . A
bad scalability means that increasing the number of cores does not improve computation
time noticeably, a good scalability however gives the potential to use hundreds of cores
on a professional computing cluster like the uc1 at a fraction of sequential runtime.

5.2.2. Simulation setup
The first part of this project tests scalability of the implementation by means of the
benchmark test case “Problem 3: inflation and active contraction of a ventricle” on an
analytically describable geometry (Land et al., 2015). Meshes of different resolutions
were generated using the scripting language of GMSH and Table 5.2 lists the number of
nodes and elements for each of them. A second-order mesh was used that comprises of a
through-the-wall resolution of 8 elements resulting in 456k unknowns, and provides at least
1.7k elements per core to impede negative effects due to a small mesh distributed on too
many cores. Simulations on an even finer resolution mesh comprising 16 through-the-wall
elements of second-order did not even provide a single time step within the computation
time limit of 48h (imposed by uc1 on 256 cores), possibly due to ill-conditioning and a
different preconditioning needed for such a mesh size.
Specifically, investigations were done to compare runtimes on

• a single node using 1, 2, 4, 8, 16 cores,

• 1, 2, 4, 8, 16 nodes with 1 core per node, and

• when using more than 16 cores.

Since not all simulations finished within the given time limit, runtimes were evaluated
after 10% of the maximum pressure was computed, which took between 10min and 10 h.
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Table 5.2.: Overview of the mesh sizes for the analytical left ventricle geometry depending
on the number of elements through-the-wall. Number of elements is the same
for linear (T4) and second-order tetrahedra (T10). Degrees of freedom can be
computed by 3 times the number of nodes.

setting #nodes (T4) #nodes (T10) #elements
vent1 222 1279 616
vent2 722 4233 2070
vent4 3717 23597 13275
vent8 21870 151921 96912
vent16 149467 1107874 764393

The second part of this project additionally aims at testing the scalability of the
implementation in a more feature-rich setup, including all four heart chambers, length-
dependent tension development and fully coupled circulatory system on a mesh of
moderate resolutions (2 transmural elements), but without pericardium modeling. The
simulations are done on the “LumensMitLAT” setup as described in Section 6.2 with the
addition of a volumetric contact pericardium.

Two different computing systems were used for this study. The first one is the institute’s
cluster located in the basement of the Institute of Biomedical Engineering. It consists of
several mid and late 2012 Mac Pro workstations running macOS 10.12, each equipped
with two six core processors (Intel Xeon E5645 6x2.4GHz Q1/2010) and 32 GB RAM
(ibt140-142) or 64 GB RAM (ibt143-146), respectively. These are connected via Gigabit
Ethernet, which basically limits its reasonable usage for this application to one node
and 12 processes per simulation. The nodes are accessed directly by the institute’s
students and employees using ‘ssh’ and simulations are run using ‘screen’, but exclusive
use of a node is not guaranteed. The other one is the computing cluster uc1 at the
Karlsruhe Institute of Technology intended to provide a basic computing service to all
members employed at one of the universities in Baden-Württemberg. It is consisting
of 2 login nodes and 512 ‘thin’ computing nodes with 16 cores per node (two Intel
Xeon E5-2670 8x2.6GHz Q1/2012, 64GB RAM) and InfiniBand 4xFDR as low-latency
inter-node connection. The nodes are accessed indirectly by ssh to a login node and
submitting one or several computing jobs to the queuing system. This allows to use up
to 16 nodes with a total of 256 cores per simulation and guarantees exclusive usage of
the nodes.

Simulations of the ventricle inflation were performed on the uc1 to evaluate scalability
up to 256 cores, the maximum of available computing cores. The only sequentially
running data export was turned off in this case. Simulations of the fully-featured heart
model were done on the uc1 and the institute’s cluster with up to 16 cores, to allow
comparison on two different computing systems. To prevent slow downs on the institute’s
cluster due to simultaneous memory access from multiple simulations, only one simulation
was allowed at once even if sufficient cores for a second simulation were free.
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5.2.3. Results and evaluation
Scalability of the benchmark ventricle on uc1 Figure 5.4 shows the speedups obtained
on uc1 for the ventricle inflation. As intended by the authors of the PETSc library
used for solving the linear equation systems, the problem scales almost linearly with the
number of processes. At a total number of 16 processes (left plot), the simulation reaches
a speedup of 11.8 when distributed over 16 nodes, and a speedup of 8.1 running on the
same node. It is remarkable that when looking at a fixed number of processes, simulations
using multiple nodes (blue) were consistently faster than the ones running on the same
node (green), although these require additional and potentially expensive communication
in-between the nodes. The InfiniBand network used to connect the nodes on uc1 was
specifically developed for HPC applications, it allows very low latencies for inter-node
communication. However, computations with data never leaving the processor should
still be faster than computations involving even high-performance communication. This
might be an indication that the problem is neither bound by raw computational power
nor communication. A possible explanation for this paradox is total available memory
bandwidth as a bottleneck. On single-node computations this needs to be shared between
multiple processes, but is fully available to the one process per node on the distributed
computations and multiplies with the number of computing nodes. Thereby for a fixed
number of processes, the distribution over several nodes can indeed be faster (more
memory bandwidth per process), than on a single node (shared memory bandwidth).

Looking at the right plot in Figure 5.4, the number of processes per node is not fixed
anymore but increases from 32 nodes onwards. The speedup graph however shows a
clear drop in slope at 64 cores. Due to the limitation to a maximum of 16 nodes per
simulation, the 64 processes are distributed on 16 nodes. One possible explanation is
that at this point the number of unknowns drops below 10.000 unknowns/process and
the communication overhead becomes prevalent. Using a mesh with a smaller degree of
freedom, that point would probably be reached already at a lower number of processes.
Another possible explanation might be the physical hardware of the nodes, which has 4
parallel memory channels, meaning that simulations with 8 and 16 processes per node
are significantly more impacted by the memory bandwidth limitation. The obtained
speedups of 26.8 (64 processes on 4 nodes) and 32.2 (64 processes on 16 nodes) still
increased further on 128 and 256 cores, and finally achieved a value of 55.7 on 256 cores.

Scalability of a full 4ch model setup Table 5.3 shows computing times for the four-
chamber model running on uc1 and on the institute’s cluster, all using the same “Lu-
mensWithLAT” setup. On uc1, the scalability is better and the speedup there is
consistently higher than on the institute’s cluster peaking at 6.99 vs 2.60 for single node
usage. On 8 cores for example, uc1 allows a speedup of 3.27, whereas the institute’s
cluster shows only 2.55. The sequential runtime – which is taken as reference for the
relative speedup – however is on uc1 much longer (27h 33min vs 11h 15min) and the
runtime on uc1 is only faster when using at least 16 cores or more. Regarding the absolute
runtime on 8 cores – the maximum physical 2n cores available on both systems – results
were obtained on the institute’s cluster in 4h 25min about twice as fast as on uc1 with
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Figure 5.4.: Relative runtime compared to single-core (speedup) of the benchmark ventri-
cle for “increasing cores” compared to “increasing number of nodes” with a
fixed number of processes n. The right plot shows the speedup achieved on
up to 256 cores where from 32 process onwards used either all physical cores
of a node (green) or as little cores as possible (blue) under the limitation of
16 nodes at most.

Table 5.3.: Absolute runtime of the simulations with the scalability setting based on
“LumensWithLAT” on the institute’s servers and on uc1. The theoretical
minimal runtime denotes sequential runtime divided by number of MPI
processes. Adapted from Müller (2017).

Number Computed Theore�cal Real Real
of on minimal run�me obtained

MPI processes run�me speedup

1 IBT140 - 11:15:14h (40514s) 1.0000
2 IBT141 5:37:37h (20257s) 8:18:56h (29936s) 1.3533
4 IBT142 2:48:49h (10129s) 5:34:23h (20063s) 2.0193
8 IBT141 1:24:24h (5064s) 4:24:36h (15876s) 2.5519
16 IBT142 0:42:12h (2532s) 4:19:52h (15592s) 2.5984

1 UC1 - 27:32:53h (99173s) 1.0000
2 UC1 13:46:27h (49587s) 17:15:13h (62113s) 1,5967
4 UC1 6:53:13h (24793s) 9:59:04h (35944s) 2.7591
8 UC1 3:26:37h (12397s) 8:26:07h (30367s) 3.2658
16 UC1 1:43:18h (6198s) 3:56:37h (14197s) 6.9855
32 UC1 0:51:39h (3099s) 2:15:04h (8104s) 12.2375
64 UC1 0:25:50h (1550s) 1:37:43h (5863s) 16.9151
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Table 5.4.: Runtime of the tension model simulations on the institute’s servers using 12
cores. Standard deviation is a measure of reproducibility of the results. The
smaller, the more precise the runtime was reproduced. Cells in green point to
the best values achieved with each setting. Adapted from Müller (2017).

DoubleHillWithLAT DoubleHillNoLAT LumensWithLAT LumensNoLAT

Computed on IBT143 IBT144 IBT145 IBT146

Run�me
51721s 59788s 60984s 50527s

1st run (14:22:01h) (16:36:28h) (16:56:24h) (14:02:07h)

Run�me
51766s 59802s 61097s 50488s

2nd run (14:22:46h) (16:36:42h) (16:58:17h) (14:01:28h)

Run�me
51875s 59816s 61076s 50581s

3rd run (14:24:35h) (16:36:56h) (16:57:56h) (14:03:01h)

Run�me
51778s 59982s 61169s 50545s

4th run (14:22:58h) (16:39:42h) (16:59:29h) (14:02:25h)

Run�me
51761s 59894s 61046s 50606s

5th run (14:22:41h) (16:38:14h) (16:57:26h) (14:03:26h)

Run�me
51780,2s 59856,4s 61074,4s 50549,4s

Average (14:23:00h) (16:37:36h) (16:57:54h) (14:02:29h)

Standard devia�on 51,121s 72,745s 60,731s 41,215s

8h 26min. Using a full node, results were obtained in a similar time on both systems
with 4h 20min on the institute’s cluster and 3h 57min on uc1.

On the institute’s cluster it is noticeable that there is only a small runtime improvement
of 26.4% between 4 and 8 cores from 2.02 to 2.55. On uc1, the improvement is with 18.4%
from 2.76 to 3.27 even lower, however from 8 to 16 processes it is more than twice as fast
(113.89%) which is faster than actually possible, indicating an unusual inefficiency on 8
processes only. In case such an inefficient runtime on 8 cores would have been observed
only on the institute’s cluster, it might have been perturbances due to non-exclusive
access by otherwise running jobs with extensive memory accesses. Since this anomaly
was visible on uc1 as well, where the nodes are used exclusively for this one simulation,
another possible explanation could rather be e. g. a disadvantageous mesh distribution of
the four-chamber mesh to 8 partitions, which vanishes when using more or less partitions.

The minimal runtime difference on ibt cluster between 8 and 16 cores (speedups of 2.55
and 2.60), exposes that – although macOS shows 24 cores – only 12 physical cores are
available. The four additional cores are used through hyper-threading, actually impacting
eight processes, four running on a physical core and four running on the virtual core.
Hyper-threading was only used for this 16 core simulation on the institute’s cluster.
CPUs with hyper-threading have a complete second set of registers for each core and can
switch between these contexts whenever the execution pipeline has to wait for new data
e. g. from a small CPU cache or lower clocked memory, thereby increasing the effective
usage of the cores for some types of code. The inefficient use of hyper-threading is an
indication that the mumps library used to solve the linear equation systems is already
highly optimized.
For absolute time until the results are delivered, an additional waiting time due to

queuing system needs to be considered as well. The more nodes and cores are requested
the longer the waiting time usually becomes. A huge advantage of uc1 however is that up
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to 50 jobs can be submitted to the scheduler’s queue and are all executed simultaneously
whenever the resources are available. Furthermore, each job can be assigned to up to 16
nodes (256 cores in total) without any limitation of simultaneously executed jobs.
The slow speedup on the institutes cluster could be caused by either an inefficient

parallelization, but also by an unsuited reference point for the single core runtime as well.
Further, the huge difference between single core runtime on uc1 and single institute’s
cluster can not be explained only by the different clock speed of 2.6 GHz instead of 2.4
GHz. Modern processors of that era provide features intended to increase the perceived
speed for desktop usage including hyper-threading and turbo boost, which dynamically
overclocks the core frequency when not all cores are in use. On uc1, the turbo boost
feature is intentionally disabled in favor of an increased power efficiency, however the
state of turbo boost on the institute’s cluster could not be clarified. Regarding turbo
boost, here it would also have been interesting to see if e. g. 12 sequential simulations
running simultaneously on the same node would show the same runtime as a sequential
simulation on an otherwise empty node. A look at the processors’ data sheets also
revealed a different number of memory channels between the CPUs, which is 4 channels
CPU on uc1, but only 3 channels per CPU on the institute’s cluster, giving another
possible explanation for a low maximum speedup on the latter.

Runtime reproducibility on the institute’s cluster Investigating the reproducibility
of computing times on the institute’s cluster, Table 5.4 shows the runtimes using all
12 cores for four different tension models. Each Simulation was conducted five times
and evaluated for average and standard deviation to reveal negative impacts due to
simultaneous simulations from other users on the same node or backups running in the
background. The fastest simulations took between 14 (“LumensNoLAT”) and 17 hours
(“LumensWithLAT”). The standard deviation was at most 72.7 seconds for the setup
“DoubleHillNoLAT”, giving good confidence that the results are valid for evaluation and
there were no other processes running that drastically increase simulation time. For
the DoubleHill tension model, using locally inhomogeneous activation was expectedly
faster (14h 23min vs 16h 38min on average) as it leads to temporal distribution of peak
tension, less deformation and easier-to-solve equations. Similarly for the simulations
with locally inhomogeneous activation, the more complex Lumens tension model took
longer than the precomputed DoubleHill tension model (14h 24min vs 16h 58min on
average). Interestingly, this was not observed for the “LumensNoLAT” setup, which
showed the fastest runtime of all conducted simulations and was even faster than the
“DoubleHillNoLAT” setup with a less complex tension model (14h 2min vs 16h 38min)
and faster than the “LumensWithLAT” which showed less deformation (16h 58min).

During evaluation of this study, one of the institute cluster’s nodes (ibt146) provided
results significantly faster than the other ones. A closer look at the hardware, revealed
that this specific node was unknowingly equipped with a different CPU configuration (two
Xeon X5675 6x3.06GHz instead of E5645 6x2.4GHz), making the runtime results obtained
on that node difficult to evaluate for this study (Table 5.4). It also turned out that one
of the other nodes (ibt143) had only 48GB RAM instead of 64GB. CardioMechanics
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however never used more than 10GB RAM in any of the simulations in this study,
thereby this should not have had any impact on the results. Further reasons could be
different implementations of the basic linear algebra subroutines (BLAS), which were
used from Intel’s math kernel library (mkl) on uc1 and Apple’s vecLib on the institute’s
cluster. Especially vecLib might or might not use an implicit multithreading, even when
explicitly run on a single mpi process and using the environment variable intended to
control that behavior (VECLIB_MAXIMUM_THREADS=1). An other oddity only observed on
the institute’s cluster was that, at least in case of sequential simulations, one CPU core
was permanently occupied completely by the mpi master thread, effectively downgrading
a dual-core CPU to single-core performance.

The systematic investigation of the parallel behavior also revealed some reproducibility
issues, eventually causing random simulation failures of long-running simulations with
several cores (64-256). Small deviations of the simulation results however already
existed on two cores, where rounding errors due to floating-point arithmetics and a
nondeterministic order of mathematical operations in parallel should make no difference.
The problem could finally be tracked down to the external linear solver library mumps
intentionally not producing predictive results in favor of a faster runtime, and several
bugs in the step length algorithm. The remedy was to switch to the superlu_dist as
linear solver instead (two times slower, but deterministic) and do a complete rework of
the adaptive step length algorithm as described previously in Section 4.2.

Summary Two different simulations were performed on two different computing systems.
On the computing cluster uc1, the scientific ventricle inflation delivered a speedup of up
55.7 on 256 cores distributed over 16 nodes and the 4ch simulation a speedup of 6.99 on
16 cores using 1 node. The same 4ch simulation using 8 cores was about twice as fast on
the institute’s cluster compared to uc1, however scalability on uc1 was better and using
a full node, both systems delivered results in a similar time. Running the same setup,
uc1 was faster in absolute runtime when using 16 cores onwards, and it also has more
capacity of up to 50 computing jobs. Weird behaviors on the institute’s cluster regarding
scalability and absolute runtime could partly be tracked down to undocumented CPU
changes on one node and RAM changes on another node, a difficult-to-control implicit
multithreading of Apple’s blas implementation veclib and a strange CPU usage behavior
at least of sequentially running mpi processes, making scalability results obtained on
that system difficult to evaluate.

Future works For similar studies, it should be kept in mind that the number of unknowns
per core is an important factor and should not be chosen too low. An alternative to the
here used strong scaling with a fixed problem size is to test weak scaling, that is to scale
the problem size with the number of cores and only fix the problem size per processor.
That way the relation between communication and computation cost should be similar
over a large range of computing cores. The second point that should be investigated
further is to evaluate the behavior of a fully featured simulation on a higher resolution
mesh, including a larger number of cores. This however involves the laborious task of
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recreating a higher resolution mesh as depicted in Section 4.5. Since mesh refinements
of 3d tetrahedral meshes is a non-trivial task, this means starting mostly from scratch
at the segmentation, reassigning material numbers, creating fiber orientation, cavity
surfaces and pericardial layers, and last but not least iterating over a large number of
simulations with mesh variations of problematic areas until mesh is found working for a
full heart beat. Results from the previous section (Section 5.1) gave hints about necessary
mesh resolutions for different applications on a scientific geometry which could serve as a
well-founded guide for the mesh creation of such a human geometry.
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This chapter presents the improvements applied to the heart model of Fritz et al. (2014)
in order to obtain a more physiological behavior.
In the first application, a more valid passive behavior of the left ventricle is obtained

by inflation under absence of any contraction forces and a procedure for automatic
determination of passive model parameters. Besides passive material parameters, that
behavior is also closely linked to the pressure-free state, which needs to be determined as
well.

The second improvement is a better active behavior by implementing an ode-based
tension model that respects the current length of myocytes and allows to obtain a
plausible local stretch in each cell.
The last two applications cover the computation of external forces acting on the

myocardial surfaces. On the blood side, it comprises a new model for the circulatory
system based on an equivalent electric circuit, that ensures blood conservation by
connecting all four chambers in the correct order. That model additionally allows to
simulate multiple heartbeats and hence to obtain a periodic quasi-steady-state. Defining
individual opening and closing events depending on the pressure difference plays an
important role to reach that goal.

The last application covers external forces on the outer heart surface with an alternative
approach to model the effects of the pericardium and its surrounding tissue. The previous
approach depends on a highly complex volumetric mesh and mesh-generation procedure
with parameters that were not based on measurements. Homogenization of the pressures
and replacing the model by a zero-dimensional pericardium with one value for the whole
epicardial surface allows to choose model parameters related to measurements while the
pericardial mesh generation process simplifies to just defining the epicardial surface.

6.1. Application I – Estimation of Passive Material Parameters
using Mathematical Optimization

For the simulation of a realistic behavior of the deformation of a human heart, different
components play together. Amongst active and passive behavior of the myocardium,
surface forces act on the endocardial surface due to blood pressure and forces on the
epicardial surface due to the surrounding tissue. During the relaxation phase of the
ventricles however, the re-inflation of the ventricles is dominated by inflowing blood from
atria and pulmonary veins, restricted by passive behavior of the ventricles.
Passive behavior is modeled in this framework using the Guccione constitutive law,

which is a reduced version of the Costa law. The latter was found by (Schmid et al.,
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2008, 2009) to have the most identifiable parameter set amongst the evaluated material
laws. In literature, very different parameters for reproducing passive behavior of the left
ventricle can be found (see Table 3.2), obtained from various types of tissue at in-vivo as
well as ex-vivo state.

Unfortunately, these parameters showed all a different pV behavior of the left ventricle
when applied to our patient’s geometry (Figure 6.3). While it is desirable to have
parameter sets able to describe multiple patients, experience showed that the passive
behavior in terms of absolute pressure volume response differs from patient to patient and
– even worse – differs between two segmentations of the very same patient, probably due
to a slightly different segmented wall thickness. In this project, a method is presented to
reproduce the correct global passive behavior of one specific patient, by finding suitable
ventricle parameters for the Guccione material law.

As data available for comparison, Klotz et al. (2006) measured the in-vivo pressure-
volume response of the left ventricles at eighty freshly harvested human hearts ex vivo,
and validated their results by 36 in vivo patients. Their major conclusion is, that after
normalization to a standardized volume Vnorm, the response is independent from sex, age
or health state of the patients, and an exponential function can be fitted. Their resulting
plot is shown in Figure 6.1 and can be described by an exponential relationship

p(Vnorm) = α · (Vnorm)β

with Vnorm = V−V0
V30−V0

, α = 27.78 and β = 2.76. V0 and V30 are the volumes measured
at 0 mmHg and 30 mmHg.
Additionally, Klotz et al. (2006, 2007) give a formula for computing the pressure-free

volume V0 from a given loaded volume Vm and corresponding loading pressure Pm:

V0 = Vm(0.6− 0.006Pm)

Assuming an end-diastolic pressure of 8 mmHg and the corresponding volume V8, this
provides an expected volume ratio between pressure-free volume and end-diastolic volume
of V0/V8 = 0.55.
In the model used by Fritz et al. (2014); Fritz (2015), the pV relationship is very

different. Figure 6.2 shows the pressure-volume relation of the left ventricle from that
model, which is almost linear. Moreover, the ratio between pressure-free volume and
volume under load computes to V0/V8 = 0.92 which is significantly larger than the
expected ratio of 0.55 and the simulation struggles to reach a sufficient volume reduction
during systole. They used in the ventricles Guccione material with the parameter set by
Omens et al. (1993). In summary, the parameter set by Omens et al. (1993) produces a
vastly too stiff behavior in that model.

Realizing that the parameters by Omens et al. (1993) behave too stiff, a more appro-
priate parameter set could resolve a number of following problems observed with the
model by Fritz et al. (2014):

1. passive behavior, volume V8 increased over V0 by only 8 %,
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Figure 6.1.: Pressure-volume response of eighty human hearts with normalized volume
Vnorm = (V − V0)/(V30 − V0), from Klotz et al. (2006).
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Figure 6.2.: Previous passive behavior of the left ventricle as present in the model by Fritz
et al. (2014), without pericardium. Pressure-volume relation was obtained
by inflating the left ventricle according to Klotz et al. (2006). The pressure
was increased linearly over a simulated time of 5 s, and thereby includes mass
inertia. The computed volumes are: pressure-free Vp=0 mmHg = 132.6 ml,
end-diastolic (segmented) Vp≈8 mmHg = 143.5 ml and inflated Vp=30 mmHg =
214.3 ml.
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Figure 6.3.: Comparison of different literature parameters for the Guccione model in the
4ch geometry with (left) and without normalization of the volume (right).

2. end-systolic volume, ejection fraction of only 30 % was too small,

3. strange pressure and volume time courses during ventricular relaxation,

4. too large fiber strain, went down to 50 % although physiologically only > 84 %
possible, ventricular volume reduction however is still not sufficient,

5. too small end-diastolic fiber strain, which should be > 1.1 = end-diastolic sarcomere
length ( 2.1 micro meter) / unloaded sarcomere length ( 1.9 micro meter), and
consequently develops a too small tension with a stretch dependent tension model

Literature Overview

In literature, numerous parameters for ventricular myocardium were presented, however
with very different behavior. Table 3.2 on page 32 list some of the parameters and
Figure 6.3 shows the corresponding pV response of the left ventricle. Two distinct
behaviors are already visible with normalized volume, however comparing absolute
volumes the situation is worse. None of the published parameters was able to produce
a satisfyingly correct volume increase and passive pV relationship. Reasons are that a
certain set of parameters is only assured to work well in the original context including
modeling features and the specific geometry of the corresponding publication.
A number of material parameter studies for the Guccione law were presented in

literature:

1. Omens et al. (1993): use measurements of dog

2. Xi et al. (2011): parameter estimation for left ventricle using an unscented Kalman
filter

3. Genet et al. (2014): parameter estimation for human left ventricle using a derivative-
free quadratic bound optimization.

An elaborate parameter estimation method for Guccione parameters using a finite
element model of the left ventricle was presented by Genet et al. (2014). They applied their
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estimation method in a small study of five normal human volunteers, including validation
against measured strains, resulting in the estimated parameter set C = 57.5± 4 Pa and
B0 = 14.4± 3.18 (originally C = 115± 8 Pa in their formulation of the Guccione law).
While the variance of their estimation seems to create a reliably reproducible parameter
set suitable for a number of patients, these parameters were still found to be inappropriate
when applied to our patient’s model. This specific parameter set behaved too weak,
possible reasons could be numerous differences in the forward model, a different wall
thickness in the left ventricular geometry, the absence of the right ventricle and both atria,
their fixation of the valve plane and a different mesh resolution (3500 hexahedral elements
/ 5000 nodes in the model used by Genet, compared to 7300 2nd order tetrahedral
elements / 13600 nodes alone in the left ventricle). Additionally, in the relevant pressure
range during relaxation (between 0 and 8 mmHg), their parameter set fitted the least.
This creates the conclusion that parameter estimation works more or less independent
from the specific patient’s geometry, however the material parameters resulting from
such an inverse method are highly dependent on the forward model.

At the current state, the most promising approach to obtain a correct left ventricular
pV response is to use a parameter estimate procedure and compute parameters suitable
for the specific model and geometry.

6.1.1. Methods
Aim of this application is to obtain parameters for the passive material using an opti-
mization procedure. The final solution should yield a certain prescribed pV relationship
under passive inflation of the left ventricle.

An optimization consists of two components. First, a forward model converts a set of
input parameters to an objective value, which describes the quality of the result. In this
case, the forward simulation is used to compute the pressure volume relationship for a
given set of material parameters. To be useful in later applications, it is important that
the forward model resembles the final production simulation as close as possible. Second,
an optimization procedure modifies the input parameters of the forward model in order
to decrease the objective value accordingly.

Geometric Modeling Two different geometries were used in this study for the forward
simulations:

• 1ch: An ellipsoidal geometry described by analytical functions, that resembles
the geometry of a left ventricle. This is the very same geometry as used in the
benchmark publication by Land et al. (2015) for the second and third test cases
for testing the correctness of a simulation code under ventricle inflation. The main
advantage is that a mesh of good quality and arbitrary resolution can be generated.
A resolution of two second-order elements transmurally was used, which is a small
but still predictably behaving mesh allowing fast forward simulations beneficial
during algorithm development. This geometry was used to test reproducibility of
the result under different start values.
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Table 6.1.: Resolutions of the two meshes that were used for the parameter estimation.
geometry # nodes # elements included parts

1ch 4235 2072 LV
4ch 13592 (LV), 7341 (LV), LV, RV, LA, RA, valve-

39067 (total) 21780 (total) plane, truncated veins

• 4ch: A segmentation-based geometry that includes all four chambers, the valve
plane and truncated representations of the veins, but here without the surrounding
pericardial mesh. The goal is to measure the isolated passive behavior by resembling
the experimental ex-vivo setup from Klotz et al. (2006, 2007), where surrounding
tissue and pericardium effects were not present. The obtained parameters however
are usable for full-featured simulations including the pericardium.

The corresponding unloaded states were created as follows:

• 1ch: It is assumed that the described geometry already represents the pressure-free
geometry and can directly be inflated as in the second benchmark case from Land
et al. (2015).

• 4ch: An unloaded geometry was generated using one Bols iteration with an inflation
pressure of 8 mmHg. The parameter C from the parameter set by Omens et al.
(1993) was manually decreased to reach a volume reduction of approximately 50%.

Details about the two meshes are given in Table 6.1. Although both meshes were
created with a through-the-wall resolution of two elements, the surface triangles of the
4ch mesh are smaller and thereby even the left ventricle of the 4ch mesh has a larger
number of nodes.

Determination of an unloaded geometry for a four-chamber heart is a non-trivial task
itself and depends besides the initially unknown passive parameters on fiber orientation
and other factors as well. In order to get at least an approximation that can be used for
inflation, a geometry of the pressure-free state was generated using a single Bols iteration
and modifying the pre-factor C. It is assumed to be sufficiently accurate due to a volume
of roughly 50% of the segmented volume. A similar procedure was described by Nikou
et al. (2016), who iteratively applied parameter estimation followed by an unloaded state
estimation, and accepted the procedure if the unloaded volume does not change by more
than 5%.

Setup of the Forward Simulations The forward simulation uses the Guccione law for
describing the passive behavior of the left ventricle, with its four model parameters C,
b1, b2, b3 to be determined by the optimization algorithm. The strain energy function of
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the Guccione material law is given by

W = C
2 (eQ − 1),

Q = b1E
2
ff + b2(E2

ss + E2
nn + 2E2

sn) + b3(2E2
fs + 2E2

fn).

In case of the whole heart model 4ch, the atria use the Mooney-Rivlin law, and the
right ventricle uses the same material and parameters as for the left ventricle, which
are thereby part of the optimization. The volume conservation penalty parameter of
1e6 Pa in the 1ch setup was reduced to 2e5 Pa in the 4ch to facilitate computation of the
inflation.

Forces on the endocardial surface are given by a pressure boundary in the left ventricle,
with a surface pressure increasing from 0mmHg to 30mmHg in at least ten steps (3mmHg
increments) applied to the unloaded geometries to create a step-wise inflation. Pressure-
volume pairs are exported for each of the computed pressure steps. In case of the whole
heart model, pressure is only applied to the left ventricle, to stay in accordance with the
experimental setup of Klotz et al. (2006).
In all setups, neither active forces nor epicardial forces were present.
In the 1ch setup, the base plane is fixated, for the 4ch model the ends of the truncated

veins. The apex is allowed to move freely as a fixation here would drastically impede the
volume increase during inflation above the end-diastolic volume (> 8 mmHg).

The static solver was used in both setups for solving the equilibrium of forces without
damping or mass inertia and prevents negative impacts from inflation duration or a
changing step size. Although Klotz et al. (2006) did not describe precisely the time
duration over which they inflated the left ventricle, their rather small volume increments
of 0.025 ml might be an indication that all measurements were done in an equilibrium
state.

Simulations of the 1ch setup were conducted using 8 cores and took between 15 s and
30 s for one inflation. Simulations of the 4ch setup took between 30 min and 60 min per
inflation. Weaker parameters with a larger volume increase took longer in both setups.
The effect of mass inertia would be most prevalent at the beginning of an inflation.

Passive forces are small and inertial forces can have a significant impact on the pV
relationship. Starting in an equilibrium state, the computed volumes for a certain
pressure are smaller than without inertia. Unfortunately this is exactly the range of
pressures during the diastolic phase between 0 mmHg and 8 mmHg, the phase of the
cardiac cycle where passive forces are dominant. Using mass inertia while determining
passive parameters, the parameter estimation would try to counteract such a behavior by
using significantly weaker behaving parameters than actually necessary. Mass inertia was
also found to increase the dependency from the chosen time step size as well, since the
solution depends not only on the current forces, but also on the accumulated inaccuracies
of previous time steps.
The forward simulation yields for each parameter set at least ten computed volumes

Vsim(p), corresponding to the equidistantly distributed pressures in mmHg at p ∈
{3, 6, . . . , 30}. If a pressure value is required for a specific volume that was not directly
computed, the two neighboring pressure values are linearly interpolated. If the pressure
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Figure 6.4.: Comparison between original pressure-volume relationship and an extended
formulation adapted to produce a better fit for lower pressures.

increments reduced, e. g. due to a too large deformation, the intermediate steps are
available for interpolation as well. Since the simulation basically computes volumes for
certain pressures Vsim(p) with given fixed pressure increments, a continuous function
psim(V ) was approximated by linear interpolation from neighboring volumes.

Target relationships for pressure-volume (pV) pairs As choice for the objective func-
tion’s target pV relationship, different formula were investigated. The Klotz relationship
was designed to compare the pV response of human hearts with different volumes using
a normalized relationship

p(Vnorm) = A · (Vnorm)B, with Vnorm = V − V0
V30 − V0

with parameters A = 27.78 and B = 2.76. That curve describes globally the non-linear
relationship of pressures and volumes under passive inflation of the left ventricle in an
explanted four-chamber heart.
The original Klotz curve in Figure 6.1 however does not fit the data very well for

pressures below 5mmHg, or normalized volumes below 0.6. Almost all data points
located in this region are above the curve. Unfortunately, this is the range of pressures
applied when passive behavior matters the most, during the relaxation phase when all
other forces are absent. In order to better treat that problematic region, an extended
formulation was generated by extracting the data points from the plot and fitting an
exponential relationship with an additional linear term cVnorm that better treats the
lower part:

p(Vnorm) = a(eb·Vnorm − 1)− c Vnorm with Vnorm = (V − V0)/(V30 − V0)

The obtained parameters are a = 1.43887, b = 3.05987 and c = 0.91460. Both curves are
shown in Figure 6.4.
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These normalized relationships do not include information regarding absolute volumes
or ratios like V8/V0 or V30/V0. Two hearts of different stiffness that will obviously
inflate to different volumes can still produce the same non-linear behavior. Applied as
target behavior of an optimization problem, this translates to non-uniqueness of the
solution. The missing information is to prescribe a certain volume relationship between
two pressures and use absolute volumes for the target behavior of the pV response. For
de-normalization, the unknown but necessary value V30 needs to be provided. A factor k
was introduced, that scales the volume V30 = k · V0 depending on the known volume of
the pressure-free state V0. The de-normalized pV relationship with prescribed volume
scaling factor k using absolute volumes is given by:

p(V ) = a(ebVnorm − 1)− c Vnorm with Vnorm = (V − V0)/(kV0 − V0)

At k = 2.57 the pressure-free volume doubles under inflation with a pressure of 8 mmHg,
the same assumption was made when generating the pressure-free state.

Optimization procedure In order to estimate parameters for the Guccione material
law, a non-linear minimization problem of the form

min
~x

f(~x)

is solved. The optimization parameters ~x are given by the model parameters of the
Guccione material law and the objective function f(·) describe the difference between a
simulation outcome and a prescribed target behavior. The success of such an optimization
approach vastly depends on the choice of a good and suitable objective function and the
right initial values. An objective function not known to be convex might get stuck in a
local minimum, similarly without the known existence of a unique minimum it is like
to get a solution that vastly floats around without really reducing the objective value
any further. Goal is to resemble an absolute pV behavior of the left ventricle, e. g. by
measuring the difference between the two pV curves generated by forward simulation
and a target pV relationship.

Input parameters are the four model parameters of the Guccione material [C, b1, b2, b3],
the same parameter set gets applied to both ventricles. When using all four parameters as
free variables, it can be observed that either b2 or b3 converges to zero. Such a behavior
certainly does not exist in reality as it would describe a tissue without any shear forces.
The issue can be overcome by introducing a parameter B similar to Genet et al. (2014)
and restricting the non-linear constants to b1 = B, b2 = 0.4 · B and b3 = 0.7B. A
restriction function g(·) is used to reformulate the minimization problem according to
the constraints. The minimization problem with restriction function g then writes as

min
[C,B]

(f ◦ g)([C,B]), with g([C,B]) := [C, B, 0.4B, 0.7B]

converting between optimization parameters ~y = [C,B] and Guccione model parameters
~x = [C, b1, b2, b3].
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As data available for the objective function, a number of volume values ~Vsim(~x) =
{V s

3 , V
s

6 , . . . , V
s

30} gets computed by simulation of the ventricle inflation with parameter
set ~x, and a number of pressures values is calculated from the target relationship
~Vtarget = {V t

3 , V
t

6 , . . . , V
t

30}, both at the same equidistant pressure steps. The objective
function with equidistant pressure steps is given by

f(~x) :=
∥∥∥~Vsim(~x)− ~Vtarget

∥∥∥2

2
=

10∑
i=1
|Vsim(pi)− Vtarget(pi)|2.

As a simulation provides volumes at specific pressure steps, a simple straight forward
approach for computing the objective function would be:

1. Compute volumes V3, V6, V9,. . . for certain pressures (forward simulation) and
normalize these to V30 to get the Klotz relationship of the simulation, and

2. calculate the difference to the target Klotz relationship directly at these pressures.
This approach however creates a bad fit and struggles to approximate especially the

lower part of the volume range. A number of problems are inherent to such an approach.
First, when using the unmodified Klotz relationship, there are no assumptions concerning
the absolute volume increase, which makes it difficult for the optimization to find a
solution (uniqueness is missing). Moreover, the original Klotz formulation itself has
problems with approximating the original data in the lower part (inadequate original
Klotz formulation) and hence will struggle to approximate a simulation of that data.
Second, the optimization prefers a better fit at larger pressures over lower ones, and the
volume for a certain pressure can be easily off by a factor of two without much impact
on the objective. The reason is that there are more pV pairs with higher volumes than
with lower ones as the volume increase is higher at lower pressures than it is for larger
pressures. Unfortunately the passive behavior at low pressures is very relevant to fit,
especially for the relaxation phase. The first two points can be resolved by switching
to an extended formulation that better represent these data, and prescribe the volume
increase for an absolute target relationship.
To circumvent the problem of a bad optimization fit in the lower pressure range, the

solution is to use different evaluation points than the ones obtained from forward simula-
tion, and compare pressures instead of volumes. With equidistant volumes, determined
from V30 in the target relationship, the lower pressure region gets represented better.
Additionally, by evaluating pressure instead of volume differences, the objective function
becomes more sensitive to deviations especially right at the beginning of the inflation.

The corresponding objective function at equidistant volume steps then computes for a
given set of volumes ~Vsim(~x) = {V s

3 , V
s

6 , . . . , V
s

30} at equidistant pressure steps as

f(~x) = ‖~psim(~x)− ~ptarget‖22 =
10∑
k=1
|psim(Vk)− ptarget(Vk)|2.

The objective thereby measures the distance between target pressure for a certain volume
and the pressure that would be necessary in the simulation to obtain that volume.
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Figure 6.5.: Schematic view of the optimization process.

Since simulation yields only volumes at equidistant pressure steps, linear interpolation
was applied to obtain the continuous pressure function psim(·) and pressures psim(Vk)
evaluated at equidistant volume steps Vk = k

10V0, k = 1, . . . , 10. The volume before
inflation V0 is the same in all simulations and represented exactly, therefore V0 does not
need to be considered.
Task of the optimization procedure is to decrease the objective value by modifying

the input parameter set, run a forward simulation and measure the simulation results
by means of the objective function. The general optimization procedure is depicted in
Figure 6.5 and is realized in a python script iteratively performing the following steps:

1. Create a xml configuration file containing the current parameter set,

2. trigger an external simulation run using the created configuration,

3. digest simulation outcome by extracting relevant data from the logfile and vtk files,

4. evaluate the objective function, and

5. determine a new parameter set using one of the optimization algorithms provided
by the scipy.optimize package.

The derivative-free Nelder-Mead simplex algorithm was used for finding the minimum
of that non-linear least squares problem. Tests with Newton method in combination with
a finite difference approximation of the derivative were observed to be very dependent
on the start value and often got stuck in local minima. Moreover, the finite difference
approximation used more function evaluations by forward simulations in each optimization
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Table 6.2.: Initial values of all optimization runs. Start values were chosen to produce an
initial ratio V30/V0 around 2.57. The start value of the 4ch setup are close to
the solution from the 1ch optimization.

geometry Cinitial Binitial V30/V0

1ch 50. 14. 2.55
1ch 1000. 5. 2.60
1ch 5000. 2. 2.60
4ch 150. 18. 2.14

step. Rios and Sahinidis (2013) compared 22 implementations of different derivative-free
optimization algorithms on a test bed of 502 convex, non-convex, smooth and non-smooth
problems from engineering and science. Unless an explicit formulation of the derivative
is known, it is unlikely that Newton with finite difference approximation works better
than using a derivative-free method like Nelder-Mead directly, which could be observed
during development as well. Extensions of Nelder-Mead however exist, that additionally
use derivative information for the next guess to escape from local minima with non-zero
derivative.

A treatment of failing time steps and simulations is necessary. If the algorithm is not able
to handle a failing forward simulation, V30 is not available for normalization. Replacing
the objective value by a large enough constant looses continuity and differentiability and
simply does not work. This was overcome by using absolute volumes as optimization
target instead of relative ones, and replacing the unknown pressures/volumes with the
largest computed ones, which creates a continuous objective function. Reliability of the
forward simulations also increased by a rewritten step length algorithm which furthermore
had the benefit that it hits the initially intended pressure steps exactly even after reducing
and increasing the step length.

6.1.2. Setup of the Optimization
Two different types of optimization setups were created, both using Nelder-Mead as
optimization algorithm. For testing general robustness of the optimization procedure and
reproducibility of the results, three different optimizations were run using the analytical
left ventricle geometry “1ch” with start values as given in Table 6.2. In a second
optimization setup, patient-specific parameters were determined for a real heart geometry
using the 4ch heart. Initial values [C,B] = [150, 18] were chosen close to the results of
an intermediate version of the first optimization setups, manually modified to inflate to
about twice the initial volume. As a single inflation is expected to take much longer
here, fewer optimization steps are possible and it is beneficial to let the optimization
already start in the estimated target range. In both setups, each forward simulation was
conducted in parallel on eight cores.
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6.1.3. Implementational Aspects
It has to be kept in mind that one “evaluation of the objective function” for a given set
of parameters already corresponds to running a full forward simulation. An optimization
typically runs a large number of forward simulations (100 simulations and above) with very
different passive material parameters and hence a wide range of different deformations.
Special requirements in terms of robustness and computational time are thereby needed
for the code of the forward simulation. First, it needs to be fast enough to compute a
sufficient number of optimization steps (i.e. forward simulations) in a reasonable time.
Second, the code needs to be reliable and robust enough to return a solution for any set
of input parameters. Both could be fulfilled by a parallelization of the essential parts
of the code as described in Section 4.4 and the implementation of a robust algorithm
for step size computation as described in Section 4.2. Parallelization was tested to
provide correct results also in the parallel case and used eight cores for the optimization
of all setups. Third, for an accurate approximation of the derivative, the code needs
to be able to produce the same results even when a different number of intermediate
steps was used. Using the static solver circumvents any dependency from the exact step
size. A smaller step size leads to an initial guess of node displacements that is closer to
the final solution (constant velocity assumption), thereby improves convergence of the
forward simulation’s Newton method. The solution however does not change. Especially
weaker material properties turned out to demand more time steps and smaller pressure
increments, resulting in a longer computation time.

External optimization loop The optimization loop was implemented in a separate
application outside CardioMechanics and realized using the python scripting language.
Python libraries were excessively used for reading and writing xml configuration files
(xml.etree), solving optimization problems (scipy.optimize) and reading csv data
files (numpy.genfromtxt), which allowed a fast prototyping and easy testing of different
optimization algorithms. One configuration file performing a single forward simulation
with CardioMechanics (xml data format) was set up for each of the two geometries
and served as template for the forward simulations of the optimization. A second
configuration file in python format controls parameters of the optimization script and
prescribes algorithm, initial values, parameter coupling, corresponding xml keys and the
template xml file to use (Figure 6.6).
The scipy.optimize framework expects a function that takes a set of optimization

parameters and returns an objective value. That function needs to be provided by the
optimization script. One evaluation of the objective function consists of the following
steps, each split into a separate function: (i) setup_opti_sim(): Convert the optimization
parameters to Guccione parameters by applying parameter coupling, read the template
xml, write an new xml file with modified parameters for the current forward simulation,
(ii) run_opti_sim(): call CardioMechanics with the generated xml file in order to run
the forward simulation in a subprocess, (iii) evaluate_data(): read csv file containing pV
pairs, compute the targeted absolute pV curve, interpolate simulated pressures to the
equidistant volumes used in the target pV curve, compute the sum of squared differences

98



6. Improving the Physiological Behavior

class ConfigHeart17 :
" " " parameters 4ch heart , LV i n f l a t i o n wi th parameter coup l ing " " "
INPUTFILE = " i n f l a t e_ s t a t i c . xml "
OPTIFILE = " i n f l a t e_ s t a t i c_op t i . xml "
KLOTZFILE = " in f l a t e_s ta t i c_da ta /PressureVolume . dat "
EVALINDEX=131
MODELVOLUMEFILE = " in f l a t e_s ta t i c_da ta /ModelVolume . dat "
_xmltags_short = [ "C" , " b1 " , " b2 " , " b3 " ]
XMLTAGS = [ ’ Mate r i a l s /Mat_30/Guccione/ ’+t for t in _xmltags_short ] \

+ [ ’ Mate r i a l s /Mat_31/Guccione/ ’+t for t in _xmltags_short ]
COUPLED_INDICES = [ 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ]
COUPLED_FACTORS = [ 1 . 0 , 1 . 0 , 0 . 4 , 0 . 7 , 1 . 0 , 1 . 0 , 0 . 4 , 0 . 7 ]
X_INITIAL = [ 1 5 0 . , 1 8 . 0 ]
TARGET_VOLUME_RATIO = 2.570 # v0/v8 = .50
ALGORITHM = "NelderMead "
FORWARD_SIM_CMD = " ( ␣mpirun␣−np␣8␣CardioMechanics ␣−s e t t i n g s ␣ "

+ OPTIFILE + " ␣−verbose ␣−pc_factor_mat_solver_package␣mumps␣ ) ␣2>&1"

Figure 6.6.: Configuration of the optimization with the 4ch geometry. It contains paths to
input and output files, the cavity to use for evaluation (EVALINDEX), configura-
tion of parameter coupling (XMLTAGS, COUPLED_INDICES, COUPLED_FACTORS),
configuration of the optimization (X_IMITIAL, ALGORITHM), and the com-
mand line for running a forward simulation (FORWARD_SIM_CMD).

at these volumes and return it for use as objective value. If the chosen volume penalty is
too small, the largest myocardial volume change is not reached in the last step, but in
between. Moreover, physiologically the volume change should stay below 10%. In order
to detect misbehaviors of these kinds, the objective function additionally evaluates and
tracks all myocardial volumes and warns about an unsuited penalty parameter if the
volume change does not behave as expected. If the cavity volume decreases below initial
volume, a warning message is shown as well.

For use with derivative-based methods, the script is also capable of computing finite
difference approximations via multiple simulation runs. To prevent unnecessary recompu-
tations, all simulation results were stored in a cache and taken whenever the objective
function is called with a certain parameter set a second time. In that case, a dictionary
holds for each parameter set the previously computed pressure-volume pairs in order
to avoid running simulations with the same parameter set multiple times. But also for
Nelder-Mead, one optimization step takes multiple forward simulations. Nelder-Mead
evaluates in each step the objective at all simplex corners, thereby eventually calling the
objective function multiple times for a specific parameter set.
Major limitation of the python approach was, that the provided implementation of

Nelder-Mead is not designed for evaluation of a computationally expensive objective
function. The actual optimization overhead itself is tiny compared to the computational
costs of the forward simulation. It is not capable of doing multiple function calls at once,
even if the current optimization step needs the evaluation of multiple sets of optimization
parameters. Moreover, it does not avoid multiple function calls with the same parameter
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set, which typically happens occasionally during derivative approximation with finite
differences. Remedy of the first point was to run the actual forward simulation in
parallel instead. Solution of the second point was to introduce in the objective function
a cache of optimization parameters and corresponding results. Before creating an xml
and running an expensive forward simulation, the respective function first checks if the
passed parameter set is already in the cache and returns the corresponding simulation
results. If not, the results are computed by a full run of the forward simulation and
added to the cache. Moreover, such a caching strategy additionally allowed to continue
previous optimization runs, which is quite useful on a parallel computing clusters where
the runtime of a job is limited and did not provide a converged solution yet.
The external approach to modify the xml input file accordingly allows to estimate

suitable parameters not only for passive tissue, but rather for any model that exposes
its parameters to the configuration file, including circulatory system and pericardium
properties.

6.1.4. Results
The optimization progress of the analytical ventricle geometry “1ch” is shown in Figures 6.9
and 6.10. Figure 6.9 shows the progress of the parameters C and B for each of the three
different start values over optimization iteration kIter. C is an order of magnitude larger
than B and was scaled by a factor of 0.1 for visualization in a common plot. Figure 6.10
shows the progress of the objective function over kIter for three different start values. The
values of the initial parameter sets are not included in the plot, kIter = 0 shows the result
of the first optimization step instead. After 60 iterations, the exact estimated parameters
are C = 264.83, 263.96 and 263.91, and B = 8.489, 8.498 and 8.498 with an objective of
2.3402, 2.3395 and 2.3421 for the three different initial parameters, respectively. The plot
shows no further improvement of the objective over the remaining 20 iterations. The
final states of all three cases are close together, in terms of both parameters as well as
the objective values. The computation time of a single forward simulation on eight cores
varied between 34 s and 1 min 30 s, and took the same 1 min 16 s for the final states of all
three start parameters.
In case of the real heart geometry “4ch”, the progress of both parameters and the

objective function over the optimization iteration is shown in Figure 6.11. Again, C was
scaled for visualization by a factor of 0.1. During the first 10 iterations, the objective
decreased quickly and fell below a value of 10 after only 7 optimization steps. After that,
the objective continued to decrease and reached at iteration 13 already an objective of
1.353 with corresponding parameter set C = 162.776 and B = 11.01. The final objective
value was almost reached, however further changes in C and B were still observed.
The last iteration resulted in the parameter set C = 142.40 and B = 11.53, and an
objective value of 0.8933. The resulting absolute pV curves from the initial, 13th and
final optimization step are shown in Figure 6.7. The two curves from step 13 and step 33
are hard to distinguish and show the largest visual difference between 180 ml and 200 ml.
The final value of the objective is still 34.0 % lower than in step 13 and 61.8 % lower than
the final one in the analytical ventricle. Compared to the analytical ventricle, a single
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the initial parameter set (green), one obtained during optimization (blue)
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x-axis gives cavity volume (ml) while the y-axis shows pressure (mmHg).

forward simulation took significantly longer, and within the time limit of 24 hours only
33 iterations and 68 forward simulations could be computed.

6.1.5. Discussion
The simulations using the ventricle geometry 1ch showed that all three different start
values lead to the same final parameter set, despite the start values varied in a large
range of C between 50 and 5000. This is a good indication that a unique solution to
the problem of finding passive material parameters exists, the solution finding process is
independent from the start values and that the algorithm did not run into local minima,
making Nelder-Mead an appropriate optimization algorithm.
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Figure 6.11.: Progress of the parameters C and B (green, blue) as well as the objective
function (red) for the 4ch heart geometry.

In case of the segmentation-based four-chamber heart model, good parameters were
already found after only a couple of iterations and the solution’s objective values did not
significantly change during the next iterations.
The final parameters between the two geometries were different (average of 1ch:

[264.2, 8.495] vs 4ch: [142.40, 11.53]), thereby an important conclusion is the necessity to
fit parameters for each geometry individually. One possible reason could be, that the
size of the approximated ventricles is different, or just the ratio between wall thickness
and long axis.
The objective values between different geometries can be compared directly, the

objective value evaluates ten pressure differences with the exact same target pressures.
Within ten iterations, the objective of the four-chamber geometry was already lower
than the final objective from the simulations using the analytical ventricle. One possible
reason is that the 4ch setup is closer to the experimental setup by Klotz et al. (2006) and
thereby better able to reproduce their data, which includes three additional passively
deformed chambers and realistic fiber orientations.
The dimensions of the analytical ventricle 1ch were the same as taken in Land et al.

(2015) for verifying the correctness of the code and are certainly too small to represent a
human ventricle (volumes of 2.46 ml and 6.37 ml before and after inflation). Additionally
its mesh resolution was chosen to obtain a fast forward simulation in first place, but
two quadratic elements transmurally might be too coarse to sufficiently represent the
prescribed fiber orientation rotation from +90 to -90 degree for that model. That specific
ventricle however was only used to check reproducibility for different initial values. It
represent a well-described and reproducible geometry that readily exists within many
groups that participated in the benchmark publication by Land et al. (2015). The
simple ventricle inflation setup was solved by all of them, which makes it much easier to
reproduce the method and its results.
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In case of the human-sized four-chamber simulation 4ch, the parameter C changes from
C = 142.4 to C = 162.8 between iteration 13 and 33, however both are already better
than the final solution of the 1ch setup by means of the objective value. The parameter
B seems to be determinable more reliably and changes only from 11.53 to 11.01. This
difference is measurable, but not visible when comparing the two Klotz curves visually in
Figure 6.7.

Genet et al. (2014) used a similar approach to determine parameters for the Guccione
model at five different patients. They applied a similar parameter coupling, but a different
optimization strategy which estimates C and B repetitively one after another. Their
forward simulation contained only the left ventricle with a hexahedral mesh of similar
resolution (5k nodes, 3.5k elements) to the analytical ventricle 1ch in this study (4.2k
nodes, 3.4k elements). They used a fixed baseplane as boundary condition and as unloaded
geometry the segmentation of the end-systolic state, which both are similar to the 1ch
setup. Moreover, they did not focus only on the pure passive behavior, but estimated
after their optimization process the amount of active stress as well. Interestingly, they
inflated the ventricle only to 9 mmHg instead of 30 mmHg and their final parameter set
also showed a bad fit for pressures below 3 mmHg. The parameter set determined in
that publication corresponds to C = 57.5± 4 and B = 14.4± 3.18, which is not similar
to the results from the similar forward simulation setup “1ch” (C = 264.2, B = 8.495).
It shows a more than four times smaller value for C compared to this study. However,
the ventricular volume of the 1ch setup is very different from a human ventricle and has
rather extreme fiber orientation, so it is probably not the best suited for comparison.
The final parameters obtained from the 4ch setup (C = 162.8, B = 11.01) are closer, but
still differ in C by a factor of more than two, which seems to contradict their estimated
inter-patient variances. The 4ch setup uses a different geometry with e. g. the right
ventricle influencing deformations mostly at large pressures. The factor B in contrast,
which seemed to be determinable more reliably and showed less variation during the
almost-converged steps of the optimization, fits with a factor of 11.01 into the variability
range.

Outlook It was found that a gradient-based algorithm did not perform nearly as well
as the Nelder-Mead algorithm. For a further runtime improvement of the optimization
process, knowledge about deformation states under similar material parameters for a
specific pressure could be incorporated into the mechanics solver in the future. Providing
such a more intelligent initial guess to the static solver’s Newton method (the one that
solves the equilibrium of forces) would produce a faster convergence and fewer Newton
iterations by already starting in the range of locally quadratic convergence.
One of the main reasons for introducing the parameter coupling was to prevent

disappearing shear forces. Experimental data from shear tests at myocardial tissue
patches from pig hearts is available by Dokos et al. (2002). That data was used by
Schmid et al. (2008) to estimate parameter sets for different material laws, including the
Costa law, to produce a correct local behavior. The 7-parameter set of the Costa law
was reduced by Xi et al. (2011) to parameters for the Guccione law (C = 94.5, b1 = 28.9,
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b2 = 13.5, b3 = 13.3). Its parameter C is only 42 % below the C estimated for the 4ch
setup, but the parameter b1 is more than twice as high. The factors between the b1,2,3
are different and b2 and b3 are very similar to each other, however the resulting factor
b3 = 0.46 b1 is similar to one used during parameter coupling (b3 = 0.40 b1). It is however
difficult to derive the local behavior just by comparison of the parameters. Such data
from local measurements could be incorporated in the objective as well, to produce not
only a correct global but also a correct local behavior.
Concludingly, the parameter estimation of a four-chamber heart directly using Car-

dioMechanics and a four-chamber heart geometry for the forward simulations is a step
forward towards an accurate reproduction of the global behavior of the heart. Coupling
the mechanics model to a lumped circulatory system model relies on a correct global
behavior and exchanges information only by non-local values using pressures, volumes and
their derivatives per chamber. Especially during ventricular relaxation or filling phase,
when the ventricles are completely free from contracting forces, the passive behavior
profits a lot from an accurate description of the passive material properties.

This also has some positive side-effects in other areas as well. The passive tissue behaves
now weaker producing a larger inflated volume compared to the originally used Omens
parameter set (Figure 6.8), or vice versa a smaller unloaded volume with a prescribed
inflated volume (e. g. by segmentation). Such a smaller unloaded volume provides a
larger initial strain. This finally allows to use better tension models that include stretch
dependency.

6.2. Application II – Length-dependent Active Behavior
6.2.1. Introduction
One of the main purposes of the heart is to drive the circulatory system. Ejection of
blood depends on pressure difference between ventricle and aorta. That pressure is
created by contraction of the ventricles, a larger pressure gradient results in a faster
ejection of blood. If the amount of consumed energy is the same, this leads to a more
efficient pumping function. On cell level, contraction is triggered by electrical excitation
and tension develops in a complex process respecting changing states of several ion
channels, Ca concentration and the current length of the fiber cell. It is experimentally
known that an isolated cardiomyocyte produces more tension when it is elongated before
activation (Starling effect on cell level). A similar effect exists on organ level, where an
increase in ventricular filling pressure and volume creates more ejection volume under
heavy load (Starling effect on organ level). An adequate length-dependent tension model
for application in a whole-organ environment should be able to reflect the mechanical
Starling effect on organ level.

The electrical excitation on organ level is inhomogeneous. It starts near the apex and
spreads towards the baseplane, which can be measured by a multi-electrode catheter
measuring potentials at different locations simultaneously (in-vivo) or by exploiting
fluorescence effects (ex-vivo). A completely homogeneous activation is not possible due to
limitation of conductivity, but mechanisms like the fast-conducting Purkinje tree reduce
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the duration of ventricular activation. Mechanically however, the situation is unclear as
time courses of local mechanical contraction are difficult to measure in an organ level
setup. Electrophysiological models exist that resemble tension development for isolated
cells, but especially the ones that respect Length-dependency via modeling biological
processes inside the cell do not deliver as expected in simulations on organ level as their
output does not scale well. A homogeneous mechanical activation would have several
advantages. If one half of the ventricle contracts first and the other half at a later time,
merely redistributes blood and stores the energy as potential energy in the currently
inactive part (which has a large compliance at that time of no contraction) instead of
building up a pressure difference. This happens in a bundle branch block and makes it so
dangerous for the patient, the ventricles loose their ability to contract in synchrony and
rather produce a lot of septal motion instead of efficiently ejecting blood. When all cells
contract at the same time however, the obtainable peak pressure is higher, or requires
less chemical energy to obtain the same peak pressure (efficiency increase). Potentially,
a homogeneous mechanical contraction peak is the most efficient and length-dependent
tension might allow to explain the apparent discrepancy to inhomogeneous electrical
activation via the effect of myofibers with increased pre-stretch reaching their tension
peak earlier. From the computational point of view, a homogeneous mechanical activation
allows to simplify the modeling process in cases without detailed electrophysiological
modeling and removes the need for generation of an activation time map and all related
uncertainties while still maintaining some relevant effects on the mechanical side. The
availability of a phenomenologically modeled length-dependent tension model published
by Land et al. (2017) allows to answer a number of open questions.
Aim of this project is to clarify four main hypotheses. Hypothesis 1, homogeneous

contraction improves the mechanical efficiency of the motion. Hypothesis 2, length-
dependent tension development is a mechanism to smooth out inhomogeneities due to
differences in activation time, pre-stretch, partially thinner walls or passive stiffness.
Regions with lower initial stretch would develop a low amount of tension, however they
experience a larger passive deformation due to contracting neighboring cells, which
increases their pre-stretch and thereby their tension. Hypothesis 3, the Starling effect on
cell level leads to Starling effect on organ level. Hypothesis 4, the effect of respecting
length-dependency is more valuable than imposing inhomogeneous electrical activation
times on mechanical activation with a pre-computed model.
This project tries to quantify the advantages of a length-dependent tension model

over a pre-computed model. It is not focused on competing with state-of-the-art models
on the electrophysiological side on cell level, rather on providing general insights that
arise from respecting length-dependency. Input of the used length-dependent tension
model is a prescribed function related with calcium, which makes a future extension to a
differently obtained source possible – if needed. This project was realized by supervision
of a student thesis Müller (2017). The investigations in this section were conducted
before the investigations leading to the previous section, therefore do not contain the
findings for the passive material properties from Section 6.1 and use the modeling from
Fritz et al. (2014) instead.
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6.2.2. Methods
For modeling of tension development in the cardiac cells, two different approaches are
used.

The first tension model is the “Double-Hill” tension model. It uses a constant function
as described in Section 3.7 to prescribe the tension in every single element. Advantages
are a simple implementation and the fact that the resulting elastance of the chamber is
under control (the elastance curve follows the tension curve). Drawbacks are that such a
model does not inherently represent the Starling effect, and there is the risk that single
elements experience more contraction than what is physiologically possible (must be
above 0.84 times initial length).

The second tension model is called the “Lumens tension model”. It uses an ODE-based
formulation solved by a Runge-Kutta method in each time step, and has the current
length in fiber direction as one of its input parameters. It is described in Section 3.7 as
well. The original formulation (Lumens et al., 2009, Appendix B therein) could be used
almost unmodified, the only changes to the original model are related to computation with
a 3d FEM code: Since the simulations require to start in an equilibrium state, the active
stress needs to be assumed to be zero. Therefore, the parameter “Calcium concentration
at rest” was set to Crest = 0. The zero-dimensional equation for length-dependent passive
stress used by Lumens et al. (2009) is replaced with the Guccione material law computed
from 3d deformation tensor during the FEM simulation.
In general, tension models have in common that they all compute a scalar-valued

active tension value Tactive, which is assumed to be the stress in fiber direction and gets
converted to a 3d active stress matrix Sactive by addition at the respective position of
the total stress tensor:

S = Spassive + Sactive, Sactive =

Tactive 0 0
0 0 0
0 0 0

 .
For the dynamic dependency on the current fiber length, a new framework for length-

dependent tension models needed to be implemented and is described in Section 4.1.
It’s using the similarity between passive/constitutive models and active/tension models.
Both depend on current deformation E and contribute to the stress tensor by an additive
decomposition S(E) = Spassive(E) + Sactive(E). In the previous implementation, the
Cardiac Biomechanics framework had only one global vector to store precomputed active
tension values for each element and Sactive did not depend on E. Whenever a tension was
needed, the address pointing to the value was exchanged, the actual value however was
constant. The tension vector could only be updated once per step from a pre-computed
function or an external file – therefore it had no direct length-dependency.
In the reworked implementation, the single value is replaced by an object-oriented

hierarchy of tension models that share a single interface. Instead of a single constant
value, a separate tension object is assigned to each element and provides a function
that can be evaluated whenever an element needs an up-to-date value that matches the
current state of the deformation. Depending on the tension model, the function call

107



6. Improving the Physiological Behavior

that is responsible for evaluation might implement a complete time integration (ode-
based) including correct handling of changing or failing time steps from the FEM Solver
(‘step-back’ events in CardioMechanics), or it returns only the simple result of a explicit
function evaluation (function-based tension). Figure 6.12 shows a class diagram of the
implemented tension models, including the Lumens model realized in CBLumensTension
and the DoubleHill model realized as a generic CBTensionFromFunction paired with
DoubleHill as corresponding explicit function. Figure 6.13 gives the other options
available as explicit function. Concerning parallelization, the vector of elements already
existed in a distributed manner, thereby this approach inherits the existing parallelization
by design.
Finally, an LAT-reader was implemented that allows to delay the local time variable

of each element’s tension model by a separate duration. A map of local activation times
can be specified element-wise in a simple text format as depicted in Figure 6.15.

6.2.3. Simulation Setups and Evaluation
Four different simulations were conducted to compare the effects on the mechanical
function of (i) a length-dependent tension model, and of (ii) a locally inhomogeneous
activation of ventricular cells.

The geometry includes all four chambers, the valve plane and truncated representations
of the aorta and pulmonary veins as described in Section 4.5. Since the Lumens model
generates a considerably larger amount of force when stretched, a consistent amount of
pre-stretch of about 10% in all cells is important. An unloaded state was not prescribed,
instead both ventricles were inflated to 8mmHg over a time duration of 500ms to ensure
a positive pre-stretch of each cell, needed by the Lumens tension model (Figure 6.14).
Pressure forces were computed with the fully coupled “WholeHeart” model of the
circulatory system. In all setups, pericardial forces were intentionally not present to
avoid side effects in the evaluation due to possible interactions with the length-dependent
tension model.

Passive forces consisted of Mooney-Rivlin material for the atria and Guccione material
for the ventricles, with parameters as estimated in Section 6.1 for a correct passive
behavior. Active forces for the atria are computed by the DoubleHill model with
Tmax = 35 kPa and all cells are activated at the same time.

For the ventricles, active forces are either one of Lumens or DoubleHill model, depending
on the setup. The Lumens tension model was used with the exact same original parameters
as described in Section 3.7 in Table 3.4 including the tension scaling factor of 120 kPa.
The only difference was Crest = 0 to get an initial state at equilibrium and being able to
start the simulation. The DoubleHill tension model was used in the ventricles with a
maximal tension of 60 kPa (right) and 80 kPa (left) to reflect the physiologically observed
lower generated right ventricular overall force. Parameters for the DoubleHill model are
found in Table 6.3 and are the same as in Section 3.7. Earliest ventricular activation
was delayed to begin 150ms after the atrial activation, plus an optional additional local
delay depending on the setup. That local delay was defined by a map of local activation
times (LAT) containing a single float value for each cell separately, that was generated
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Figure 6.12.: Structure of the available tension models, from Müller (2017).
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Figure 6.13.: Hierarchy of available analytical functions that can be used as simple
tension models via “CBTensionFromFunction”, from Müller (2017).

Figure 6.14.: Relative stretch in fiber direction before (left half) and after inflation (right
half), from Müller (2017).
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Table 6.3.: Parameters that were used for the DoubleHill tension model, from section 3.7.
Parameter atrium ventricle (left/right)

ContrTimeOffset 0.042 0.215
RelaxTimeOffset 0.138 0.362
ContrRateConst 1.99 1.32
RelaxRateConst 11.2 21.9

OnsetTime 0.0 0.15

by solving the eikonal equation using the fast marching algorithm with initial excitation
triggered at the left ventricular apex and an intentionally simple, homogeneously isotropic
conduction velocity adapted to produce a ventricular activation spread over 120ms (which
corresponds to the length of QRS complex in ECG signal). Interestingly, taking the long
axis position from a principal component analysis of both ventricles and scaling it to the
desired time duration created almost the same pattern.
In summary, this leads to the following four setups:

• DoubleHillOhneLAT : double hill tension model, homogeneous activation

• DoubleHillMitLAT : double hill tension model, inhomogeneous activation

• LumensOhneLAT : Lumens tension model, homogeneous activation

• LumensMitLAT : Lumens tension model, inhomogeneous activation

The first two setups generate tension simply by evaluating an analytical function (length-
independent), the latter two solve an ODE by time integration (length-dependent). Each
simulation contained 5 heart beats and was conducted using the NewmarkBeta solver on
tetrahedral finite elements of second order. The total simulated time of 4.5 s contains
500 ms initial inflation followed by 5 beats à 800ms.
For comparison of the simulation results, pressure and volume curves over time were

created, as well as pressure-volume loops of all setups. Moreover, stretch in fiber direction
λx was computed for each cell (x-direction in the local fiber coordinate system). Evaluated
is the relative change of length compared to the undeformed mechanical reference state
as described under λf in Section 3.1.2 (deformation measures) and Section 3.7 (tension
models).

6.2.4. Results
Figure 6.15 shows the results from solving the eikonal equation to compute the activation
times for the simulations with inhomogeneous activation.
Figure 6.16 shows the distribution of peak tension in the last beat as individual

maximum of each cell. For the stretch-independent DoubleHill tension model, the peak
tension is for all cells exactly the same with homogeneous as well as inhomogeneous
activation. The tension patterns in Figure 6.17 show for the homogeneous case a perfectly
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Figure 6.15.: Map of local activation times in seconds used to delay ventricular activation
(left) and an extract of the data format for activation times per cell id
(bottom right), adapted from Müller (2017).

homogeneous pattern in each time step. In case of inhomogeneous activation, there is a
clear local delay of tension development with the contraction motion starting near the
apex first.
For the Lumens tension model, the tension maxima are distributed clearly inhomo-

geneous in both activation cases, even for the setup with homogeneous activation. The
resulting tension patterns look similar in both simulations, with and without using local
activation times. The influence of local activation times on the motion of the contraction
is less obvious than it is with the DoubleHill tension model. A contraction from the apex
is – different from DoubleHill model – not clearly visible in Figure 6.17, however the
patterns seem to be shifted by 50 ms. Instead, the pattern of developed peak tension is
similar to the pre-stretch after initial inflation as shown in Figure 6.19.
The local stretch λx during contraction (this is not visualized) is consistently above

80% for the Lumens tension model, which is in accordance to the physiologically imposed
limits mentioned in Section 2.2. In the simulations with the DoubleHill tension model
in contrast, the tension “develops” independently from initial or current stretch and
partially drops significantly below 80%, reaching even below 50% in some cells.
Figure 6.18 compares spatial tension distribution of the four setups in a snapshot

taken during relaxation side by side. The two pictures of the setups with inhomogeneous
activation times are shifted by 50 ms to take an overall later average activation into
account. Notably, the simulation with DoubleHill and inhomogeneous activation times
(DoubleHillMitLAT) behaves differently from the other three and still shows an ongoing
contraction with reduced radius near the valve plane, while the remaining ventricle
already relaxes. That jellyfish-like motion is not visible in the homogeneous case, nor do
both simulations with the Lumens tension model show such a behavior. For the Lumens
model, the spatial tension pattern does not change by including locally inhomogeneous
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DoubleHill DoubleHill Lumens Lumens
MitLAT OhneLAT MitLAT OhneLAT

Figure 6.16.: Comparison of developed peak tension distributions for all four simulations
on the endocardium obtained from the last beat, adapted from Müller
(2017).

Figure 6.17.: Effect of activation times on the patterns of developed tensions starting at
650 ms in 50 ms steps (left to right, then top to bottom) for DoubleHill
(left half) and Lumens (right half) with each pair containing homogeneous
(left) and inhomogeneous activation (right), adapted from Müller (2017).
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DoubleHillMitLAT DoubleHillOhneLAT LumensMitLAT LumensOhneLAT
(1100ms) (1050ms) (1100ms) (1050ms)

Figure 6.18.: Comparison of tension distribution during relaxation of all four setups. For
a legend see Figure 6.17.

activation, both patterns are visually identical besides the aforementioned temporal delay
of 50ms between the two visualizations.

Figure 6.19 shows stretch λx in fiber direction after initial inflation (before first systole,
t = 500ms) and developed tension with the Lumens model with homogeneous activation
times (end of first systole, t = 960ms). Certain similarities between the patterns of initial
pre-stretch and of developed peak tension are visible. The right ventricle has a rather
uniform pre-stretch up to 1.24 and shows an even tension distribution during contraction.
In the upper left ventricle, there is a distinct area with pre-stretch around 1.16, which
can be re-identified in the tension distribution as an area with developed tension of above
60 kPa. In the remainder region closer to the apex, the pre-stretch is at most 1.1 and
develops tensions below 40 kPa. Besides the initial stretch, in that simulation all cells
have the exact same properties including activation time, tension model parameters and
material properties.
The plots in Figure 6.20 show pressure and chamber volume over time for the left

ventricle of the five heart beats. Both values do not start in circulatory system’s
equilibrium state and change in subsequent beats for all four simulations. The volume
curves of the simulations using Lumens tension are lower compared to the curves from the
simulations with DoubleHill tension model. The same behavior is observed in pressure
curves and peak pressure, which are consistently lower in the setups with Lumens than
with DoubleHill. Moreover, both tension models reach their pressure peaks at a later
point in time when using inhomogeneous activation times compared to homogeneous
ones. The pV loops of all four chambers are shown in Figure 6.21. Developed energy of
the left ventricle (area of pV loop diagram) is larger for the DoubleHill tension model
than it is for the Lumens tension model, indicating that the same amount of tension
might be used more efficiently when distributed homogeneously. The atrial pV diagrams
behave similar for all four simulations.
Finally, Table 6.4 shows key values evaluated from the last beat of all simulation

setups. Maximum and ejection volumes decrease in both ventricles when locally delayed
activation is used, the same holds true for the total heart volume. This is consistently
observed for both tension models, and the decrease is in a similar range for both tension
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Figure 6.19.: Patterns of stretch after inflation of the initial geometry to end-diastolic
pressure (500 ms) and developed peak tension for the simulation with
Lumens tension model and homogeneous activation (960 ms), from Müller
(2017).

Figure 6.20.: Left ventricular pressure and volume time courses comparing the four
simulation setups, adapted from Müller (2017).

115



6. Improving the Physiological Behavior

Figure 6.21.: Pressure-volume loops of all four chambers comparing the four simulation
setups, from Müller (2017).
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Table 6.4.: Overview of the results from the fifth heart beat (last beat) for all four
simulations, from Müller (2017).

DoubleHillMitLAT DoubleHillOhneLAT LumensMitLAT LumensOhneLAT

LV-Vol Max 350,99 366,32 348,02 356,49

LV-Vol Min 276,55 289,34 292,27 296,61

LV EjecVol 74,44 76,98 55,75 59,88

LV EjecFrac 21,21% 21,01% 16,02% 16,80%

RV-Vol Max 186,59 193,76 269,55 273,96

RV-Vol Min 126,68 127,95 224,34 223,95

RV EjecVol 59,91 65,81 45,21 50,01

RV EjecFrac 32,11% 33,96% 16,77% 18,25%

Tot-Vol Max 537,59 560,08 617,57 630,46

Tot-Vol Min 403,23 417,29 516,61 520,56

Tot EjecVol 134,36 142,79 100,96 109,89

Tot EjecFrac 24,99% 25,49% 16,65% 17,43%

LV-PressMax 130,86 133,97 95,27 100,69

LV-PressMin 2,46 2,69 2,87 2,92

RV-PressMax 23,25 23,96 19,25 19,80

RV-PressMin –0,18 –0,19 0,73 0,71

LA-PressMax 9,79 9,29 8,59 8,06

LA-PressMin 1,16 1,53 0,80 0,69

RA-PressMax 4,02 3,66 3,72 3,33

RA-PressMin –1,70 –1,67 –1,47 –1,47

models (DoubleHill: 2.6ml, Lumens: 4.1ml for LVEjecVol). The only exception is an
increase in the minimal volume of the right ventricle with Lumens model, that increases
slightly from 224.0 ml to 224.3 ml. With inhomogeneous activation, the ventricular peak
pressures decrease in both tension models, by 3.1 / 0.7 mmHg (DoubleHill LV/RV) and
5.4 / 0.5 mmHg (Lumens LV/RV). The peak pressures in the atria consistently increase
slightly, but by at most 0.5 mmHg, which is observed in the LA for both tension models.
The simulations with DoubleHill show in the left ventricle significantly higher peak
pressures and ejection volumes than the simulations with Lumens. Although the Lumens
model leads to smaller ejection volumes and smaller peak pressures in both ventricles, it
can be observed that the absolute volume of the right ventricle is significantly larger than
with the DoubleHill model. Changing both tension models to inhomogeneous activation
times lets the LV peak pressures (LV-PressMax) reduce by 2.321 % and 5.383 % and LV
ejection volume (LVEjecVol) lowers by 3.300 % and 6.897 %, for DoubleHill and Lumens
tension model respectively. The differences of using Lumens instead of DoubleHill as
tension model are larger, and consist of a reduction of LV-PressMax and LVEjecVol by
27.197 % and 25.107 % in the simulation with activation times, and by 24.841 % and
22.214 % in the simulations without.
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6.2.5. Discussion
The phenomenologically modeled, stretch-dependent Lumens model is able to reflect
the Starling effect on tension development on cell level. The cells with a high pre-
stretch were the ones that developed a high amount of peak tension and on the other
hand cells with a low pre-stretch were not able to develop a considerable amount of
tension. This can be observed even without solving additional systems of differential
equation that describe electrical potentials or ion concentrations inside biological cells.
An inhomogeneous distribution of pre-stretch leads to an inhomogeneous pattern of
developed tension maximum, and more pre-stretch means more developed tension. Due
to the link between stretch and developed tension, the local stretch values itself remained
in all cells in the physiological range between 0.7 and 1.3 throughout the whole heart
beat, which is not the case for DoubleHill tension model.

Respecting local activation times, inhomogeneous activation lead with the DoubleHill
tension model to a jellyfish-like motion of the left ventricle, with the contraction visibly
starting near the apex and then moving upwards towards the valve plane. In combination
with the circulatory system, this motion generated lower peak pressure and ejection
volumes that are reached in both ventricles at a later time than with homogeneous case.
Furthermore, that jellyfish-like motion possibly affects the opening diameter of the AV
and aortic valves and might facilitate blood flow from atria to the ventricles as well as
outflow to the aorta in a circulatory system model that respects e. g. aortic valves with
varying diameter (which is not the case for most of them).

With the Lumens tension model in contrast, homogeneous or inhomogeneous activation
showed not much difference in the motion pattern. However, the patterns from the
inhomogeneous activation resembled the ones from 50ms earlier more than from the
same time step and both ventricles reached their peak pressure at a later time than with
homogeneous case. By the modeling of the activation time map, a ventricular cell was
activated on average roughly 60ms later than in the homogeneous case, which could
explain differences in pressure and volume curves. The jellyfish-like motion observed
with the DoubleHill model was not present with the Lumens model at all, even with
the inhomogeneous activation, and an explanation is a smoothing phenomenon by the
length-dependency: The natural interaction between neighboring cells lets neighboring
cells which are not activated yet already experience a higher passive pre-stretch which
results in more and faster developing tension. Overall, homogeneous activation resulted
in a higher pressure difference and output volume in both ventricles for both tension
models with a slightly more pronounced effect for the Lumens model.
In the simulations with the DoubleHill tension model, each cell develops exactly the

same force over time. The heart consumes in both simulations exactly the same amount
of energy, making DoubleHill ideal for the evaluation of mechanically inhomogeneous
contraction. DoubleHill shows with homogeneous activation higher peak pressures and
ejection volumes in both ventricles than with the inhomogeneous activation. Under
the assumption of the same amount of consumed energy, this translates to a higher
efficiency of the heart with homogeneous activation. Besides the local delay, tension
model parameters between the two setups are absolutely the same.
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The number of five simulated heart beats turned out to be sufficient for evaluating the
pressure and volume curves. For all four setups, the pV loops of the fifth beat reached
a periodical quasi-steady state and were identical to the ones from the fourth beat by
visual comparison.

Areas with larger pre-stretch develop significantly higher tension than areas with low
to medium pre-stretch, which emphasizes the importance of a reasonable pre-stretch
for a sufficient tension development with the Lumens model. The DoubleHill tension
model has no length-dependency and behaves indifferent. Pre-stretch however can not be
directly generated, in the simulations it rather is a result of the initial inflation instead.

The observed ventricular end-diastolic volumes were in all four simulations larger than
the patient ones due to the model initialization by inflation and resulted in rather high
absolute volume changes. The patients volumes are the ones present before initialization
(see Figure 6.14), since the geometry was segmented from end-diastolic state at which pre-
stretch already is present. Since all four setups experienced the exact same initialization,
the qualitative conclusion/outcome of this study does not change. Moreover, the thereby
obtained homogeneously large pre-stretch was essential for the Lumens model to develop
a considerable amount of tension (despite still lower than with DoubleHill), a point
at which all other of the available unloading procedures from Section 3.10 failed. A
general – not necessarily only tension model related – problem of the current state of
this heart simulation model is that ventricular pressures have a tendency to be on the
rather small side. The one single reason for that could not yet be found and might be a
combination of segmentation error, wall thickness, fiber orientation, material parameters,
boundary conditions and modeling of the hearts surroundings. All of the currently known
unloading procedures listed in Section 3.10 however failed to produce a homogeneous
large pre-stretch and contained even cells with negative pre-stretch, which is a clear no-go
in combination with the Lumens tension model (for DoubleHill this does not matter).
The use of findings from other chapters for material parameters (Section 6.1) and

circulatory system model (Section 6.3) lead to the benefits of fitting ventricular ejection
volumes, a large V8/V0 ratio and a good fit to the Klotz curve.

The DoubleHill simulations have larger overall pressures in the left ventricle than the
simulations with Lumens. This is not an indication of superiority of the DoubleHill model,
in fact the overall developed tension and resulting compliance can be easily reduced while
maintaining the same overall shape of the compliance curve via the single parameter
Tmax. The DoubleHill model had a larger area covered by the pV loop, denoting it
produced more pumping energy. The larger overall values seen with the DoubleHill
model might indicate that chosen scaling factors Tmax of 60 kPa (left) and 80 kPa (right)
might be slightly too large for direct comparability between the results of Lumens and
DoubleHill. This makes the simulations with DoubleHill model hard to compare to the
ones with Lumens model, since the amount of force put into the system by the two
models is different. Even when restricting to one model, the results between homogeneous
and inhomogeneous case are difficult to compare, since the inhomogeneous case has a
larger “effective AV delay” averaged over all cells and the area near the valve plane
contracts significantly later. In fact, a different AV delay alone could already explain the
observed differences in pressure, volume and efficiency, leaving conclusions drawn from
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homogeneous vs inhomogeneous doubtful until more about that influence is known. In
sum, this makes a reasonable comparison between the four simulations questionable.

Simulations of better comparability would require to take the simulation with Lumens
and tune DoubleHill via Tmax until both show the same ‘produced pump energy’ (i. e. area
covered by pV loop). Regarding simulations with and without inhomogeneous activation,
the inhomogeneous cases need to start activation earlier until both show the same AV
delay at least in average. Otherwise, the observed effects might very well be caused by
the different AV delays alone.

The mechanisms behind DoubleHill and Lumens are different, and so differ the possi-
bilities to influence the tension development. Simply increasing tension scaling of the
Lumens model – whose parameters were directly chosen from a publication – does not
have the intended effect of producing more tension. The morphology of the tension over
time for a single cell changes, with longer peak duration and shorter increase and decrease
time. Peak tension does not increase, instead tension develops faster, the shape of tension
over time steepens and overall chamber compliance alters. Chamber compliance however
is important to fit for a circulatory system model and easily leads to failing simulations
otherwise. DoubleHill has a prescribed “normalized tension” curve and reacts directly
to modification of Tmax by generating more tension while maintaining the shape of the
tension curve and overall compliance time course. The Lumens model in contrast has a
prescribed curve describing the “rise of mechanical activation” Frise(t), which is used to-
gether with current sarcomere, fiber length and other parameters to dynamically compute
a value C for the “mechanical level of activation” (Lumens et al., 2009). Modifying the
scaling factor σact in the Lumens model (equivalent to Tmax in DoubleHill) however has
a different effect. The shape of the tension curve changes, the peak is reached earlier and
holds on for a longer time duration, which changes the overall compliance time course
of the ventricles, but not the ejection volume. Instead, the Lumens model needs more
stretch to generate a larger output. Values of 1.3 however should not be exceeded, so the
only option is to increase pre-stretch in low stretch regions like near the apex. Lumens
therefore needs a homogeneously large pre-stretch in order to compare results obtained
on a segmentation-based geometry and draw the conclusion that using length-dependency
leads to generally better or worse results.

6.2.6. Conclusions and Outlook
In this study, simulations were performed to compare the effects of switching from a
stretch-independent tension model to a stretch dependent one and the effect of using
individual activation times in the ventricles instead of one global value for each chamber.
The results showed no clear winning approach, neither a stretch-dependent tension

model, nor the inclusion of activation times necessarily lead to a more efficient function
heart. DoubleHill is good for cases in which a good overall compliance is important e. g.
when coupling and evaluating a circulatory system or pericardium model. Lumens is
good for use cases where local stretch values are important, for questions like “Which
is the area with the largest stretch or the most load on the tissue?”, since these values
permanently stay in physiological range.
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At the current state, a tension model without stretch-dependency still is a viable choice
for a large number of applications on global level. Double Hill produced higher ejection
volumes and peak pressures, and allows a direct control over the chamber compliance
curve (that is a simple task to measure in reality). The compliance-follows-tension
principle makes it easy to adjust shape and amplitude of the normalized tension to
generate a specific (measured) compliance suitable as input for coupled models (e. g. to
circulatory system, pericardium modeling). The only factor unreliable for evaluation is
local stretch, that might still be out of physiological range due the stretch-unawareness
of the DoubleHill model.
Switching from a simple function based model to a length-dependent model is not

a straight forward step. Indeed, the Lumens model in its current state resulted in
significantly lower ejection volume and peak pressure than the DoubleHill model and
needs reasonable pre-stretch to develop tension at all. The Lumens model however showed
some potentially interesting peculiarities that are not possible with the DoubleHill model.
First, an inhomogeneous activation had almost no effect on the patterns of contraction
and peak tension, such that length-dependency can be interpreted as a mechanism to
revert the electrically necessary delay of activation. Second, a strong peak-tension-follows-
initial-stretch principle was observed, making the method of unloading decisive for the
applicability of stretch-dependent models. It turned out that the pattern of developed
tension maximum follows the distribution of pre-stretch and more leads to more, which
is a resemblance of the Starling effect on organ level. Simulations with the Lumens
model even showed a smoothing effect of the stretch-dependency, the simulation with
inhomogeneous activation lead to a visually very similar motion pattern as the ones with
homogeneous activation, but only with lower key values. Physiologically, Lumens was
able to keep the local stretch values in the physiological range, however global values like
volume change and peak pressures were significantly smaller than with the DoubleHill
model. Areas with small pre-stretch were unable to develop a significant amount of active
tension and thereby could not contribute to the pumping function of the heart. The
Lumens model has stricter requirements than the DoubleHill model to be able to generate
reasonable tension at all. Main requirement of the Lumens model thereby is a sufficient
pre-stretch that is present in a large number of cells. The pre-stretch however still needs to
stay in physiological range of at most 1.3 and low-pre-stretch-regions reduce the efficiency
drastically. Even small areas of low pre-stretch impact the global mechanical functioning
of the heart and impact simulation results, the heart does not produce enough pressure.
Due to the stretch-dependency, the initial pre-stretch and thereby the method used for
unloading becomes a deciding factor for the applicability of the Lumens tension model.
Unfortunately, this is difficult to generate for segmentation based patient geometries,
even by a sophisticated unloading method (other than simple inflation, which increases
the original geometry volumes) from Section 3.10. With the amount of pre-stretch and its
spatial distribution (overall homogeneously large pre-stretch), an important prerequisite
for the Lumens model could be identified that might serve as quality measure for the
evaluation of an unloading method.
Regarding activation times, both tension models showed larger pressure and volume

changes with simultaneous activation of ventricular cells, which can be interpreted as a
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sign of a higher efficiency or better utilization of available forces. With inhomogeneous
activation times, all key values were lower compared to the simulations with global
activation. Interestingly, it is known that there is a delay present on the electrical level,
which is not necessarily the case on mechanical level. With the length-dependent tension
model, an inhomogeneous start of the contraction had no visual effect on mechanical
motion and tension patterns, only on pressure and volume amplitude. With the stretch-
independent model, the motion pattern did change and resembled a motion similar to
a moving jellyfish. The impact on pressure and volume amplitudes was slightly higher
than with the length-dependent tension model. In fact, electro-physiological peculiarities
in the human heart like the fast-leading Purkinje tree try to reduce the overall activation
time of the ventricles. Overall, the effect of local activation times was rather limited and
smaller than the difference between two different tension models.
To restate the first hypothesis, local activation times are definitely not needed for an

efficient mechanical motion of the heart. While a locally delayed activation is a valid
and proven assumption on the electrical level, a smoothing effect makes this almost
impossible to measure on the mechanical level. Moreover, the simulation results in
this study clearly indicate that a homogeneous activation on the mechanical level is
advantageous for the heart’s efficiency, and addition of local activation times decreases
the efficiency of the heart. To restate the second hypothesis from the introductory section,
the length-dependent tension model is capable of smoothing out inhomogeneities due to
local activation time. Partially thinner walls are effectively weaker and are exposed to a
larger passive deformation, which results in a higher developed tension. Regions with
lower initial stretch develop a low amount of tension. Differences due to inhomogeneous
pre-stretch however stayed present and that pattern recurred in the maximum developed
tension as well. To restate the third hypothesis, the Starling effect on cell level was
observed to lead to a Starling effect on organ level. The length-dependent Lumens model
produced a larger peak tension with an increase of initial stretch. Using the geometry
without any preloading mechanism, all cells start at an initial stretch of λx = 1, which
develops only a negligible amount of tension not sufficient to produce any motion of the
organ at all. To restate the fourth hypothesis from the introduction, length dependency
is more valuable than respecting inhomogeneous local activation times. The addition of
locally inhomogeneous activation times – while being correct and present on the electrical
level – turned out to be rather disadvantageous for tension development and mechanical
functioning of the heart and might not necessarily be present on the mechanical level due
to the second hypothesis. Using a length-dependent tension model however succeeded in
showing a number of qualitative effects like the Starling effect (larger stretch leads to
more tension), the maintaining of local fiber strain values to physiological limits and the
aforementioned smoothing effect of inhomogeneous activation.

As future steps, a number of improvements to the current study are possible. In order
to improve the comparability between the four setups, additional measures could be
introduced that allow tuning towards a similar overall energy consumption. Assuming a
cell time consumes more energy when it produces a higher amount of tension or the same
amount over a longer period of time, a space-time integrated force over one heartbeat
would allow a better relative “efficiency-rating” by the amount of force put in the system
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rather than simply comparing peak pressures or volumes changes. For that, reducing
DoubleHill scaling factor (Tmax) could produce a comparable “energy consumption”
between the two tension models and make peak pressures better comparable. An obvious
improvement is the use of a different, inverse unloading algorithm that allows to generate
pre-stretch while maintaining to get chamber volumes and end-diastolic shape close
to the patient. Main challenges for a good functioning of the Lumens tension model
thereby are the generation of homogeneously large pre-stretch within physiological limits,
a point where even the simple inflation approach massively struggled. Another possible
improvement might be the image acquisition of the end-systolic instead of end-diastolic
state. This contracted state is closer to the actual pressure-free state and naturally
provides end-diastolic volumes closer to the patient ones while circumventing the need for
an inverse unloading. Further investigation of the delay between mechanical (not electrical)
contraction of atria and ventricles is needed. The delay between atrial contraction
and ventricular contraction in the case of inhomogeneous activation times is not fully
understood. It is unclear to what extent the lowering of ejection volumes and pressure
peaks might be reproduced with homogeneous activation pattern and 50 ms additional
delay. In that case, a comparison of AV delays with respect to “average activation time”
instead of earliest activation might serve well. Moreover, the mentioned compliance curve
should be evaluated to see how suited the Lumens model is for applications where an
accurate compliance is needed. Finally, a better initialization or unloading method needs
to be found that reduces low stretch regions and increases the pre-stretch homogeneously
to the range between 1.2 and 1.3 in order to improve the applicability of the Lumens
tension model.

6.3. Application III – A Fully Coupled Circulatory System
To fulfill its main purpose of sustain metabolism, the human heart needs to pump blood
through a human’s body arterial and venous systems. A model of the circulatory system
has two main purposes. First, it has the numerical purpose of providing time-varying
boundary conditions on the endocardial surfaces of each of the four compartments,
pressures on the valve planes and pre- and afterloads values at the orifices. Second, it
allows evaluation of diagnostic values often used in clinical applications: end-systolic and
end-diastolic pressure values, ejection volumes under “real load” (i. e. contraction against
a resistance) and furthermore time-continuous data of the four chambers like pressure and
volume over time as well as flow rates through the open valves. For a credible solution,
the circulatory system should conserve blood volume and be able to reach a quasi-static
periodic state by computing multiple heart beats in a fully coupled model, even when
ignoring mass inertia of the myocardial walls.

Aim of this project is to develop a closed-loop model of the human vascular system that
allows to run multiple heart beats and couple it to the existing finite element framework
for solving the elasticity equation. The model should moreover reflect the conservation
of flow between adjacent chambers, conservation of total blood volume and provide equal
ejection volumes of both ventricles in quasi-periodic static state after computing multiple
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beats. A closed-loop model is needed for blood conservation and equal ejection volume
of the two ventricles in contrast to open-loop models that are most applicable to provide
simple boundary conditions during a specific phase of the cardiac cycle.
This chapter presents the hierarchical development of a lumped parameter closed-

loop circulatory system models (one ventricle, two ventricles, four chambers) that are
subsequently applied to the biomechanics model in a fully-coupled manner. Different
from the circulatory system model used by Fritz et al. (2014), the implementation
of this framework uses pressure-difference-dependent valve states that allow seamless
computation of multiple heart beats. The second difference is that the strong coupling
is realized in an iterative manner instead of a monolithic approach with the idea in
mind to allow easier experimentation with preconditioners and solvers specialized to
biomechanical problems. The investigations in this section were conducted before the
previous two sections and thereby do not contain the findings for passive and active
material properties from Section 6.1 and 6.2 yet. Instead, their modeling is the same as
in Fritz et al. (2014).

6.3.1. Closed Circulation Modeling
Circulatory systems can be described via the analogy between hydraulic networks and
electrical networks. Resistances and elasticity of blood vessels correspond to electrical
resistances and capacitors, pressure gradients to voltage differences, and flow rates to
electrical current. The arising differential equations are the same and allow to apply
schematics and solution strategies borrowed from electrical engineering.
The hierarchy of circulatory system models was designed in a student supervision of

Steffen Schuler’s master thesis (Schuler, 2016) by the author of this thesis. It is greatly
inspired by the publication from Lumens et al. (2009) about modeling a circulatory system
including the four heart chambers as representative electrical circuit and Kerckhoffs et al.
(2007b) for the coupling part for a two-chamber FEM model.

Circulation with One Ventricle

First, a circulatory system model “CircOneVentricle” was created that contains one
ventricle with its outflow connected to its input (Figure 6.22). Despite this is not a
physiological case, it however serves well as a simple model for development of the
coupling algorithm to elasticity simulation and acts as a base implementation for the
more complicated circuits.
The ventricle is given by a time-varying capacitance to model the active part, and

diodes represent the unidirectional property of AV (mitral/tricuspid) and arterial valve
(aortic/pulmonary). The arterial system is modeled as three-element Windkessel with
arterial compliance CArt, arterial impedance RArt, and peripheral resistance RPer. The
venous system is given by compliance CVen. RVen closes the system by connecting arterial
output with ventricular input, and a separate resistance for the arterial valve RArtValve
allows to get the arterial pressure PArt, while the AV valve resistance is included in the
peripheral resistance RPer.
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Figure 6.22.: Schematic of the circulation model “CircOneVentricle”, from Schuler (2016).

The governing equations of the “CircOneVentricle” model are given as follows:

Algebraic equations (one ventricle)

PCArt = VArt
CArt

QArt = max{ PVentr − PCArt
RArtValve +RArt

, 0}

PArt = PVentr −RArtValve ·QArt

PVen = VVen
CVen

QPer = PCArt − PVen
RPer

QVen = max{PVen − PVentr
RVen

, 0}

Differential equations (one ventricle)

V̇Ventr = QVen −QArt

V̇Art = QArt −QPer

V̇Ven = QPer −QVen

Instead of solving each differential equation separately, a vector-valued state variable
object u with u̇ = [V̇Ventr, V̇Art, V̇Ven]T is used.

Circulation with Two Ventricles

The second model “CircTwoVentricles” contains both ventricles by adding a second time-
varying elastance for the right ventricle, using “CircOneVentricle” twice (Figure 6.23). It
is very similar to the model by Santamore and Burkhoff (1991) depicted in Figure 6.24,
which is probably the first Windkessel-based closed-loop model of the circulatory system.
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Figure 6.23.: Schematic of the circulation model “CircTwoVentricles”, from Schuler
(2016).

As given by physiology, the output of the left ventricle is connected via the systemic
circulation to the input of the right ventricle (right half of the circuit), and vice versa via
the pulmonary circulation (left half of the circuit).
Each ventricle gives its active contribution to the system via a variable capacitor,

that represents the varying elastance usually created by contraction. Both, systemic
circulation and pulmonary circulation are given by a standard three-element Windkessel
model (Rc, Ca, Ra) connected to venous resistance and compliance (Rv, Cv), respectively.
Different from Santamore and Burkhoff (1991), this model includes valve resistances
RPulArtValve and RSysArtValve. Parameters for the human circulation are available by
Burkhoff and Tyberg (1993).

Circulation with the Whole Heart

The “CircWholeHeart” model is an extension of “CircTwoVentricles” to include both
atria for a complete model of the circulatory system (Figure 6.25).
Both atria as well as both ventricles are now given as time-varying elastance, with

separate resistances RLavValve and RRavValve for the two AV valves. RSysVen and RPulVen
thereby become characteristic venous resistances, creating own three-element Windkessel
models of the venous systems together with peripheral resistance and venous compliance
as in Wang et al. (2006). Physiologically, there are no valves present between atria and
the venous systems.
Governing equations of the “CircWholeHeart” model read as follows:
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Figure 6.24.: Schematic of the circulation model from Santamore and Burkhoff (1991).
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Figure 6.25.: Schematic of the circulation model “CircWholeHeart”, from Schuler (2016).
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Algebraic equations (whole heart)

PCSysArt = VSysArt
CSysArt

QSysArt = max{ PLv − PCSysArt
RSysArtValve +RSysArt

, 0}

PSysArt = PLv −RSysArtValve ·QSysArtValve

PSysVen = VSysVen
CSysVen

QSysPer = PCSysArt − PSysVen
RSysPer

QSysVen = PSysVen − PRa
RSysVen

QRav = max{PRa − PRv
RRavValve

, 0}

PCPulArt = VPulArt
CPulArt

QPulArt = max{ PRv − PCPulArt
RPulArtValve +RPulArt

, 0}

PPulArt = PRv −RPulArtValve ·QPulArt

PPulVen = VPulVen
CPulVen

QPulPer = PCPulArt − PPulVen
RPulPer

QPulVen = PPulVen − PLa
RPulVen

QLav = max{PLa − PLv
RLavValve

, 0}

Differential equations (whole heart)

V̇Lv = QLav −QSysArt

V̇SysArt = QSysArt −QSysPer

V̇SysVen = QSysPer −QSysVen

V̇Ra = QSysVen −QRav

V̇Rv = QRav −QPulArt

V̇PulArt = QPulArt −QPulPer

V̇PulVen = QPulPer −QPulVen

V̇La = QPulVen −QLav
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u̇ = [V̇Lv, V̇SysArt, V̇SysVen, V̇Ra, V̇Rv, V̇PulArt, V̇PulVen, V̇La]T

Time Integration

These systems of ordinary differential equations u̇ = g(t,u) = f(pc(t),u) were initially
solved using a standard explicit Runge-Kutta method of fourth order (RK4):

un+1 = un + ∆t · 1
6(k1 + 2k2 + 2k3 + k4)

Since the heart chambers are represented by variable compliances, the whole system
pc(t) depends explicitly on time. A coupling algorithm however yields chamber pressures
pnc,estim and pn+1

c,estim estimated by the FEM model only at whole numerical time steps,
not at tn + ∆t

2 . Values at the intermediate steps k1, . . . ,k4 are not directly available
from a coupling algorithm. Using only pc(t) :≡ pnc,estim for k1, . . . ,k4, the computed
chamber pressures turned out to be susceptible to numerical oscillations. Instead,
an improvement of numerical stability could be observed when calculating k4 from
pn+1
c,estim and the pressures needed for k2 and k3 via linear interpolation pc(tn + ∆t

2 ) :=
1
2(pnc,estim + pn+1

c,estim). The oscillations further vanished completely when using only
pn+1
c,estim at all four intermediate rates k1, . . . ,k4, therefore this is the algorithm of choice.

While this modification makes the algorithm more robust it negatively impacts the
accuracy of the time integration.

For comparison of accuracy, a ground-truth was generated with RK4 and an explicitly
prescribed varying chamber elastance that can be written directly into the equations,
instead of one estimated from FEM model. The results for two beats are shown in
Figure 6.26 together with a similarly modified explicit Euler method (un+1 = un + ∆t ·
f(pn+1

c,estim,un)) as well. Additionally, a smaller time step vastly increases accuracy as well.
As the computational costs of the circulatory system are small compared to the number
of unknowns of the FEM model, a separate maximal step length for the circulatory
system was implemented, that allows to run the circulatory system independently at a
smaller step size (usually 6 0.1 ms) than the time integration of the FEM model. One
step computed by the FEM solver gets then complemented by multiple smaller time
integration steps of the circulatory system.

Parameters for the Circulation Model (Whole Heart)

Despite being modeled by simple components, the “CircWholeHeart” already depends
on a total of 19 model parameters (10 resistances, 4 capacitances, 4 unstressed volumes
and the total blood volume). Credibility of its results is only as good as the choice of
the used parameters. The mesh of the FEM model was generated from a 28 year old
healthy male, which was used to select appropriate parameters from literature (assuming
75 kg body weight, 1.9m2 body surface area). Being constructed by Windkessel models
for the single parts of the circulation, data can be used from measurements representing
only a part of the circulation (only systemic or pulmonary Windkessel) as well. Table 6.5
lists models sharing some of their structure, together with the respective parameters,
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Figure 6.26.: Comparison of different time integration schemes for the circulatory system,
adapted from Schuler (2016).

and finally the parameters chosen for the simulations with the “CircWholeHeart” model,
denoted as “baseline parameters”.

Additionally, all parameters were modified by 50% around the baseline parameters to
check the model for its sensitivity with respect to the single parameters (Figure 6.27).

Solving the Coupled Problem

Besides the direct interaction of neighboring chambers through the motion of common
walls, there is also indirect interaction of the volumes through exchange of blood via
circulatory system. Interaction between circulatory system and the solver framework was
realized as iterative strong coupling (see Section 4.3). Thereby, changes in cavity volumes
of the FEM model are guaranteed to fit the time integrated flow rates of the circulation
model |VFEM −Vcirc| < ε. This is achieved by computing a specific time interval multiple
times with different pressures, until the volumetric residuum between the two systems is
minimal and pressures and volumes at the end of the interval are in equilibrium:

min
p
r(p) with r(p) := VFEM (p)− Vcirc(p)

where VFEM and Vcirc are n-dimensional vectors containing computed chamber volumes
corresponding to specific chamber pressures p for each of the n heart chambers by solving
the respective elasticity FEM systems. The initial pressures were determined by an
Adams-Bashforth extrapolation of the previous five solutions in time. Coupling (or state
of convergence) was defined to be achieved at a cavity volume error of less than 1 ml
between volume from one step FEM simulation with prescribed pressure and predicted
volume from circulatory system.

The coupling algorithm is an extension of Newton’s method described by Kerckhoffs
et al. (2007b) for a bi-ventricular 3d finite-element model, where the atria were represented
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Table 6.5.: Parameters of circulatory system models that share some of their structure
with the “CircWholeHeart” model and the parameters chosen as “baseline”
parameter set. Units are R in mmHg · s ·ml−1, C in ml ·mmHg−1 and V in
ml. From Schuler (2016).
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Figure 6.27.: Sensitivity of the “CircWholeHeart” model with baseline parameter set to
perturbation of each parameter by 50% by means of needed simulated time
until reaching converged state is again. From Schuler (2016).

in the circulatory system model as simple time-varying elastance instead of an elastance
based on the FEM representation.

The Newton algorithm successively computes pressure guesses pi and Jacobians Ci =
dr(pi)
dp by pressure perturbation (finite differences) in order to find the root of dr/dp:

pi+1 = pi − C−1
i r(pi) with Ci =


∂VLv
∂pLv

∂VLv
∂pRa

∂VLv
∂pRv

∂VLv
∂pLa

∂VRa
∂pLv

· · ·
∂VRv
∂pLv

· · ·
∂VLa
∂pLv

· · ·


Diagonal entries of the Jacobian reflect chamber compliances (∆V/∆P ), off-diagonal

entries interdependencies of the volumes. Four additional solutions of the FEM system
have to be computed by separate pressure disturbance of each chamber before one Newton
step can take place. In order to reduce the computational effort from computing the
required expensive FEM solutions, Kerckhoffs et al. (2007b) proposed to use a quasi-
Newton method instead, which updates only an approximation of the Jacobian in each
iteration.
Due to the specific structure of the Jacobian

C = dVF EM/dp− dVcirc/dp = CFEM − Ccirc
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an update-formula gives the possibility for performance improvements by updating only
the circulatory system part Ccirc of the Jacobian in each step and the FE part CFEM less
frequently, which can be done comparatively inexpensive compared to a full derivative
C. This allows to update the derivative with the cheap-to-compute circulatory part,
while the expensive-to-compute mechanical part of the derivative is recomputed only
once in a while, e. g. in the first coupling iteration or when a certain number of iterations
is succeeded. Hence, the algorithm was modified to a Quasi-Newton method, first with a
derivative approximation by the “good-Broyden” formula (Broyden, 1965):

Ci = Ci−1 + (∆ri − Ci−1∆pi)
∆pTi

∆pTi ∆pi

The Sherman-Morrison formula goes one step further and approximates the inverse
of the pressure Jacobian C−1 directly and saves one matrix inversion by using only
simple and inexpensive matrix operations (addition, multiplication). This improves
the approximation of C−1 by only using the current pressure and information already
computed in previous iterations:

C−1
i = C−1

i−1 + (∆pi − C−1
i−1∆ri)

∆pTi C−1
i−1

∆pTi C−1
i−1∆ri

In the very first time step, a full Jacobian needs to be computed by pressure perturbation.
As the Jacobian usually does not change much between successive FEM time steps, it is
often approximated already sufficiently accurate by the previous Jacobian plus update
steps. However this does not always pay off, and a more reliable convergence could be
obtained when the first iteration of each time step uses a full Jacobian with Newton,
followed by quasi-Newton updates in the following iterations.
A comparison of this quasi-Newton method and a simple secant method by means of

the needed number of iterations per step was done over two heart beats and is shown in
Figure 6.28. The secant method took on average 51.86 iterations, while the quasi-Newton
averaged at only 3.58 iterations. As the relaxation phase begins, the number of iterations
increases drastically since the heart tissue is exposed to large accelerations due to opening
mitral and tricuspid valves and rapid inflow of blood. The initial derivative approximation
from previous time steps is at this point in time naturally a bad guess.

6.3.2. Integration in the Biomechanics Framework
For implementation of the circulatory system models, a new framework for circulation
models was created. That framework inherits from CBSolverPlugin and integrates as
iterative solver plugin in CardioMechanics (see Section 4.1). Figure 6.29 gives a simplified
overview of the circulation model framework, its classes, data types, functions, and the
relations between them. These are:
CBCirculationCavity represents exactly one heart chamber given by a closed surface

mesh and provides functions to apply a specific pressure to it and to compute its current
volume. CBCircModel reflects an abstract circulation model and implements time in-
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Figure 6.28.: Comparison of coupling iterations needed per time step between quasi-
Newton and the secant method (T4 elements, without pericardium), from
Schuler (2016).

tegration, check of the coupling condition and the steady-state check using an abstract
stateVars object. Finally, CBCirculation holds the CBCircModel and a list of CBCircu-
lationCavity, and it provides the interface functions for a CBSolverPlugin to the main
program, namely the Apply() function that implements the general coupling algorithm
and handles the necessary return codes. CBCircOneVentricle, CBCircTwoVentricles and
CBCircWholeHeart all are realizations of CBCircModel and implement the respective
differential equations in its Algebraics() function as well as a map between cavity
indices and the respective heart chambers necessary for that model.
The coupling iterations are realized by a “REPEAT” return code, that advises the

global solver part not to progress in time and instead recompute the same step again,
without modifying any of the other possibly used solver plugins. A custom data type
containing all state-variables was implemented as well as a copy operator to facilitate the
necessary handling of progress and step back in time.

The iterative coupling algorithm implemented in CBCirculation solves the minimization
problem of the coupling condition. By tracking previous states of the optimization
variables (chamber pressures), the algorithm computes derivatives and new estimates in
order to minimize the volume difference between circulatory system and FEM model of
a specific time interval. Once the cavity volume error is small enough, CBCirculation
sends a “SUCCESS” return code and the biomechanical framework is allowed to progress
in time. Strong coupling of more than one iterative CBSolverPlugin is possible as well
and can be realized without additional implementation efforts as depicted in Figure 4.5
using a nested loop in the main program.

A closed-surface check was implemented in initialization phase to detect logical errors
in the input data that would otherwise lead to position-dependent and incorrect volumes.
According to Gauss law, the cavity volume (volume integral with density 1) is computed
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as surface integral using all surface triangle normals:

vol(V ) =
∫ ∫ ∫

V
1 dx dy dz

∫
V
∇ · 1

3(111)TdV =
∫
∂V

1
3(111)T · ~ndS

=
∑

T∈Triangles

1
3(111)T · nTk

=
∑

Tk∈Triangles
∆VTk

The last part sums up the volume parts spanned by the tetrahedron between an origin ~r
and the respective surface triangle points ~a, ~b and ~c:

∆VTk
= 1

6(~a− r) · ((b− a)× (c− a))

The volume gets computed with two different origins and the surface is regarded as closed
when the two values are the same.

A steady-state check was implemented that allows to stop the simulation once the
blood distribution in the circulatory system does not change between cardiac cycles. For
that, the stroke volume difference (SVD) between the systemic and pulmonary part of
the circulation is added as another ODE to be integrated over time:

·
SVD = QSysArt −QPulArt

Once the absolute SVD drops below a defined threshold of 0.5ml for the whole duration
of one cardiac cycle (usually 0.8 s), the steady-state is regarded as reached.
A useful application of the circulatory system is as a very simple mechanism to

generate preload on the geometry. Therefore, a certain negative pressure gets applied to
the chambers, which usually causes a shrinking of the geometry, followed by a reset of the
reference coordinates and a subsequent inflation to reobtain approximately the original
volumes. This method was used to generate preload for all simulations in this study.

6.3.3. Simulations and Results of the Coupled Model
This chapter presents results obtained from the newly developed circulatory system model
coupled to the FEM model of the heart. Simulations were done on two different geometries
and circulation models containing either only the left ventricle (with “CircOneVentricle” as
circulation model), both ventricles (with “CircTwoVentricles”), all four chambers without
pericardium (with “CircWholeHeart”), or all four chambers including pericardium (also
with “CircWholeHeart”, but adding the Fritz pericardium modeling). Additionally, a
sensitivity analysis was done as guide for further parameter modification and estimation
of certain cardiovascular illnesses.

The simulations use the same four-chamber geometry and passive tissue parameters for
the heart and surrounding tissue as used by Fritz et al. (2014), extended with truncated
representations of the aorta and pulmonary veins (parameters given in Table 6.6). A
second mesh was generated with linear elements and without trunks or pericardium
for less accurate but faster computation of the sensitivity analysis and development of
the coupling algorithm. Pressures were applied only to the heart chambers included in
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Table 6.6.: Material parameters used in the simulations, adopted from Schuler (2016).
Guccione C (Pa) b1 b2 b3 K (Pa)
Ventricles 1200 26.7 2.0 14.7 2× 105

Mooney-Rivlin C1 (Pa) C2 (Pa) B (Pa)
Atria 7450 0 2× 105

Pericardium 1000 0 1× 104

Chimneys 14900 0 2× 105

the respective circulation model. The sensitivity analysis and all simulations without
pericardium were conducted with first-order elements, to concentrate on the effects of
the circulatory system. The simulation of all four chambers including pericardium uses
elements of second order and the contact pericardium model by Fritz et al. (2014) together
with the respective mesh. The force model however was changed in all simulations to
a prescribed time-dependent function, given by the DoubleHill model as described in
Section 6.2 with respective parameters for contracting atria and contracting ventricles.
A length-dependent model was explicitly not chosen to prevent positive side effects that
otherwise might reduce or even hide effects of a possibly malfunctioning circulatory
system model or coupling algorithm (a larger chamber pressure would lead to more strain,
a larger developed force and thereby still to a similar volume). The cycle length was
set to 0.8 s, corresponding to 75 beats per minute, and all simulations were allowed to
compute multiple beats until convergence. Unless stated otherwise, all simulations were
evaluated in a converged quasi-periodic steady-state with a stroke volume difference
below 0.5 ml. Results are evaluated for pressure curves, volume curves, pV loops and in
case of the whole heart setups flow rates through the valves as well.

6.3.4. Results Sensitivity Analysis
Figure 6.27 shows the sensitivity of the CircWholeHeart model with baseline parameters
in quasi-static state. Each parameter was modified by ±50% in both directions and the
simulated time was measured until the system reaches equal stroke volume again, with
exceptions for Vtotal (15%), max tension (25%) and PQ interval (33%). These were the
parameters that showed the largest effect, and where simulations failed with the initial
modification by 50 %. The circulatory system still shows its largest sensitivity when
modifying the total blood volume VTotal with up to 40 ml difference in stroke volume
between left and right ventricle. In that case, the system takes more than 28 s to reach
a converged state again. The plot shows a linear reduction for most of the parameters
on the logarithmic scale, and the slope can be used to estimate time to convergence in
future modifications.

A sensitivity quotient S of a parameter x with respect to a certain output parameter
Y was defined as a central differences approximation, normalized relative to the value at
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baseline parameter:

S := Y (xbase + ∆x)− Y (xbase −∆x)
2 ∆x · xbase

Y (xbase)
· 100 %, ∆x = 0.5xbase

Hence, S describes the change in percent to a modification of that parameter by 50%.
Sensitivity Smax of all parameters is given in Table 6.7, evaluated with peak values Ymax
obtained over one beat at new steady state. Values that change by more than 5% are
marked in bold. It is notable that there is a diagonal structure visible, which describes
that values measured close to the parameter are more sensitive to a change than values
measured further away.
Furthermore, pressure time courses of both ventricles and arteries are given in Fig-

ure 6.30 for a selection of parameters. One parameter modification of clinical relevance is
the compliance of the arteries and the aortic arch CSysArt, which is known to decrease
with age. The most notable effect of a change in peripheral resistance RSysPer is a global
shift of pressure levels in the left ventricle and the aortic pressure. A change of CSysArt
keeps the left ventricular peak pressure the same but changes the shape between round
and symmetric to a pronounced peak tilted to the left. Decreasing CSysArt lowers the
minimal aortic pressure while keeping the peak pressure similar. The effect of changing
parameters in pulmonary circulation is similar.

It however has to be noted, that these data do not directly transfer to clinical environ-
ment and a human organism might react different. The described sensitivity shows purely
effects of the circulatory system and does not contain physiological control mechanisms,
e. g. no baroreceptor feedback.

6.3.5. Results One Ventricle
Figure 6.31 shows the results of the left ventricle coupled to “CircOneVentricle”, where
the outflow is connected to the inflow of the same chamber via a closed-loop Windkessel
model describing systemic circulation. The model was configured with the previously
described baseline parameters and a total blood volume of 4700 ml. Simulations were run
with negative pressure preloading (solid lines) as used by Fritz et al. (2014) and without
any preloading method (dotted lines) for comparison. The numbers (1) - (4) describe
different characteristic points in the cardiac cycle: (1) closing of the mitral valve and
beginning ventricular contraction, (2) opening of the arterial valve, (3) closing of the
arterial valve and (4) opening of mitral valve and beginning of diastole.
Largest effect of preloading is a shift of ventricular and venous volumes, while the

volume difference between end-systole and end-diastole stays the same. Preloading helps
with keeping the end-diastolic left ventricular volume lower and closer to original volume
that was obtained from a segmentation at end-diastolic state. Peak pressure is slightly
lower for the simulation with preloading as well, and the shape is slightly more tilted to
the left. Overall, preloading reduces end-systolic and end-diastolic pressure-volume ratio.
The large venous compliance greatly smooths the venous pressure, which is almost

constant throughout the whole cardiac cycle (gray in top left diagram). As the venous
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Table 6.7.: Sensitivity of output maxima Smax, from Schuler (2016).
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system is connected directly to the ventricle without atria, opening of the mitral valve
leads to a very pulsatile increase of venous flow at beginning of diastole (gray in bottom
left diagram at (4) ), with a negative ventricular pressure that supports the ventricular
refilling with blood as well. This is different in case of the arterial flow, where the large
arterial compliance leads to a smoother increase of the flow at the beginning of systole
(orange in bottom left diagram at (2) ) by storing blood in the systemic volume and the
aortic arch (orange in second diagram from the bottom).

6.3.6. Results Two Ventricles
Figure 6.32 shows the same simulation setup, but with the “CircTwoVentricles” model that
now includes left and right ventricle. As in the previous simulation, the circulatory system
parameters are set to the baseline parameters. However, the total blood volume does
not include the atria here and was reduced from 5500 ml to 5370 ml. Negative-pressure
preloading was used.

The results in the left ventricle are very similar to the simulations with the one ventricle
model. This is a hint that direct interaction between the ventricles does not occur, which
might be caused by the fact that there is no modeling of the enclosing pericardium.
The left ventricular pressure shows a small difference during diastole. Being now

connected to pulmonary instead of systemic venous system, it has a more pulsatile
pressure (black in top right diagram at (4) ) due to the smaller venous compliance.
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Figure 6.30.: Ventricular and arterial pressure time courses under modification of selected
parameters, from Schuler (2016).

The right ventricle has a thinner myocardial wall than the left ventricle and generates
less force. That means its force acts less dominant and the shape of its pressure time
course during ejection is more influenced by its afterload and more tilted to the left than
in the left ventricle (dark blue in top left diagram, between (2) and (3) ). Similarly, the
right ventricle has a smaller passive compliance, resulting in a slower volume increase
during the relaxation phase (dark blue in mid-left diagram, at (4) ) and a continuous
pressure increase (no plateau) until the mitral valve opens again (dark blue in top left
diagram, before (1) ). As result, the isovolumetric phases in the pV loop are shorter
(bottom left diagram, between (1) and (2), and between (3) and (4) ) than in the left
ventricle. The pV diagram of the right ventricle shows the typical triangular shape as
described by Redington et al. (1988), Bishop et al. (1997).

6.3.7. Results Whole Heart
Figure 6.33 show the simulation with the “CircWholeHeart” model where all four chambers
are connected to systemic and pulmonary circulation and pressure is applied to the atria
as well.
Modeling of the atria adds some additional features. Due to the contracting atria,

time courses show the “a” wave in atrial pressure and an increase of ventricular volume
towards end of ventricular diastole. In the flow rates, this is visible by an “A” peak in
the flows through the left (Lav) and right (Rav) atrioventricular valves (corresponding
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to venous flows in the previous models without atria). In the pV loops of the left and
right ventricle, the onset of atrial contraction causes a bump in the bottom right corner
of the plots. This however appears only with mass inertia in the FEM simulation, which
lets the ventricular volume increase lag behind the small but rapid pressure increase
created by atrial contraction. Similarly, the rapid blood flow into the ventricles at the
beginning of ventricular relaxation is shown by a typical “E” peak in the flow rates.
Atrial pV diagrams normally show two loops, a counterclockwise “A” loop from atrial
contraction and relaxation, and a clockwise “V” loop from passive atrial deformation
during ventricular contraction and ventricular filling as described in Figure 2.8. In the
simulation, the “A” loop is visible for both atria, but only the left atrium shows a correct
clockwise “V” loop and a volume increase over the onset of atrial contraction. The
counterclockwise “V” loop in the right atrium has the wrong direction, possibly due to
specific fixation of the atria and absence of a pericardium. Presence of the pericardium
would probably help the atria to better reproduce correct “V” loops by keeping their
cross-section area in the upper part constant when the ventricles pull the lower part
downwards.

6.3.8. Results Whole Heart with Pericardium
Figure 6.34, Figure 6.35 and Figure 6.36 show the results of the final simulation that
includes contact pericardium modeling. Different from the previous simulations, the
mesh now consists of second-order tetrahedra and contains truncated representations of
the veins, allowing to move Dirichlet fixations completely away from the myocardium
(atrial orifices and apex) to the outer end of the trunks and the outside of the pericardial
mesh. The Rayleigh damping parameter had to be increased from β = 0.005 to β = 0.02
to improve convergence of the FEM solver.

Figure 6.34 shows the pV loops of the four chambers. Most notably, the atrial loops are
different and now have a correctly rotating “v” loop as well as a volume increase during
ventricular systole similar to measurements by Ferguson et al. (1989); Matsuda et al.
(1983). An explanation is that the contact handling restricts the outer shape of the atria
to the inner shape of the rather rigid pericardium, causing a volume increase when the
contracting ventricles pull the valve plane towards the apex. Maximal atrial volumes are
thereby much larger, while the atrial minimal volumes stay the same. Ventricular loops
also look different, especially the effect of mass inertia on the lower right corners is more
pronounced. Ventricular stroke volumes are both larger, as the pericardial restriction of
transversal diameter is here present as well. This effect actually “reshapes” ventricular
motion such that the valve plane moves further towards the apex during contraction as
described previously by Fritz et al. (2014).
Figure 6.35 gives time courses of pressure and volume. Presence of the pericardium

produces a more linear ventricular volume increase during first half of relaxation instead
of an inverse exponential one. Ventricular pressure peaks are less pronounced than in the
previous simulation. The pericardium causes more interaction between the ventricles,
which shows the fact that minimal pressures in left and right ventricle are now on
the same level, and the ventricular volumes increase synchronously during early filling.
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Figure 6.32.: Results with the “CircTwoVentricles” model, from Schuler (2016).
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Atrial pressures show the typical “a” wave, “x” wave, “v” wave and “y” wave similar to
measurements of normal humans by Matsuda et al. (1983); Ferguson et al. (1989).

The time courses of flow rates are given in Figure 6.36. Flows through the valve plane
between atria and ventricles (Lav and Rav in pink and green at the bottom) show two
positive peaks, a smaller one during atrial contraction (“A” wave), and a larger one
during early ventricular refilling (“E” wave), similar to measurements at a healthy 28
year old male by Zoghbi et al. (1990). The “E/A ratio” between the peaks is a diagnostic
marker of diastolic dysfunction (Galderisi, 2005), with a value > 1 describing the normal
case, a value < 1 describing abnormal relaxation (too slow filling), and a value > 1.5
denoting restrictive patterns (too fast filling, this is here the case). These two peaks are
also found in the pulmonary vein flow, but there is also an additional, negative peak. As
there are no valves between pulmonary vein and the left atrium, Doppler measurements
by Firstenberg et al. (2000) indeed show an atrial reversal flow (“AR”) into the vein,
together with the “S” wave during atrial systole and the “D” wave during ventricular
diastole. Hence, the simulation reproduced all major waves found in measurements of
flow.
As the geometric model used for these simulations did not have a volumetric repre-

sentation of the valve plane, the simulations still contain a small modeling shortcoming.
The entirety of surface forces due to pressure of a closed cavity usually sum up to zero.
Since there are no volume elements the ventricular pressures that normally act onto the
valve could be applied to, these forces were simply ignored. That way however, they do
not sum up to zero anymore and slightly push the ventricular myocardium towards the
apex, similar to wind blowing into a ship’s sail. This effect however only gets visible with
weaker passive parameters and during specific phases of the cardiac cycle.

6.3.9. Summary, Conclusion and Outlook
In this application, a hierarchy of closed-loop circulatory systems was created on the basis
of lumped parameter modeling for one ventricle, two ventricles and the whole heart, and
baseline parameters provided from a literature research. It fulfills blood conservation by
design, and the approach with separate valve states allows to compute multiple beats until
convergence. The model was integrated into the Biomechanics framework and coupling
was realized by an efficient quasi-Newton algorithm for strong iterative coupling with
full control of the coupling error. The circulatory systems framework runs on a smaller
timescale allowing for a more accurate time integration, and performs closed-surface and
steady-state check to detect logical input errors and convergence.
Summarizing, the results in the left ventricle extend well from CircOneVentricle to

CircTwoVentricle and in both ventricles from CircTwoVentricle to CircWholeHeart.
This is a good indication that approaches chosen for time integration and coupling
and implementation are suitable. Especially the simulation using whole heart with
pericardium is able to reproduce major diagnostic factors in pressure, volume and flow.
These are in particular:

1. diastolic decay of arterial pressures
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2. increase of ventricular pressure and volume during atrial contraction

3. “a”, “x”, “v”, “y” waves in atrial pressures

4. pV loops split into A loop and V loop in the atria

5. “E” and “A” waves in the atrio-ventricular flows, but not the “L” wave

6. “S”, “D” and “AR” waves in the venous flows

Interestingly, these plots already contain hints that the passive parameters are too stiff
during ventricular relaxation. The ventricular pressures drop more than observed in
measurements during early ventricular filling and drop even below zero, which expresses
a “sucking” effect of the ventricles. Due to a too large end-systolic passive influence,
possible solutions are to use more preloading (smaller pressure-free volume reduces the
local strain there) and a generally weaker ventricular passive behavior (requires different
parameters). Furthermore, there are two phenomena related to inertia of blood that were
not reproduced by the circulatory system model in the plots. These are an additional “L”
wave between “E” and “A” wave in mitral valve flow sometimes visible at higher heart
rates (valve bulging from ventricle to atrium), and the “dicrotic notch” in aortic pressure
(backflow into the ventricle from aortic valve while closing non-instantly, reflection of
aortic pressure from the bifurcations) present in any textbook illustration and often used
as marker for end-systole in clinical data.
In future works of the circulation modeling, blood inertia and a more sophisticated

modeling of the heart valves should be included. Such a dynamic opening and closing of
the valves instead of instantaneous events can dramatically impact simulated pressure
and flow curves. This has the potential to reproduce further properties of the pressure
and flow curves: dicrotic notch, an increase of arterial pressure after closing of the valve
was not seen even in any of the simulations shown here. With regards to application in a
coupled multi-component system, development of the single components in a common
sense would be beneficial. Due to strong coupling, it actually is necessary to choose
circulation parameters together with passive ventricular parameters as the latter will
significantly influence ventricular relaxation phase. A first step in this direction is the
inclusion of passive parameters from Section 6.1 and use a different method to generate
preload, however here a ‘ground truth’ is difficult to obtain. The same holds true for
the behavior of the modeled pericardium, that gets more dominant when active forces
are absent, but it is still very unclear in which phases of the cardiac cycle it supports or
impedes the cardiac motion.

6.4. Application IV – A zero-dimensional Pericardium Modeling
Goal of this project is to create and evaluate a reduced-order version of the pericardium
model presented by Fritz et al. (2014). Their existing model adds a significant amount of
complexity at various stages: during mesh generation (two fitting meshes needed), during
simulation setup by choice of its non-physics-related parameters for the surrounding
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tissue material (arbitrary thickness, stiffness, no volume conservation), and even during
simulation time (majority of simulations initially failed due to non-perfect choices in
the previous tasks). With the pericardium model by Kerckhoffs et al. (2007a), a zero-
dimensional model was already presented in literature but not yet used in a four-chamber
setup, or even compared against the Fritz pericardium. Such a reduced pericardium
has a number of advantages over the 3d formulation and could be better suited to
flatten the road towards clinical applications due to the possibility for a drastically
easier mesh generation workflow and a lower number of more consistent choosable model
parameters. The characteristics of such a model is very similar in structure to models of
the circulatory system (takes volume changes, yields pressures), and can be implemented
without additional effort in already existing frameworks of circulatory systems e. g. as
the one described in Section 6.3.2.

6.4.1. Modeling
In this study, two different approaches to pericardium modeling were used. The first one
is the contact pericardium model by Fritz et al. (2014); Fritz (2015) which was already
implemented in an earlier version of the framework due to these publications. It uses an
additional separate three-dimensional mesh around the myocardial mesh and computes
surface forces to create a frictionless pericardium with permanent contact (Fritz et al.,
2014). The second one is a lower dimensional model from Kerckhoffs et al. (2007a)
which was originally used for 3D finite element simulations of canine ventricles where
the atria were represented only as part of the circulatory model. It uses an exponential
relationship based on total heart volume (calculated from blood, myocardium and atrial
contributions) to compute an external pressure acting on the epicardial surface due to the
pericardial sac. It was implemented for this study in the circulatory system framework
from Section 6.3.2. Both models are described in detail in Section 3.8.

Available Measurement Parameters

For validating a correct pericardial influence, suitable measurement data are crucial.
Carlsson et al. (2004) observed the variation of total heart volume of a heart cycle in

eight human subjects. The data was obtained using cine MRI and comprises 13 slices and
15-21 images per cycle. Their data includes ventricular, atrial and myocardial volume.
The measurements show a relative total heart volume change of 8.2 ± 0.8 % (Mean ±
SE) when using image segmentation (“volumetric measurements”) and 8.8± 1.0 % when
using flow integration (“flow measurements”).

Fritz et al. (2014) used cine MRI images from the same patient as used for simulation to
compute the displacement of the atrio-ventricular valve plane over time. Their publication
struggled to reach the measured data of 1.7 cm in the simulations (only 1.04 cm with
and 0.63 cm without contact pericardium). Later investigations with the original mesh
and model parameters showed an unusual stiff passive behavior of the isolated ventricles
under passive inflation (see Section 3.11). The total heart volume variation however was
still around 8% and within the measurements by Carlsson et al. (2004), indicating an
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Figure 6.37.: Measurements of the pressure-volume response of the pericardium embedded
in surrounding tissue (in situ, black dots) and without (in vitro, white dots),
from Freeman and Little (1986).

unfortunate set of parameters that “fixes” or hides controversial behavior of the single
modeling components.

Freeman and LeWinter (1984); Freeman and Little (1986) measured pericardial pressure
volume curves from six dogs. Measurements were done in situ embedded in the chest, as
well as in vitro testing only the pericardial sac, the heart was removed and not present
in both cases (see Figure 6.37). They found an exponential relationship and derived
parameters for α and β. Kerckhoffs et al. (2007a) used these model parameters α and β
unmodified from a later study by Freeman and Little (1986) for the pressure pericardium.
One strange observation from Figure 6.37 is, that above 3 mmHg the pericardium alone
(in vitro) seems to behave stiffer than pericardium including surrounding tissue (in situ).
Unfortunately they did not point out the normal volumes during a healthy heart cycle in
these dogs, which could be used to approximately derive a volume relationship between
normal dog hearts and pressure-free pericardium. Together with the measurements by
Carlsson et al. (2004), this would give a hint of the typical in-vivo working range of
pericardial pressure.

Modifications applied to the Kerckhoffs model

Due to a lack of an atrial representation in their original 3D mesh, Kerckhoffs et al. (2007a)
applied pericardial pressure only to the ventricular epicardial surface, and subtracted it
from the atrial pressure in the circulatory system instead. In the mesh used in this study
however, a volumetric representations of the atria exist. So, the pericardial pressure could
be applied directly to both, the surface of ventricular and surface of atrial epicardium.
Hence, a special consideration of atrial pressure in the circulatory system was not needed.
Due to the formulation of the pressure curve, the Kerckhoffs model generates a

permanently positive pressure over the whole volume range. Since such a permanently
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positive pressure acting on the epicardial surface conflicts with the required equilibrium
of “zero forces” in the initial state, all simulations failed to start. To overcome this issue,
a pressure growth duration was implemented, that linearly scales the parameter α in
order to smoothly activate the pericardium model over a certain number of time steps.
This retains the initial equilibrium condition.

The modified Kerckhoffs model will be called pressure pericardium through the remain-
der of this study.

Modifications applied to the Fritz model

The Fritz model is a complex model and existed in an even more complex, undocumented
implementation in a style typical of research code. A number of crucial bugs and flaws
existed, that needed to be fixed: Simulations often became unreliable and failed non-
reproducibly as soon as the pericardium was activated. By theoretical considerations,
the normals of a master element and its corresponding slave element should align in
parallel to create no unwanted friction force (“frictionless pericardium”). However,
choosing different passive myocardial material parameters (e.g. weaker behaving ones
with a more realistic pV response) repeatedly lead to mostly parallel surfaces where few
of the triangles were not oriented “in-plane”. In consecutive time steps these created
problems with non-matching master-slave pairs being pulled in unintended directions,
which continuously worsens the situation and finally leads the simulation to fail within a
few steps. Moreover, the master surface used by Fritz et al. (2014) contained holes in
it that emerged from removing these “problematic triangles”, which is a lot of manual
work and changes with each new simulation setup. The potentially problematic triangles
have no physical or physiological meaning and therefore cannot be identified other than
by many iterations over unsuccessful simulations and deletions of triangles. This point
seems to be a huge compromise needed for getting the complex pericardium modeling
initially to work.
To overcome these issues, a completely new mesh was generated with slightly more

elements. Since the original epicardial surface was neither closed nor convex, volumetric
fat tissue was added to the space in-between myocardium and its convex hull, tightly
connected to the myocardium. The surface of master elements could then be defined
as the closed and now convex surface of the two materials. Fat was modeled as a non-
contracting, incompressible and isotropic Mooney-Rivlin material (parameters: C1 =
3725 Pa, C2 = 0 Pa, B=2e5Pa). Especially near the valve plane, this creates a closed
“ring made of fat” which surrounds and stabilizes the valve region.

A second improvement covers the algorithm used for search of corresponding slave
element candidates that intersect the normal of the master element. That search function
runs in each simulated step for each master element, and was found to be unreliable
and slow – especially with the larger number of master elements – as it always checked
every single slave element (O(n2)). For speedup, a neighborhood map was added for each
slave element, which gets initialized once during start of the simulation. The time spent
in the search function now could be vastly improved by starting at the previous found
slave element and iterating first through its neighbors, instead of going through all slave
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elements in fixed order. Since the displacements between time steps are generally small,
the number of tested slave element candidates reduces in average to around 10 elements,
instead of half the slave elements vector. The algorithmic complexity reduced from O(n2)
to O(n) (with the number of slave elements n), which is important when using larger
mesh sizes (the mesh used in this study has now twice as many slave elements).

The modified Fritz model will be called contact pericardium through the remainder of
this study.

6.4.2. Simulation Setups
All simulations in this study base on the new heart model that includes truncated veins
and the volumetric valve plane as depicted in Figure 4.9 in Section 4.5. Passive material
parameters were chosen according to the results from Section 6.1. Unloading was done
once by a fixed number of Bols iterations, since the Bols error increased after the first
few iterations again. As model for active contraction, the Lumens model was chosen in
the ventricles and the DoubleHill model in the atria. The circulatory system model as
presented in Section 6.3 was used to obtain realistic chamber pressures. Parameters for
the contact pericardium were taken unmodified from Fritz et al. (2014).
Parameters for the pressure pericardium are more difficult to obtain. Unfortunately,

Freeman and Little (1986) did not give values for the parameter Vtot,0, so a simulation
study was carried out to test different values for that parameter. The total zero volume
Vtot,0 is mandatory in their formula of the pericardial pressure:

p(Vtotal) = α (exp(β( Vtotal
Vtotal,0

− 1))− 1)

Therefore, aim of the first simulation study is to find an appropriate set of parameters
for the pressure pericardium to get a modeling setup comparable to the contact model.
Aim of the second simulation study is to compare the two available pericardium

approaches and the different effects introduced by them. Hence, nine different simulation
setups were created and compared with the following three variants of pericardium
modeling:

1. no pericardium

2. contact pericardium (Fritz et al., 2014) with various values for Vtot,0

3. pressure pericardium (Kerckhoffs et al., 2007a)

6.4.3. Results
In the first parameter study, the pressure pericardium model was adapted to produce
the same relative total heart volume change as the contact pericardium using the zero
volume as free parameter. Similar to the contact pericardium, the model should represent
the situation including pericardium and the surrounding areas, hence reflecting the in
situ measurements from Freeman and Little (1986). Since the pericardium effect should
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be fairly pronounced, the parameter set “dog 2” was chosen as it produced the highest
pericardium pressure in the relevant range of relative volume increase Vtot/Vtot,0 between
1.0 and 2.0 (α = 0.2330 mmHg, β = 6.76). The only parameter missing is Vtot,0.

The time courses of total heart volume with different parameters of Vtot,0 are shown in
Figure 6.38, together with the contact pericardium for comparison. A smaller value for
the zero volume influenced not only the lowest value obtained during the time course,
but especially the maximum volume showed a great dependency. The shape of the curve
shows two peaks with a small negative “hump” during atrial contraction around 0.9 s,
and with larger Vtot,0 the second peak goes higher than the first one. Compared to the
contact pericardium, the shape of the peaks is generally more similar with lower Vtot,0,
however the volume amplitude over the whole beat decreases. The exact volumes and
volume differences for the last beat are listed in Table 6.8. It is noticeable that even the
largest volume obtained with the pressure pericardium is in all cases clearly below the
minimal volume reached with the contact pericardium. Further, the pericardial pressure
stays positive (inward pointing, pushing effect) throughout the whole heart beat. This is
in strong contrast to the contact pericardium, where the “pressure” (surface force due to
contact handling) starts with zero at the beginning of the atrial contraction and becomes
negative (outward pointing, pulling effect) during the heart beat. At Vtot,0 = 557 ml,
the pressure pericardium produced the same relative volume change as the contact
pericardium, which was chosen as “pressure pericardium” in the following comparisons.

Results of the comparison study between “pressure pericardium”, “contact pericardium”
and “no pericardium” are shown for the enclosed pericardial volume over time in Fig-
ure 6.41, with data of absolute volumes and relative volume change given in Table 6.9.
Additionally, volumes over time of the four chambers and the pV loops of the four
chambers are shown in Figures 6.39 and 6.40. Similar to the previous comparison with
the contact pericardium, the total volume variation in Figure 6.39 shows two distinct
inverted peaks at atrial and at ventricular contraction. The negative “hump” during atrial
contraction is most pronounced in the simulation with contact pericardium, and this is
the only simulation with a real volume reduction during that phase. The simulations
with pressure pericardium and without pericardium still increase their volume during
atrial contraction, but the increase slows down with beginning of atrial contraction. After
atrial contraction, the total heart volume without pericardium is much higher than before
atrial contraction, which is less pronounced with pressure pericardium and almost not
present with contact pericardium. Interestingly, the volume increase during ventricular
relaxation are very different as well. Here, it is the simulation without pericardium
that has an almost linear increase, while the pressure pericardium starts fast in the
beginning and slows down towards the end, and the contact pericardium has an s-shaped
relaxation. All simulations show a double loop structure in the left as well as in the right
atrium. However, the larger volume difference is obtained in the setup with the contact
pericardium compared to the other two setups.
Figure 6.42 gives a qualitative comparison of the total volume time course between

appropriately scaled and shifted simulation to measurement data from Carlsson et al.
(2004). While both time courses show the large negative bump due to ventricular
contraction (around 300ms in the measurements), the bump due to atrial contraction is
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Figure 6.38.: Volume over time plot for different values of the zero volume parameter
Vtot,0, from Fensterseifer Schmidt (2017). That value is an essentially needed
parameter for simulation setup, but not given by Freeman and Little (1986).

only visible in the simulation data (blue arrow). The behavior of that “atrial contraction
bump” is the same for the other seven subjects from Carlsson et al. (2004) as well.

6.4.4. Discussion
Regarding change of total heart volume, Table 6.8 gives 19.2% for the simulation without
pericardium model, which reduces to 13.1% and 13.0% when using either of pressure or
contact pericardium models. This is close to the measured 8.8%±1.0% given by Carlsson
et al. (2004). In the zero-volume study, the pressure pericardium was tuned to produce
the same total heart volume change as the contact pericardium by an adequate choice
of the unknown modeling factor Vtot,0. According to Fritz et al. (2014), the parameters
for the original contact pericardium were chosen to reproduce the outer shape of the
heart during the cardiac cycle from cine MRI of the very same patient, however without
giving an exact quantification. According to Kerckhoffs et al. (2007a), the original
pressure pericardium was designed around pressure volume measurements of the isolated
pericardium from Freeman and Little (1986). Due to the relatively small total amount of
change, a heart that produces a total volume change in the correct range implicitly shows
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Table 6.8.: Evaluated volumes obtained from simulations with the pressure pericardium
for different zero volumes Vtot,0, as well with the contact pericardium and
without pericardium as reference, from Fensterseifer Schmidt (2017).

Figure 6.39.: Total heart volume of the three setups, from Fensterseifer Schmidt (2017).
The hard-to-read legend labels the curves as noPericard (lilac, middle curve),
contactPericard (green, upper curve), and pressurePericard (gray, bottom
curve) with the axes showing volume over time.
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Table 6.9.: Computed total heart volumes of the three simulation setups. From Fenster-
seifer Schmidt (2017).

Figure 6.40.: Pressure volume loops of the three setups for all four chambers, from
(Fensterseifer Schmidt, 2017). The plots show pV loops in the left atrium
(top left), right atrium (top right), left ventricle (bottom left) and right
ventricle (bottom right) with pressure over volume on the axes. Color labels
are the same as in Figure 6.39.
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Figure 6.41.: Volume time courses for all four chambers comparing the three simulated
setups, from Fensterseifer Schmidt (2017). The plots show left atrium (top
left), right atrium (top right), left ventricle (bottom left) and right ventricle
(bottom right) with pressure over time on the axes. Color labels are the
same as in Figure 6.39.

Figure 6.42.: Qualitative comparison between simulated total volume variation (pressure
pericardium) and one from experimental data (Carlsson et al., 2004), match-
ing the visually best subject. The peak due to atrial contraction is not
visible in measurements (blue arrow). From Fensterseifer Schmidt (2017).
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an outer shape that is visually almost indistinguishable from a cine MRI measurement
and vice versa. Both models reproduced the absolute change of total heart volume
according to measurements given by Carlsson et al. (2004).
In the volume over time diagram for the zero-volume study from Figure 6.38, all

simulations showed a distinct negative bump due to ventricular contraction at 0.5 s, 1.3 s,
and so on, which also indicates the minimal achieved total heart volume as well. The
simulation using the contact pericardium however additionally showed a second, smaller
negative bump due to the atrial contraction, which was only visible with the pressure
pericardium and only for the smaller values of Vtot,0. In case of using a larger Vtot,0,
the total heart volume actually increased during atrial contraction. For the pressure
pericardium, the total heart volume at beginning of atrial contraction is approximately
the same as at the beginning of ventricular contraction. In the available measurement
data from Carlsson et al. (2004) however, the atrial contraction can not be seen at all in
any of the 8 human subjects (see Figure 6.42).
Looking at the time course of ventricular relaxation in Figure 6.39, the contact

pericardium shows its steepest section in mid-relaxation which flattens out towards
ending of ventricular relaxation. The pressure pericardium shows a similar decreasing
steepness from mid to end of ventricular relaxation as well, except that the steepest
part is at the beginning. In case of the simulation without pericardium modeling, the
behavior is different, the time course is an almost linear one and extends even over
the atrial contraction. An explanation for this different behavior is as follows. During
contraction, the dominant forces are the active forces, which are the same in all three
cases. During relaxation, active forces are absent, and the time course is dominated
by passive forces releasing previously stored energy, the circulatory system, and forces
due to the pericardium system. At beginning of relaxation, the mesh representing the
surrounding tissue in the contact pericardium is considerably deformed, which pulls the
epicardium outwards, hence resulting in an initially quick increase of ventricular volume.
Towards the ending of relaxation, the deformation of surrounding tissue gets negligible
and its influence becomes small. With the pressure pericardium, the formula yields a
strictly positive pressure throughout the whole cardiac cycle for any chosen value of
Vtot,0. This creates a permanently pushing compression effect due to the pericardium,
which is increasing with ongoing relaxation. That effect is visible by an overall smaller
total heart volume of the simulations with pressure pericardium and a quicker flattening
of the volume curve during relaxation. The simulation without pericardium modeling
are lacking any epicardial forces and expose fully the interplay between releasing stored
passive energy and the circulatory system. Since the myocardium underwent a preloading
procedure that reduces the overall volume during initialization, and this simulation misses
the outward pulling effect of the contact pericardium, the overall volume is situated
in-between contact pericardium and pressure pericardium.
Another effect of a pericardium model that was already observed in the zero-volume

study is the restriction of the total heart volume change in both pericardium models.
Although the ventricular volumes change still by more than 50%, the total heart volume
change reduces from 19% to around 13%. As consequence, the atrial volumes increase
considerably during ventricular contraction for both models. This becomes especially
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visible for the contact pericardium in the pV loops in Figure 6.40 and the chamber
volumes in Figure 6.41: The volume change in both ventricles is about the same as
without pericardium, but both atrial volumes change by about twice the amplitude.
In case of the pressure pericardium, the situation is similar: Although atrial volume
change looks about the same as without pericardium, the relationship between atrial and
ventricular volume change is increased, since both ventricular and overall volume are
generally smaller due to the models permanently applied positive pressure. In Figure 6.40,
both atria show a larger volume change in the simulations with a pericardium model
compared to the simulation without pericardium, thereby the pericardium supports the
refilling of the atria with blood during ventricular contraction.
Due to previous investigations during development of circulatory system model in

Section 6.3, one expected effect was to see a double loop structure in the atrial pV loops
with the pericardium models but not without. Figure 6.40 shows such a double loop
structure for the contact pericardium and the pressure pericardium, that is observed in
measurements as well (compare e. g. Figure 6.34 and references therein). Surprisingly,
all three simulations showed such a figure-eight loop, which is different from the results
obtained during development of the circulatory system model in Section 6.3. Possible
reasons are purely speculative: For this study, the myocardium mesh was replaced with a
different one with slightly more tetrahedra and a better mesh quality. This was necessary
to obtain are more robust contact pericardium, although both meshes represent the same
heart segmented from the same DICOM data set from the very same patient. Other
differences are different passive material parameters and a different, now length-dependent
active contraction model. This is an unfortunate point that seems to indicate an unwanted
strong dependency of the results on the meshing strategy or some part of the modeling
and should be considered in further investigations.

Regarding the behavior of isolated pericardium and surrounding tissue (without heart),
Freeman and LeWinter (1984); Freeman and Little (1986) observed an exponential
relationship between applied pressure and volume response, with a permanently positive
pressure during the whole cardiac cycle. A technical limitation for the three-dimensional
contact pericardium is the necessity to start the simulations in equilibrium-of-(zero-)-
forces state. As direct consequence, a pressure of zero already yields the end-diastolic
pericardial volume, and even needs a negative pressure to obtain the smaller end-systolic
volume. That means that the surrounding pericardium mesh of the contact pericardium
pulls the myocardial wall outwards, with increasing amplitude during contraction. Due
to its design, the pressure pericardium in contrast shows an exponential pressure-volume
relationship similar to the one observed in the measurements by Freeman and Little
(1986), which it is based on.

It is worth noting, that the expected pressures due to the pericardium (≈ 10 mmHg)
are about in the same range as the lung pressure (≈ 10 mmHg) and atrial pressure
(≈ 15 mmHg), but a magnitude of order smaller than ventricular blood pressure (≈
120 mmHg). So effects of a pericardium modeling are expected to be mostly seen in
the atria and less so in the ventricles. The similarity to lung pressure might open the
possibility to gain insights from in-vivo measurements, by investigating the pericardium
behavior at the same patient in inhaled and in exhaled lung state (“Valsalva maneuver”).
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6.4.5. Conclusion
During realization of the project, it turned out that the two models showed a somehow
opposing behavior. The results from the first study to find the zero-volume value for
the pressure pericardium already showed in the different volume levels that the two
models would be difficult to compare. Due to modeling implications, the two simulations
start with different initial volumes and the force directions on the epicardial surface are
different over the heart cycle. Even though the contact model with its three-dimensional
design has the potential of showing a “locally more correct” behavior, there should
not be such a great contradicting qualitative behavior. At least on the global level,
averaging effects should allow the three-dimensional contact pericardium model to reduce
to something that is at least qualitatively capable to be similar to the one-dimensional
pressure pericardium model.
With regards to application in a fully coupled heart model, the pressure pericardium

currently seems to be the better choice. The usual circulatory system models interact
only via the chambers’ pressures and volumes with the FEM model, so these are the
important parameters that need to fit. Unless the contact pericardium is able to reproduce
isolated pressure-volume relation from measurements, it is difficult to recommend it.
If only looking at the outcome of the combined model, it is easily possible to get a
wrong combination of parameters that seem to fit. Missing preloading, a non-obvious
implementation, and difficult-to-set-up simulations make it not a good choice for coupled
heart simulations. One big advantage of the contact model is that is allows to look at
local areas of interest. Possible applications are given by observing local stretch values,
e. g. to identify regions of large deformation that might result in abnormal trigger points
on the electrophysiological level. Another application is to simulate effects of stiffer
regions in the hearts surroundings, e. g. partially stiffer tissue near the spine or the liver.
In its current state however, the contact pericardium lacks validation on the local level,
does not reproduce the pressure-volume responses of the isolated pericardium, and even
inverts the force directions from a model that does so (pressure pericardium). In sum,
these points add a big question mark behind any conclusions obtained from simulations
with such model.

6.4.6. Outlook
In future works, two major tasks need to be addressed. First, more investigations on the
experimental side are necessary to clarify the physiological behavior by measurements.
The two modeling approaches showed a completely different behavior. Alone from the
currently available literature (Freeman and LeWinter, 1984; Freeman and Little, 1986) it
is not absolutely clarified which behavior is correct. The two modeling approaches are not
contradicting by nature, however the used parameters imposed such a behavior. Better
measurement data is needed to get a clear knowledge of the global behavior, both of the
isolated and then the non-isolated pericardium, to decide if the pericardium has a pulling
or pushing effect during ventricular contraction, and to develop the two models towards
such a behavior. Ex-vivo experiments that are limited to animal experiments, could
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measure forces/pressures exposed by the implanted and explanted pericardium, including
the important total heart volume of the same subject to decide if the pericardium is
“pushing or pulling”. In-vivo experiments with human beings are mostly limited to non-
invasive observation of the heart motion embedded in the pericardial sac and surrounding
tissue. These would necessarily involve inverse methods to estimate parameters for the
two pericardium models. However, even in the remainder part of heart modeling (passive
tissue, contractile behavior, circulatory system) a large number of model parameters exist
with considerable uncertainties. At their current state of accuracy this would make most
approaches non-practical by a hard-to-estimate credibility of such a studies outcome. A
promising approach involving human subjects is to investigate and recreate the behavior
of patients with congenital absence of the pericardium Topilsky et al. (2010), which could
give more insight in the interaction with the surrounding tissues with and without the
pericardium. A second approach with human subjects is to investigate the behavior e. g.
of atrial pressures during a “Valsalva maneuver” in inhaled and exhaled lung state, which
would involve modeling of the heart embedded in a torso including lungs.

The second task is to improve the comparability between the two models, which could
be done independently from the first task. The two models imply very different pericardial
pressures at the beginning of the systole, thereby the initial volume is smaller for the
pressure pericardium than for the contact pericardium. The strictly positive exponential
formulation of the pressure pericardium however does not allow a zero or even negative
pressure at all. Since the total heart volume only changes by around 10% throughout
a cardiac cycle (Carlsson et al., 2004), the relevant part of volumes of the exponential
function is small and can be linearized, even with error quantification (Taylor remainder
formula). The most straightforward approach therefore would be to introduce a reduced
linearized pericardium model. The task is to modify the pressure pericardium to allow a
zero pressure at end-diastole and use a “slope” factor to describe the pressure-volume
relationship throughout the cardiac cycle. The physiological meaning of that slope factor
is directly related to the compliance of the pericardium and its surroundings. When
restricting focus to that specific part of the pressure-volume plots from Freeman and
Little (1986), the compliance is reasonably constant and a linear fit approximates the
data points as good as an exponential fit. The difference between such a fit and the
current approach is well below the fitting accuracy of the originally used exponential
approximation to measurement data, but would greatly facilitates parameter estimation
and it would allow the zero-pressure. By choosing a positive or negative slope, such
a model is able to adapt to both behaviors and that factor could even be chosen to
exactly reproduce the pressure volume response from simulations of the isolated contact
pericardium (“surrogate model”). A study with same initial volume and same change of
total heart volume would allow to decide which local benefits can be expected from a
three-dimensional model over a zero-dimensional one, as differences in simulation outcome
could be related clearly to local versus non-local modeling.
The most difficult part and the one with the most uncertain benefit is to improve

the contact pericardium model. In its present state, it shows a reasonable change of
total heart volume, but lacks to recreate the behavior of an isolated pericardium with
surrounding tissue from Freeman and Little (1986). The most critical part of its modeling
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is the lack of preloading, which however is mandatory to create simulations with a
pushing effect of the three-dimensional pericardium during contraction. In case of a
preloaded pericardium, no globally stress-free state would exist, which makes a whole
new framework design necessary that allows independent model initialization of parts of
the mesh (for pericardium/surrounding tissue and for the actual heart). Stress of the
individual parts still must fit together to start the simulations in equilibrium of forces.
Besides the preloading part, work is needed on the modeling factors thickness of the
pericardium mesh and passive material properties in order to get a better understanding
of their influence on and relationship to physiological parameters. This on the other hand
would facilitate future model parametrization towards a specific patient, e. g. by using
similar methods as for ventricular passive parameter estimation done in Section 6.1. The
outcome would be a universally applicable contact pericardium model that is able to fulfill
all available global measurement data while showing possible local effects. Once better
suitable measurement data is available, these could serve as a better modeling target
for the two approaches and once their comparability is given, a purposeful development
towards the measured behavior in terms of surface force direction, total volume change
and isolated/non-isolated pressure-volume response becomes an easy task.

While the pressure pericardium actually was created to reproduce measurement data,
it can also be interpreted differently, as a penalty formulation like it is used e. g. in
mathematical optimization: A pressure onto the outer surface is used to influence the
amount of volume change during the cardiac cycle. In case of the proposed linearized
pressure pericardium, the penalty term is a simple (linear) distance function, and the
penalty weight a compliance that can be determined from a simulation study to create a
certain amount of volume change.
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In this thesis, a multi-component computational model of the human heart was created.
The first part of this thesis starts with the general fundamentals of physiology and
mathematical modeling and finishes in a description of the implementation of the devel-
oped software framework. In the second part, all the novelties introduced by this thesis
are presented. The heart comprises of a high resolution finite element mesh, contains
modeling of passive and active tissue behavior, a blood pressure model and a model of
the surrounding pericardium and the area it is embedded in. Each model was verified to
comply with widely available measurement data and suitable parameters are presented.
The passive model of myocardial tissue is the most essential part to fit since its

parameters can be investigated independently but greatly influence the experiments to
determine parameters for the other modeling components. The passive model parameters
were verified to recreate a specific pressure-volume curve under inflation of the left ventricle.
For that, an optimization procedure was used together with parameter reduction to
obtain the intended passive behavior. As side effect, the fiber strain increased compared
to previous works and now is closer to the physically expected strain.

Two different active models for the development of myocardial contraction force were
implemented. One uses a prescribed time course of the developed force that can be
delayed according to a map of local activation time and targets at creating a specific
varying compliance of the ventricles. The other one uses a prescribed time course of
the calcium transient, that is used together with the current fiber strain to dynamically
compute the currently developed force in realtime. In a previous work, a precomputed
time course was used, that was obtained from a complicated procedure that was not
reproducible at the time of the current work.
A closed-loop model of the cardiovascular system was developed to compute blood

pressure as boundary conditions in the four chambers. A representative electrical circuit
contains systemic and pulmonary circulation and the elastic and resistive properties of
the respective parts. In contrast to previous implementations, this approach ensures
blood conservation, allows multiple heart beats, interaction between the chambers and
overall a different quality of investigations. With suitable parameters obtained from an
extensive literature research, the model is able to produce realistic time courses for blood
pressures and ejection volumes, that converge to quasi-static states over multiple heart
beats.
Concerning the heart-surrounding, two different models for the pericardium were

implemented and compared. The complex contact pericardium uses a second, additional
finite element mesh and minimizes the surface distance between both meshes. The simpler
pressure pericardium uses a prescribed exponential pressure-volume relationship based on
measurements and acts as epicardial surface force, too. Its source code is very similar in
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structure to that of a blood pressure model and therefore straightforward to implement
and adds no additional overhead regarding mesh generation and computation time. While
the contact pericardium shows the rather static outer shape during the heart beat, that
can be observed in cine MRI sequences as well, the pressure pericardium produces the
typical figure-8 loops that are characteristic for atrial pressure-volume loop diagrams.
The isolated behavior of the two models however seems to contradict each other and
needs further clarification.

One important factor for the success of a finite element simulation is the mesh choice.
Due to the high computing time requirements of such a model, most models in literature
are limited to a rather coarse mesh with only one to two elements transmurally, through-
out the left ventricular wall. A mesh resolution study was conducted by inflating an
ellipsoidal left ventricle, with resolutions up to 16 elements transmurally obtained from a
fully-automated mesh generation. The results indicate that two second-order elements
transmurally are at most justifiable when restricting the evaluation to volume-integral-
type values like the enclosed endocardial volume (e. g. chamber volume). Regarding
surface and apex positions however, two transmural elements are not sufficient since its
locations still change significantly between four and eight elements (e. g. location of a
catheter tip, or contact pericardium).
The other important factor to successfully conduct such a simulation study is perfor-

mance of the software implementation. An efficient parallelization was realized which
showed its scalability on a high performance computing cluster with up to 256 computing
cores. The limiting factor is the number of elements per computing core, and memory
bandwidth. A high resolution mesh scales almost linearly as long as there are roughly
above 10,000 elements per core, and computation time profits significantly by distributing
a certain number of computing threads to multiple nodes, that have their own, separate
memory – compared to using multiple cores on one node.

In future works, the decision between two main directions will be necessary. The first
one is to scale up the number of simulated patients. That requires a robust modeling
setup, which naturally favors simpler models with easy to determine patient-specific
parameters. The biggest hurdle in that direction certainly is the mesh generation, which
currently demands numerous hours of work and a precious amount of knowledge to
circumnavigate numerous pitfalls (mesh resolution, fitting surfaces) before obtaining
a suitable simulation-ready mesh. Depending on the research question, abandoning
parts of the modeling features might provide one viable solution, deforming a template
mesh another. The second main direction is to improve the precision of the simulations.
Room for improvements can be found almost everywhere: significantly higher resolution
meshes, electrophysiology-based electrical excitation of the myofibers, or even fluid
structure interaction inside the ventricles and the atria. An important step towards
the simulation of highly complex systems with high resolution meshes was achieved in
this thesis with a reliable parallelization of the simulation code that is able to run on a
high performance computing cluster. Besides increasing modeling complexity, one rather
simple but important aspect is the quality of the used parameters values. Part of that
are models that have robustly determinable parameters, but also experiments that clarify
the right question. It is still not well understood why the pericardial sac exist, another
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question is the presence of fiber twist. Since experiments on human subjects are difficult
to realize in this area, experiments on animals with similar physiology in the specific area
of question will be necessary. Another aspect to be kept in mind is, that with increasing
modeling complexity the implementation gets more extensive and error prone. Possible
errors in the modeling setup are becoming increasingly more difficult to detect, and it is
even harder to locate and solve them. Finally, the best advice is to identify the relevant
effects and not to use more complexity than necessary to answer the specific research
question.
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