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Abstract Dynamical low-rank integrators for first-order problems have been studied
extensively since the 2010s. Recently, dynamical low-rank integrators for second-
order problems have been developed in [10]. In this paper, we propose a novel strat-
egy for choosing the rank adaptively, which is applicable for integrators of first and
second-order equations. Our adaptive algorithms are based on a combination of error
estimators for the local time-discretization error and for the low-rank error. Numeri-
cal experiments illustrate the performance of the new integrators.
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1 Introduction

Dynamical low-rank integrators [15,17] have been designed for the approximation of
large, time-dependent matrices which are solutions to first-order matrix differential
equations

A′(t) = F
(
A(t)

)
, t ∈ [0,T ], A(0) = A0 ∈ Cm×n, (1)

whose solutions can be well approximated by low-rank matrices. The projector-
splitting integrator introduced in [17] has particularly favorable properties. Is is ro-
bust in the presence of small singular values, which appear in the case of over-
approximation, i.e., when the approximation rank is chosen larger than the rank of the
solution A(t) of (1). A variant of this method adapted to strongly dissipative problems
was presented in [5]. Another variant tailored for stiff first-order matrix differential
equations was introduced in [20].
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Recently, a novel dynamical low-rank integrator for second-order matrix differ-
ential equations

A′′(t) = F
(
A(t)

)
, t ∈ [0,T ], A(0) = A0, A′(0) = B0, (2)

was constructed in [10]. Is is based on a Strang splitting of the equivalent first-order
formulation and the projector-splitting integrator [17]. This integrator is also robust in
the case of over-approximation and shows second-order convergence in time. Further-
more, with a few modifications, it is suited for stiff second-order matrix differential
equations.

In applications, rank-adaptivity turns out to be essential for the efficiency of
the algorithm. For first-order equations, in [4] a rank-adaptive variant of the uncon-
ventional integrator [5] was proposed. However, since its construction is tailored to
this particular method, it cannot be applied to the projector-splitting integrator [17].
In [6], rank-adaptivity for tensor methods for high-dimensional PDEs was based on
a functional tensor train series expansion. For the special case of finite-dimensional
parametrized Hamiltonian systems modeling non-dissipative phenomena, a rank-adap-
tive structure-preserving reduced basis method was introduced in [9].

In the present paper, we derive a general strategy for selecting the rank adaptively
when using the projector-splitting integrator. Increasing or decreasing the rank from
one time step to the next was already proposed in [17] and quite recently in [11].
Our main contribution is a strategy for which the time step of the underlying splitting
method, i.e., the Lie-Trotter splitting for first-order and the Strang splitting for se-
cond-order problems, is the only input parameter. The goal is to choose the rank such
that the error of the dynamical low-rank approximation does not spoil the order of the
underlying splitting method applied to the full matrix differential equation. The main
idea is to propagate one additional singular value and use it for accepting or rejecting
the current time step and for selecting the rank in the next one. The decision is based
on an estimator of the global time-discretization error. This adaptivity control is also
applicable to the dynamical low-rank integrators for stiff problems. The new dynami-
cal low-rank integrator for (2) uses the projector-splitting integrator in the substeps
of the Strang splitting, which allows to control the rank adaptively also for second-
order equations, either stiff or nonstiff. Moreover, it can be readily combined with the
integrator from [5].

The paper is organized as follows: In Section 2, we briefly recall the projector-
splitting integrator introduced in [17] and the ST-LO scheme proposed in [10]. Ad-
ditionally, we sketch variants of both methods tailored to stiff first-order and second-
order differential equations, respectively. Section 3 is devoted to rank-adaptivity. In
Section 4, numerical experiments illustrate the performance of the new schemes.

Throughout this paper, m,n, and r are natural numbers, where w.l.o.g. m≥ n� r.
If n > m, we consider the equivalent differential equation for the transpose. By Mr
we denote the manifold of complex m×n matrices with rank r,

Mr = {Ŷ ∈ Cm×n | rank(Ŷ ) = r}.

The Stiefel manifold of m× r unitary matrices is denoted by

Vm,r = {U ∈ Cm×r |UHU = Ir},
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where Ir is the identity matrix of dimension r and UH is the conjugate transpose of
U .

The singular value decomposition of a matrix Y ∈ Cm×n is given by

Y =UΣV H , U ∈ Vm,m, V ∈ Vn,n, Σ = diag(σ1, . . . ,σn) ∈ Cm×n,

where σ1 ≥ . . . ≥ σn ≥ 0 are its singular values. It is well known that for r < n, the
rank-r best-approximation to Y w.r.t. the Frobenius norm is given by

Ŷ =U Σ̃V H = Û Σ̂V̂ H ,

where Σ̃ = diag(σ1, . . . ,σr,0, . . . ,0) and

Û =U [Ir 0] ∈ Vm,r, V̂ =V [Ir 0] ∈ Vn,r, Σ̂ = diag(σ1, . . . ,σr).

The Frobenius norm is denoted by ‖ · ‖, and the Frobenius inner product by 〈·, ·〉.
The symbol • denotes the entrywise or Hadmard product of matrices. For a given step
size τ we use the notation tk = kτ for any k with 2k ∈ N0.

2 Dynamical low-rank integrators with fixed rank

In this section we give a review on various low-rank integrators for first and second-
order matrix differential equations.

2.1 First-order differential equations

In the dynamical low-rank approximation of the solution to first-order matrix dif-
ferential equations (1), the approximation Â ≈ A is determined as solution of the
projected differential equation

Â′(t) = P
(
Â(t)

)
F
(
Â(t)

)
, Â(0) = Â0. (3)

Here, P
(
Â(t)

)
denotes the orthogonal projector onto the tangent space of the low-rank

manifold Mr at Â(t) ∈Mr. The initial value Â0 is typically determined as the rank-r
best-approximation to A(0), computed by a truncated SVD. The projector P

(
Â(t)

)
is given by

P
(
Â(t)

)
Z = ZV̂ (t)V̂ (t)H −Û(t)Û(t)HZV̂ (t)V̂ (t)H +Û(t)Û(t)HZ, (4)

cf. [15, Lemma 4.1], where Â(t) ∈Mr is decomposed in a non-unique fashion re-
sembling the singular value decomposition into

Â(t)= Û(t)Ŝ(t)V̂ (t)H , Û(t)∈Vm,r, V̂ (t)∈Vn,r, Ŝ(t)∈Cr×r invertible. (5)

The dynamical low-rank integrator developed in [17], also called the projector-split-
ting integrator, is constructed by performing a Lie-Trotter splitting on the right-hand
side of (3) and solving the three subproblems on the low-rank manifold. This ap-
proach yields an efficient time-stepping algorithm for computing the desired low-
rank approximations. One time-step of the projector-splitting integrator is given in
Algorithm 1.
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Algorithm 1 Projector-splitting integrator for low-rank approximations to the solu-
tion A(t) of (1), single time step, cf. [17, Section 3.2]
1: function PRSI(Û , Ŝ,V̂ ,r,∆A)
2: {input: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r , V̂ ∈ Vn,r ,
3: Ŝ ∈ Cr×r , functions for matrix-vector multiplication with ∆A and ∆AH , where
4: ∆A = τF(Â) }
5:
6: K̃ = ∆AV̂
7: K = Û Ŝ+ K̃
8: compute QR-decomposition Û Ŝ = K
9: Ŝ = Ŝ−ÛH K̃

10: L = V̂ ŜH +∆AHÛ
11: compute QR-decomposition V̂ ŜH = L
12:
13: return Û , Ŝ,V̂ ,L
14: {output: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t + τ) and L = V̂ ŜH (optional),
15: with Û ∈ Vm,r , V̂ ∈ Vn,r , Ŝ ∈ Cr×r}
16: end function

2.2 Second-order differential equations

For the second-order problem (2), a novel dynamical low-rank integrator named ST-
LO scheme (Strang splitting combined with the Lubich-Oseledets integrator) was
presented in [10, Section 3]. Given rA,rB ∈N and approximations Âk ≈ A(tk) of rank
rA and B̂k− 1

2
≈ A′(tk− 1

2
) of rank rB, it computes approximations Âk+1 ∈MrA and

B̂k+ 1
2
∈MrB with Âk+1 ≈ A(tk+1) and B̂k+ 1

2
≈ A′(tk+ 1

2
), respectively. This integrator

is based on the first-order formulation of (2),

[
A
B

]′
=

[
0

F(A)

]
+

[
B
0

]
,

combined with a Strang splitting. The subproblems are first-order matrix differential
equations,

A′ = B, B′ = 0, (6a)
B′ = F(A), A′ = 0, (6b)

which can be solved exactly. The low-rank matrices Âk+1 and B̂k+ 1
2

are obtained by
approximating the solutions of (6) by application of Algorithm 1 to

B̃′k− 1
2
(σ) = F(Âk), B̃k− 1

2
(0) = B̂k− 1

2
, σ ∈ [0,τ], (7)

Ã′k(σ) = B̃k+ 1
2
, Ãk(0) = Âk, σ ∈ [0,τ]. (8)

This leads to the dynamical low-rank integrator ST-LO shown in Algorithm 2.
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Algorithm 2 DLR integrator for second-order ODEs (2), ST-LO scheme, single time
step, cf. [10, Algorithm 2]
1: function ST-LO(τ,F,Û , Ŝ,V̂ , T̂ , R̂,Ŵ ,rA,rB)
2: {input: step size τ , right-hand side F ,
3: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈ Vn,rA ,
4: Ŝ ∈ CrA×rA ,
5: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t− τ

2 ) with T̂ ∈ Vm,rB ,
6: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
7:
8: B̂-step: T̂ , R̂,Ŵ ,L = PRSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τF(Û ŜV̂ H)

9:
10: Â-step: Û , Ŝ,V̂ = PRSI

(
Û , Ŝ,V̂ ,rA,∆A

)
where ∆A = τT̂ LH

11:
12: return Û , Ŝ,V̂ , T̂ , R̂,Ŵ
13: {output: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
14: V̂ ∈ Vn,rA , Ŝ ∈ CrA×rA ,
15: factors T̂ , R̂,Ŵ of rank-rB approximationB̂ = T̂ R̂Ŵ H ≈ A′(t + τ

2 ) with T̂ ∈ Vm,rB ,
16: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
17: end function

2.3 Stiff problems

A fixed-rank dynamical low-rank integrator for the stiff first-order problem

A′(t) = L1A(t)+A(t)L2 + f
(
A(t)

)
, t ∈ [0,T ], A(0) = A0, (9)

where the norms of L1 ∈Cm×m and L2 ∈Cn×n are large and f is a Lipschitz continu-
ous function with moderate Lipschitz constant, was introduced in [20]. It is based on
the solution of the subproblems

A′ = L1A+AL2, (10a)
A′ = f (A). (10b)

The solution to (10a) is given by

A(t) = exp(tL1)A0 exp(tL2). (11)

Note that the rank of the initial value is preserved for all times [20, Section 3.2]. In
contrast, the rank of the solution of the nonlinear subproblem (10b) may vary in time.

In [20], a low-rank approximation has been computed by applying a Lie-Trotter
splitting to (9) and solving the subproblems (10) by the projector-splitting integrator
in Algorithm 1. This method is called PRSISTIFF in the following.

For semilinear second-order equations of the form

A′′(t) =−Ω 2
1 A(t)−A(t)Ω 2

2 + f
(
A
)
, t ∈ [0,T ], A(0) = A0, A′(0) = B0, (12)

with Hermitian, positive semidefinite matrices Ω1 ∈ Cm×m and Ω2 ∈ Cn×n of large
norm and f again Lipschitz continuous, a dynamical low-rank integrator named ST-
LOSTIFF was proposed in [10, Section 5]. It is based on the equivalent first-order
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formulation of the second-order problem (12), where one splits the right-hand side
into [

A
B

]′
=

[
B

−Ω 2
1 A−AΩ 2

2 + f
(
A
)]= [ ω2

1 B
−Ω 2

1 A

]
+

[
ω2

2 B
−AΩ 2

2

]
+

[
ω2

3 B
f (A)

]
. (13)

The weights ωi ≥ 0, i = 1,2,3, can be chosen arbitrarily such that ω2
1 +ω2

2 +ω2
3 = 1.

A natural choice is ω2
i = 1/3. The linear subproblems can be solved exactly. Low-

rank approximations to these solutions are obtained by application of the projector-
splitting integrator. The nonlinear subproblem is solved approximately with a variant
of the ST-LO scheme, cf. [10, Algorithm 3]. Denoting the numerical flows of the lin-
ear subproblems by φ Ω1

τ and φ Ω2
τ , and the numerical flow of the nonlinear subproblem

as φS
τ , respectively, one step of the ST-LOSTIFF scheme reads[

Âk+1

B̂k+1

]
=
(

φ Ω1
τ
2
◦φ Ω2

τ
2
◦φS

τ ◦φ Ω2
τ
2
◦φ Ω1

τ
2

)[Âk

B̂k

]
.

3 Rank adaptivity

In many applications, an appropriate rank for computing a low-rank approximation to
the exact solution of (2) or (1) is not known a priori and might also vary over time. If
the rank is chosen too small, the low-rank approximation lacks accuracy. Conversely,
if the rank is chosen too large, the algorithm becomes inefficient.

In the following, we derive rank-adaptive variants of the projector-splitting in-
tegrators PRSI and PRSISTIFF for first-order problems and for the ST-LO and the
ST-LOSTIFF schemes for second-order problems.

3.1 Selecting the rank

We first discuss the projector-splitting integrator for the first-order problem (1). The
idea of our rank-adaptive strategy is to approximate the exact solution of (1) by a
low-rank solution of rank rk in the kth time step, but to propagate a solution of rank
rk +1. The additional information is used as an indicator whether to accept or reject
the current time step, and for selecting the rank rk+1 for the next time step.

Given Âk = ÛkŜkV̂ H
k ∈Mrk+1, a single step of Algorithm 1 yields the approxima-

tion Âk+1 = Ûk+1Ŝk+1V̂ H
k+1 ∈Mrk+1. We then compute the singular value decompo-

sition of Ŝk+1,

Ŝk+1 = Pk+1Σk+1QH
k+1, Σk+1 = diag(σ̂1, . . . , σ̂rk , σ̂rk+1),

with Pk+1,Qk+1 ∈ Vrk+1,rk+1, and σ̂1 ≥ . . .≥ σ̂rk+1 ≥ 0 so that

Âk+1 = (Ûk+1Pk+1)Σk+1(V̂k+1Qk+1)
H

is the singular value decomposition of Âk+1. Given a tolerance tol, we determine rk
such that

σ̂rk+1 < tol≤ σ̂rk (14)
by distinguishing three cases:
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1. Augmentation case: If σ̂rk+1≥ tol, the step is rejected and recalculated with rank
rk + 2. Rank augmentation applies to the initial values Ûk, Ŝk,V̂k of the current
integration step and is performed by adding a zero entry to Ŝk,

S∗ =
[

Ŝk 0
0 0

]
∈ C(rk+2)×(rk+2). (15a)

This choice has been motivated by [17, Section 5.2]. The matrices Ûk and V̂k are
augmented by unit vectors u ∈ Cm and v ∈ Cn such that

U∗ =
[
Ûk u

]
∈ Vm,rk+2, V ∗ =

[
V̂k v

]
∈ Vn,rk+2. (15b)

Numerical tests indicate that choosing u and v as random vectors and orthonor-
malizing them against Ûk and V̂k is reliable and robust, but other choices are also
possible. Clearly, U∗S∗(V ∗)H = ÛkŜkV̂ H

k = Âk, thus the initial value of the current
integration step has not changed. However, the numerical approximation is now
able to evolve to rank rk + 2. The step is recomputed with the new initial values
U∗,S∗,V ∗, and it is again checked if the smallest singular value allows one to
accept the step. This procedure is repeated until (14) is satisfied and the step is
finally accepted, see Algorithm 3 for details.

2. Reduction case: If σ̂rk < tol, the step is accepted. Since this indicates that a
sufficiently accurate approximation is available with a smaller rank, we determine
the rank for the next step by

rk+1 = max
{

argmin{ j | σ̂ j+1 < tol},rk−2
}
,

i.e., the rank is reduced by either 1 or 2. This causes the rank to decay slowly and
prevents sudden rank-drops. For the initial values in the next time step we use

S̃ = ĨT Σk+1 Ĩ, Ũ = (Ûk+1Pk+1)Ĩ, Ṽ = (V̂k+1Qk+1)Ĩ,

where Ĩ =
[

Irk+1+1
0

]
∈ C(rk+1)×(rk+1+1). To prevent rank-oscillations, rank reduc-

tion is prohibited within the first 10 steps after an augmentation step.
3. Persistent case: If σ̂rk ≥ tol> σ̂rk+1, the time step is accepted and the same rank

rk+1 = rk is used for the next one.

Just recently, the same idea for augmentation and reduction was used in [11].

3.2 Choice of tolerance

It remains to find a suitable tolerance tol. In the error analysis [14] of the projector-
splitting integrator, the global error of the scheme is a combination of a time-discre-
tization error and a low-rank error contribution. A similar result was derived in the
error analysis of the ST-LO scheme in [10, Section 4]. We aim to choose the rank
such that the low-rank error does not exceed the time discretization error. If the time
discretization error is large, the low-rank error is allowed to be large as well, and
hence the approximation rank might be chosen small. If the time discretization error
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Algorithm 3 Augmentation
1: function AUGMENTATION(Û , Ŝ,V̂ ,∆A,r,tol)
2: {input: factors Û , Ŝ,V̂ of rank-(r+1) approximation Â = Û ŜV̂ H with Û ∈ Vm,r+1, V̂ ∈ Vn,r+1,
3: Ŝ ∈ C(r+1)×(r+1), functions for products with ∆A, tolerance tol}
4:
5: ready = False
6: while not ready do
7: r = r+1
8: choose u ∈ Cm orthonormal to Û (e.g. random)
9: choose v ∈ Cn orthonormal to V̂ (e.g. random)

10: compute Û =U∗, S = S∗, V =V ∗ as in (15)
11: Û , Ŝ,V̂ = PRSI(Û , Ŝ,V̂ ,r+1,∆A)
12: compute singular values σ̂1, . . . , σ̂r+1 of Ŝ
13: ready = (σ̂r+1 < tol)
14: end while
15: return Û , Ŝ,V̂ ,r
16: {output: factors Û , Ŝ,V̂ of rank-(r+1) approximation to Â+∆A with Û ∈ Vm,r+1, V̂ ∈ Vn,r+1,
17: Ŝ ∈ C(r+1)×(r+1)}
18: end function

is small, then the approximation rank needs to be sufficiently large to attain a small
low-rank error.

The goal is to ensure that the rank-adaptivity does not impair the convergence
order of the non-adaptive version of the low-rank integrator. To balance the low-rank
error with the time discretization error, we use an estimator for the local error. The
error analysis of the projector-splitting integrator given in [14] shows exponential
growth of the error constant w.r.t. the final time T . For the ST-LO scheme, we also
have shown such a behavior, cf. [10, Theorem 5]. However, numerical experiments
indicate that this is a rather pessimistic bound. In practice, the error constants grow
monotonically, but much slower in T for both the projector-splitting integrator and
for the ST-LO scheme. For our implementation, we approximate the evolution of the
error constants by piecewise linear functions. The respective slopes are recomputed
every M ∈ N steps. Overall, the tolerance threshold tol is determined heuristically
by the following steps:

1. Practical estimation of the local error: Starting from an approximation Â`M ≈
A(t`M), we compute an approximation to A(t`M+1) with the rank-adaptive integra-
tor by performing one step with step size τ . In this step, we prevent rank reduction.
The rank of the (propagated) numerical approximation Â`M+1 is r∗ = r`M+1 +1.
The next time step is now performed with rank r∗, yielding the approximation
Â`M+2 ≈ A(t`M+2). Additionally, we perform four time steps with step size τ

2 and
rank r∗, starting from the initial value Â`M . By this, we obtain alternative approx-
imations Ă`M+1 ≈ A(t`M+1) and Ă`M+2 ≈ A(t`M+2). Assuming that the method
converges with order p ∈ N in time, we estimate the propagated errors of Â`M+1
and Â`M+2 by Richardson extrapolation [7, Section II.4] as

‖A(t`M+1)− Â`M+1‖ ≈
2p

2p−1
‖Â`M+1− Ă`M+1‖=: errI

`.
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and
‖A(t`M+2)− Â`M+2‖ ≈

2p

2p−1
‖Â`M+2− Ă`M+2‖=: errII

` ,

cf. [8, Theorem 2.5]. We let

ζ` =
errII

`

2errI
`

and assume that the propagated error of Â satisfies

‖A(t`M+ j)− Â`M+ j‖ ≈ err`+ jζ`errI
`, j = 1,2, . . . ,M, (16)

where err` is defined recursively via

err`+1 = err`+Mζ`errI
`, `= 0,1, . . . , err0 = 0.

2. Estimation of the low-rank error: If σ1 ≥ . . . ≥ σn ≥ 0 are the singular values of
the exact solution A(tk+1), then the rank-rk+1 best-approximation Âbest

k+1 to A(tk+1)
fulfills

‖A(tk+1)− Âbest
k+1‖2

‖A(tk+1)‖2 =
σ2

rk+1+1 + . . .+σ2
n

σ2
1 + . . .+σ2

n
≤

(n− rk+1)σ2
rk+1+1

‖Âbest
k+1‖2

,

so that

‖A(tk+1)− Âbest
k+1‖ ≤ σrk+1+1

‖A(tk+1)‖
‖Âbest

k+1‖
√

n− rk+1. (17)

3. The tolerance threshold tolk is set by equating the right-hand sides of (16) and
(17) for k = `M+ j, where in (17) we replace the quotient of the unknown solution
A(tk+1) and its unknown best-approximation Âbest

k+1 by 1, and the singular values
σ j by the numerically computed singular values σ̂ j. Solving

σ̂rk+1+1
√

n− rk+1
!
≤ err`+ jζ`errI

`

for σ̂rk+1+1 yields the condition

σ̂rk+1+1 ≤
err`+ jζ`errI

`√
n− rk+1

=: tolk. (18)

These heuristics worked well in our numerical exeriments. However, they are
only reliable if the time discretization error dominates the low-rank error. To ensure
this, one must determine a suitable initial rank for the integration. One might use
r0 = rank(A0). However, if the rank of A0 is very small, this may not necessarily
hold for the rank of the exact solution A(t) even for small times. On the other hand,
if the rank of A0 is large, this choice is also questionable. In our implementation,
we first perform ν integration steps (with ν small, e.g. ν = 5) with an initial rank
given by the user (say r1 = 5) and do not allow rank reduction in this phase. Then
let r∗ denote the number of singular values of Âν greater or equal to tolν defined in
(18). If r∗ < r1, we continue the integration with rν+1 = r∗. Otherwise, we rerun the
initializing process for rank r1 multiplied by 2, until r∗ < r1 holds.
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3.3 Rank-adaptive algorithms

The rank-adaptive version of the projector-splitting integrator Algorithm 1 is called
RAPRSI for rank-adaptive projector-splitting integrator in the following. A single
step of the RAPRSI scheme is given in Algorithm 4.

Algorithm 4 Rank-adaptive projector-splitting integrator, single step
1: function RAPRSI(Û , Ŝ,V̂ ,r,∆A,τ, p)
2: {input: factors Û , Ŝ,V̂ of rank-(r+1) approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r+1,
3: V̂ ∈ Vn,r+1, Ŝ ∈ C(r+1)×(r+1), functions for products with ∆A, step size τ}
4:
5: Û1, Ŝ1,V̂1 = PRSI

(
Û , Ŝ,V̂ ,r+1,∆A

)
6: compute SVD Ŝ1 = Pσ̂QH where σ̂ = diag(σ̂1, . . . , σ̂r+1)
7: compute tol according to Section 3.2
8: if σ̂r < tol then
9: r1 = argmin{ j | σ̂ j+1 < tol}

10: Ĩ =
[
Ir1+1 0

]T ∈ C(r+1)×(r1+1)

11: Û1 = (Û1P)Ĩ
12: Ŝ1 = ĨT σ̂ Ĩ
13: V̂1 = (V̂1Q)Ĩ
14: else if σ̂r+1 ≥ tol then
15: Û1, Ŝ1,V̂1,r1 = AUGMENTATION(Û , Ŝ,V̂ ,∆A,r,tol)
16: end if
17: return Û1, Ŝ1,V̂1,r1, optional L = V̂1ŜH

1
18: {output: factors Û1, Ŝ1,V̂1 of rank-(r1 +1) approximation Â1 = Û1Ŝ1V̂ H

1 ≈ A(t + τ) with
19: Û1 ∈ Vm,r1+1, V̂1 ∈ Vn,r1+1, Ŝ1 ∈ C(r1+1)×(r1+1)}
20: end function

The rank-adaptive version of the ST-LO scheme is derived by replacing the PRSI
routines by the RAPRSI routines. We name this new integrator rank-adaptive ST-LO
(RAST-LO) method. It is presented in Algorithm 5.

The rank-adaptive counterpart of the PRSISTIFF scheme is named RAPRSISTIFF.
Since the linear subproblem preserves the rank, rank-adaptivity is only applied in the
integration of the nonlinear subproblem (10b).

For stiff second-order matrix differential equations of the form (12), we equip the
integrator ST-LOSTIFF with the adaptivity schemes described above. For the sake
of efficiency, rank changes are only implemented in the integration of the nonlinear
subproblem, even though the linear subproblems are in general not rank-preserving.
Only in the case of rank augmentation in the integration of the nonlinear subproblem,
the affected substeps of [10, Algorithm 3] are recomputed. This adaptive integrator is
named RAST-LOSTIFF.
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Algorithm 5 Rank-adaptive integrator for second-order ODEs, RAST-LO, full
method
1: function RAST-LO(τ,F,A0,B0)
2: {input: step size τ , right-hand side F , initial values A0,B0 ∈ Cm×n}
3:
4: compute initial ranks rA,rB according to Section 3.2
5: compute rank-(rA +1) best-approximation Â = Û ŜV̂ H , Ŝ = diag(σ̂1, . . . , σ̂rA , σ̂rA+1) to A0

6: compute rank-(rB +1) best-approximation B̂ = T̂ R̂Ŵ H , R̂ = diag(ρ1, . . . ,ρrB ,ρrB+1) to B0
7: t0 = 0
8: for k = 1, . . . ,n do
9: tk = tk−1 + τ

10:
11: B̂-step:

12: T̂ , R̂,Ŵ ,rB,L = RAPRSI
(
T̂ , R̂,Ŵ ,rB,∆B,τ,2

)
where ∆B =

{
τ
2 F(Û ŜV̂ H), k = 1,
τF(Û ŜV̂ H), else

13:
14: Â-step:
15: Û , Ŝ,V̂ ,rA = RAPRSI

(
Û , Ŝ,V̂ ,rA,∆A,τ,2

)
where ∆A = τT̂ LH

16: end for
17: r = rA

18: compute SVD Ŝ = Pσ̂QH , Û = (UP)Ĩ, V̂ = (V Q)Ĩ, Ŝ = ĨT σ̂ Ĩ where Ĩ =
[
Ir 0
]T ∈ C(r+1)×r

19:
20: return Û , Ŝ,V̂
21: {output: factors Û , Ŝ,V̂ of rank-r approximation to exact solution A(tn) of (2) with Û ∈ Vm,r ,
22: V̂ ∈ Vn,r, Ŝ ∈ Cr×r}
23: end function

4 Numerical experiments

We conclude this paper with numerical experiments for matrix differential equations
resulting from space discretizations of PDEs imposed on a rectangular domain

Ω = [−Lx,Lx]× [−Ly,Ly]⊂ R2. (19)

For simplicity, we use a uniform mesh with n grid points in x- and m grid points in
y-direction, i.e.,

Ωh = {(x j,yi) | x j =−Lx + jhx, yi =−Ly + ihy, 0≤ j ≤ n, 0≤ i≤ m},

with hx =
2Lx

n
, hy =

2Ly

m
, n,m ∈ N.

(20)

Errors of the low-rank solutions are measured w.r.t. numerically computed reference
solutions. Details are given in the respective subsections. Since we are only inter-
ested in the time discretization error, reference solutions and low-rank solutions are
computed on the same spatial grid. The computation of the tolerance threshold as
explained in Section 3.2 is performed with M = 100, i.e., every 100 steps we per-
form four additional steps with step size τ

2 , so that we increase the computational
effort by 4%. Of course, choosing a smaller M leads to smaller errors, which might
be necessary in some experiments, for instance in our first one.

All algorithms have been implemented in Python and were performed on a com-
puter with an Intel(R) Core(TM) i7-7820X @ 3.60GHz CPU and 128 GB RAM stor-
age. The codes are available from [21].
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4.1 Nonlinear fractional Ginzburg–Landau equation

The fractional Ginzburg–Landau equation describes a variety of physical phenom-
ena, cf. [18, 19, 24]. Here, we consider the problem in two space dimensions [25]
and with homogeneous Dirichlet boundary conditions. Discretization in space by the
second-order fractional centered difference method [3] yields the stiff semilinear ma-
trix differential equation

A′(t) =−DxA(t)−A(t)Dy− (κ + iξ )A(t)•A(t)•A(t)+ γA(t), A(0) = A0. (21)

Here, Dx and Dy are symmetric Toeplitz matrices [16] with first columns

ν + iη
hα

x

[
gα

1 ,g
α
2 , . . . ,g

α
n−1
]T and

ν + iη
hβ

y

[
gβ

1 ,g
β
2 , . . . ,g

β
m−1

]T
,

respectively. Further, i =
√
−1, ν ,κ > 0, η ,ξ ,γ ∈ R, 1 < α,β < 2 denote given

parameters, and

gµ
k =

(−1)k−1Γ (1+µ)
Γ (µ/2− k+2)Γ (µ/2+ k+2)

, µ ∈ {α,β}, k ∈ Z,

where Γ (·) denotes the Gamma-function.
In [25], (21) was solved with the linearized second-order backward differential

scheme (LBDF2). A fixed-rank dynamical low-rank integrator for (21) was proposed
in [27], based on considerations from [20]. We compute low-rank solutions of (21)
with PRSISTIFF and RAPRSISTIFF. The solution to the linear subproblem of (21),
which is of form (11), is computed with the Krylov subspace method proposed in
[16].

In our first experiment, we use the same parameter values as in [27], namely
Lx = Ly = 10, m = n = 512, ν = η = κ = ξ = γ = 1, T = 1, α = 1.2, β = 1.9, and
the initial value

(A0)i j = 2sech(x j)sech(yi)e3i(x j+yi), i, j = 1, . . . ,m.

The (full-rank) reference solution is computed with LBDF2 on the same spatial grid,
with time step size τ = 10−4. Figure 1 shows the relative global errors

err =
‖A− Â‖
‖A‖

between the reference solution A and the respective low-rank solutions Â at t = T for
different step sizes τ . Convergence order one is observed for the PRSISTIFF scheme.
For large step sizes, the approximations computed with the RAPRSISTIFF method ex-
hibit large errors . This is explained by the behavior of the singular values, cf. Figure 1
(right picture). The time-discretization error is overestimated in this experiment, so
that the tolerance threshold becomes so large that the second largest singular value
is discarded. The induced low-rank error is then of magnitude 10−1. If the parameter
M is reduced to 30, this unfortunate rank reduction vanishes. However, reducing M



Rank-adaptive dynamical low-rank integrators for matrix differential equations 13

10−3 10−2

10−4

10−3

10−2

10−1

τ

(α,β ) = (1.2,1.9)

O(τ)
PRSISTIFF
RAPRSISTIFF
RAPRSISTIFF

0 1
10−9

10−6

10−3

100

t

(α,β ) = (1.2,1.9)

Fig. 1 Fractional Ginzburg–Landau equation, first experiment. The left picture shows the relative global
error at T = 1 for (α,β ) = (1.2,1.9), where the fixed-rank approximation (yellow) is computed with
r = 5. The rank-adaptive approximation was computed with M = 100 (purple) and M = 30 (orange).
The trajectories of the ten largest singular values of the reference solution (blue), the singular values of
RAPRSISTIFF (M = 30) for τ = 1 ·10−3 (orange), and the computed tolerance threshold (red, dashed) are
displayed on the right.

10−3 10−2

10−3

10−2

10−1

τ

(α,β ) = (1.2,1.9)

O(τ)
PRSISTIFF
RAPRSISTIFF

0 1

10−5

10−3

10−1

101

t

(α,β ) = (1.2,1.9)

Fig. 2 Fractional Ginzburg–Landau equation, second experiment. The left picture shows the relative global
error at T = 1 for (α,β ) = (1.2,1.9), where the fixed-rank approximation is computed with r = 8. The tra-
jectories of the ten largest singular values of the reference solution (blue), the singular values of RAPRSIS-
TIFF for τ = 10−3 (orange), and the computed tolerance threshold (red, dashed) are displayed on the right.

increases the workload for the updates of tol, while M = 100 worked well in all
other experiments and also in this experiment for smaller step sizes.

For our second example, we choose the second parameter set from [27], Lx =
Ly = 8, n = m = 512, ν = κ = 1, η = 0.5, ξ =−5, γ = 3, α = 1.2, β = 1.9, and the
initial values

(A0)i j = e−2(x2
j+y2

i ) ei(S0)i j , where (S0)i j = (ex j+yi +e−(x j+yi))−1,

for i = 1, . . . ,m−1, j = 1, . . . ,n−1. The relative global errors at T = 1 are displayed
in Figure 2. In contrast to the previous experiment, order one is observed for both
integrators. Now the error curves for the fixed-rank integrator and its rank-adaptive
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10−4 10−3

10−5

10−4

10−3
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(α,β ) = (1.2,1.9)

O(τ)
PRSISTIFF
RAPRSISTIFF

0 0.2
10−12

10−8

10−4

100

t

(α,β ) = (1.2,1.9)

Fig. 3 Fractional Schrödinger equation. The left picture shows the relative global error at T = 0.2 for
(α,β ) = (1.2,1.9), where the fixed-rank approximation is computed with r = 5. The trajectories of the ten
largest singular values of the reference solution (blue), the singular values of RAPRSISTIFF (M = 100) for
τ = 4 ·10−4 (orange), and the computed tolerance threshold (red, dashed) are displayed on the right.

variant align almost perfectly, and the singular values follow nicely the trajectories of
the singular values of the reference solution.

Similar results for both experiments were obtained for the parameter values (α,β )=
(1.5,1.5), (1.7,1.3), and (1.9,1.2), cf. [21].

4.2 Nonlinear fractional Schrödinger equation

The nonlinear fractional Schrödinger equation [26] is a special case of the fractional
Ginzburg–Landau equation (21) with ν = κ = γ = 0. For the limit α,β → 2 it be-
comes the classical Schrödinger equation.

In our experiment, the reference solution to the problem was again computed with
the LBDF2 method, using the step size τ = 2 · 10−5. Figure 3 shows the results for
the parameter values from [26], Lx = Ly = 10, n = m = 512, η = 1, ξ =−2, T = 0.2,
α = 1.2, β = 1.9, and the initial value

(A0)i j = sech(x j)sech(yi)exp(i(x j + yi)), i, j = 1, . . . ,m−1.

Again, the relative global error curves match almost perfectly for both low-rank
methods, and are also clearly indicating convergence of order one. The results for
other choices of α and β are available in [21].

4.3 Laser-plasma interaction

As an example for second-order problems, we consider a reduced model of laser-
plasma interaction from [12, 13, 22]. It is given by a wave equation with space-
dependent cubic nonlinearity on a bounded, rectangular domain Ω given in (19) with
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periodic boundary conditions. After space discretization according to [22, Section
4.1.3], we obtain the matrix differential equation

A′′(t) = L A(t)−0.3χ̃ •
(
A(t)− 1

2
A(t)•A(t)•A(t)

)
= F

(
A(t)

)
, (22)

with initial values A(0) = A0 and A′(0) = B0 given by

(A0)i j = 0.12exp
(
− y2

i

l2
0
−

x2
j

w2
0
+ iyi

)
, (B0)i j =

(
− 2yi

l2
0
− i
)
(A0)i j,

where x j,yi are defined in (20) and i = 1, . . . ,m, j = 1, . . . ,n. The discrete Laplacian
L acts on A(t) via

L A(t) = F−1
m D2

yFmA(t)+A(t)Dx,

where Dx ∈ Rn×n denotes the symmetric Toeplitz matrix with first row

− 1
12h2

x
[30,−16,1,0, . . . ,0,1,−16] ,

and
Dy =

iπ
Ly

diag
(

0, . . . ,
m
2
−1,−m

2
, . . . ,−1

)
.

Fm denotes the discrete Fourier transformation operator for m Fourier modes and
F−1

m its inverse. Hence we use fourth order finite differences with n equidistant grid
points in transversal direction and a pseudospectral method with m equidistant grid
points in longitudinal direction.

Equation (22) describes the propagation of a laser pulse with wavelength λ0 in
the direction of the positive y-axis through vacuum and through a strongly localized
plasma barrier. The plasma is located between y= 50π and y= 300π and has constant
density 0.3. The localization is modeled by the matrix χ̃ ∈ Rm×n with entries

χ̃i j =

{
1, 50π ≤ yi ≤ 300π,
0, else.

(23)

The interaction between the pulse and the plasma is modeled by a cubic nonlinearity.
As in [13] we use the parameters λ0 = π , l0 = 10π , w0 = 100π , Lx = 300π , and
Ly = 600π .

An efficient implementation of products F(Â)E of the right-hand side F(A) in
(22) with a skinny matrix E is crucial. For the linear part, this is achieved by comput-
ing the matrix products in

(L Â)E = F−1
m D2

yFmUSV HE +USV HDxE

successively from the right to the left. The implementation of the cubic nonlinear part
of F is more involved and presented in detail in Appendix A.2.

Our numerical experiments were carried out for t ∈ [0,600π] with n = 1024 and
m = 8192 discretization points in transversal and longitudinal direction, respectively.
The reference solution was computed with the Gautschi-type method from [22], with
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τ/τ0
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10−7

10−5

t

O(τ2) ST-LO RAST-LO ST-LOSTIFF RAST-LOSTIFF

Fig. 4 Laser-plasma interaction. Relative global error between reference solution and low-rank approxi-
mations at T = 600π (left), and absolute error in the maximal intensity for τ = 4τ0 = Ly/(20m) (right).
The fixed-rank methods were computed with rA = rB = 4, the rank-adaptive methods with M = 100.

0 300π 600π

10−7

10−4

10−1

102

t

0 300π 600π

10−7

10−4

10−1

102

t

Fig. 5 Laser-plasma interaction. Trajectories of the ten largest singular values of the reference solution
(blue) together with the trajectories of the singular values of the rank-adaptive low-rank integrators for
τ = 4τ0 (above: RAST-LO, below: RAST-LOSTIFF), and the respective computed tolerance thresholds
(red, dashed).

step size τ0 = Ly/(80m). For the low-rank solutions we used the step sizes τ = 2kτ0,
k = 2, . . . ,6. The algorithms ST-LO and ST-LOSTIFF were performed with fixed
ranks rA = rB = 4. In the stiff methods ST-LOSTIFF and RAST-LOSTIFF, we used
the weights

ω2
1 =

2
3
, ω2

2 = 0, ω2
3 =

1
3

in (13). This choice is motivated by the fact that the laser pulse moves mainly in
longitudinal direction.
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The left picture in Figure 4 shows the relative global error at T = 600π between
the reference solution and the different low-rank integrators. Second-order conver-
gence is observed in all cases, and the stiff integrators yield better approximations
than the nonstiff versions. The accuracy of the rank-adaptive schemes is comparable
to those of the fixed-rank integrators, showing nicely that the heuristics works well
for this example, cf. Figure 5.

In physics, the maximal intensity maxi, j |Ai j(t)|2 of the propagating pulse over
time is sometimes of higher interest than A itself. In the right picture of Figure 4,
the absolute error between the maximal intensity of the numerical pulse computed
with the Gautschi-type integrator and the maximal intensity of the approximations
obtained by the low-rank integrators is displayed.

4.4 Sine-Gordon equation

In our last experiment, we consider the two-dimensional sine-Gordon equation on the
domain Ω from (19) with homogeneous Neumann boundary conditions [1]. Using
finite differences of second order on the grid (20) with Lx = Ly = 7, n = m = 1001 in
both x- and y-direction, we obtain the semi-discretized matrix differential equation

A′′(t) = DA(t)+A(t)DT −Φ • sin
(
A(t)

)
, t ∈ [0,T ], A ∈ C(m+1)×(m+1).

Here, sin(A) denotes the entrywise evaluation of the sine function. The matrix D is
given by

D =
1
h2


−2 2
1 −2 1

. . . . . . . . .
1 −2 1

2 −2

 ∈ R(m+1)×(m+1), h =
1

m+1
.

The storage-economical evaluation of the products sin(Â)E and sin(Â)HE is pre-
sented in Appendix A. There is no preferred direction of propagation, so that we used
the weights

ω2
1 = ω2

2 = ω2
3 =

1
3

in (13) for the ST-LOSTIFF and RAST-LOSTIFF methods .
First we consider the initial values

(A0)i j = 4arctanexp
(

x j−3.5
0.954

)
, (B0)i j = 0.629sech

(
x j−3.5
0.954

)
,

and

Φi j = 1+ sech2
√

x2
j + y2

i ,

i, j = 0, . . . ,m, of a line soliton in an inhomogeneous medium [2, Section 3.1.3].
The reference solution is computed by the leapfrog scheme on the same spatial grid
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Fig. 6 Sine-Gordon equation, first setting. Relative global error at T = 9 between reference solution and
low-rank approximations (left), and rank evolution of the solutions computed with the rank-adaptive in-
tegrators over time (right) for τ = 10−4. For the fixed-rank integrators, we used rA = rB = 20, for the
rank-adaptive methods M = 100.

10−4 10−3

10−9

10−8

10−7

10−6

10−5

τ
0 2 4 6 8 10

0

20

40

t

O(τ2) ST-LO RAST-LO ST-LOSTIFF RAST-LOSTIFF

Fig. 7 Sine-Gordon equation, second setting. Relative global error at T = 11 between reference solution
and low-rank approximations (left), and rank evolution of the solutions computed with the rank-adaptive
integrators over time (right) for τ = 10−4. For the fixed-rank integrators, we used rA = rB = 50, for the
rank-adaptive methods M = 100.

with time step size τ = 2.5 ·10−5. Figure 6 shows the relative global errors between
the low-rank approximations and the reference solution. Convergence order two is
observed for all methods. The fixed-rank integrators are slightly more accurate than
their rank-adaptive pendants, probably because they use a higher rank.

In a second setting, we consider the symmetric perturbation of a static line soliton
[2, Section 3.1.2] with Φi j = 1, (B0)i j = 0, and

(A0)i j = 4arctanexp
(

x j +1− 2
cosh(yi +7)

− 2
cosh(yi−7)

)
, i, j = 0, . . . ,m.

Figure 7 shows a similar behavior of the methods as in the first setting. For the
RAST-LO scheme however, the initial rank is rather large, and drops significantly
after a few steps. This is caused in the routine for determining an appropriate initial
rank. As explained in Section 3.2, the initial guess r1 = 5 is doubled repeatedly until
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the criterion for continuing the integration beyond the first ν steps is satisfied. In this
experiment, an initial rank of ∼ 23 is adequate. Therefore, the guesses 5, 10, and 20
are rejected, until r1 = 40 is accepted and rank reduction applies in the subsequent
integration steps.

A Evaluation of entrywise functions for low-rank matrices

Let f be a (nonlinear) function that acts entrywise on matrices, let E ∈ Cn×r be an arbitrary matrix, and
let Â = Û ŜV̂ H ∈Mr be a low-rank matrix with factors Û , Ŝ,V̂ given in (5). For the efficiency of low-rank
integrators for nonlinear problems, it is crucial to evaluate the product

f (Â)E, (24)

using the factors Û , Ŝ, and V̂ instead of the full matrix Â. However, the entrywise computation of all
components Âi j of Â can not be avoided in general. Nevertheless, it is not necessary to store the full matrix
Â ∈ Cm×n, but it suffices to compute the rows of Â successively.

A.1 General functions

The ith row of Â is given by

(eiÂ) = (eiŨ)V̂ H ∈ C1×n, i = 1, . . . ,m,

where Ũ = Û Ŝ. The matrix products (eiŨ)V̂ H are carried out with complexity O(nr). We now evaluate f
entrywise at eiÂ and multiply the result with E, which gives the ith row of the product (24). This sequence
of operations can be performed for each i = 1, . . . ,m independently and thus in parallel. This allows a fast
computation, even for large m. Similarly, the evaluation of

C = f (Â)H E, E ∈ Cm×r,

is realized by computing the jth row via

(e jC) = f (Ũ(e jV̂ )H)H E, j = 1, . . . ,n.

While this approach is suitable for any function f acting entrywise on its argument, e.g. trigonometric
functions, the successive computation of the entries of Â can be avoided for monomials.

A.2 Monomials

Consider a (complex) monomial of degree p ∈ N, f (z) = zp for z ∈ C. The entrywise evaluation of f at
Â ∈Mr is defined as

(
f (Â)

)
i j = Âp

i j .

We now show how to compute the product (24) without computing or storing the elements of Â
explicitly. Let Ũ = Û Ŝ ∈ Cm×r . Then we have

Â = Û ŜV̂ H = ŨV̂ H =
r

∑
j=1

Ũ jV̂ H
j , (25)

where Ũ j is the jth column of Ũ and V̂j the jth column of V̂ , respectively. The Hadamard product is
distributive and satisfies

(Ũ jV̂ H
j )• (ŨkV̂ H

k ) = (Ũ j •Ũk)(V̂j •V̂k)
H
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for 1≤ j,k ≤ r, cf. [23, Section 2]. Hence, for E ∈ Cn×r it holds

f (Â)E =

(( r

∑
j1=1

Ũ j1V̂ H
j1

)
• . . .•

( r

∑
jp=1

Ũ jpV̂ H
jp

))
E

=

(
r

∑
j1 ,..., jp=1

(
Ũ j1 •Ũ j2 • . . .•Ũ jp

)(
V̂j1 •V̂j2 • . . .•V̂jp

)H

)
E

=
r

∑
j1 ,..., jp=1

(Ũ j1 •Ũ j2 • . . .•Ũ jp )
(
(V̂j1 •V̂j2 • . . .•V̂jp )

H E
)
. (26)

For the special case of the cubic nonlinearity which appears in the examples in Section 4.1, Sec-
tion 4.2, and Section 4.3,

f (Â) = Â• Â• Â,

where Â denotes the complex conjugate of Â, (26) reads

(Â• Â• Â)E =
r

∑
j,k,`=1

Ũ jk`V̂ H
jk`E, where Ũ jk` = Ũ j •Ũk •Ũ`, V̂jk` = V̂j •V̂k •V̂`.

The computational cost is further reduced by exploiting the symmetry in j and `,

(Â• Â• Â)E =
r

∑
k=1

[
r

∑
j=1

(
Ũ2

j •Ũk
)((

V̂ 2
j •V̂k

)H E
)
+2

r

∑
j=1

j−1

∑
`=1

Ũ jk`(V̂ H
jk`E)

]
. (27)

The product (Â• Â• Â)H E with E ∈ Cm×r can be computed analogously.

Additional simplifications apply to the product (χ̃ •Â•Â•Â)E with χ̃ ∈Cm×n given in (23). It satisfies

χ̃ =

 0(η−1)×n
1(ξ−η+1)×n

0(m−ξ )×n

=

 0η−1
1ξ−η+1

0m−ξ

1T
n =: 1̃m1

T
n , (28)

where 0n, 1n are the vectors of length n filled with zeros and ones, respectively, and 0n×p and 1n×p the
matrices of dimension n× p with all entries being zeros and ones, respectively. From (25) and (28), we
obtain

(χ̃ • Â)E =
[
(1̃m1

T
n )• Â

]
E =

[ r

∑
j=1

diag(1̃m)Ũ jV̂ H
j diag(1n)

]
E

=
r

∑
j=1

 0η−1

ϑ(Ũ j)
0m−ξ

(V̂ H
j E) =


0(η−1)×r

r
∑
j=1

ϑ(Ũ j)(V̂ H
j )E

0(m−ξ )×r

 ,
where ϑ(Ũ j) denotes the restriction of Ũ j to its η th to ξ th entries. Here, we made use of the following
property of the Hadarmard product, cf. [23, Section 2]: If A ∈ Cm×n, x ∈ Rm, and y ∈ Rn, then

(xyT )•A = diag(x)Adiag(y).

Hence, it suffices to compute the small matrices ϑ(Ũ j)(V̂ H
j E) and sum them up. Likewise, using (27), we

have

(χ̃ • Â•Â• Â)E =


0(η−1)×r

r
∑

k=1

[ r
∑
j=1

(
ϑ(Ũ j)

2 •ϑ(Ũk)
)((

V̂ 2
j •V̂k

)H E
)
+2

r
∑
j=1

j−1
∑
`=1

ϑ(Ũ jk`)(V̂ H
jk`E)

]
0(m−ξ )×r

 .
The implementation of (χ̃ • Â•Â• Â)H E, E ∈ Cm×r , is realized in the same manner.
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