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Abstract. Recently, the field of assistive robotics has drawn much at-
tention in the health care sector. In combination with modern machine
learning-supported person recognition systems, they can deliver highly
personalized services. However, common algorithms for person recogni-
tion such as convolutional neural networks (CNNs) consume high amounts
of power and show low energy efficiency when executed on general-
purpose computing platforms.
In this paper, we present our hardware architecture and field programm-
able gate array (FPGA) accelerator to enable on-device person recogni-
tion in the context of assistive robotics. Therefore, we optimize a neu-
ral network based on the SqueezeNet topology and implement it on an
FPGA for a high degree of flexibility and reconfigurability. By pruning
redundant filters and quantization of weights and activations, we are able
to find a well-fitting neural network that achieves a high identification
accuracy of 84 %. On a Xilinx Zynq Ultra96v2, we achieve a power con-
sumption of 4.8 W , a latency of 31 ms and an efficiency of 6.738 FPS/W .
Our results outperform the latency by 1.6x compared to recent person
recognition systems in assistive robots and energy efficiency by 1.7x for
embedded face recognition, respectively.

Keywords: Ambient assisted living · Assistive robotics · Convolutional
neural networks · Face recognition · Field programmable gate array ·
Quantization

1 Introduction

Assistive robotics promise major enhancements in the health and elderly care
sector. In an ambient assisted living (AAL) where several people live at the same
place, assistive services include, for example, reminder and help with medication,
support in rehabilitation, calling for help in emergency cases or needs-based help
with daily living. For this purpose, assistive robots must be able to understand
their environment, assess interaction possibilities with persons in their vicinity
and adapt to their personal needs. While movements and environment perception
are still big challenges to overcome, the tremendous improvements of deep neural
networks (DNNs) in recent years might help to address them. The emergence
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of convolutional neural networks (CNNs), which take spatial information into
account and hence show very good performance in image processing, vision and
perception, confirms this trend further. Their performance and prediction results
even surpass human vision as well as traditional computer vision algorithms, for
instance in cancer detection [3]. Although Machine Learning (ML) algorithms
are considered enablers for those challenging use cases, they come with a very
high computational complexity, typically resulting in high power consumption
when implemented on general purpose processors. In addition, those throughput
oriented architectures fail to meet the low latency requirements. Thus, many cur-
rently available off the shelf solutions such as central processing units (CPUs) or
graphics processing units (GPUs) cannot satisfy the requirements for embedded
applications.

For this reason, a shift towards dedicated DNN hardware accelerators can
be observed. With dedicated accelerators, co-design in accordance with the al-
gorithm is conceivable [9]. For instance, optimization strategies like quantiza-
tion [11] or pruning [8] can improve neural network inference performance 100-
fold and energy efficiency 1000-fold compared to a CPU baseline implementation.
Quantization aims at a reduction of the bit precision of data and weights, thus
it reduces the computational complexity. Pruned neural network topologies can
reduce the total amount of operations through smart bypass techniques of su-
perfluous operations during execution or by removing redundant connections in
the network beforehand, respectively.

While hardware accelerators for DNNs can achieve vast improvements in
the inference, dedicated hardware structures usually lack flexibility. The trade-
off between accuracy and energy efficiency cannot be fully exploited when the
number format and bitwidth are fixed. Accelerators on Field programmable gate
arrays (FPGAs) [2] on the other hand, are highly customizable and offer great
potential for optimization to balance numerical precision and desired accuracy
for a specific use case.

In this paper, we present an FPGA-based accelerator for face recognition
focusing on privacy and low power consumption to enable personalized services
in assistive robotics. In summary, our contributions are threefold:

• For the application in the field of personalized assistive robotics, we choose
and derive a hardware-aware CNN topology. This model emphasizes low
power for mobile deployment and low latency for high user acceptance.

• We implement the network with an HLS-based tool-flow on a Xilinx FPGA
and compare different configurations in terms of accuracy, resource usage
and energy efficiency.

• We select and evaluate the optimal configuration regarding the trade-off
between resource utilization and accuracy. Based on this model, we demon-
strate low power person recognition with a latency of 31 ms and an energy
efficiency of 6.7 FPS/W , outperforming recent work by 1.6x regarding la-
tency [5] and 1.7x regarding energy efficiency [32].
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2 Related Work

2.1 Personalization in Assistive Robotics

AAL methods, targeting elderly and other people who are dependent on care,
support and help people in daily life. Exemplary, they can improve the safety
of a person or assist rehabilitation. Personalization of the provided service as
well as continuous adaption to the constantly changing needs of the patient are
identified as key factors for user acceptance and satisfaction with an assistive
robot [20].

Ghiţă et al. [7] present a people detection and recognition of a Pepper robot to
show reminders to people in an AAL. Locally captured images of the environment
of the robot are transmitted to a remote machine where people are recognized
using FaceNet [22]. Their person recognition takes 300 ms.

Duque et al. [5] implemented a gaze control for a robot head to improve
interaction with persons. To determine the person to look at, they combine face
recognition, pose recognition and speech detection. For face recognition, they
use a ResNet with 29 convolutional layers inferencing in less than 0.05 s on a
GPU GeForce RTX 2080 Ti.

2.2 Face Recognition

Face recognition tasks have been widely studied for several decades. In general,
the common algorithms for face recognition can be divided into three different
categories: holistic methods, local methods and deep learning (DL) methods.
Most holistic methods are based on Eigenfaces, i.e., a set of eigenvectors repre-
senting images in a lower dimensional space, and were first proposed by Sirovich
and Kirby [23]. Local or feature-based methods for face recognition aim to find
similar local features from the face or from special regions of the face. As a
result, they are more robust to variations like pose, viewpoint and expression,
compared to holistic methods [31]. DL methods are based on DNNs achieving
state-of-the-art results in various image processing tasks, and have also drawn
attention in the field of face recognition in recent years. By making use of a
large set of training samples, DNNs are able to learn how and which features
to extract from an input image to increase recognition accuracy significantly
compared to holistic and local methods. The first breakthroughs of DL-based
algorithms for face recognition were achieved by DeepFace [25] and Deep ID [24]
in 2014. Since then, the state-of-the-art performance has been improved dras-
tically, mainly driven by the advancements made in DL, for instance, Google’s
FaceNet accomplished an accuracy of over 99 % on the labeled faces in the wild
(LFW) benchmark. Overall, the accuracy has been increased from around 90 %
for the classical methods, up to around 99.8 % [21] [18] in just three years [27].

2.3 Low-complexity Neural Networks

In recent years, one main focus of DNN research was increasing accuracy without
considering the size and complexity of the network. This becomes a problem, es-
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pecially in embedded devices where both latency and power requirements need to
be fulfilled. Thus, there is an increasing demand for neural network architectures
that are suitable for low power embedded devices.

One of the first presented DNNs optimized for the embedded domain is
SqueezeNet, introduced in 2016 [13]. It achieves an accuracy on the same level as
AlexNet [15] for the ImageNet [4] dataset with 50 times less trainable parame-
ters. SqueezeNet consists of 18 convolutional layers with 1.25 M parameters. The
main building block of the network is the fire module that consists of squeeze
layers with 1x1 convolutional kernels and expand layers with a mix of 1x1 and
3x3 kernels.

In 2017, Howard et al. presented MobileNets which are CNNs for mobile
vision application, especially focusing on low latency and low power applica-
tions [10]. The architecture is based on depthwise separable convolutions to
reduce computational complexity while increasing the model depth. MobileNets
accomplish a top-1 accuracy of 70.6 % for ImageNet with only 4.2 M trainable
parameters.

Shortly later, in 2018, ShuffleNet was proposed [30], which is an extremely
efficient neural network designed for mobile devices. It makes use of pointwise
group convolution and channel shuffle operations to reduce computation cost
while maintaining accuracy. A ShuffleNet unit is used to enable information
flow across feature channels by shuffling input data of different groups. As a
result, ShuffleNet obtains a three percentage points higher top-1 accuracy than
MobileNet on ImageNet while, at the same time, achieving a 13x speedup com-
pared to AlexNet. However, ShuffleNet is composed of 50 layers with 5.4 M
parameters and therefore requiring 4.3x more memory space than SqueezeNet.

2.4 FPGA Implementations of Face Recognition

Various FPGA implementations of DNN-based face recognition systems have
been proposed recently.

Zhunge et al. implemented a DNN for face recognition based on FaceNet us-
ing high-level synthesis (HLS) on a Xilinx Virtex Ultrascale+ device [32]. They
explored multiple fast convolution algorithms to find an optimal strategy to
apply them to the different types of convolutions of the model. Their FPGA
accelerator accomplishes a single face recognition in 23.7 ms with a power con-
sumption of 10.6 W . As a result, they outperform the Nvidia GTX 1080 GPU
with respect to latency by a factor of 3.75 and achieve an energy efficiency of
3.981 FPS/W .

In 2021, Liu et al. proposed a heterogeneous computing system with a hard-
ware accelerator based on MobileNet that is used as face tracking platform [17].
The FPGA accelerator is integrated into a CPU and GPU based system that is
aided by a delay-aware, energy-efficient scheduling algorithm. Their design, im-
plemented on the Intel Stratix 10, achieves a latency of only 1.3 ms per image.
They claim to provide a low power solution, although power consumption never
is reported but only the power efficiency of their system. Derived from this value
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and the complexity of MobileNet, the power consumption can be estimated to
be around 26 W .

In summary, state-of-the-art face recognition implementations based on DNNs
achieve latencies that are sufficient for real-time applications. However, none of
the works provide solutions that are suitable for battery-powered embedded
devices with respect to power consumption, while still fulfilling real-time con-
straints. They have either very high power consumption [17] or provide only
moderate latency [32]. Thus, we focus on a DNN-based face recognition im-
plementation that is real-time suitable as well as consuming low power for the
CASIA-Webface dataset [28].

2.5 FINN

To reduce development time and to guarantee compatibility to other designs,
the hardware implementation presented in this work is based on the open-source
hardware library [16] which is part of Xilinx FINN framework [26]. FINN is a
tool to explore the design space of DNN inference accelerators on FPGAs. The
DNN layers of the FINN hardware library are designed as dataflow architecture,
resulting in high-throughput and low latency implementations. Furthermore,
the framework provides an adjustable degree of parallelization for each layer,
which can be used to find an optimal trade-off between resource usage and
latency. Additionally, FINN uses fixed-point format that allows for a higher
level of flexibility and enables customizable quantization.

3 Context and Methodology

In a typical AAL, several people live at the same place, hence an assistive
robot needs a real-time scene perception to locate and interact with persons
in a room. To perform personalized assistive services, the robot must first and
foremost identify the people in its workspace. Recent work already proposed face
recognition techniques for assistive robots, but lack either privacy due to remote
computation [7] or adaption to low power requirements of embedded systems [5].

We use the assistive robot ARMAR-6 [1] which is equipped with one depth
camera and two stereo cameras for peripheral and foveal vision, respectively.
The camera images are forwarded to a face detection unit, e.g. realized with an
MTCNN [29] that is a commonly used CNN to detect bounding boxes of objects
or faces. A typical face detection with an MTCNN on a GPU takes 122 ms [6].
Afterwards the detected faces are forwarded to a face recognition unit.

In this paper, we focus on the real-time face recognition and its efficient
implementation on the robot with low power consumption to address limited
power supply in the embedded, battery powered application. We implement the
accelerator entirely on an FPGA board to enable on-device execution of face
recognition and thereby enhance privacy. This platform furthermore facilitates
updates and allows reconfiguration during runtime to supply other algorithms
that provide the assistive services from the FPGA.
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3.1 Model Topology

As DL methods achieve very good accuracy results on the task of face recogni-
tion, our approach is based on a DNN. Selecting the DNN topology is a crucial
design decision for embedded face recognition, as it determines the initial archi-
tecture and performance optimization potential of the later hardware implemen-
tation. SqueezeNet [13], MobileNet [10] and ShuffleNet [30] are good candidates
for embedded face recognition, since they provide a relatively small computa-
tional complexity as well as sufficient accuracy on the ImageNet dataset. As
SqueezeNet has the smallest memory footprint with 1.25 M parameters and has
no residual paths or skip connections that increase implementation complexity,
this topology suites excellent for the hardware implementation of face recogni-
tion in assistive robotics. In addition, it has a high reduction potential which
was shown in the original paper [13].

Starting from the original SqueezeNet v1.1 topology [12], we apply differ-
ent optimizations: First, we reduce the number of filters of the last convolution
to 256 instead of 1, 000. This decreases the output dimensionality and still en-
ables face recognition in environments with a relatively small group of persons
for instance in the aforementioned application. For regularization and to avoid
overfitting, we insert a dropout layer before the last convolution. Additionally,
we replace the final softmax layer with a convolutional layer with 128 filters and
train with triplet loss [22] to learn a multi-dimensional embedding for faces. We
implement this variant of SqueezeNet in PyTorch. To reduce the model size and
computational complexity, we apply an unconditional filter pruning by factor
two that is proved to be as effective as structured filter pruning [19], i.e., half
the number of filters compared to the original SqueezeNet v1.1 is applied per
convolutional layer. This pruning quarters the model size with a negligible ac-
curacy degradation of less than one percentage point for face recognition on the
CASIA-Webface dataset [28].

Moreover, we insert batch normalization layers after each expand convolu-
tional layer of the fire module to stabilize training, see Figure 1. During inference,

8× Fire Module +
2× Pooling

Conv +
MaxPool

2× Conv Embeddings�
SqueezeNet

111×
111×

3 64

Batch
Norm.

Batch
Norm.

3x3
CONV

1x1
CONV

ReLU

ReLU

1x1
CONV

ReLU Concat

Fig. 1: Overview of our SqueezeNet, changes are highlighted by a dashed pattern.
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we fold the batch normalization parameters into the previous convolutional layer
as proposed in [14] to reduce computational complexity further.

3.2 Hardware Architecture

We use the hardware library of FINN [16] to implement an HLS model of
SqueezeNet. For synthesis and deployment of the HLS model on the FPGA
board, we use Xilinx Vivado (HLS). To avoid offloading intermediate feature
maps between the layers, we implement the entire CNN as dataflow architecture
on the chip. A dataflow architecture can be considered as task-level pipelining,
i.e., the results of one layer are forwarded to the next before the computation of
the entire layer has finished. Therefore, the subsequent layer starts processing
as soon as the data for the first calculation step is available and the need for
buffering intermediate results between the layers decreases.

The total inference latency of the CNN is determined by the first convolu-
tional layer which we observed being the bottleneck layer and thus has to be
maximally unrolled. We unroll the other layers by the minimum factor that
does not increase this latency. Additionally, we reduce computational complex-
ity, hence the resource utilization, by quantization of the weights and activations
of the SqueezeNet with fixed point datatypes instead of floating point. To de-
termine an appropriated quantization scheme which covers the whole range of
values, we profile the weight and activation floating point values of our trained
model and choose minimal integer bit widths for each layer. As the fraction bit
width influences accuracy, it is part of the design space exploration (DSE). We
further add a user-level driver for communication between the hardware and
software on the board.

4 Evaluation and Discussion

4.1 Experimental Setup and Training

Initially, we train our CNN with 32-bit floating point on the CASIA-Webface
dataset [28]. 2, 115 of 10, 575 identities are assigned to the test dataset and the
images of the remaining 8, 460 identities are split by 80 % into training data
and by 20 % into validation data. The learning rate is set to 0.05, dropout to
0.5, momentum to 0.9, batch size to 400 and our pruned SqueezeNet is trained
for 500 epochs. To evaluate the identification accuracy in the presented use
case, we create a small test dataset from the unseen test data including ten
identities with ten images each. We calculate a reference embedding for each
identity corresponding to the mean of the embedding of five different images.
For identification of a person, an image passes the SqueezeNet and the euclidean
distance to the reference embeddings of each identity is determined. The identity
related to the closest reference embedding is recognized by the network. On our
test dataset, the software model achieves 89.6 % accuracy with full precision.

After batch normalization folding, our CNN has 222, 940 parameters and
17.47 M MAC operations are executed to process one image. Compared to the
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Fig. 2: Utilization of BRAMs, LUTs, DSPs and Flip-Flops of the ZCU102 in
relation to the accuracy. Pareto optimal configurations are shown as circles and
are labeled with the quantization step: The first and latter number represents the
fraction bit width of weights and activations, respectively. A trend line indicates
the correlation between primitive utilization and accuracy.

original SqueezeNet v1.1, the computational complexity of our variant decreases
by factor 20 and the model size by factor 5.

The Xilinx ZCU102 with large FPGA resources allows for a wide range of
variation in the optimization parameters of the accelerator. This is why we choose
the ZCU102 as target platform for the DSE. For later deployment of a low power
accelerator for face recognition, we choose the well-fitting Xilinx Ultra96v2 which
provides four times less resources and lower static power consumption.

4.2 Design Space Exploration

For embedded face recognition, we analyze the influence of different quantization
schemes on the trade-off between accuracy and resource utilization which directly
affects energy efficiency. Therefore, we apply individual quantization schemes for
each layer, i.e., we use minimal integer bit widths as described in subsection 3.2
and apply different fixed fraction bit widths for weights and activations. For
example, we denote 10;4 as the quantization scheme with ten fraction bits for
all weights and four fraction bits for all activation values.

The design is unrolled to the degree which accomplishes a minimal latency
of 27, 225 cycles. For this configuration, we report the accuracy, resource uti-
lization and energy efficiency for different quantization schemes on the ZCU102,
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Fig. 3: Total and dynamic energy efficiency on the ZCU102 in relation to the
accuracy. Pareto optimal configurations are shown as circles and are labeled
with the quantization level. A trend line indicates the correlation between the
efficiency and the accuracy.

see Figure 2 and Figure 3. For less precision in the number representation of
weights and activations, less resources are required, energy efficiency increases
and the identification accuracy decreases. As it is shown in Figure 2a, the BRAM
utilization dominates the total resource utilization and is effected most by the
varying quantization scheme. Hence, BRAMs are the limiting resource which
determine feasibility of the accelerator on a certain FPGA.

The configuration 10;4 with ten weight fraction bits and four activation frac-
tion bits is a Pareto-optimal design with respect to all hardware costs, which
achieves a moderate accuracy drop of five percentage points compared to the
software model with full precision and without batch normalization folding. This
model requires 63.4 % of the BRAM resources of the ZCU102 and is selected
for further considerations.

For power evaluation, we first measure static power of the FPGA board
with a digital multimeter and then the total power consumed to process face
recognition. Dynamic power consumption is reported as the difference between
these measurements. At a clock frequency of 300 MHz, the accelerator executes
a single face recognition in 0.481 ms and draws 26.423 W in total. As a result,
the accelerator achieves a total energy efficiency of 78.713 FPS/W , see Table 1.
Compared to [17], our unrolled accelerator on a ZCU102 is 2.7 times faster
and more energy efficient, respectively. If the HLS model is implemented as a
full sequential architecture, the model requires 19.1 % of the BRAM resources
of a ZCU102 and realizes a single face recognition in 25.338 ms at the same
clock frequency. Therefore, the total energy efficiency of the rolled model is
1.667 FPS/W on a ZCU102.

For very high throughput, the unrolled implementation might be preferred.
However, on the ZCU102, we could show that the real-time constraints of a robot
scene perception can also be satisfied with the rolled model. As this model has
a smaller resource footprint, we intend the implementation on a smaller FPGA
to reduce power and energy consumption further. An Ultra96v2 has four times
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Table 1: Power consumption and energy efficiency of different configurations of
our SqueezeNet accelerator and other embedded face recognition.

Platform
Runtime

[ms]
Power consumption Throughput

[FPS]
Energy efficiency

Total
[W]

Dynamic
[W]

Total
[FPS/W]

Dynamic
[FPS/W]

Stratix 10 [17] 1.310 26 - 763.5 29.586 -
VU9P [32] 23.7 10.6 - 42.194 3.981 -
ZCU1021 0.481 26.423 1.360 2,079.824 78.713 1,529.282
ZCU1022 25.338 23.679 0.279 39.467 1.667 141.457
Ultra96v23 30.712 4.832 0.236 32.560 6.738 137.967

1unrolled at 300 MHz, 2rolled at 300 MHz, 3rolled at 250 MHz

less BRAMs than a ZCU102 which suites well for the implementation of the
rolled model. We synthesize the rolled model for the Ultra96v2 at a maximum
clock frequency of 250 MHz resulting in a BRAM resource utilization of 80.8 %.
On the Ultra96v2, our implementation inferences in 30.71 ms which is 1.6 times
faster than the face recognition of [5]. Moreover, we measure a dynamic power
consumption of 0.236 W and a total power consumption of 4.832 W which is
five times lower than on the ZCU102 and less than half the power consumption
of [32]. The total energy efficiency on the Ultra96v2 is four times better than on
the ZCU102 and 1.7 times better than in [32], respectively, see Table 1.

Considering 122 ms of processing time for the face detection unit [6], the
entire person identification is realized within 152 ms using the Ultra96v2 for low
power face recognition. This is in the range of human reaction time and thus
natural interaction with the ARMAR-6 is enabled.

5 Conclusion and Future Work

In this paper, we present an embedded low power face recognition, which enables
real-time person recognition for assistive robotics. Due to on-device execution,
personalized services can be provided at the edge and privacy is assured. There-
fore, we optimize a CNN topology for the design of an FPGA accelerator and
analyze the performance-accuracy trade-off on a Xilinx FPGA depending on the
quantization level. Our implementation on an Ultra96v2 accomplishes a single
face recognition in 31 ms consuming only 4.8 W . We achieve 6.738 FPS/W
energy efficiency which outperforms the state-of-the-art 1.7-fold. In the future,
we plan to implement the whole processing chain of scene perception, including
face detection and the execution of personalized assistive services.
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5. Duque-Domingo, J., Gómez-Garćıa-Bermejo, J., Zalama, E.: Gaze control of a
robotic head for realistic interaction with humans. Frontiers in Neurorobotics
(2020)

6. Esler, T.: Face recognition using pytorch. https://github.com/timesler/
facenet-pytorch, (Accessed on 07/06/2021)
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