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Vorwort des Herausgebers

Die Fahrzeugtechnik ist kontinuierlich Veränderungen unterworfen. Klima-
wandel, die Verknappung einiger für Fahrzeugbau und -betrieb benötigter
Rohstoffe, globaler Wettbewerb, gesellschaftlicher Wandel und das rapide
Wachstum grosser Städte erfordern neue Mobilitätslösungen, die vielfach
eine Neudefinition des Fahrzeugs erforderlich machen. Die Forderungen
nach Steigerung der Energieeffizienz, Emissionsreduktion, erhöhter Fahr-
und Arbeitssicherheit, Benutzerfreundlichkeit und angemessenen Kosten
sowie die Möglichkeiten der Digitalisierung und Vernetzung finden ihre
Antworten nicht aus der singulären Verbesserung einzelner technischer Ele-
mente, sondern benötigen Systemverständnis und eine domänenübergrei-
fende Optimierung der Lösungen.

Hierzu will die Karlsruher Schriftenreihe für Fahrzeugsystemtechnik ei-
nen Beitrag leisten. Für die Fahrzeuggattungen Pkw, Nfz, Mobile Arbeits-
maschinen und Bahnfahrzeuge werden Forschungsarbeiten vorgestellt, die
Fahrzeugsystemtechnik auf vier Ebenen beleuchten: das Fahrzeug als kom-
plexes, digitalisiertes mechatronisches System, die
Mensch-Fahrzeug-Interaktion, das Fahrzeug in Verkehr und Infrastruktur
sowie das Fahrzeug in Gesellschaft und Umwelt.

Elektrofahrzeuge weisen gegenwärtig im Vergleich zu verbrennungsmoto-
risch angetriebenen Fahrzeugen eine geringere Reichweite auf, die über-
dies durch die Verwendung von Heizung und Klimaanlage reduziert wird.
In Verbindung mit dem zur Zeit noch unzureichend ausgebauten Netz von
Ladestationen entstehen bei den Nutzern Bedenken hinsichtlich der Ver-
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fügbarkeit und Zuverlässigkeit von Elektrofahrzeugen. Eine bessere Plan-
barkeit von Fahrten und den zuvor erforderlichen Ladephasen lässt sich mit
einer zuverlässigen Reichweitenprognose erreichen. Diese berücksichtigt
heute meist Fahrzeugmodelle, Kartendaten sowie historische Verkehrsdaten
in Form von Durchschnittsgeschwindigkeiten auf Streckenabschnitten aus
Verkehrsdatenbanken und ermittelt daraus eine deterministische Vorhersa-
ge, die jedoch oftmals keine befriedigende Genauigkeit erreicht.

Hier setzt die Arbeit von Herrn Scheubner an, in der er einen Ansatz ei-
ner stochastischen Energieverbrauchsvorhersage vorschlägt. Diese hält die
Komplexität physikalischer Modelle in Grenzen, indem sie ihnen datenba-
sierte stochastische Modelle zur Seite stellt. Mit ihnen wird das Fahrerver-
halten angemessen berücksichtigt, das auf dem Hintergrund zuvor ermit-
telter Verkehrsphasen prädiziert wird. Das von Herrn Scheuber eingeführte
Konzept der Ankommenswahrscheinlichkeit erweist als sehr leistungsfähig
und liefert erheblich zuverlässigere und genauere Reichweitenprognosen als
herkömmliche Verfahren.

Frank Gauterin
Karlsruhe, im Mai 2021
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Abstract

Limited range and charging infrastructure leads to range anxiety of electric
vehicle drivers. Current range estimation algorithms are deemed unreliable
and large safety margins are reserved to prevent the risk of stranding. This
is one of the main problems limiting widespread acceptance of electric vehi-
cles. One approach to reduce range anxiety is a more reliable range estima-
tion, which in general depends on two factors: current battery energy con-
tent and the energy consumption forecast on the route to destination. This
work aims at improving the latter by enhancing the forecast with a notion
of uncertainty. The prediction algorithm itself learns from driver and traffic
data in a training set to generate accurate, driver-individual energy consump-
tion forecasts. Thereby, a central part of the algorithm is the explicit evalua-
tion of the traffic situation by classifying the traffic phases. With the help of
this methodology, individual forecasts can be made more precise since they
are highly dependent on the surrounding traffic. To demonstrate the valid-
ity of the algorithms, the performance is evaluated using real test drive data
comprising multiple drivers. On the basis of the performance evaluation,
both the superiority of stochastic algorithms over deterministic predictions
and the improvement of predictive performance by evaluating explicit traffic
phases can be shown. Implementing the proposed methodology in modern
day electric vehicles could reduce range anxiety and ultimately increase ac-
ceptance of electric mobility worldwide.
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Kurzfassung

Stochastische Algorithmen zur Berechnung der Reichweite von Elek-
trofahrzeugen mittels datengetriebener Lernmodelle
Eingeschränkte elektrische Reichweite und Ladeinfrastruktur führen zu
Reichweitenangst bei Fahrern von Elektrofahrzeugen. Aktuelle Algorith-
men zur Berechnung der Reichweite werden als unzuverlässig empfunden
und hohe Sicherheitspuffer werden reserviert, um das Risiko eines Liegen-
bleibers zu reduzieren. Dies ist eines der Hauptprobleme, welches eine weit-
reichende Akzeptanz von Elektrofahrzeugen verhindert. Ein Ansatz um die
Reichweitenangst zu verringern ist eine zuverlässigere Reichweitenberech-
nung, welche grundsätzlich auf zwei Faktoren beruht: dem aktuellen Ener-
gieinhalt der Batterie und der Energieverbrauchs-Vorhersage auf der Route
bis zum Ziel. Diese Arbeit zielt darauf ab, letzteres durch das Berücksichti-
gen von Vorhersage-Unsicherheiten zu verbessern. Der Prädiktionsalgorith-
mus selbst lernt von Fahrer- und Verkehrsdaten aus einem Trainings-Set um
akkurate, fahrerindividuelle Energieverbrauchsvorhersagen zu generieren.
Dabei ist die explizite Berücksichtigung der Verkehrssituation durch Klas-
sifikation der Verkehrsphasen ein zentraler Aspekt des Algorithmus. Mit-
hilfe dieser Methode können individuelle Vorhersagen präziser berechnet
werden, da sie abhängig vom Verkehr in der Umgebung sind. Um die Al-
gorithmen zu validieren wird deren Performance mittels Realfahrdaten von
verschiedenen Fahrern evaluiert. Auf Basis dieser Evaluation kann sowohl
die Überlegenheit von stochastischen Algorithmen gegenüber determinis-
tischen Vorhersagen als auch die Verbesserung der Vorhersagegüte durch
Berechnung expliziter Verkehrsphasen gezeigt werden.
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1 Introduction

1.1 Motivation

In recent years, research interest in electric mobility inceased because it
offers the chance to reduce emissions worldwide [75, 19], especially local
emissions in urban areas [120] and in combination with renewable energy
sources [114]. Thereby, emission reduction potential is primarily focused on
gaseous emissions such as NOx or CO2, the latter is of special importance
in the background of global climate change. A further aspect is the noise
reduction potential of electric vehicles in cities [76]. In consequence, pol-
icy makers support electric mobility, e.g. by creating incentives for buyers,
and further tighten emission regulations for passenger vehicles worldwide.
Some governments and cities have passed legislation for a complete ban of
internal combustion engine vehicles (ICEVs) [25] and nowadays it seems
that until wide-range usage of pure-electric vehicles is merely a matter of
time. In fact, vehicle manufacturers have started to bring battery-electric
vehicles (BEVs) to the mass market, their sales numbers having increased
exponentially in recent years [54].
However, the energy density of the battery in an electric vehicle is signif-
icantly lower than in fossil fuels [85]. This disadvantage cannot be bal-
anced by the superior efficiency of an electric powertrain compared to an
ICEV leading to limited driving range of BEVs. In addition, with the cur-
rent charging infrastructure, BEV charging time is much higher than it takes
to refuel an ICEV and on top of that, there are fewer electric charging sta-
tions than gas stations. Consequently, drivers of electric vehicles experience

1



1 Introduction

range anxiety, which is the fear of stranding with an empty battery [26].
To reduce this effect and help increase acceptance of electrified vehicles,
batteries with growing maximum capacities are installed in the cars, up to
100 kwh nowadays in the TESLA models [124]. Additionally, increased ef-
forts to build a dense, powerful network of charging stations are taken by
electricity providers and car manufacturers [97]. Nonetheless, it will take
time until driving range and charging infrastructure is sufficient and BEV
drivers do not have to worry about stranding anymore.
Apart from hardware solutions, intelligent driver assistance systems such as
eco-routing [83] and charge-planning [72, 18, 125, 126] are developed to
reduce range anxiety. Thereby, eco-routing helps the driver to consume less
energy and thus increase range whereas charge-planning selects charging
stations along the planned route to allow long-distance trips with a BEV.
Those software solutions are based on a range estimation algorithm which
calculates the answer to the core question: How far can the vehicle drive

until the battery runs out of energy? If the range estimate is not reliable,
eco-routing or charge-planning strategies might fail or cause unnecessary
long trips. The presented dissertation in the following focuses on algorithms
and models for reliable range estimation to help reduce range anxiety and
thus increase acceptance of electric vehicles.

1.2 Problem Statement and Research Questions

Range estimation in electric vehicles provides information for the range dis-
play as well as the advanced driver assistance systems mentioned in the pre-
vious section. It can be imagined that if it is unreliable, driver’s would not
trust the range display anymore and eco-routing or charge-planning strate-
gies might fail or cause unnecessary long trips. Thus, improving the accu-
racy of range estimation algorithms is the focus of a lot of research activity
in the respective field and an overview is given in Section 3.1. Traditionally,
the output is a deterministic quantity signifying range as distance-to-empty.

2



1.2 Problem Statement and Research Questions

Prediction accuracy is consequently measured based on the difference be-
tween predicted range and the distance driven until the battery is empty.
However, range estimation includes a forecast into the future of the trip,
because the future energy consumption must be obtained.
Thereby, any forecast in a real-world problem is subject to uncertainty, es-
pecially when involving human behaviour. In consequence, deterministic
predictions will rarely be exactly equivalent to the true value, instead they
are scattered around it according to the unknown uncertainty. In this work,
an important differentiation is made between accuracy and reliability: ac-
curacy means how close the prediction is to the measurement and reliability
means whether the accuracy information is included in the forecast. Thus,
the reliability definition is derived from the statistical interpretation of con-
sistency. By this definition, deterministic forecasts can be accurate but not
reliable which is one of the reasons why range displays in modern electric
vehicles are deemed unreliable [33]. This problem can be avoided by cal-
culating system uncertainties and including them in the range estimate as
a stochastic forecast. In fact, statisticians urge the necessity for stochastic
forecasts for real-world applications e.g. in [39].
Another problem for range estimation is the variety of influence factors,
ranging from environmental influences (weather, road conditions) over
vehicle-specific influences (powertrain efficiency, weight) to human influ-
ence (driving behaviour, traffic state). Among those, vehicle-specific and
environmental influences must be modelled using the known physical de-
pendencies and available vehicle sensors. Thereby, the different charac-
teristics of each specific variable and limited computing power and sensor
information pose a challenge for the researcher. However, another chal-
lenge is induced by driving behaviour and traffic state because they are non-
deterministic influence factors which cannot be explained on a pure physical
level. Instead, they must be learned using data and appropriate machine-
learning models.

3



1 Introduction

From these challenges, research questions are derived, which serve as guide-
lines in the course of this dissertation. The first one rises from the problem
of reliable forecasts including a measure of uncertainty:
RQ1: How can electric vehicle range be expressed stochastically to signify

the amount of uncertainty in the system?

Thereby, RQ1 aims at finding a high level approach high level approach
for an adequate mathematical expression first before developing a specific
algorithm. Apart from the overall methodology, the multitude of influence
factors has to be included in the forecast model. While many of the physical
models already exist in literature and have to be applied accordingly, the
non-deterministic problem of driver and traffic needs to be solved as well.
An aspect only partly covered in research is the inter-dependency of driver
and traffic which creates a system in which some states are only partly ob-
servable. For example, driving behaviour is not dominant in a dense traffic
jam and in turn, the speed of surrounding vehicles is of secondary impor-
tance in a free-flow scenario. Therein lies the second research question:
RQ2: How can driving behaviour depending on the traffic situation be de-

termined in the ego-vehicle to include it explicitly in the range estimation

forecast?

Thereby, the ego-vehicle means the individual vehicle for which the range
estimation is made. Although RQ2 is focused on the problem of driver and
traffic, the second part includes the physical influences as well since without
them, driving range cannot be calculated. It can be imagined that a multitude
of models and model-combinations can be developed to solve RQ2. Hence,
the natural question arises of which model-structure is the best:
RQ3: Which of the considered model-structures yields the best overall per-

formance in a range estimation context?

To answer these questions, especially RQ3, an appropriate test dataset must
be obtained. In this dissertation, the performance evaluations are all based
on real test drives with modern production cars and different drivers to cap-
ture real-world conditions. The question of whether the test drive data is

4



1.3 Structure of this Dissertation

enough for statistical significance, basically how much testing is enough?

lies outside of this work’s focus.

1.3 Structure of this Dissertation

Dissertations often include an extensive chapter introducing the required
technical background. This dissertation however illustrates only the main
basics in a secluded chapter. As this work covers aspects from many dif-
ferent fields in engineering, the necessary fundamentals are explained in the
beginning of the specific sections to improve readability.
After Chapter 1 presented the considered problem of this work as well as the
research questions, Chapter 2 illustrates the technical background. That in-
cludes energy consumption and driving resistance of an electric vehicle, the
characteristics of modern traffic databases, and an overview of forecasting
methodologies as well as their evaluation.
Chapter 3 shows the overall approach for range estimation. It starts with
an overview of the related research and subsequently, the range estimation
approach followed in this work is presented. This approach includes a sim-
plified battery model, which is described in the following before introducing
the test drive data required to develop the models. After that, the required
post-processing of the data is shown.
In Chapter 4, the first developed algorithms are presented. It starts with the
proposed energy consumption model and explains its inherent parameter es-
timation method. In the second part of this chapter, the algorithm for traffic
classification is developed, which provides information to learn driving be-
haviour. The used approaches are presented and implemented before their
performance is compared in the end of the section.
Chapter 5 begins by illustrating the forecast methodology, where the energy
consumption model as well as the traffic phase classification provide infor-
mation to the learning algorithm. The state-of-the-art prediction model is
shown, which relies on traffic information. Subsequently, the regression al-
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1 Introduction

gorithm is illustrated, which poses an alternative model that takes driver be-
haviour into account. The regression algorithm provides a stochastic veloc-
ity forecast. The calculation from velocity to energy consumption requires
uncertainty propagation methods, which are presented thereafter. How the
stochastic range estimate can be obtained concludes the chapter.
The results of this work are presented in Chapter 6. The proposed approach
for performance evaluation is introduced before comparing the algorithms.
In the second part of the chapter, the illustrated results are discussed and
conclusions are drawn. In Chapter 7, the final remarks of the dissertation
are provided, including a summary, the contributions and an outlook.

1.4 Notational and Stylistic Aspects

Although general mathematical conventions are used in this dissertation,
some notational aspects shall be introduced in this section. A central as-
pect of this work is the forecasting methodology. While some researchers
use the expressions forecast and prediction with different meanings, e.g. to
imply deterministic or stochastic nature, in this dissertation they are used in-
terchangeably for improved readability. Mathematical symbols are mainly
used according to existing literature, therefore bold letters represent vectors,
e.g. x, whereas x would be a scalar. A tilde on top of a value denotes a fore-
cast x̃, where deterministic forecasts are indicated with x̃d and stochastic
forecasts with x̃s. For models using a specific forecast result, this is denoted
in brackets, e.g. ỹ(x̃s). Furthermore, a bar shows an averaged value x̄. If a
variable is the result of an estimation process, it is signified with a hat x̂.

6



2 Technical Background

In this chapter, the fundamental technical background necessary for electric
vehicle range estimation is presented. The underlying physical theories for
electric vehicle energy consumption, namely driving resistances and power-
train losses, are introduced in Section 2.1. The main problem in estimating
range addressed in this dissertation is calculating future energy consumption
for a specific route, therefore predictive information is required. This can be
obtained from the so called traffic and routing database (TRDB), which is
explained in Section 2.2. Using that information, a forecast can be made
using the methods shown in Section 2.3. Lastly, to assess the forecast per-
formance, validation and evaluation methods are required as illustrated in
Section 2.4.

2.1 Energy Demand of an Electric Vehicle

The energy demand of an electric vehicle can fundamentally be divided into
two categories: tractive energy Ec and energy consumption of the auxiliaries
Eaux. Tractive energy is derived from the power necessary to move the vehi-
cle and depends on the driving resistances as well as the powertrain losses.
The auxiliaries are secondary consumers installed in modern day vehicles,
e.g. the air-conditioning, seat-heating, active suspension etc. In this dis-
sertation, the focus lies on tractive energy since it represents the main part
of total energy consumption [28] and therefore it is important to forecast it
accurately. For details on electric vehicle’s auxiliaries, see [8] or [50].
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2 Technical Background

Tractive energy consumption is derived from the tractive force a vehicle
needs to overcome the driving resistances Fr. These can be described using
the standard longitudinal model [55] which is widely used, e.g. in online
force estimation algorithms [98], hybrid electric vehicle (HEV) operation
strategies [135] or vehicle simulation [128]. In this work, a simplified model
is applied which is described in the following. There, details such as toe-in
resistance or suspension resistance are not considered. The total driving re-
sistance force Fr consists of the rolling resistance, aerodynamic resistance,
acceleration force and climbing force and is calculated with help of (2.1).
Rolling resistance is caused mainly by deformation energy of the tyre while
the vehicle is moving. It is governed by the rolling resistance coefficient
fr, which depends on vertical force, tyre pressure, temperature, velocity and
road surface [55]. Aerodynamic resistance originates from the friction be-
tween vehicle surface and surrounding air while the vehicle is moving for-
ward. For a situation without considering wind speed, it depends on the air
density ρ , velocity v, frontal area A and the aerodynamic drag coefficient of
the vehicle cw. The acceleration force is caused by translational acceleration
a of the vehicle following Facc = m · a. Usually, m comprises both vehicle
mass and the reduced mass of rotational parts Ired/r2

dyn with rdyn being the
dynamic wheel radius and Ired the reduced moment of inertia. However, the
rotational parts are considered in the powertrain model described later in
this section. The climbing force originates from the potential energy dif-
ference when moving up- or downhill and is defined by the road gradient
angle α . More details about the individual resistance forces can be found
in [44] or [113]. In (2.1), the driving resistance parameters are concentrated
in the vector p ∈ R3×1 whereas the dynamic measurements are included in
B ∈ R3×1.
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2.1 Energy Demand of an Electric Vehicle

Fr =


m fr

1/2 cwρA

m


>

︸ ︷︷ ︸
p

·


gcosα

v2

a+gsinα


︸ ︷︷ ︸

B

(2.1)

Not only the driving resistances Fr determine energy consumption Ec, but
also the powertrain efficiency. Efficiency is determined by losses in both
mechanical and electrical components in the powertrain. The mechanical
losses are caused by friction in the brakes, bearings, drive-shaft, differential
and gearbox. The electrical losses arise in the motor and power electronics.
For more details about the losses and their causes, see [87]. Commonly, the
losses are described with characteristic maps obtained from experiments.
The resulting powertrain model depends on the specific vehicle topology
and therefore, there is no generic model describing all types of electric ve-
hicles. Figure 2.1 shows one axle of the model for the battery-electric vehi-
cle (BEV) considered in this dissertation to calculate Ec from Fr and v. To
give an intuition about the loss magnitude, the percentage of lost energy on
a New European Driving Cycle (NEDC) profile is shown. Thereby, losses
in the brakes, bearings, drive-shaft and differential are aggregated and indi-
cated with the red arrow at the wheel. Also, power electronics and motor
losses are summarized. The resulting energy demand is supplied by the
battery, which is presented in Section 3.3. Next to the loss characteristics,
the acceleration force required to move the rotational parts is included fol-
lowing [87] and [98]. This exact model was used in an earlier publication
[108]. There, the effect of battery losses is also presented, a fact that is not
considered in this dissertation.
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9 %

GB
6 %

EM, PE

17
%

B

Frv

Ec

Figure 2.1: Powertrain model with input variables Fr, v and individual component losses of
the wheel, gearbox, electric motor and power electronics (percentages exemplary
for a NEDC profile). The losses depend on the input variables and ultimately, the
total energy consumption Ec can be calculated.

2.2 Traffic and Routing Database

Apart from the energy consumption model explained in the previous section,
information about the future trip is necessary to conduct a range estimate.
For that, first the destination must be known. If the driver does not enter
the destination into the navigation system, it could be predicted based on
the previously observed movement data, e.g. [7] or [70]. Subsequently, the
range estimate can be obtained for the predicted destination. This disserta-
tion assumes the destination is known by input of the driver, as the energy
consumption forecast problem is equivalent for a predicted destination or a
chosen one.
After the destination is selected, the route from the current position to the
destination must be obtained. This is done by the conventional navigation
systems installed in modern vehicles, typically the user can choose between
the shortest or fastest route, sometimes also an eco-route. These options sig-
nify the optimization criterion for the routing algorithm, which obtains the
result based on map and traffic data [82]. The map divides each street into
several segments k (sometimes called links) with a set of individual prop-
erties, e.g. length lk, curvature κk, street name, legal speed limit vlim,k etc.
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Hence, for the shortest route, the routing algorithm has to find the collection
of segments with the lowest total length ∑n

k=1 lk. The result forms the trip a
driver takes to reach the destination.
For the fastest route, the collection of segments with the lowest total duration

∑n
k=1 tk must be identified. Thereby, the future travel time t̃ is obtained from

the future velocity ṽk using fundamental kinematics t̃ = lk
ṽk

. In consequence,
a velocity prediction is required where one option would be to use the legal
speed limit, but a more accurate result can be obtained by using traffic data.
For that, multiple data sources are used such as loop detectors, cellphones
or connected vehicles [142]. All of them provide information about the
travel speed of the individual vehicles, called probes. A database collecting
all probe data then calculates the mean traffic speed ūk on each segment k

out of the histogram of probe speeds. A known application of those mean
speeds is the colouring of congested route segments for cellphone or navi-
gation system users, as shown in Figure 2.2. There, the different levels of
congestion are indicated in red, yellow and green depending on the relation
of current speed ūk to the free-flow speed ūk, f . Free-flow speed is defined
as the velocity drivers choose when not being influenced by other vehicles,
i.e. when no congestion exists [21]. Based on the mean traffic speed for the
whole trip, the routing algorithm can calculate the fastest route. All map and
probe information accesible from the car are stored in a traffic and routing
database (TRDB) and in this dissertation, the TRDB of the provider HERE

is used [48].

2.3 Forecasting Methods

With the energy consumption model from Section 2.1 and the traffic and
routing database (TRDB) information presented in Section 2.2, the prereq-
uisites for the range estimation are available. However, to implement a range
estimation algorithm, forecasting methods need to be applied because elec-
tric vehicle range represents a look into the future of the selected trip. In-
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©2018 Here

Figure 2.2: Visualization of the current probe information on major roads around Stuttgart.
The level of congestion is indicated in red for jammed segments, yellow for
medium congestion and green for free-flow.

tuitively, if a trip takes approximately two hours, energy consumption on
segments two hours into the future must be predicted.
Forecasting methods can be divided into two subcategories: time-based and
feature-based [53]. Time-based forecasting uses the characteristics of the
variable itself to generate a prediction based on the time-dependent signal
of the past. Hence, e.g. velocity v at time t +1 depends on v at the previous
time-steps:

ṽt+1 = f (vt ,vt−1,vt−2,vt−3, ...) . (2.2)

Known examples of this approach are auto-regressive processes, namely
AR, ARMA or ARIMA models [13]. For short-term vehicle velocity pre-
diction in the range of a few seconds, such time-based forecast models have
been applied, e.g. [57]. Time-series forecasting assumes no relationship
between the quantity to predict and other variables. Such a model is advan-
tageous if the system is too complex to model the underlying relationships.
See the work of forecasters Hyndman and Athanasopoulos for more infor-
mation about time-based forecasting [53].
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In their book, Hyndman and Athanasopoulos additionally introduce the
feature-based forecasting method. They call it explanatory model since it is
assumed that the quantity to predict has some relationship with other vari-
ables, the features, which explain the behaviour in the future. Applied on
the velocity prediction example used above, velocity v at time t + 1 would
depend on features such as the previous speed vt , the speed limit vlim, the
mean traffic speed ū and the road curvature κ at t +1:

vt+1 = f (vt ,vlim,t+1, ūt+1,κt+1, ...) . (2.3)

It can be seen that in this approach, predictive information at t + 1 about
the individual features has to be obtained. In this example, these are static
except for ūt+1, therefore a traffic forecast ũ is required. Feature-based fore-
casting is widely used, namely in regression or machine learning algorithms
such as linear regression or support vector machine (SVM). A common ap-
plication nowadays is the neural network (NN), which has also been applied
to vehicle velocity prediction [91].
Both the time-based and the feature-based forecast can be executed deter-
ministically or stochastically. Deterministic forecasts neglect uncertainty
and predict one single value into the future. Stochastic forecasts assess the
uncertainty and supplement the forecast with it, thus generating a predictive
probability distribution or prediction interval (PI). Paul Saffo argued in one
of his publications that uncertainty always has to be assessed for meaningful
forecasts:

The primary goal of forecasting is to identify the full range of
possibilities, not a limited set of illusory certainties. [104, p. 1]

Ways to investigate forecast uncertainty can be found in [6], a common ap-
proach is treating the forecast quantity as a random variable and use the
observed error from past forecasts to express future uncertainty. An exam-
ple for this method applied on short-term velocity forecast can be found in
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[36]. Figure 2.3 illustrates the different forecasts that can be made for ṽ. The
most common prediction, a deterministic forecast ṽd (or point forecast) of-
fers only one value without uncertainty measure. In this case, the most likely
solution with highest probability is chosen. However, most real life appli-
cations are subject to uncertainty, especially if human behaviour is involved
in the system. In that case, based on the words of P. Saffo, the deterministic
forecast represents the illusory certainty. Mathematically, one deterministic
value without uncertainty has 100 % probability and infinite probability den-
sity. A more sophisticated way for prediction is the prediction interval (PI),
which signifies the boundaries of possible values with a certain probability,
in this example 95 %. The forecast including the most information is the
stochastic forecast ṽs providing the full predictive distribution, and thus the
probability for each possible value of the forecast variable.

stochastic
forecast

predictive
interval

deterministic
forecast

ṽ

Pr

Figure 2.3: Illustration of the different forecasts that can be made, exemplary for future veloc-
ity ṽ. The full stochastic forecast gives the probability for each possible value of ṽ
and includes the most information. The prediction interval (PI) in this example in-
dicates the min/max boundaries of 95 % of the values. The deterministic forecast
predicts only one point and incorporates no information about uncertainty.

2.4 Validation and Evaluation Methods

With the methodologies explained in the previous section, forecast models
for range estimation can be created. In general, an important aspect in mod-
elling technical systems is their validation to prove that they are suitable
for simulating system behaviour. A model can be validated using experi-
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mental measurements of the system by comparing the simulated quantities
x̂ to the measured result x, which can be viewed as the true or desired out-
come. Whether a model is accurate enough can then be judged with suitable
performance indices, also called error measures because they are based on
the error e = x− x̂. Commonly known examples are the mean absolute er-
ror (MAE) [139] and mean percentage error (MPE) [1]:

MAE =
1
n

n

∑
i=1
|xi− x̂i| (2.4)

MPE =
1
n

n

∑
i=1

xi− x̂i

xi
. (2.5)

While validating a physical model with performance indices based on mea-
surement data is a straightforward task, data-driven models such as machine-
learning algorithms have to be analysed differently. Data-driven models are
built using a part of the measurement data, so called training data. Calculat-
ing the model error with the same data set gives the in-sample error, which
indicates how well a specific model can represent the given data. However,
it is very important to check whether the built model also performs well on
previously unseen data, the so called test data. These data are of the same
nature as the training data but the values are unknown to the model. Eval-
uating the model error on the test data gives the out-of-sample error, which
indicates the generalization performance of the model. Finding a general
pattern instead of a pattern just specific to the chosen dataset is the goal
of data-driven modeling. If a model shows good in-sample errors but high
out-of-sample errors, it is called over-fitted. More information can be found
in [47, 12].
To check both in-sample and out-of-sample performance of a data-driven
model, cross-validation can be applied. The idea behind cross-validation is
to split the overall available data into a training data set A and a test data set
B. The model is trained with the data from A, afterwards the parameters are
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fixed and the performance on B is evaluated to get the out-of-sample error.
Depending on the size and structure of the overall data-set, different kinds
of cross-validation can be applied. For example, a w-fold cross-validation
splits the total data-set into w parts and uses one of them for evaluating out-
of-sample error and the rest for training. That process is repeated w times
(folds) until all parts were used for evaluation once. An illustration of this
process is shown in Figure 2.4.

total data-set

test data

training data

1st fold

2nd fold
3rd fold
4th fold

Figure 2.4: w-fold cross-validation. The total data-set is split into w = 4 parts and in each
fold, one of the parts is used as test set and the rest for model training.
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This chapter introduces the overall range estimation methodology applied
in this dissertation. It begins with the survey of related research in Sec-
tion 3.1, which covers the general topic of range estimation and puts the
presented dissertation into context. Following that, Section 3.2 illustrates
the stochastic range estimation approach applied in this work. In that ap-
proach, stochastic range is expressed in terms of attainability. For that, a
battery model is required which is introduced in Section 3.3. Apart from
the models themselves, real test drive data is necessary to show and validate
the developed algorithms. The method of obtaining the respective dataset
is shown in Section 3.4. Finalizing the chapter, the post-processing of the
collected data is explained in Section 3.5.

3.1 Survey of Related Research

Research interests in electric vehicles grew significantly in recent years. Key
shortcomings of electric powered vehicles compared to conventional cars
are the limited driving range and charging infrastructure. In consequence,
drivers feel range anxiety which is the fear stranding with an empty battery.
According to results from an electric vehicle field test study in [33], drivers
reserve 20 % of the vehicle’s range capacity as safety margin because they
are afraid of stranding. One way to reduce range anxiety is a reliable range
estimation algorithm which users can trust [26], hence a high safety margin
is not necessary. In the following, this section covers the research activities
in the respective field.
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Fundamentally, driving range consists of two factors: energy consumption
Ec and battery energy content Eb. Traditionally, the averaged past energy
consumption is used as indication for future energy consumption. Taking
the future trip into account, either from destination prediction [7, 70] or via
user input, the energy consumption can be predicted with help of traffic and
routing database (TRDB) information. This dissertation is focused on the
reliable energy consumption prediction and uses a simplified model for the
battery, presented in Section 3.3. Energy consumption prediction can be
further divided into two categories: microscopic and macroscopic models
following [69]. Microscopic models models rely on physical equations for
predicting energy consumption whereas macroscopic models models use
a set of explanatory variables to learn energy consumption directly from
available data. Both approaches are introduced in the following.
Microscopic models represent the conventional engineering approach, where
every factor influencing energy consumption is modelled explicitly. The
system behaviour is comprehensible, therefore in system identification ter-
minology, it is called white-box model. Creating a microscopic model to
simulate the behaviour of electric vehicles using the fundamental equa-
tions and powertrain losses is a topic already covered in research, e.g.
[46, 147, 8, 117, 128]. A microscopic model is illustrated in Figure 3.1. The
necessary inputs are the predictions for future velocity ṽ and future acceler-
ation ã as well as the static trip information trip length l and road gradient
angle α . In addition, the driving resistance parameters p are required. Us-
ing these inputs and a physical model including driving resistance equations
and powertrain model as illustrated in Section 2.1, the future power demand
P̃ can be calculated and thus the future energy consumption Ẽc. Mostly,
microscopic models rely on fixed driving resistance parameters p and do
not incorporate the inherent dynamics of these values [46, 147, 107, 69].
However, this assumption usually does not hold in a real-world application
since for example, the vehicle mass m is not constant but relies on num-
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ber of passengers or luggage just as the air density ρ is subject to weather
conditions or altitude.

physical model

l, α
p

ã, ṽ ∫
P̃dt = Ẽc

Figure 3.1: Microscopic model for energy consumption prediction, based on a physical repre-
sentation of the vehicle. The dependency of the output Ẽc on the inputs ã, ṽ, l,α,p
is modelled using a white-box approach containing driving resistances and power-
train losses of the considered vehicle.

To track changing parameters, a suitable estimation algorithm can be in-
cluded. Approaches for singular driving resistance parameters have been
presented, for example using estimated rolling resistance for range calcula-
tion [143] or estimated vehicle mass in [30]. An overview about algorithms
to estimate all entries of the vector p using standard vehicle sensors is given
by [98]. These algorithms could be used to extend range estimation. How-
ever, looking at the required inputs for microscopic models in Figure 3.1, it
can be seen that estimating p accurately just solves part of the problem, as p
is just part of the inputs. Further variables are static TRDB information l,α ,
which pose no challenge as they are of geometric nature and can be down-
loaded after the driver has selected the destination. Yet, the future velocity
ṽ and acceleration ã are not static and influenced by driver behaviour and
traffic. Therefore, they must be predicted. Using a microscopic model for
obtaining ṽ, ã usually involves a deterministic driver behaviour model, as in-
troduced in [65] but commonly the mean traffic speed ū is used to derive the
required inputs, e.g. [106]. Another approach would be applying a macro-
scopic prediction model [144] to provide the forecast to the microscopic
energy consumption model.
Macroscopic models have a data-driven understanding of the system, hence
physical and environmental influences are not modelled explicitly but in-
stead they are implicitly learned from the data. Statistical machine learning
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methods are applied, which in recent years have grown more popular for a
wide range of problems. The objective of the learning method is to find the
pattern describing the influences on the output variable, in this case energy
consumption [47]. Using the terminology of system identification, a macro-
scopic model is called a black-box model and is visualized in Figure 3.2.
The input features π are obtained from a navigation database and contain
the predictive information, e.g. ū, vlim, α , l. Together with the measured
output y, which is energy consumption, a mathematical model h is trained
with help of a loss function Θ(π,y) [47]. After the model is trained, the
future energy consumption Ẽc can be obtained using the future inputs π̃ and
the identified model h. Examples for macroscopic models range from linear
regression to neural network (NN) or deep learning applications [12].

Θ(π,y)

mathematical model h

Ẽc = h(π̃)

π

y

Figure 3.2: Macroscopic model for energy consumption prediction, based on a mathematical
representation of the dependencies. The available input data π together with the
desired output data y are used to train a black-box model h using a suitable loss
function Θ. The trained model can subsequently be used to predict future values.

[77] presented a macroscopic approach, where a neural network (NN) is
used to predict energy consumption based solely on the individual driving
data. Those individual features can be extended by cloud-data from more
than one vehicle, a method used by [148]. In that work, the used machine
learning algorithm is also based on a NN structure. Naturally, other learning
algorithms are possible, such as the popular support vector machine (SVM)
used by [42] to predict energy consumption from crowd-sourced data. Apart
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from such complex model stuctures, [102] proposed a multi-linear regres-
sion (MLR) with a very small set of features, which shows good perfor-
mance in a simulation environment.
For both model categories, micro- and macroscopic, various research arti-
cles exist and only a selection was mentioned above. However, most of the
publications only offer deterministic solutions to the problem of range esti-
mation. The variety of influences on electric vehicle range already makes an
exact solution only a theoretical possibility. As introduced in Section 1.2,
the stochastic nature of the system should be considered, especially because
human behaviour has a high impact on future energy consumption and can-
not be determined perfectly. While this aspect is recognized in some related
work [27, 146], often it is not incorporated in the prediction. In contrast,
many publications aim at including a high number of inputs (features) into
the algorithms, which is a problem also pointed out by [63]:

Other researchers have been aware of the problems arising from
inaccurate predictions of resources in cars and other battery-
dependent technologies. However, most of this prior work has
focused on designing algorithms that improve prediction accu-
racy by increasing the number of parameters that the system
takes into account. [63, p. 3]

That means, instead of dealing with all possible input factors as algorithm
features, modelling the system’s uncertainties would result in a better pre-
diction because it would be more reliable, as illustrated in Section 1.2. In
their work, Jung and Steinert [63] illustrated that range anxiety of BEV
drivers can be decreased by including an uncertainty indication in the range
display. Still, this was a psychological study and the method of how to
obtain the uncertainty was not covered. Following the idea of including un-
certainty in the range estimation, Oliva et al. [84] presented an algorithmic
approach for obtaining the prediction interval (PI). They demonstrated this
method in a simulation using standard driving cycles. Furthermore, On-
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druska and Posner [86] introduced a computationally efficient algorithm to
account for range uncertainty and implemented it in a test vehicle. However,
research on stochastic forecasting for the specific problem of range estima-
tion is very limited. Instead, a lot of papers exist where the deterministic
range estimate is used for assistance systems such as charge-planning, e.g.
[9, 14, 18, 72, 137]. This dissertation aims at helping to fill this research
gap by developing a stochastic forecasting methodology with respect to in-
dividual driving behaviour and vehicle configuration. The resulting reliable
forecast could then be used for range display as well as assistance systems
and thus decrease driver’s range anxiety. A pilot study on this subject illus-
trating the problem has already been presented to the research community
in [108].

3.2 Proposed Approach for Range Estimation

The estimation of electric vehicle range depends on the energy consump-
tion forecast Ẽc and the estimated battery energy content Êb. Traditionally,
driving range is expressed in terms of the distance until the vehicle runs out
of energy, called distance-to-empty [102]. The driver consequently com-
pares the range value to the trip distance in a binary assessment whether a
destination is attainable. In this dissertation, the uncertainty of both energy
consumption and energy content shall be included, therefore they are mod-
elled as random variables. Consequently, attainability pa can be calculated
directly, indicating the probability of reaching a selected destination for a
given route and battery condition [86]:

pa = Pr(Ẽc ≤ Êb) . (3.1)

In the following, attainability pa serves as stochastic interpretation of driving
range. Thereby, (3.1) also works for the deterministic case and covers the
traditional approach.
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It is also possible to calculate attainability not only based on the current
battery state of charge (SOC) but for all possible SOC values. Hence, if
attainability is too low to take the trip safely with the current SOC, the
question of how much SOC is required to reach the destination safely

can be answered. In practice, with the knowledge of the difference be-
tween current and required SOC q, the amount of charging energy can
be obtained and thus, the amount of charging time at a specific charg-
ing station. An example is shown in Figure 3.3, where Figure 3.3a illus-
trates a specific situation with Ẽc ∼N (µ = 15kWh, σ = 1.5kWh) and
Êb ∼N (µ = 17kWh, σ = 0.85kWh). Using (3.1), resulting attainability
in this case is pa = 87%. This point is illustrated with the black cross in Fig-
ure 3.3b, where pa over the whole SOC range q is shown. With the resulting
curve, required SOC for other attainability values can be obtained, e.g. for
pa = 99%. Taking a charge-planning scenario, the proposed methodology
therefore provides vital information: firstly, how likely can the charging
stations on the route be reached? Secondly, if recharging is required, how
long does it take at the different charging stations? With this information,
an optimization algorithm could find the best possible strategy for the trip.
For the driver, this methodology also offers advantages. Since safe arrival at
the destination can be calculated incorporating uncertainties directly, con-
stant safety margins such as the 20 % found by [33] become unnecessary.
On the one hand, this allows using the full potential of the battery and on
the other hand prevents stranding. That raises acceptance of electric mo-
bility, saves energy and decreases range anxiety. An additional opportunity
is to display range uncertainty to the driver, which reduces stress levels ac-
cording to [63].
After presenting the definition for stochastic range calculation, subsequently
the approach for obtaining Ẽc and Êb must be designed. Thereby, the focus
of this work lies on the energy consumption forecast (ECF) whereas for bat-
tery content estimation, a simplified model is used which is presented in
Section 3.3. An overview can be seen in Figure 3.4. The parameter esti-

23



3 Range Estimation Methodology
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a) Energy consumption Ẽc and battery
energy content Êb expressed as ran-
dom variables.
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Figure 3.3: Calculating attainability as stochastic expression of electric vehicle range. Fig-
ure 3.3a shows energy content and energy consumption as random variables.
Energy content Êb has lower uncertainty than Ẽc which can be seen by the lower
standard deviation. Calculating attainability pa from these values results in the
black point illustrated in Figure 3.3b. The green curve represents attainability over
the whole SOC range q with fixed energy consumption.

mation (PE) algorithm obtains p̂ using vehicle sensors and a recursive filter
illustrated in Section 4.1. Apart from the driving resistance parameters, the
future velocity profile ṽ is required for an ECF, which is provided by the
velocity prediction (VP) method introduced in Section 5.1. The VP method
in this dissertation is a macroscopic model learning driving behaviour from
the data. Thereby, the surrounding traffic situation must be assessed in or-
der to learn contextual driving behaviour. Intuitively, the algorithm should
be able to detect a jammed traffic situation since there, only car following
behaviour can be observed. Therefore, the traffic phase classification (TPC)
shown in Section 4.2 generates an estimate for traffic phase φ̂ using the ap-
propriate sensors. Subsequently, φ̂ is used as part of the input features π
for the macroscopic VP model. Together, ṽ and p̂ are used for the ECF
based on a microscopic powertrain model which is explained in Section 5.2.
Afterwards, the resulting Ẽc can be compared to the battery energy content
estimate Êb from the battery model for calculating attainability pa accord-
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ing to (3.1). The acquisition of required test drive data for the data-driven
algorithms within the presented methodology can be seen in Section 3.4.

PE ECF

VPTPC

≤
p̂

φ̂

ṽ

Ẽc

Êb

pa

Figure 3.4: Overview of the approach for calculating attainability using the individual algo-
rithms: parameter estimation (PE), traffic phase classification (TPC), velocity
prediction (VP) and energy consumption forecast (ECF). The resulting Ẽc is com-
pared to the battery energy content from the battery model Êb to obtain attainabil-
ity pa.

3.3 Battery Model

The range estimation method presented in the previous section requires a
battery model for calculating Êb. The model used in this dissertation is de-
rived from [108] and presented in this section. The basic problem is that the
battery’s energy content Eb cannot be measured directly and a number of
steps and measurements have to be performed for its determination. Since
all measurements are prone to uncertainties, measurement noise, and ob-
taining Êb involves various measurements, the total resulting uncertainty is
likely to be significant. Even the use of sophisticated observer models, adap-
tive filtering techniques or machine learning methods cannot eliminate this
uncertainty completely [127, 16].Therefore, Eb is considered a random vari-
able in this dissertation. An overview of battery state estimation techniques
can be found in literature, e.g [73, 74, 141].
Obtaining the energy content of the battery is conventionally based on the
measurement of state of charge (SOC). Uncertainty in SOC measurement
mainly result from uncertain voltage measurement in each cell. [56] pro-
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posed an algorithm with around 2 % SOC measurement error, while current
implementations in modern day production cars have larger errors. Aside
from the SOC, energy content does also depend strongly on battery age.
The capacity fades over lifetime and is measured in state of health (SOH),
the percentage of actual capacity from the original capacity. Accuracy of
SOH estimation ranges from 80 % to 98 % according to [11]. In addition,
the usable energy of the battery also depends on the discharge profile be-
cause internal losses of the battery increase with rising load and therefore
battery efficiency is affected. That gives a feedback loop, as the future load
profile is also uncertain.
In this dissertation, the characteristics of the battery are not the focus and
therefore a simple model is used. It is based on an equivalent circuit model
comprised of an ideal voltage source and an ohmic resistance, see Fig-
ure 3.5. There, U0(q) is the open circuit voltage, dependent on current SOC
q, Ri is the internal resistance, Pbat is the battery power, U the resulting
clamping voltage and Ibat the battery current. Environmental conditions,
such as the dependency of the battery states on the temperature, as well as
complex internal states, such as the dependency of the losses on the exact
load profile are neglected. The latter, battery efficiency change dependent on
the discharge profile, was shown to be much less of an influence than SOC
and SOH measurement errors in [108]. For these two, moderate uncertain-
ties of 3 % for SOC and 5 % for SOH are assumed, which is in accordance
with the literature.

U0(q)

Ri Ibat

UPbat =U · Ibat

Figure 3.5: Equivalent circuit model of the battery.
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3.4 Test Drive Data

The methodology presented in Section 3.2 comprises data-driven algorithms
and models. Therefore, real test-drive data is required for their development
which can also be used to prove the validity of the proposed methodology
in a real application and not simply based on simulations. For data ac-
quisition, two series of test runs are executed, one with a battery-electric
vehicle (BEV) comprising 380 km and one with an internal combustion
engine vehicle (ICEV) comprising 1900 km. The BEV is a full-electric
PORSCHE BOXSTER with four-wheel drive and a typical range of around
150 km (Figure 3.6). The front axle is powered by a permanent magnet syn-
chronous motor with 120 kW and the rear axle is powered by an 140 kW
asynchronous motor [10]. The high-voltage battery has a peak power of
270 kW and a nominal capacity of 35 kWh. For this work, a global position-
ing system (GPS) module and an online connection was installed to down-
load real-time information from the traffic and routing database (TRDB) via
an application programming interface (API) request. The BEV data is used
for validating the powertrain model presented in Section 4.1 and is is gath-
ered on a random set of test drives around Weissach in southern Germany.

Figure 3.6: Battery Electric Vehicle (BEV) used for the test drives. The vehicle topology
comprises a four wheel drive system with two electric motors. Via the online-
connection and the GPS antenna, it is able to download map and traffic informa-
tion.
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3 Range Estimation Methodology

The BEV has a central limitation in its usefulness for the algorithms pre-
sented in this dissertation, which is the absence of camera and radar. With-
out that, other traffic participants, road signs, lane markings etc. cannot be
detected and the local traffic situation could not be obtained by the TPC
algorithm. Therefore, a vehicle with the required sensors is used to collect
the data, the PORSCHE PANAMERA, which is an internal combustion engine
vehicle (ICEV), see Figure 3.7. By using the validated powertrain model of
the BEV, the equivalent electric energy consumption Ec can be simulated
for the ICEV dataset. Thus, all required sensor information can be gath-
ered but still a validated electric vehicle powertrain model is used, therefore
the energy consumption behaviour of the test runs is realistic. In addition,
since a powertrain model is used, the considered environmental influences
can directly be defined and methodical bias can be excluded. Consequently
though, not directly specified influences are not considered. Until properly
equipped electric vehicles are available, this is a practical approach.

©2017 Porsche AG

Figure 3.7: Internal Combustion Engine Vehicle (ICEV) used for the test drives. Via the in-
stalled camera and radar technology, signs, other vehicles and lanes can be de-
tected.

Since the ICEV dataset is used for algorithm training and thus for mod-
elling driving behaviour, it is not gathered randomly but follows a specified
approach, which is illustrated in Figure 3.8. A series of test drives with 10
different drivers was executed on a specified round trip which mainly con-
tained highway roads between Weissach and Heidelberg in southern Ger-
many (see Figure 3.8b). The test drives were carried out on different times
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3.4 Test Drive Data

of day to catch different traffic patterns, e.g. in the morning rush or during
low traffic density phases around noon. Each driver was told to drive equal
to their normal driving style and no other specifications were given. Since
the test drives were executed with the ICEV, influences of range anxiety on
driving style can be excluded.

TRDB

BEV

ICEV

ic
it

Ec

...

Test Drivers

a) test run method

A

B

A8

A5

©2018 Google

b) drive route

Figure 3.8: Illustration of the test runs. Figure 3.8a shows an overview of the method: The
different test run participants drive the specified route with the ICEV. The
controller area network (CAN) data ic is used to download the TRDB data it and
to simulate equivalent electric energy consumption Ec using the BEV powertrain
model. The test drive route between Weissach (A) and Heidelberg (B) is shown
in Figure 3.8b. The test drivers did a round-trip A-B-A, which is mostly on the
highways A8 and A5.

All available vehicle states were measured with the standard CAN system of
PORSCHE production cars at 100 Hz and measured CAN-data ic was trans-
ferred to the powertrain model to simulate the equivalent electric energy
consumption Ec. Based on the GPS and time signal, the information from
the TRDB it was downloaded for the whole trip which contains details about
the selected route by the provider HERE [48], as introduced in Section 2.2.
The velocity profiles of all test drivers are plotted in Figure 3.9. There,
the overall variance of driving speeds due to differences in traffic state and
driving style can be observed.
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Figure 3.9: Velocity profile of the 10 test drivers for the round-trip.

When using ICEV test data to derive conclusions for BEV range estimation
algorithms, it is assumed that driving behaviour is comparable for BEVs and
ICEVs. To confirm that, the test drive data can be used. Thus, a random sub-
set of the ICEV data with different drivers and the same total length as the
BEV data is chosen. It is suspected that due to the different torque charac-
teristics, the acceleration behaviour of the BEV differs from the ICEV. The
statistical feature selected to describe acceleration behaviour is the standard
deviation σa. In Table 3.1, it can be seen that it does not differ significantly
although σa of the BEV is a little higher than the ICEV value as expected.
For additional analysis, the findings of Ericsson et al. [29] are applied where
statistical features are used to describe driving style. In that work, the most
important feature to describe driving style and and its effect on energy con-
sumption is the relative positive acceleration (RPA). Therefore, it was also
extracted from the data sets and the results are shown in Table 3.1. Again,
the values do not differ significantly with the RPA of the BEV data being
a little higher. While this simplified comparison is not complete, and more
research should be done in this area, it shows that the driving style is not sig-
nificantly different and therefore the statements made about range prediction
from this method are valid. In fact, it is one of the goals in automotive devel-
opment to provide the same driving characteristics in a BEV compared with
the ICEV most drivers are used to. This methodology was already published
to the research community in [111].
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Table 3.1: Driving behaviour comparison.

BEV ICE

distance [km] 380 km 380 km

σa [ms−2] 0.6 0.5

RPA [ms−3] 3.1 3.0

3.5 Post-processing of Measurement Data

The collected data from the test drives presented in the previous section must
be post-processed in order to be usable for the range estimation algorithm,
e.g. due to measurement noise. However, one of the most important aspects
is the matching of GPS-based ic data onto the map of the TRDB to merge
CAN signals with map and traffic information correctly. Thereby, the map
is built using segments k and their individual properties, with the GPS shape
among them. To illustrate the problem, Figure 3.10 shows both the mea-
sured GPS signal from the CAN and the map segments from the TRDB on a
highway on-ramp of one test drive. It can be seen that the TRDB segments
cut the road into various parts, and the segment length differs depending on
the position, for example there are more and shorter segments in the curve.
Map matching comes down to finding the map segment closest to the mea-
sured GPS signal from the CAN. If the closest segment is found, the data can
be merged, e.g. the map information vlim can be compared with the driven
speed v. To achieve adequate matching accuracy, first the map segments are
split into smaller parts of 10 m, which in turn is the maximum possible er-
ror. With a k-nearest-neighbour algorithm, the closest segment part to every
measurement point is identified. An explanation of this algorithm can be
found in [47].
Having obtained the correct corresponding segment allows to assign the
TRDB properties to each data point. One of those properties is the probe
speed distribution u in a 5 min resolution. Some segments may have no
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TRDB
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GPS
data
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Figure 3.10: Map matching problem for the test drives. The map segments are illustrated in
blue, the squares denote the segment start and end points. The measured GPS
data points from the CAN are depicted in red. The task of map matching is to
find the corresponding segment for each measurement point.

probe information for the specific spatio-temporal query, either because cov-
erage was too low or nobody drove on that segment at the time. In that case,
it can be assumed that there is no congested traffic phase and the typical
mean free-flow speed ūf is used. In this work, ūf is obtained by analysing
the probe speeds for the specific segment between 0:00 and 5:00 AM over
the course of the last month which is similar to the approach of [48]. Im-
plicitly, it is assumed that in this time period, no congested traffic occurs.
Apart from the map-matching problem, the CAN data ic also needs to be
post-processed because the sensors generating the signals are subject to
measurement noise. Measurement noise describes the distortions and dis-
turbances or discretization errors coming along with the digital signal from
any measurement device installed in a real-world application. To reduce
measurement noise, signal processing methods are applied [133]. In this
dissertation, low-pass filters with different settings depending on the signal
are used for noise reduction. For example, the velocity signal v originat-
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Figure 3.11: Illustration of the noise in the velocity signal. The original data from the sensor
is illustrated in Figure 3.11a. The same signal smoothed by a lowpass filter with-
out phase shift is shown in Figure 3.11b.

ing from the vehicle’s electronic stability program (ESP) is filtered with a
5th order infinite impulse response (IIR) lowpass filter. The passband fre-
quency is set to 1 Hz and the passband ripple to 0.1 Hz. Since the signal is
post-processed and not filtered in real-time, the inherent phase shift of the
filter can be subtracted. The result of this noise reduction method can be
seen in Figure 3.11, where the filtered velocity signal is smoother than the
raw value. Although the level of noise seems to be low in this example, it
could result in significant errors if algorithms use the unfiltered signal. For
example, if the derivative of the noisy velocity signal dv/dt is calculated to
obtain acceleration a, even small amounts of noise can have a high impact
on the system. For more details on signal filtering theory, see [133].
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4 Estimation Algorithms for
Predicting Energy Consumption

The stochastic range estimation method illustrated in Section 3.2 requires
data-driven estimation algorithms, namely parameter estimation (PE) and
traffic phase classification (TPC). These algorithms are explained in the
following chapter.
At first, Section 4.1 illustrates the microscopic energy consumption model
used in this dissertation. For this model to be accurate, the driving resistance
parameter vector p must be estimated, which is the task of the PE algorithm
shown in Section 4.1.1. The resulting model must be extended for a forecast
application since the quality of predictive information differs from the mea-
surement data available for estimation. Section 4.1.2 explains the required
extension possibilities before the performance of the applied models is anal-
ysed in Section 4.1.3. Thereby, special consideration is given to the use of
robust performance indices.
The second part of the chapter, Section 4.2, introduces the traffic phase clas-
sification (TPC) algorithm, which is vital for recognizing the local traffic
situation around the ego-vehicle. TPC is based on a pre-defined feature
set, which is illustrated in Section 4.2.1. Based on those features, different
approaches for classification algorithms are created and presented in Sec-
tion 4.2.2. The performance of those different algorithms is subsequently
compared in Section 4.2.3.
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4.1 Energy Consumption Model using
Parameter Estimation

Tractive energy consumption of an electric vehicle can be calculated based
on the driving resistances and powertrain losses, as illustrated in Section 2.1.
There, the powertrain model of the BEV used in this dissertation was already
introduced, which calculates energy consumption based on the driving re-
sistances Fr and the vehicle velocity v. In turn, Fr can be obtained based on
the driving resistance equation (2.1) with the short version

Fr = p> ·B (4.1)

where p is the parameter vector and B the measurement vector. It can be
seen that p is an important factor influencing energy consumption and com-
prises the following values:

p =

 m fr︸︷︷︸
p1

1/2 cwρA︸ ︷︷ ︸
p2

m︸︷︷︸
p3


>

. (4.2)

Based on the vehicle topology of the battery-electric vehicle (BEV) pre-
sented in Section 3.4, their individual influences on total Ec can be analysed
and the results are shown in Figure 4.1. It can be seen that m has the highest
influence, a 10 % change leads to a 5 % energy consumption deviation. The
amount of mass change is realistic for the BEV used as test vehicle in this
dissertation, in fact it can change up to 10.1 % depending on luggage and
passengers. However, it is a small sports car, for the electric SUV TESLA

MODEL X, mass can increase by more than 20 % [124]. Electric buses or
vans have even more potential for mass change [31]. The second largest in-
fluence is induced by a change in the rolling resistance coefficient. Changes
in fr result from differences in tire characteristics (tread pattern, tempera-
ture) and road conditions, even 100 % change is possible between asphalt
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4.1 Energy Consumption Model using Parameter Estimation

and tarmac according to [80]. Finally, also the aerodynamic drag coefficient
cw and air density ρ cause a deviation in Ec. Thereby, cw has an uncer-
tainty of up to 10 % according to wind tunnel tests performed in [23]. ρ
is dependent on multiple factors such as elevation and outside temperature.
Based on the equations explained in [93], the following can be calculated:
From −5 °C to 30 °C, air density decreases by 11.5 % and from an elevation
of 0 m to 1000 m, it decreases by 12 %. Further derivations originate from
wind speed and direction. As introduced in Section 3.1, a lot of publications
about energy consumption models for range estimation rely on constant pa-
rameters from test bench measurements. However, based on the presented
numbers in in Figure 4.1, it is imaginable that an approach using constant
parameters can lead to significant bias and uncertainty. Therefore, in this
work the parameters are estimated using the algorithm presented in the next
section.
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Figure 4.1: Sensitivity of the energy consumption dependent on the changes of the individual
driving resistance parameters. Basis for the results is the vehicle topology of the
BEV. m shows the highest influence on energy consumption with a 10 % change
leading to 5 % Ec deviation.
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4.1.1 Parameter Estimation Algorithm

Since the driving resistance parameters p can change significantly and this
has a high impact on energy consumption, they need to be estimated in the
vehicle during driving operation. This is the task of the parameter estimation
(PE) algorithm presented in this section, which has already been presented
to the research community in [109].
The basic equation used for the estimation problem is (4.1). There, B can be
measured directly, Fr can be obtained with the powertrain model introduced
in Section 2.1 and p must be estimated. This mathematical problem is lin-
ear in the parameters, therefore it is a multiple-input-single-output (MISO)
system. This type of system and various algorithmic applications on PE
have been studied extensively in [98] and hence only an overview is given
in this section. A widely studied solution for the MISO problem is least-
squares (LS) which leads to optimal results for non-biased normally dis-
tributed residuals r. The LS loss function is given by:

min
p̂

[
∑

t
r2

t

]
= min

p̂

[
∑

t
(Fr,t − p̂tBt)

2
]

(4.3)

where p̂ denotes the estimated parameters and t the individual considered
time-steps. The mathematical formulation in (4.3) is called a batch solu-
tion, where all the data is computed at the same time. However, for an on-
line application in the vehicle, the batch formulation must be turned into a
recursive formulation since the data is obtained sequentially. This results in
the commonly known recursive-least-squares (RLS) algorithm, which was
used to estimate p as shown in [99]. However, it is stated also that RLS fails
obtaining an accurate solution in the presence of outliers. This makes its
use infeasible in many applications, as outliers will occur naturally within a
real-life environment.
Estimation algorithms which are able to deal with outliers are called ro-

bust estimators. A commonly known family of robust estimators is the M-
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4.1 Energy Consumption Model using Parameter Estimation

estimators introduced by [51]. M-estimators have an altered loss function
Θ, such as the Huber loss function from [52], which imposes less weight
on values far from the regression curve, thus decreasing the effect of out-
liers. The LS function in (4.3) represents a special case where Θ = (·)2.
Changing the LS loss function to another Θ turns RLS into the weighted-
least-squares (WLS) algorithm, which was shown in [100]. In Figure 4.2,
an exemplary comparison of the LS and the Huber loss function is shown.
There, Figure 4.2a shows some data points with zero mean Gaussian noise
of low variance in blue over the dimensions x1,x2. One outlier is induced,
signified with the red cross. When linear regression with the standard LS
loss function is performed on these points, the red regression curve is ob-
tained which has significant bias. When using the Huber loss function, the
outlier is less important and thus the regression curve is less biased. The
characteristics of LS and Huber loss are depicted in Figure 4.2b based on
the difference between regression curve f (x1) and the data points. It can be
seen that less weight is put on outliers using the Huber loss compared to LS
which makes this solution robust.

squared
loss

Huber
loss

x1

x 2

a) regression curves

Huber
losssquared

loss

x2 − f (x1)

loss

b) loss functions

Figure 4.2: Problem of robustness for regression-based estimation. In Figure 4.2a, multiple
data points for regression are displayed in blue, with one outlier in red. The re-
gression curves for the Huber loss and the squared loss are illustrated. Figure 4.2b
shows the loss functions themselves and their difference.
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Another problem of online estimators occurs if the system is subjected to
poor excitation. In a vehicle, this can easily happen, e.g. if the velocity re-
mains constant on the highway over a certain period of time. The data points
used for the inherent regression of the estimation algorithm lose variability
and the solution becomes unstable. Figure 4.3 illustrates this problem which
could occur for regression-based estimators. Figure 4.3a shows the profile
of a system input variable x1 and an output variable x2 over time. From the
time-based profile, it can be seen that the system experiences poor excita-
tion. When performing regression on these data, the points show marginal
differences, as illustrated in Figure 4.3b. A regression would be unstable
because essentially, it is performed on only one point. For recursive algo-
rithms, that means a substantial growth of the covariance. This problem is
called windup problem and it can be prevented using regularization meth-
ods shown in [98]. An alternative approach was shown by [121], where an
altered version of the Kalman filter [64] was presented. Essentially, it lim-
its the growth of the covariance and therefore prevents unstable solutions.
The performance of this algorithm in its robust version is compared to the
standard Kalman filter in [100], and its superiority was shown using real
test drives. For more information about the mathematical theory behind ro-
bustness and wind-up stability, see the work of [98] since in the following,
known implementations of the algorithms are applied.
Although the Kalman filter introduced by Stenlund and Gustafsson [121]
solves the robustness and windup problem, there is still the trade-off be-
tween flexibility and stability, which poses a challenge for recursive estima-
tors. That means an algorithm which is able to track parameters well and
is robust in the presence of outliers could fail to detect sudden changes in
the system. Essentially, the robust algorithm would treat the data points of
a suddenly changed system as outliers and would need a long time to con-
verge to the true value again. A way to deal with this trade-off is using
multiple model estimation (MME) [119]. The idea is to use several estima-
tors in-parallel with different noise settings. The estimator with the lowest
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Figure 4.3: Problem of wind-up for regression-based estimation. Figure 4.3a shows an input
variable x1 and an output variable x2 over time. Because there is poor excitation
in the profile, the regression points in Figure 4.3b have marginal differences. This
causes unstable solutions.

residuals over a certain period of time offers the best solution for the system
behaviour and its parameter estimations are the most accurate. Thereby, in
standard applications those different estimators are always running, there-
fore the computation time is significantly and permanently increased com-
pared to using only one estimator.
Hence, in this dissertation, an event-based MME is shown which has been
published previously in [109]. Two models are used, (M1 and M2). In nor-
mal driving situations only M1 is computed. Model M2 is more sensitive
and only activated, when there is a possibility that parameters change, e.g.
a standstill of the vehicle for ≥ 3s where someone could enter or leave the
vehicle thus changing the mass. Thereby, the both models have the same
parametrization with the exception of the covariance matrix. M2 has sig-
nificantly higher values to account for increased sensitivity. Subsequently
the residuals of the converged model M1 and the sensitive model M2 show
whether the system has changed or not. Therefore, the probability for each
model Mj being the correct model is calculated after meeting the standstill
condition:

Pr(Mj|r̄i, j) = 1− |r̄i, j|
|r̄i,1|+ |r̄i,2|

. (4.4)
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r̄i, j is the averaged residuals from the time standstill ended to timestep i for
model j, where ∆i is 10ms. Pr(Mj) is calculated for 2000 timesteps i after
standstill where higher probability means the model has smaller residuals.
Then, the model with a better fit and therefore reduced estimation error can
be selected.
To show the differences between the presented estimator alternatives, real
driving tests are executed with the BEV. For highlighting the introduced
problems from above, a test drive with mass change is presented here, since
it is directly measurable and controllable. The vehicle mass with one person
in the car is obtained and the test drive begins with this fixed setting. Af-
ter 20.7 min until tm, a second person entered the car, increasing the mass
which again can be measured. The task of the estimation algorithms is to
track this change accurately. Candidate algorithms are the standard, widely
used recursive-least-squares (RLS) algorithm, the robust and windup-stable
Kalman filter (RKF) of [121] and the extension, RKF with MME (RKFM).
All tuning parameters are defined following [2], therefore they are not men-
tioned in this dissertation. Since the value of the tuning parameters are
strongly dependent on the specific data of the problem, it is recommended
to follow the tuning guidelines of [98] for similar implementations. There,
one can find MATLAB algorithms for each filter to download.
Figure 4.4 shows the estimation of the driving resistance parameter vector
p, divided into the individual entries pi following (4.2). Figure 4.4a and
Figure 4.4b show the estimates for the parameters of rolling resistance and
aerodynamic resistance which are not constant during a trip and cannot be
measured exactly, e.g. due to unknown ρ . Therefore, the evaluation is con-
centrated on p̂3, which directly represents mass estimation m̂ (Figure 4.4c).
Before tm, both RLS and RKF stay within 2% around the true value m. RLS
does not converge due to the above mentioned robustness and windup prob-
lems. The filter addressing these issues, RKF shows better performance and
converges to m accurately. That means this filter is appropriate for a vehi-
cle implementation and deals with real-life problems accordingly. However,
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Figure 4.4: Parameter Estimates with the presented algorithms for the test run with mass
change. Until tm, only the driver is inside the vehicle and at tm, a second person
enters the car. The accuracy of p̂1 and p̂2 cannot be evaluated exactly, whereas
the true mass can be measured. Therefore, by the tracking performance of p̂3, the
different algorithms can be compared.
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after tm, RKF fails to track the value because it treats the data points from
the changed system as outliers. This is where the advantages of MME can
be used. At tm, the standstill condition is met and therefore M2 is activated
and the probability for each model is calculated using (4.4). Thereby, the
probability of the more sensitive model M2 is higher than the converged
model M1, indicating a system change. In consequence, RKFM switches to
the estimator M2. Because of that model switch, the RKFM can track the
true value after tm, thus illustrating the usefulness of MME in this applica-
tion. Therefore, in the following of this dissertation, the driving resistance
parameters are estimated using RKFM for an accurate energy consumption
model. Thereby, the important fact for range estimation applications is the
performance of the complete energy consumption, where PE is a part of.
This is analysed in Section 4.1.3.

4.1.2 Predictive Model Formulation

In the previous section, the PE algorithm was introduced to achieve accurate
estimates p̂ and thus an accurate energy consumption model. In theory,
this model could also be used to obtain the forecast Ẽc. Therein, the future
driving resistance force F̃r,k on each route segment k can be calculated based
on the driving speed forecast ṽk and average gradient ᾱk using the route
information from the TRDB:

F̃r,k = p̂ ·


gcos ᾱk

ṽ2
k

gsin ᾱk


>

(4.5)

Note that the term including acceleration resistance is missing because no
prior information on future vehicle acceleration ã can be obtained from
TRDB data. That lies in the nature of the data structure since the speed

44



4.1 Energy Consumption Model using Parameter Estimation

information therein comprises aggregated probe information over the seg-
ment length lk, e.g. mean traffic speed ūk. From that, the exact future veloc-
ity profile is not available even for ideal and unbiased input data, a problem
also pointed out by [69]. To illustrate this, the different velocity information
for an exemplary test drive is shown in Figure 4.5. The measured velocity
v can be seen in comparison to the mean traffic speed over the segments ū

from TRDB. The ideal deterministic velocity forecast would yield the av-
eraged velocity v̄k, as it is the true value. Using this forecast together with
(4.5) directly for obtaining future energy consumption is denoted Ẽd

c|a=0, as
it is a deterministic forecast without considering acceleration force. It can
be imagined that such a model could result in biased predictions, therefore
it needs to be extended for predictive applications.
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ū

Figure 4.5: Comparison of measured vehicle velocity v, averaged velocity v̄ over the segment
length lk and traffic speed ū from TRDB for an exemplary test drive.

In consequence, researchers often induce constant acceleration between the
deterministic predictions ṽd

k and ṽd
k+1 where the velocity forecast is derived

directly from mean traffic speed, e.g. [107] or [108]. This reduces the fore-
cast error because the acceleration necessary to reach ṽd

k+1 and thus the ac-
celeration force is included. Using the derived acceleration profile to extend
the standard model presented above is denoted Ẽd

c|a=const . This approach
represents the intuitive solution and usually, it is assumed that the resulting
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error is small enough without explicitly validating it with test drive data,
e.g.:

Since the length of each route segments from Google Map is
usually quite small, using constant acceleration for each route
segment based on the capability of the EV and driver’s be-
haviour as well as the speed limitation produces negligible er-
ror. [107, p. 2]

Other researchers implement a driver model which learns situational accel-
eration behaviour, for example when approaching a traffic light or changed
speed limit [45, 65]. These approaches rely on infrastructure data such as
traffic lights state which are nowadays not available on navigation systems.
Arguably, it will also not be available in the future since many traffic lights
are controlled based on short-term demand (within seconds) instead of a
fixed timetable [90]. Consequently, such models may yield good perfor-
mance but are based on a lot of input data not accessible at the route plan-
ning stage, a fact supported by [69]. Additionally, situational acceleration
behaviour is unlikely to be predictable with high accuracy due to local traf-
fic and driver behaviour. Intuitively, even if the stop signs are in the TRDB
data, it will never be known whether another vehicle will force the driver
to stop there when he arrives at a specific location one hour in the future.
Therefore, such an approach is not followed in this dissertation, instead a
model is created based on the currently available TRDB data.
An alternative to inducing constant acceleration, the kinetic energy change
between the segments k and k + 1 can be included. This model, denoted
Ẽd

c , is based on the standard model Ẽd
c|a=0. Thereby, Ẽd

c|a=0 includes the
static characteristics of the BEV energy consumption, e.g. potential energy
change. The powertrain losses ηstat implicit with the constant power de-
mand are obtained from the characteristic maps and also incorporated in the
model Ẽd

c|a=0 already. To extend it with the dynamic characteristics, the ki-
netic energy change is added which is also subjected to losses, represented
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4.1 Energy Consumption Model using Parameter Estimation

by ηdyn. While ηstat can be calculated from the model directly, ηdyn is an
adaptive parameter minimizing the error eEc = Ẽd

c −Ec. By using this prac-
tical, data-driven approach with a linear factor ηdyn, over-fitting to a certain
driver or trip is unlikely. (4.6) shows the prediction model for calculating
Ẽd

c,k:

Ẽd
c,k =

∫ F̃r,k

ηstat(F̃r,k, ṽd
k)

ds︸ ︷︷ ︸
Ẽd

c|a=0

+
m̂

2ηdyn
[(ṽd

k+1)
2− (ṽd

k)
2︸ ︷︷ ︸

∆(ṽd)2

] (4.6)

ηstat = f (F̃r,k, ṽd
k); ηdyn = f (eẼc|a=0

) (4.7)

The mass estimation m̂ in (4.6) is provided by the PE algorithm presented
in Section 4.1.1. To verify the performance of the created model, it is com-
pared to Ẽd

c|a=0 and Ẽd
c|a=const in Section 4.1.3. Thereby, the implementation

of the constant acceleration model from [108] is used, where the future ac-
celeration ãd

k on every segment k can be calculated using the time forecast t̃d
k

on each segment comprising the segment length and vehicle speed forecast:

ãd
k =

ṽd
k+1− ṽd

k

t̃d
k

=
ṽd

k+1− ṽd
k

lk
· ṽd

k . (4.8)

The energy consumption models presented in this section all result in de-
terministic predictions. After validating them in the following section, the
methodology to achieve a stochastic solution will be shown in Chapter 5.

4.1.3 Performance Evaluation

In this section, the performance of the energy consumption model using
PE from Section 4.1.1 and its predictive extension from Section 4.1.2 shall
be examined. To validate and compare deterministic models, it is advanta-
geous to use robust performance measures, therefore they are not blurred in
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the presence of a few outliers. This is similar to the problem of robustness
for recursive estimators presented in Section 4.1.1. Consequently, the of-
tenly used mean value in performance measures should be avoided and the
median used instead. For details on the issue of robustness in signal pro-
cessing and measuring estimation performance, see [149]. This dissertation
uses robust versions of the mean percentage error (MPE) and mean absolute
error (MAE), called median percentage error (MEDPE) and median abso-
lute error (MEDAE) following the example of [100]. They are introduced
in the following equations, where the true value of a variable x is compared
with the model estimation x̂:

MEDPE = med
i

(
xi− x̂i

xi

)
(4.9)

MEDAE = med
i (|xi− x̂i|) (4.10)

Using these performance indices, firstly the energy consumption model us-
ing PE is evaluated. For this, the driving resistances Fr are calculated with
the parameter estimate p̂, and together with the powertrain model from Sec-
tion 2.1, the energy consumption estimate Êc,pe can be calculated. This
estimate for energy consumption can consequently be compared to the true
value Ec obtained from measurements. Another possibility to estimate en-
ergy consumption is using constant test bench parameters instead of the PE
results, which is a model frequently used in research, e.g. [107, 69]. Those
constant parameters for example use the mass of the empty vehicle plus one
driver, average air density for the location of the test drives etc. With these
constant values and the powertrain losses, the energy consumption estimate
Êc,cp can be calculated.
The results of the two different models on one exemplary test drive with the
BEV can be seen in Figure 4.6a. From the course of the cumulated energy
consumption it can be seen that the model with PE Êc,pe is significantly bet-
ter than the model using standard parameters Êc,cp, since it is closer to Ec.
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4.1 Energy Consumption Model using Parameter Estimation

Qualitatively, the course of Êc,cp follows is similar to Ec but they drift further
away over the distance of the test drive. From the qualitative and quantita-
tive profile, it seems that parameter estimation leads to an accurate energy
consumption model, however this selected test drive could be a positive ex-
ception. Therefore, the total error histogram for Êc,pe on all 380 km driven
with the BEV is shown in Figure 4.6b to provide a complete analysis. The
expected value of the error distribution is almost zero therefore no system-
atic model error is present and the exemplary test drive from Figure 4.6a is
no exception in the total test drive dataset. The remaining uncertainty origi-
nates from the random error signified by the variance of the distribution.

0 10 20 30
0

2

4

6

8

d [km]

Ec [kWh]

Ec

Êc,pe

Êc,cp

a) Cumulated energy consumption

−50 0 50

e [Ws]

Pr [-]

b) Total error histogram

Figure 4.6: Performance of the energy consumption models. Figure 4.6a shows the compari-
son of the true energy consumption Ec with the model using parameter estimation
Êc,pe and the model using constant parameters Êc,cp for one exemplary test drive
of 37 km. Figure 4.6b illustrates the total error histogram on all 380 km of the
BEV test data set for the superior model, Êc,pe.

Apart from the visual performance evaluation based on Figure 4.6, the per-
formance measures presented above, MEDPE and MEDAE, can be used to
quantify the model accuracy. Table 4.1 shows the results for the model using
parameter estimation (PE) and using constant parameters (CP) for both the
exemplary test drive of 37 km (Figure 4.6a) and the total data set of 380 km.
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From this table, it can be confirmed that Êc,pe with an overall MEDPE only
−2.1 % is a significant improvement compared to Êc,cp with 14.4 %. While
the model is not perfect, e.g. it does not include disturbance forces such as
wind speed, it is valid to develop the range estimation method depending on
its energy consumption characteristics. It could be shown by this evaluation
that including PE poses a substantial improvement compared to the standard
approach in literature, which uses constant parameters.

Table 4.1: Error of the energy consumption models, quantified using the robust performance
measures.

MEDPE MEDAE

PE (37 km) 1.2 % 17.3 Ws

PE (380 km) −2.1 % 14.4 Ws

CP (37 km) 15.7 % 29.6 Ws

CP (380 km) 14.4 % 27.4 Ws

After validating the energy consumption model with PE in general, the pre-
dictive extension presented in Section 4.1.2 must also be analysed. This
analysis is executed in the same way as for the Êc,pe model above. Since the
energy consumption model has been validated already, now the test drive
data of the ICEV can be used, which is bigger and therefore offers more
statistical validity. For ṽd, the true mean from the test drive is used which
represents the ideal deterministic prediction. In a forecast application, this
ideal forecast is replaced by the velocity prediction (VP) explained in Sec-
tion 5.1.
As introduced in Section 4.1.2, the standard model Ẽd

c|a=0 and the constant
acceleration model Ẽd

c|a=const are compared with the kinetic energy approach
Ẽd

c . Figure 4.7a shows the result for one exemplary test drive of 95 km. It
can be seen that while Ẽd

c|a=0 follows the qualitative course of Ec, it drifts
away from the true energy consumption. This supports the statement that
using the energy consumption model without extending it with a measure of
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acceleration could result in predictive bias. Since in such a model, part of the
resistance force is omitted, the energy consumption will be under-estimated
and in a range estimation application, this could result in unpredicted strand-
ing. The constant acceleration model Ẽd

c|a=0 is qualitatively closer to Ec,
showing this model extension reduces the predictive bias already. The best
performing model is the kinetic energy approach Ẽd

c , however in Figure 4.7a
it is almost exactly on Ec which is why it is visualized in the magnification.
To evaluate the error of Ẽd

c over all the test drives on a total of 1900 km, the
histogram Figure 4.7b is illustrated. The mean value of the error distribution
µ = 0 indicates the absence of a systematic error and the standard deviation
is σ = 37.25Wh. Compared to the error histogram of the estimated energy
consumption in Figure 4.6b, it stands out that the absolute error values are
higher because in the prediction model, the energy is calculated on the whole
segment rather than per time step. In fact, the segments on highway drives
are often longer than 1 km while the driven distance on a 10ms timestep and
thus the energy consumption is significantly smaller.
To get a quantitative evaluation, the above presented robust error measures
MEDPE and MEDAE are also applied to the prediction models and shown
in Table 4.2. It can be seen that both on the exemplary test drive as well
as the total dataset, the kinetic model Ẽd

c yields the best results, closely
followed by the constant acceleration model Ẽd

c|a=const . The standard model
without extension shows large errors with MEDPE 13.8 % on all test drives.
Both other models are accurate enough for a predictive application with total
MEDPE values below 2 %. In the following, model Ẽd

c is used for the energy
consumption forecast since it is the best overall alternative.
In summary, Section 4.1 showed the complete energy consumption model
using both microscopic models and data-driven algorithms. It was shown
that parameter estimation (PE) significantly improves model quality lead-
ing to an accurate simulation result, whereas the frequently used approach
of using constant driving resistance parameters results in a biased solution.
Furthermore, the extension for predictive applications is also required to
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Figure 4.7: Performance of the prediction models. Figure 4.7a shows the comparison of the
standard prediction model without the extension Ẽd

c|a=0 with the kinetic energy

model Ẽd
c and the constant acceleration model Ẽd

c|a=const for one test drive of

95 km. In the magnification, the difference between Ẽd
c and Ec can be seen. Fig-

ure 4.7b illustrates the total error histogram on all 1900 km of the ICEV test data
set for the best model, Ẽd

c .

Table 4.2: Error of the energy prediction models, quantified using the robust performance
measures.

MEDPE MEDAE

Ẽd
c (95 km) 2.5 % 8.9 Wh

Ẽd
c (1900 km) 1.6 % 8.7 Wh

Ẽd
c|a=const (95 km) 2.6 % 8.7 Wh

Ẽd
c|a=const (1900 km) 1.8 % 8.8 Wh

Ẽd
c|a=0 (95 km) 12.1 % 11.9 Wh

Ẽd
c|a=0 (1900 km) 13.8 % 11.8 Wh
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generate suitable forecasts. In the following of this dissertation, the pre-
sented energy consumption model will be used to generate deterministic as
well as stochastic forecasts which will be explained in Chapter 5.

4.2 Traffic Phase Classification

In the previous section, the energy consumption model was introduced
which can be used to generate forecasts Ẽc based on the estimated driving
resistance parameters p̂ and the velocity prediction ṽ. Thereby, the parame-
ter estimation (PE) algorithm was already presented in Section 4.1.1 which
relies on physical equations and recursive algorithms. The other impor-
tant factor defining energy consumption, driving speed v, strongly depends
on driving behaviour and traffic situation, therefore the explanatory power
of physical equations is limited. Hence, in this work driving behaviour is
learned with a data-driven approach using features from the TRDB (Sec-
tion 5.1). However, since driving behaviour strongly depends on the sur-
rounding traffic situation, it is advantageous to provide an accurate local
estimate.
The traffic situation can be determined using the traffic speed u, flow fu

and density ρu as well as the fundamental diagram of traffic flow [38].
Thereby, the overall traffic situation can be divided into three macroscopic
traffic phases following Kerner’s theory [67]: free-flow (FF), synchronized-
flow (SY) and wide moving jam (J). These traffic phases can be identified
with help of the fundamental diagram and probe data, which is acquired
traditionally from loop detectors in the road [66]. In recent years, the num-
ber of connected vehicles increased consistently, therefore this source of
information can also be used to identify the traffic phase [68, 134]. The mo-
tivation for the transportation research community in this area is usually the
correct prediction of travel times and hence estimated time of arrival (ETA)
for navigation purposes [94]. Thus, the type of traffic situation informa-
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tion is averaged on road segments and lanes. The TRDB data used in this
dissertation also follows this principle.
Learning situational driving behaviour however requires the local traffic
phase in the direct surrounding of the ego-vehicle instead of an averaged
value. Consequently a new algorithm has to be implemented that uses in-
ternal measurement data in real-time. Using that local traffic phase estimate
furthermore avoids errors dependent on e.g. time delay resulting from the
communication of road sensors and probe vehicles with the traffic database
or limited number of connected vehicles. In addition, if many connected
vehicles use local traffic phase estimation, the global traffic phase identi-
fication would be significantly easier for traffic providers. The following
section presents the details of the traffic phase classification (TPC) algo-
rithm for the individual ego-vehicle which has already been published to the
research community in [111].

4.2.1 Feature Selection

To identify the local traffic phase φ in the near surrounding of the ego-
vehicle, various sources of vehicle sensors are available, e.g. camera or
radar information. Among those sensor signals, many provide an indication
of the traffic phase but no signal explicitly identifies it. For example, if the
vehicle speed v is very close or even above the speed limit vlim, it is likely
that the local traffic phase φ is free-flow (FF). However, if v is lower than
vlim, the traffic phase φ cannot be inferred because it might be the drivers
choice to be slower than legally allowed. Another example for a relevant
feature would be the detection of a vehicle ahead of the ego-vehicle o(1),
which is a binary signal. Radar and camera cannot only identify whether
a vehicle is ahead, but up to 5 vehicles on three lanes, as illustrated in Fig-
ure 4.8. In wide moving jam (J) and synchronized-flow (SY), it is very likely
that a leading vehicle o(1) is detected and less likely in free-flow (FF). Using
the test drive data from the ICEV introduced in Section 3.4, the characteris-
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tics of the two features mentioned above can be shown. Thereby, the traffic
phase was manually labelled in the dataset.

o(1)

o(2)

o(3)

o(4)

o(5)

Figure 4.8: Orientation and denotation of the vehicles detected by camera and radar of the
ICEV. Vehicles 4 and 5 can only be identified if 2 and 3 are visible, respectively.

Figure 4.9a shows that in J, the ratio of driven speed and speed limit v / vlim

is significantly lower than in SY and FF, as expected. Thereby, v / vlim is
a continuous feature, hence illustrated as box-plot. The other considered
feature o(1) is discrete, therefore the empirical probability Pr(o(1)) is shown
in Figure 4.9b. It can be seen that Pr(o(1)) is much lower in FF than in
SY and J which was also expected. From this example, it is apparent that
none of the two features is able to properly separate all three phases. With
v / vlim, SY and FF cannot be distinguished properly whereas with Pr(o(1)),
SY and J are not distinguishable. However, it seems that a combination of
the two features might result in a good estimate for φ . To properly com-
bine a set of features is the task of the classification algorithm presented in
Section 4.2.2. Before designing that algorithm, the relevant features must
be extracted from the available signals, which is called feature selection.
Fundamentals of feature selection methods can be found in [43].
The central task of feature selection is to analyse the individual relevance
of the available signals and offer a numeric quantity to compare them.
For continuous features, this can be achieved with the analysis of vari-
ance (ANOVA). In ANOVA, the observations in several classes are com-
pared to determine whether it is likely that the underlying process is one
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Figure 4.9: Two exemplary features for traffic phase identification with data from the labelled
ICEV dataset. In Figure 4.9a, a continuous feature is shown which is able to dis-
tinguish between the traffic phase J and (SY,FF). Figure 4.9b illustrates a discrete
feature which separates the traffic phase FF and (J,SY).

singular distribution [37]. If that null hypothesis is true, the mean values of
the observations in the individual classes would be the similar. However,
even if the mean values are different, a very large variance would also make
the classes not separable. In a way, it can be considered as the mathematical
equivalent of comparing the distributions for each class with the boxplots in
Figure 4.9a. Therefore, the relevance of a signal using ANOVA is calculated
with help of the means and variances of the observations following (4.11),
called the F-test [78]:

F =
1

I−1 ∑I
i=1 Ni(ōi− ō)2

1
N−I ∑I

i=1 ∑Ni
j=1(oi j− ōi)2

(4.11)

where N is the total number of observations, I is the number of classes, oi j

is the individual observation, ōi the mean value of observations in class i, ō

the overall mean of all observations, Ni the number of observations in class
i and F the resulting relevance quantity. For an examplary implementation
of ANOVA, see [116].
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After calculating F for the candidate signals of the CAN, they can be ranked
according to their relevance which is shown in Table 4.3. In addition to the
F result, the correlation with other features can be seen. If the correlation
coefficient with another variable is above 0.5, then the variable is listed in
the last column. Furthermore, the separated classes are indicated derived
from boxplot visualizations equivalent to the example in Figure 4.9a. The
listed features apart from v / vlim are the distance to the vehicle ahead d(1),
the relative speed to the other detected vehicles v(1−5)

rel , the time headway to
the vehicle ahead thw(1) and the acceleration of the ego-vehicle a. From the
results, it can be seen that the feature v / vlim is the most relevant variable,
followed by the information about the vehicle ahead in terms of distance,
relative speed and time headway. In contrast, information about the other
surrounding vehicles is less important and from the visual analysis, the sig-
nals do not help separate traffic phases.

Table 4.3: Ranking of continuous features with the ANOVA method. Apart from the F-result,
the separated classes as well as the correlated variables with a coefficient of > 0.5
are shown.

feature F separated classes correlation

v / vlim 1.3 ·106 J - (SY, FF) d(1)

d(1) 3.0 ·105 J - SY - FF v / vlim

v(1)rel 1.7 ·105 (J, SY) - FF -

thw(1) 4.9 ·104 (J, SY, FF) -

v(5)rel 1.7 ·104 (J, SY, FF) v(3)rel , v(4)rel

v(2)rel 1.6 ·104 (J, SY, FF) -

v(3)rel 1.1 ·104 (J, SY, FF) v(4)rel , v(5)rel

v(4)rel 6.9 ·103 (J, SY, FF) v(3)rel , v(5)rel

a 7.8 ·102 (J, SY, FF) -
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After analysing the continuous features, the relevance of the discrete signals
must be evaluated. This can be achieved with the χ2 test developed by
[92]. The χ2 performs a similar evaluation compared to ANOVA, as it tests
against the null hypothesis of independence between the observations and
the classes. Applied on the problem at hand this would transform to e.g.
whether the probability of detecting a leading vehicle o(1) is independent
of the traffic phases. The hypothesis can be analysed with the formula for
χ2-statistics:

X2 =
I

∑
i=1

(Oi−Hi)
2

Hi
(4.12)

where the X2 value is calculated based on the total number of classes I,
observed frequency O in the class i and the expected frequency from the
null hypothesis H in the classes i. Using the example of Figure 4.9b, the
relative frequency O

N ≈ 0.5 was observed in class FF. Given the null hy-
pothesis, it would be expected that there is an equal number of observations
in the classes, hence O

N ≈ 1
3 . Similar to the F-test, the resulting X2 value

of (4.12) can be interpreted as how relevant the signal is and therefore, it
can be used to compare the features. The χ2 test is applied on the candidate
signals from the CAN-bus and the most relevant discrete features are shown
in Table 4.4. Those features comprise the detected objects o(1−5) as well as
the identification of a completely free lane FL with

FL = ¬o(1)∨ (¬o(2)∧¬o(4))∨ (¬o(3)∧¬o(5)) . (4.13)

Apart from the individual χ2 test result, the separated traffic phases are
shown after visual analysis following the example of Figure 4.9b. In addi-
tion, the correlation with other features can be seen, equivalent to Table 4.3.
From the results, it seems that the discrete features are primarily suitable to
identify free-flow (FF). Furthermore, signals o(2−5) are correlated with each
other. The most important features are the detection of a vehicle ahead o(1)
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and identification of a free lane FL. Among the other vehicles detected, the
highest relevance is achieved if two vehicles are identified on the right lane.

Table 4.4: Ranking of discrete features following the score of the χ2 test. Additionally, the
information which traffic phases can be classified based on a specific feature is
shown. The last column lists other features with a correlation coefficient of above
50 %.

feature X2 separated classes correlation

o(1) 2.5 ·105 (J, SY) - FF -

FL 6.0 ·104 (J, SY) - FF -

o(5) 3.3 ·104 (J, SY) - FF o(3), o(4)

o(2) 3.3 ·104 J - SY - FF o(4)

o(3) 2.9 ·104 (J, SY, FF) o(5)

o(4) 2.2 ·104 (J, SY, FF) o(2), o(5)

4.2.2 Classification Algorithms

The mathematical problem of identifying the correct traffic phase among a
finite set of possibilities is called classification. Classification in general and
specific suitable algorithms for different kinds of problem formulations have
been studied by other researchers, see [47] for an overview. Among all the
candidate algorithms, in this work two approaches have been studied: rule
based methods and graphical models. The former comprises heuristic al-
gorithms with low computational or modelling complexity. They are based
on a given set of decision rules created by the user, typically in an if-then

structure. Rule-based control algorithms are known to automotive engineers
from a variety of HEV operation strategies [105]. Thereby, the rules can be
evaluated deterministically with classical logic or using fuzzy logic. Clas-
sical logic is of a binary nature, a statement can be true or false. In fuzzy
logic, a statement can be true to some degree, thus instead of a binary result,
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any real number between 0 and 1 can be assumed indicating the uncertainty.
For a general overview about logical approaches, see [138]. To implement
the rule-based approaches, first the rule set must be determined which is
created by expert knowledge. Depending on the type of logic, those rules
are evaluated by both the standard rule-based algorithm (RBA) and fuzzy-
logic algorithm (FLA). The rules which can clearly identify the traffic phase
are called explicit. For the classical logic approach in RBA, an additional
implicit rule set can be used if no explicit rule is applicable or if there is a
conflict. The complete rule set is illustrated in Table 4.5.

Table 4.5: Rule set for traffic phase classification with explicit rules defining φ and implicit
rules giving an indication. The rules were generated using expert knowledge. The
individual bullet points within a phase are connected by a logical ∨

φ explicit implicit

FF • No leading vehicle detected

• Free lane in sight

• driven speed 20 km/h above
speed limit

• fast overtaking

• leading vehicle drives faster
∧ far away

SY • leading vehicle detected
¬ low speed
¬ very high speed
¬ significant stoppage

• speed relatively constant

• time headway relatively con-
stant

J • leading vehicle detected as well
as other vehicles
∧ low speed

• vehicle stop, not at intersection

• small headway

• vehicles detected on all lanes

• frequent acceleration and decel-
eration

Apart from the rule-based methods, data-driven graphical models using
Bayesian statistics are applied which represent a mathematically more com-
plex approach to the problem of traffic phase classification (TPC). The gen-
eral model structure used in this dissertation is called a Bayesian net (BN).
BNs comprise a set of variables Ai as nodes and their conditional dependen-
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cies as edges using a directed graph following [35]. The network is defined
with

Pr(A1, ...,An) =
n

∏
i=1

Pr(Ai|ΠAi) =
n

∏
i=1

θAi|ΠAi
(4.14)

where ΠAi denotes the parents of node Ai signified by the model edges and
Pr(Ai|ΠAi) denotes the conditional probability. It can be seen that the BN
depends on both the graph structure which is built by the user and the con-
ditional probabilities between connected nodes, known as BN parameters
θ . Without prior knowledge about the dependencies, these parameters must
be learned from data. For that, the standard maximum likelihood method

is used, see [81]. Thereby, discrete features are represented as multinomial
distributions and continuous features with normal distributions. Those are
created with the empirical probabilities from the training data as in Fig-
ure 4.9. For example, assuming a simple model structure where the obser-
vation variable o(1) has only one parent φ , the parameters θ can directly be
obtained from the empirical probabilities shown in Figure 4.9b, e.g.:

θo(1)=1|φ=FF =
O(o(1)=1)

N(φ=FF)
(4.15)

where θo(1)=1|φ=FF is the conditional probability of FF given a detected ve-
hicle ahead o(1) = 1, the number of detections in the specific traffic phase
is O(o(1)=1) and the total number of observations in FF is N(φ=FF). With the
defined model structure and the learned dependencies, a BN can be used
to infer the hidden state of a variable given a new set of observations. The
hidden variable in the TPC algorithm is the traffic phase φ which cannot be
measured, but instead must be inferred given the selected features. In the
following, the specific model structures for TPC are introduced, since the
BN parametrization follows standard procedures, see [20] for a complete
overview.
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Three types of BNs were implemented, each algorithm with a different ob-
servation structure. The simplest case of observation structure would be to
assume all features are independent of each other. Using this type of BN
in a classification algorithm is called naive Bayesian classifier (NBC). The
resulting model structure and the selected features are illustrated in Fig-
ure 4.10. It can be seen that the nodes indicating the features are not con-
nected with each other and only with the class variable φ because of the
independence assumption. The best three continuous features and the best
four discrete features were selected for the NBC. Despite its simplicity,
NBC shows good performance in various applications, e.g. [145].

v / vlim d(1) v(1)rel o(1) FL o(5) o(2)

φ
Class
Continuous
Discrete

Figure 4.10: Model structure of a NBC which represents a BN with independent features.
In consequence, the edges only connect the class variable with the individual
features but no edges connect the features with each other.

The observation structure of the NBC can be extended by including the de-
pendencies between features, e.g. the relative velocity of the leading vehicle
v(1)rel can only be observed if a leading vehicle is detected o(1). Also, a vehi-
cle to the left o(2) can only be observed if the ego-vehicle is not on the left
lane, a variable depicted LL. Equivalently, the information whether the ego-
vehicle is on the right line is depicted RL. The information also influences
the calculation of FL following (4.13). Including this extension turns the
NBC into a classical Bayesian net (BN), illustrated in Figure 4.11. There,
the model extension compared to the NBC is apparent by the extra edges
connecting features among each other. In addition to the ability to consider

62



4.2 Traffic Phase Classification

the inter-dependencies, BNs were shown to be robust to label noise [32]
which is an important characteristic given manually labelled training data.

v / vlim o(1)

v(1)rel thw(1)

o(2) o(4)

φ

LL RL

o(5) FL

Class
Continuous
Discrete

Figure 4.11: Model structure of a BN which considers the inter-dependencies of the features.
Therefore the edges not only connect the features with the class but also the
features among each other.

A further extension would be the consideration of time dependency in
TPC. Such a model could improve classification performance since traf-
fic flow is a spatio-temporal phenomenon. For example, it is unlikely that φ
changes directly from free-flow (FF) to wide moving jam (J) without being
in synchronized-flow (SY) before. It is also unlikely that the traffic phase
changes in every single time-step at a high frequency. Including these so
called transition probabilities with respect to time requires a hidden Markov
model (HMM), which is a special case of BN according to [81]. HMMs re-
quire an observation structure and the conditional dependencies θ in the
same way as a BN. In addition, the class variable φ depends on its previ-
ous state following the commonly known Markov assumption [89]. Thus,
a transition probability Tφ1,φ2 is assigned to all possible combinations, as
illustrated in Figure 4.12. The quantitative values for Tφ1,φ2 are also learned
from empirical transition frequencies within the training data. For a gen-
eral introduction into HMMs, see [95]. In a similar mathematical problem,
the HMM was shown to achieve good performance in classifying discrete
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4 Estimation Algorithms for Predicting Energy Consumption

driving states during real test drives [36], hence it is also expected to per-
form well in the TPC application. In the following, the HMM with a BN
observation structure is called dynamic Bayesian net (DBN) and the HMM
with a NBC observation structure is called dynamic naive Bayesian classi-
fier (DNBC).

φ = SYφ = FF φ = J

TFF,FF

TFF,SY

TFF,J

TSY,SY

TSY,FF

TSY,J

TJ,J

TJ,FF

TJ,SY

Figure 4.12: HMM model structure showing the transition probabilities Tφ1 ,φ2 indicating
the time-dependency of traffic phase on its previous state. The direct transition
between FF and J is highly unlikely, indicated by the dashed edges.

In summary, six different classification algorithms were developed to iden-
tify φ . In the order of increasing model complexity, they are the rule-
based algorithm (RBA), fuzzy-logic algorithm (FLA), naive Bayesian clas-
sifier (NBC), Bayesian net (BN), dynamic naive Bayesian classifier (DNBC)
and the dynamic Bayesian net (DBN). The performance of these methods is
evaluated in the following section.

4.2.3 Performance Evaluation

For evaluating the performance of classification algorithms, several possible
error measures are available. In this work, the balanced error rate (BER) is
chosen, a frequently used candidate which is defined as follows [96]:

BER =
1
C ∑

i

(
∑ j Mi j

)
−Mii

∑ j Mi j
(4.16)
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C is the number of classes and M is the C×C confusion matrix with Mi j

being the number of times that traffic phase i was classified as phase j. For
each algorithm, the classification results of all 10 test drivers was evaluated
in a 10-fold cross validation scheme, as illustrated in Figure 4.13. That
means, the data of one driver is reserved for testing and the data of all other
drivers are used for training the algorithms in every fold. That has the side
effect of ensuring the algorithms are independent of driving behaviour. The
mechanism of cross-validation in general was shown in Section 2.4.

...

data-set comprising 10 test drivers

test data
training data

1st fold

2nd fold

10th fold

Figure 4.13: Cross-validation method for evaluating TPC algorithms. The complete dataset
comprises data of 10 different test drivers. In a 10-fold cross validation, the data
of one driver is selected as test data while the rest serves as training set.

The results from the cross-validation evaluated in terms of the BER are il-
lustrated in Figure 4.14. They show that the graphical models (NBC, BN,
DNBC, DBN) all perform better than the rule-based approaches (RBA,
FLA). From that, the increased model complexity of inducing Bayesian
statistics and training data seems to be worth the effort. However, the spe-
cific type of observation model does not influence the overall result signifi-
cantly, it can even be seen that the NBC, the simplest algorithm among the
graphical models, shows slightly better results than the others. This might
seem puzzling as the assumption of independence within NBC is expected
to turn out worse results, especially since there are apparent dependencies
between the features. In fact, in various applications, the NBC proves to
be a robust classifier despite the assumption of independence, and scientists
research about the reason for it, e.g. in [122]. This application therefore
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4 Estimation Algorithms for Predicting Energy Consumption

provides another example of the NBC’s potential, which is a simple and
computationally efficient model that performs well. Looking at the results
of the rule-based approaches, it can be seen that the normal logic method
(RBA) shows adequate results, in the best case around 11 % error rate. This
confirms that the defined rule set is suitable for the presented problem. The
fuzzy-logic algorithm (FLA) performs worse because it does not consider
the implicit rules. When alaysing the absolute values of BER, it must be
kept in mind that 0 % is not necessarily the lower error bound because the
algorithm classification is compared to manually labelled data. Naturally,
data labelled by humans is subject to label noise. According to [34], it can
be assumed to be around 5 %, which would then be the lower bound of
BER. However, for a comparison of the algorithms among each other, this
is of secondary importance since all have to deal with the same noise.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

RBA

FLA

NBC

BN

DNBC

DBN

BER [-]

model complexity

Figure 4.14: Boxplots of the BER results from the traffic phase classification algorithms for
all test drivers. They are sorted by the modelling complexity of the inherent
algorithms. The error values were evaluated using cross-validation on the total
test drive set.

Table 4.6 illustrates the average BER of all test drives for the algorithms,
hence the performance is reduced to one number. There, NBC is also the
best algorithm with lowest BER. In consequence, it is selected to provide
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4.2 Traffic Phase Classification

information about the traffic phase to the velocity prediction (VP) algorithm
presented in the following section. However, for an implementation in a
modern day control box, it might not be feasible because training data is
required and modelling complexity is increased compared to rule-based ap-
proaches. Therefore, the RBA results are also used to provide an estimate
for φ to the VP in the following of this work. Thus, the importance of
accurate TPC within the overall method can be analysed. The results are
presented in Chapter 6.

Table 4.6: mean BER of the classification algorithms. The BER is gathered from the individ-
ual results shown in Figure 4.14 and the algorithms are sorted by their modelling
complexity.

RBA FLA NBC BN DNBC DBN

BER [%] 18.561 21.440 14.717 15.204 14.723 15.047
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5 Destination Attainability Forecast

This chapter introduces the algorithms necessary for creating the energy
consumption forecast (ECF) and ultimately attainability following the pro-
posed methodology in Section 3.2. Thereby, the approaches for obtaining
estimates for the driving resistance parameters p̂ and the traffic phase φ̂ were
already presented in Chapter 4, as indicated in Figure 5.1.

PE
Sec. 4.1

TPC
Sec. 4.2

VP
Sec. 5.1

ECF
Sec. 5.2

≤

forecast
estimation

p̂

φ̂

ṽ

Ẽc

Êb

pa

Figure 5.1: Overview of the approach for calculating attainability. Thereby, estimation algo-
rithms PE and TPC were already presented in previous section and the required
forecast algorithms are shown in this section: VP and ECF.

This chapter illustrates the forecast algorithms using the results of the men-
tioned estimation algorithms. In the following, Section 5.1 introduces the
velocity prediction (VP) algorithm to obtain future velocity ṽ based on data-
driven regression algorithms as well as TRDB information. The focus lies
on explaining the used models, rather than evaluating the overall perfor-
mance. After having explained the VP, the resulting ṽ can be used to gen-
erate the ECF, which is shown in Section 5.2. For stochastic forecasting,
appropriate uncertainty propagation methods have to be used, which are
also introduced in that section. Finally, obtaining attainability pa with help
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5 Destination Attainability Forecast

of the future energy consumption Ẽc as well as the battery model is intro-
duced in Section 5.3. Preliminary results of the complete method presented
in this chapter of the dissertation were already introduced to the research
community in [111].

5.1 Velocity Prediction

A vital influence on electric vehicle’s energy consumption is the driving
speed, as introduced in Section 2.1. Thus, for forecasting energy con-
sumption following the method illustrated in Figure 5.1, a velocity predic-
tion (VP) algorithm must be implemented, which is illustrated in this sec-
tion. Velocity prediction algorithms for complete routes are known nowa-
days from navigation systems to obtain an estimated time of arrival (ETA).
They rely on traffic information from probe data u and the resulting traf-
fic speed prediction ũ, which is introduced in Section 5.1.1. Including
driver behaviour in the forecast can be achieved by applying data-driven
regression algorithms, which is demonstrated in Section 5.1.2. Thereby,
two approaches are introduced: a simple model using a multi-linear regres-
sion (MLR) in Section 5.1.3 and a more complex machine-learnig model
using a support vector machine (SVM) in Section 5.1.4. Both the traffic
speed prediction and the regression-based prediction can be executed deter-
ministically or stochastically, which is shown in the respective sections.

5.1.1 Ideal Traffic Speed Prediction

State-of-the-art velocity prediction algorithms for complete routes are mainly
driven by the need to calculate accurate arrival times for navigation pur-
poses. Commonly known solutions, e.g. HERE MAPS [48] or GOOGLE

MAPS [41] use the mean traffic speed ū of the connected probes to obtain
the future velocity ṽ on every segment k. For the near future, directly us-
ing ū for the prediction is adequate, but for a long-term horizon, the daily
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5.1 Velocity Prediction

traffic pattern on the route has to be analysed because it cannot be assumed
that the traffic situation remains unchanged. Instead, traffic providers try to
extract the information of typical speed on the specific link at the specific
time i.e. they learn the traffic pattern which changes during the day. Fig-
ure 5.2 provides an example for the mean traffic speed ū on the segments
k between Stuttgart and Heidelberg for every hour on the 13th of October
2017. It can be seen that depending on the time, mean traffic speed varies
significantly over the course of the day. At some points, it beaks down to
almost 20 % of the free-flow speed. Predicting accurate ETA strongly relies
on the ability to find traffic patterns in the probe data and using them in the
forecast, see [5, 101, 103] for research on this topic. It can be imagined that
predicting velocity only based on the current traffic situation could lead to
a biased result. For example, when predicting traffic speed on a segment
several kilometres into the trip, the information about the typical situation
on that segment on the time of arrival is more relevant than the speed of
probes currently on that segment.
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Figure 5.2: Mean traffic speed values on the route Stuttgart-Heidelberg for every hour on 13th
October 2017.

In this work, the conventional velocity prediction using probe information
shall be used for comparison with the proposed algorithms. Therfore, the
problem of finding traffic patterns poses a challenge: If the traffic prediction
of the traffic service provider is used, the prediction might show low per-
formance because of undetected patterns or spontaneously emerging traffic
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5 Destination Attainability Forecast

jams on the route. Therefore, a method to acquire traffic information which
is independent of the pattern analysis algorithm supplied by the provider
must be used. Hence, instead of using the traffic prediction at the start of the
trip, the current traffic information for specific time and position is down-
loaded during the test drive. This creates the ideal traffic prediction and
represents the benchmark for the pattern analysis algorithms implemented
by traffic providers. An excellent traffic forecast algorithm would be very
close to the ideal traffic prediction. Therefore, it is also used as input for
the predictive algorithms later in this work to exclude forecast errors of the
traffic provider. Additionally, an error in the velocity forecast presented in
this work reduces to errors produced by the model itself and not an inaccu-
rate input variable. That is very important to ensure compatibility between
different algorithms. Apparently, this methodology only holds for adequate
data coverage. Since the test drives mostly took place on large highways,
this is a valid assumption, also because [129] showed that around 40 % cov-
erage sufficiently estimates traffic states and increasing coverage through
connected vehicles can be expected in the future. At this point it must be
said that in a real-world application, the input variable would be the cur-
rent traffic speed information available at the beginning of the trip ucurrent

instead of the ideal traffic speed uideal. The predictive quality depends on
the provider but is presumably worse. Improving it is an important task for
researchers and companies in this field.
A comparison of the ideal traffic speed uideal with the current traffic speed
information available at the beginning of the trip ucurrent can be seen in Fig-
ure 5.3. In this example, traffic jams were on the route when the test vehicle
began the trip, e.g. at around 80 km. During the time the vehicle needed
to reach the specific segments, the traffic jam at 80 km had dissolved, as
indicated by the higher uideal values. To prevent bias of this sort in the fol-
lowing, u represents the ideal traffic state. A prediction based on the ideal
mean traffic speed ū is denoted ũd, indicating a deterministic forecast.
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0 20 40 60 80
0

10

20

30

uideal
ucurrent

d [km]

v
[m

s−
1 ]

Figure 5.3: Comparison of the ideal traffic speed uideal and the current traffic speed at the
beginning of the trip ucurrent for one exemplary test drive among the ICEV dataset.

As introduced in Section 2.3, a deterministic forecast neglects system un-
certainties. However, even the ideal ū is not a 100 % accurate velocity pre-
diction for the individual vehicle because firstly, it does not include driving
behaviour and secondly, it is based on a mean value and not all vehicles
drive exactly according to the mean value. To illustrate how much ū devi-
ates from the driven speed v, one exemplary test drive of the ICEV dataset is
used. The relative error of the ideal traffic speed compared to the averaged
driven speed on every segment eu = (v̄− ū) · (ū)−1 is calculated and shown
in the histogram of Figure 5.4.

eu

KDE

−50 0 50

e [%]

Pr [-]

Figure 5.4: Example for the error distribution eu of the deterministic ideal traffic speed predic-
tion ũd. To illustrate the bi-modality of the distribution, the kernel density estimate
(KDE) with a Gaussian kernel is included.
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A significant amount of uncertainty can be seen with the 1st percentile be-
ing −53 % and the 99th percentile 71 %. In addition, the distribution does
not seem to be uni-modal. This is illustrated with help of a kernel density
estimation (KDE), signified with the red curve. One mode, the maximum
a posteriori (MAP) estimate, is close to zero error which means the driving
speed would be very close to the mean traffic speed. The other mode is close
to 40 % error, which means there is a significant chance of the vehicle driv-
ing faster than the surrounding traffic. This bi-modality can be explained
with Kerner’s three phase theory [66], first introduced in Section 4.2. In
the congested traffic phases (jammed and synchronized flow), the driver has
little choice over the ego-vehicle speed v, therefore it is close to the mean
traffic speed. In free-flow, the driver is not affected by other vehicles and
can choose the driving speed freely, in this case significantly faster than sur-
rounding traffic. From this example, it can be seen that predicting future
velocity deterministically could lead to significant bias in the forecast. Even
in the congested traffic phases with less systematic error, notable random
error remains which is apparent in the uncertainty distribution. From these
findings, it is expected that including the traffic phase estimate from Sec-
tion 4.2 in the velocity prediction will lead to better forecast performance.
However, this is evaluated in Chapter 6.
To achieve a stochastic velocity forecast, all the available probe data on a
segment k can be used from the TRDB. Since all probes report their position
and speed data, not only the mean value but also the total speed distribution
of connected vehicles can be accessed. Using these data per segment cre-
ates the stochastic traffic forecast ũs. Predicting speed in such a way uses
the underlying assumption that the future vehicle speed will be within the
boundaries of the probe distribution, hence an element of uncertainty is in-
duced. Thus, the predictive distribution is equal to the ideal probe speed dis-
tribution. Figure 5.5 shows an exemplary prediction from the ICEV dataset
using both the deterministic traffic prediction ũd and the stochastic forecast
using probe information ũs. Thereby, the 90 % prediction interval (PI) of ũs
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is indicated with the shaded area. The driven speed v̄ is also included for
comparison.

ũs

ũd

v̄
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Figure 5.5: Exemplary prediction using ideal traffic information from the TRDB. ũd shows
the mean traffic speed prediction conventionally used in modern navigation sys-
tems whereas ũs uses the complete probe distribution. Thereby, ũs is shown as
the 90 % PI with the shaded areas. For comparison, the measured velocity v̄ is in-
cluded.

Again, a significant deviation of real driven speed v compared to determin-
istic forecast ũd can be seen, especially in some areas such as around 30 km
or 70 km where the driving speed is notably above the prediction. Thereby,
under-estimating future driving speed is especially disadvantageous in a
range estimation application as it leads to under-estimation of energy con-
sumption and ultimately an over-estimation of range. This could result in
unpredicted stranding. Using the whole probe distribution in the stochas-
tic forecast ũs, the possibility of the driver choosing a velocity above ũd

is included and except in some cases, v is within ũs. From this example,
the stochastic prediction seems to transfer more useful and more accurate
information and is thus superior to the deterministic prediction. For a full
analysis on the total test drive dataset, the reader is referred to Chapter 6.
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5.1.2 Velocity Prediction using Regression Algorithms

Commonly, velocity prediction algorithms for complete trips are based on
traffic information as shown in the previous section. If the algorithm relies
only on probe information, the driver behaviour cannot be included. How-
ever, learning driving behaviour using data-driven regression algorithms
could improve forecast performance. Predicting future velocity including
driver behaviour can fundamentally be executed based on two forecast prin-
ciples: time-series based forecasting and feature-based forecasting (see Sec-
tion 2.3). The former uses the pattern within the past values of the ve-
locity signal to predict its future profile, whereas the latter can model the
dependency of explanatory variables (features) on the driven velocity. A
commonly used time-series model is the Markov chain (MC) formulation,
where the prediction is only dependent on the observation of the last time
step. This model type has been used for vehicle speed prediction in liter-
ature, e.g. [24]. It shows good performance in short-term predictions, for
example if the driving speed in the next seconds is of interest [57]. How-
ever, even on arelatively shorty prediction horizon of ≥ 10s, it was found
that explanatory models give better forecast results, see [36]. In a long-term
prediction application, this is even more likely. The driving behaviour in
the last time step is less important than environmental factors such as traffic
speed, street type or number of lanes when looking several hours into the
future.
Explanatory forecasting is based on input variables, the features, and regres-
sion or machine learning algorithms, which extract the connection between
the features and the outcome. Several approaches from linear models to
deep learning have been applied in literature, an exemplary comparison of
different algorithms can be seen in [71]. Still, the maximum prediction hori-
zon considered in that publication was 10 s, which is too short for a range es-
timation application for long-distance trips. Forecasting vehicle speed up to
30 min into the future can be found in [91], where a neural network (NN) is
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implemented. Still, the approach is based purely on probe information. An
extension where additional route and weather data are incorporated was de-
veloped in the deep-learning algorithm of [17]. However, the deep-learning
module produces a deterministic forecast and neglects uncertainty of future
driving speed. A stochastic velocity forecast based on explicitly modelled
traffic phase information and modern navigation system data does not yet
exist in literature, excluding the publication comprising preliminary results
of this dissertation [111].
The VP algorithm proposed in this work uses feature-based forecasting.
The features available can be accessed via the TRDB and consist of static
route data from the geometric map and dynamic traffic data from connected
probes. The used features are listed in Table 5.1.

Table 5.1: Features used for the regression algorithm provided by TRDB.

feature [unit] details

φ̂ [-] traffic phase

ū [ms−1] ideal mean traffic speed

vlim [ms−1] legal speed limit

κ [m−1] road curvature

Λ [-] street class

ᾱ [%] mean road gradient angle

Static features vlim, κ , Λ and ᾱ are constant over time and depend only on
the location. The only feature among these which is not self-explanatory is
the street class Λ. It represents a categorization of the road segment accord-
ing to the maximum capacity and speed. High volume and high speed roads
(highways) are assigned class variable 1 and lower volume and/or lower
speed roads are assigned higher classes up to 5 according to the TRDB def-
inition [48]. The dynamic features φ̂ and ū are not constant and depend on
both the location and time. ū is the ideal traffic speed explained in Sec-
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tion 5.1.1. Therefore, the forecast can be made for an ideal traffic prediction
input, i.e. as if the dynamic traffic situation on the route is known before-
hand. The traffic phase is not available from the TRDB today. However,
given the probe data available in the back-end, this information can be ex-
tracted, for example based on the fundamental diagram using traffic speed,
flow and density relationships [68, 136]. Hence, if this feature proves to help
prediction accuracy, it could be transferred to the vehicle’s control box to be
used in the regression algorithm. A second possibility would be to equip
connected vehicles with the traffic phase classification (TPC) algorithm de-
veloped in Section 4.2, thus enriching probe information on the TRDB with
φ̂ . In this work, the identified traffic phase on the measurement drive is
used as predictive information, representing the ideal traffic phase forecast
φ̃ . This is a coherent approach with the use of ideal traffic speed presented
in Section 5.1.1.

5.1.3 Multi-Linear Regression

Apart from the features presented in the previous section, the regression
algorithm itself must be selected. A simple model among candidate algo-
rithms is the linear regression. It assumes a linear relationship between fea-
tures and output variable v̄. Using this linear model for multi-dimensional
inputs requires multi-linear regression (MLR) which is the straightforward
extension of the scalar model to a vector model [123, 3]. The connection,
or pattern, describing the dependency of v̄ on the features is expressed with
the hypothesis vector h. After the pattern has been identified using training
data, the forecast can be made with help of of the predicted features for the
selected route, which have been introduced in Section 5.1.2. Finding the
hypothesis vector gives the following minimization problem:

min
h

n

∑
k=1

Θ
(

v̄k − h ·
[
ūk vlim,k φk κk Λk ᾱk

]>)
. (5.1)
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Obtaining optimal h, which results in the smallest overall deviation from the
measured speed v̄ on all segments n of the training data, is dependent on the
loss function Θ, a mathematical problem known from the parameter esti-
mation (PE) in Section 4.1.1. The standard least-squares (LS) loss function
would have the weight function Θ = (·)2. However, LS is not robust, there-
fore in the MLR implementation for velocity prediction (VP) in this work,
the Huber loss function is used for Θ to limit the outlier weights [52]. In ad-
dition, the observations are linearly weighted according to segment length
lk, hence longer segments are more important for the regression than shorter
segments. To generate a forecast, hypothesis h from the training data and
features from the future trip are required. Thereby the deterministic fore-
cast ṽd is the result of the direct computation h [·]> following (5.1). For the
stochastic forecast, the amount of uncertainty in the training data is included
in the prediction, which is a common approach in forecasting applications
[53]. Thereby, the relative error of the residuals is used to calculate the
uncertainty. The predictive distribution is assumed to be Gaussian. This
assumption is made to limit overfitting to the exact in-sample error distribu-
tion.
An additional challenge in forecasting velocity with MLR solely based on
the input features is the lost time-dependency of the average velocity profile.
At some points, that could lead to the prediction of implausible acceleration
events. This could happen for example, if an on-ramp to a highway is part
of the route, where traffic flows freely. The segment directly after the ramp
will be predicted to have high velocity whereas the segment before has low
speed because it is not on the highway yet. However, the ego-vehicle does
not have infinite acceleration potential and the required acceleration to fol-
low the predicted profile might be too high. Therefore, the resulting velocity
prediction from the MLR is post-processed to remove such implausible ac-
celeration events. For each driver, the acceleration behaviour is extracted
from the training drive to calculate the personalized maximum and mini-
mum acceleration. Subsequently, for each segment k of the predicted pro-
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file, the required acceleration areq to reach ṽ on the next segment k+ 1 is
calculated following (5.2). If areq exceeds the personal maximum of the
driver, the velocity prediction ṽk+1 is corrected to be reachable within the
acceleration limits. Exceeding personal minimum is treated equivalently.

areq =
v2

k+1− v2
k

2lk
(5.2)

To show an example for the VP using MLR, the ICEV test data set is used.
As introduced in Section 3.4, the dataset contains two trips for each driver (A
and B). Hence, one trip can be used for training the model and the trained
model can subsequently be used to predict the return trip. The measure-
ment data of the return trip can be used to evaluate the performance of the
forecast. The VP algorithm is based on two model types, the regression
model and the traffic phase classification (TPC) model, both must be de-
fined. Selecting MLR for regression and the naive Bayesian classifier (NBC)
from Section 4.2.2 for estimating φ results in the forecast signified with
VPk (ṽmlr, φ̂nbc). The subscript k indicates that the forecast predicts a value
for each segment, thus generating a profile instead of one aggregated quan-
tity. In accordance with the used nomenclature in this work, a stochastic
forecast generated by this model is denoted VPk (ṽs

mlr, φ̂nbc) and a determin-
istic forecast VPk (ṽd

mlr, φ̂nbc). Figure 5.6 shows an exemplary prediction of
VPk (ṽmlr, φnbc). Thereby, the same driver and trip as Figure 5.5 is used,
hence the profile for v̄ is equal. The 90 % PI of the stochastic forecast ṽs

is shown as well as the deterministic forecast ṽd. In most cases, v̄ is within
the uncertainty band of the stochastic forecast. From the diagram, it seems
the forecast does not systematically under-estimate future velocity as in the
traffic speed prediction from Section 5.1.1. That means the tendency of the
driver to choose higher speed than surrounding traffic was learned during
the training trip. The magnitude of uncertainty in the forecast is higher com-
pared to ũs. However, from this graph alone, it is not possible to verify how
good the forecast is, or to compare different models with each other. There-
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fore, the reader is referred to the full analysis of the predictive performance
given in Chapter 6.

ṽs
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Figure 5.6: Velocity Prediction example VPk (ṽmlr, φ̂nbc) using MLR as regression algorithm
and NBC for estimating traffic phase on every segment k. The stochastic forecast
is denoted ṽs and the deterministic forecast ṽd. Thereby, ṽs is shown as the 90 %
PI with the shaded areas. The measured speed v̄ is shown for comparison.

Figure 5.7 shows the in-sample and out-of-sample error distributions of the
exemplary forecast VPk (vmlr, φnbc) with the relative error

ev = (v̄− ṽd) · (ṽd)−1 . (5.3)

Although from the shown example alone, a general conclusion cannot be
drawn, it indicates that the uncertainty is approximately uni-modal. The lin-
ear model is able to distinguish the traffic phases because of the feature input
and therefore bi-modality previously encountered in the error distribution of
the traffic speed prediction is not visible (see Section 5.1.1). When compar-
ing in-sample and out-of-sample distribution, an ideal model would yield
the same characteristics. In a forecasting application, this is hardly realistic,
especially if the forecast is made far into the future and human behaviour
is involved. Therefore the distributions should only be similar from a high
level perspective to imply good generalization potential of the model. In
this example, it appears the VPk (ṽmlr, φ̂nbc) model is suitable for predicting
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vehicle speed. In addition, a significant amount of uncertainty can be ob-
served which shows a deterministic forecast would not be sufficient in this
case. However, how good the forecasts are and whether the defined assump-
tions hold can only be verified using more test drive data and a meaningful
performance index, which is analysed in Chapter 6.
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a) in-sample error distribution.
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b) out-of-sample error distribution.

Figure 5.7: Example for the in-sample error distribution of speed prediction using
VPk (ṽd

mlr, φ̂nbc) for the above presented example. The kernel density estimate
(KDE) with a Gaussian kernel is shown to visualize the characteristics of the dis-
tribution.

5.1.4 Support Vector Regression

In the previous section, a linear model was used for velocity prediction (VP).
Since driving behaviour comes down to human behaviour, the system could
also be non-linear which could not be represented well enough by the multi-
linear regression (MLR). Therefore, a more complex model should be im-
plemented for comparison. Among candidate algorithms for pattern anal-
ysis, the support vector machine (SVM) has been proven to be a suitable
algorithm for travel time prediction by [140], which is a very similar appli-
cation. In a traffic speed forecast project [130], the performance of an SVM
was compared to a neural network (NN), which is one of the most common
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5.1 Velocity Prediction

machine learning algorithms nowadays. It was shown that SVM produced
more accurate results, especially when dealing with limited training data
quality and quantity. Based on these assessments, where the features were
limited to probe data, SVM was chosen as candidate machine learning algo-
rithm for the velocity prediction (VP) algorithm implemented in this work.
The SVM was originally created to solve non-linear classification problems
by V. Vapnik [132, 131] and uses the concept of separating hyperplanes as
illustrated in Figure 5.8. There, it can be seen that the optimal hyperplane
to separate (classifies) red and blue points maximizes the margin, i.e. max-
imizes the distance to the nearest points. With mathematical optimization
algorithms, the hyperplane can be found for an arbitrary set of points to be
classified [131]. However, in this example it can be seen that the methodol-
ogy works only for linear problems.

marg
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pe

rpl
an

e

x1

x 2

Figure 5.8: Illustration of the separation mechanism for SVMs. The optimal hyperplane to
separate blue and red points has the maximum margin following [131].

To be suitable for non-linear problems, the SVM uses the kernel transfor-

mation to transform a problem which has no linear solution in the normal
input space into a higher dimensional space where a linear solution exists.
An illustration of this methodology can be seen in Figure 5.9. There, clas-
sification of the red and blue points in the left diagram is not possible with
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5 Destination Attainability Forecast

a linear hyperplane, as it is an ellipsoid. Using a quadratic transformation
function

ζ (x1,x2) = [x1
1,
√

2x1x2, x2
2] (5.4)

the points can be transferred to a higher dimensional feature space ζ , where
the points are linearly separable as indicated with the dotted rectangle. The
transformation into the feature space can be described with a Kernel func-
tion K(x1,x2), in the above case it would be a quadratic Kernel model. Ker-
nel functions are designed in a specific way, such that they enable a com-
putationally efficient transformation, as shown in [115]. Indeed, it can be
mathematically shown that using the right Kernels, the calculation of the
separating hyperplane for non-linear problems is still of linear computa-
tional complexity although a transformation into a higher-dimensional fea-
ture space is inherent. To comprehend this mathematical trick, also called
the kernel trick, the reader is referred to the text books about SVM, e.g.
[112, 115] because computational efficiency is not within the focus of this
work.
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Figure 5.9: Exemplary transformation into a higher dimensional feature space. The left dia-
gram shows the points to be separated in 2D and the right diagram illustrates the
transformed points in the three dimensional feature space. Thus, the linearly in-
separable points in 2D become linearly separable in 3D.
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5.1 Velocity Prediction

SVM can also be used for regression with a slightly changed mathemati-
cal methodology. Instead of maximizing the margin between separable data
points, in regression, the optimal hyperplane minimizes the distance to the
data points. As introduced in Section 4.1 and Section 5.1.3, a loss func-
tion is required to find this hyperplane, in this case Vapnik’s ε-insensitive
loss function [131]. Thereby, a margin ε is selected within an error is not
relevant and points outside the margin are weighted linearly, as illustrated
in Figure 5.10. Hence, as in the classification case, the distance of the data
points to the margin is the value to be optimized. In the work of [118], it was
shown that the ε-insensitive loss function leads to the equivalent optimiza-
tion function as in the classification case. Therefore, the kernel transforma-
tion can be used to solve non-linear regression problems. In consequence,
SVM based systems can solve non-linear dependencies which MLR cannot.
This is an advantage, as it cannot be assumed that driving behaviour follows
linear equations. In this work, the SVM implementation of [118] was used
with a polynomial kernel with the same features as the MLR, therefore the
reader is referred to the literature for more details about the algorithm.

±ε

x

y

−ε ε

y− f (x)

loss

Figure 5.10: Illustration of the SVM method for regression using the ε-insensitive loss func-
tion following [112]. On the left, the data points with the regression line and the
ε-insensitive band is visible. On the right, the loss for the selected point is calcu-
lated.

Equivalently to the MLR model presented in the previous section, the SVM
model cannot capture the time dependency as it is a feature-based forecast.
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5 Destination Attainability Forecast

Therefore, the prediction must be post-processed to ensure a plausible ac-
celeration behaviour. For this, the methodology of MLR is used, see Sec-
tion 5.1.3 for details. In addition, the linear weighting on the segment length
is included in the ε-insensitive loss function, as in the MLR. Standard SVM
implementations generate deterministic forecasts, but for a stochastic fore-
cast, the uncertainty of the model must be included. Following [53], the
use of the in-sample error distribution as out-of-sample uncertainty is of-
ten a viable and straightforward alternative in forecasting applications. This
method is applied in the linear case and therefore also for the SVM forecast.
Figure 5.11 shows the prediction of the SVM model for the same training
and test data as in the examples of Section 5.1.1 and Section 5.1.3. It uses
the traffic phase estimates from the naive Bayesian classifier (NBC) and is
consequently denoted VPk (ṽsvm, φ̂nbc). It can be seen that the SVM forecast
obtains plausible results for the presented test drive and the measurement v̄

is mostly within the 90 % PI. Even the peak at around 30 km is within the
uncertainty distribution, which is an evidence of the SVM to learn driving
behaviour from the training set. Interestingly, the low speed phase at around
20 km is under-estimated whereas it was over-estimates in the MLR fore-
cast. However, for a reliable quantitative evaluation of all approaches, the
reader is referred to Chapter 6.
Figure 5.12 shows the in-sample and out-of-sample error distributions of the
model VPk (ṽd

svm, φ̂nbc) with the relative error calculated according to (5.3).
Hereby, similar characteristics to the MLR error distributions can be de-
tected. An ideal forecast would have the same in-sample and out-of-sample
error distribution. In this application this is unrealistic because of too many
influence factors, one of them being human behaviour. The KDE reveals a
uni-modal in-sample error, therefore the bi-modality due to different traffic
phases is not visible. From this observation, it is expected that forecast al-
gorithms including an estimate for traffic phase generate better results than
algorithms neglecting it. The out-of-sample error shows slight bi-modality
but the modes are very close to each other. In addition, a significant amount
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Figure 5.11: Velocity Prediction example VPk (ṽsvm, φ̂nbc) using SVM as regression algorithm
and NBC for estimating traffic phase on every segment k. The stochastic forecast
is denoted ṽs and the deterministic forecast ṽd. Thereby, ṽs is shown as the 90 %
PI with the shaded areas. The measured speed v̄ is shown for comparison.

of uncertainty can be observed, an indication that deterministic forecasting
is not suitable in this application. On a high level, it appears the SVM model
is adequate for predicting vehicle speed. This hypothesis can only be veri-
fied using more test drive data, which is analysed in Chapter 6.

5.2 Energy Consumption Forecast

After obtaining the velocity prediction (VP) presented in Section 5.1, the fu-
ture energy consumption Ẽc can be calculated following the overall method-
ology shown in Figure 5.1. In the deterministic case, this could be achieved
by directly using the energy consumption model of the vehicle from Sec-
tion 4.1.2 and the future velocity profile ṽd, resulting in the prediction Ẽd

c .
However, in the stochastic case the uncertainty of ṽs makes a direct compu-
tation more complex because the effect of the uncertainty distribution on the
energy consumption must be assessed. This problem is called uncertainty

propagation and different common approaches are shown in Section 5.2.1.
In this work, the sequential Monte-Carlo simulation (MCS) is chosen among
the candidates and is introduced in Section 5.2.2. After thus obtaining the
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b) out-of-sample error distribution.

Figure 5.12: Example for the in-sample and out-of-sample error distributions of speed predic-
tion using VPk (ṽd

svm, φ̂nbc) for the above presented example. The kernel density
estimate (KDE) with a Gaussian kernel is shown to visualize the characteristics
of the distribution.

stochastic energy consumption forecast Ẽs
c , the overall result must be calcu-

lated by convolving all the distributions for the predicted segments, which
is introduced in Section 5.2.3.

5.2.1 Approaches for Uncertainty Propagation

Uncertainty propagation methods can assess the uncertainty of future energy
consumption Ẽc resulting from uncertain ṽ, which is required for calculating
attainability based on stochastic forecasts. In a general description, uncer-
tainty propagation covers the effect of an uncertain input variable x on a
system and thus on the output variable z, as shown in Figure 5.13. Therein,
the system is described with the transfer function f (x). In the ECF context,
x would be the ṽs distribution, f (x) the energy consumption model shown
in Section 4.1 and z the Ẽs

c distribution. For systems where the distributions
and the transfer function can be described analytically, the uncertainty prop-
agation is directly computable. However, real systems are often analytically
intractable. This is also the case in the presented application since the trans-
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fer function is non-linear. To solve this problem, multiple methodologies
were developed by researchers to approximate the resulting distribution z or
the transfer function f (x).

System
f (x)

x z

Figure 5.13: Block diagram for one dimensional uncertainty propagation. The uncertainty
of an input variable x effects the system and consequently the uncertainty of an
output variable z. Thereby, the system is described with the transfer function
f (x).

A commonly known form of uncertainty propagation is the problem of er-

ror propagation [79]. Sometimes, it is also called method of moments, as it
estimates the effects of an input error in terms of its first and second statisti-
cal moments, which is mean and variance. It is based on an approximation
of the transfer function and can be calculated using the following formula,
extended to the two-dimensional case:

sz ≈
√(

∂ f
∂x

sx

)2

+

(
∂ f
∂y

sy

)2

+2rxy

(
∂ f
∂x

sx

)(
∂ f
∂y

sy

)
. (5.5)

There, rxy is the correlation between the input variables. Using this formula
for ECF with the only uncertain input being the velocity profile gives

sE ≈
√(

∂Ec

∂v
sv

)2

, (5.6)

where sE is the uncertainty in energy consumption and sv the uncertainty in
the velocity. The two quantities are analytically connected via the energy
consumption model, here denoted with E. Constructing the local derivative
of E(v) in the point of interest, the linearisation of the transfer function
allows direct computation of sE as shown in Figure 5.14.
Usually, measurement errors are assumed to have Gaussian uncertainties,
hence in some sources the method is also called Gaussian error propaga-
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E(v)

sv

sE

v

E
Figure 5.14: Illustration of the Gaussian error propagation method. The error sE is obtained

using the local derivative of the function E(v) at the point of interest and the
original error sv.

tion. It is widely used but in addition to assuming Gaussian uncertainties,
it also requires negligible linearisation errors. Oftenly, real systems do not
fulfill these preconditions which could lead to biased results as shown by
[4]. In this work, an additional challenge lies in the transfer function itself
since the energy consumption model is based on characteristic maps, hence
a function approximation of the model would be required which could in-
duce additional bias.
Another approach for uncertainty propagation where the transfer function
is not approximated or linearised is the unscented transformation originally
proposed by [60]. It was created for signal processing problems of non-
linear systems. Such systems cannot be solved with the linear Kalman filter,
therefore the extended Kalman filter (EKF) was created which linearises the
transfer function, similar to the above mentioned error propagation. [60]
proposed an alternative where instead of approximating the transfer func-
tion in the EKF, the uncertainty distributions are approximated. Thereby,
a set of sample points is chosen and propagated through the system using
the exact transfer function. In opposition to Monte-Carlo methods, these
sample points are not selected randomly but follow a deterministic algo-
rithm. With this method, the first and second moment of the output can be
calculated based on a small number of points. In their work [62, 61, 59],
the authors proved that unscented transformation is superior to the lineari-
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sation approach in many real-world applications. Still, the in- and output
uncertainties are assumed to be near-Gaussian.

E(v)

v
E

Figure 5.15: Illustration of the unscented transformation. Instead of approximating the trans-
fer function, the distributions are approximated using a set of sample points.

However, for an application in this work, the kinetic energy change between
the segments must be considered for calculating energy consumption fol-
lowing the model presented in Section 4.1. Therein lies an additional chal-
lenge for the uncertainty propagation method: The kinetic energy depends
on the velocity profile which is subject to uncertainty, as illustrated in Fig-
ure 5.16. There, it is shown that the total energy consumption depends on
the sequence of the predicted distribution over the segments k. Theoret-
ically, the kinetic energy change necessary for all points on k and k + 1
within the predicted distribution could be calculated. However, not all the
states are plausible or physically possible and the computation time would
be very high. Therefore, not only a method which is able to propagate the
uncertainty through the non-linear system but also a model for the sequen-

tiality of the future profile is required. Since the introduced methods have
limited capability to solve this problem, a popular approach is the sequential
Monte-Carlo simulation (MCS) explained in the next section.

5.2.2 Sequential Monte-Carlo Simulation

A common method for uncertainty propagation used in research is the
Monte-Carlo simulation [88]. It approximates the input distribution with
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Figure 5.16: Illustration of the sequentiality in uncertainty propagation for energy consump-
tion. The kinetic energy change ∆Ekin is dependent on the uncertain velocity
profile.

a set of arbitrary points, which are propagated through the transfer function
to form the output distribution, as illustrated in Figure 5.17. The main dif-
ference to the unscented transformation shown in the previous section is the
method of choosing the input points, since it does not follow a deterministic
algorithm. A Monte-Carlo simulation does not impose assumptions over the
input- and output distributions nor does it approximate the transfer function.

E(v)

v

E

Figure 5.17: Illustration of the Monte-Carlo Simulation Method. A set of arbitrary points is
selected to approximate the input distribution. Each point is propagated through
the transfer function to form the output distribution.

At the start of a Monte-Carlo simulation, the points to represent the input
distribution must be chosen. These points are called samples, consequently
the procedure of selecting them is the sampling method. There are var-
ious sampling methods, see [58] for an overview. In this work, two of
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them are presented: uniform sampling and importance sampling. In uni-
form sampling, the n random samples {ξ (i)}n

i=1 are drawn from a uniform
distribution. The number of samples n is chosen based on the trade-off be-
tween computation time and accuracy. It can be imagined that an extremely
high number of samples approximates the input distribution very accurately
but also increases calculation time significantly since each sample must be
evaluated. If the input distribution and the sampling distribution are very
different, more samples are required for adequate accuracy than if the dis-
tributions are similar.
Hence, uniform sampling might not lead to acceptable results because the
input distribution in real-world applications rarely follows a uniform dis-
tribution. Thus, a generalization of uniform sampling, called importance

sampling can be used. In importance sampling, the user specifies a distribu-
tion Q from which the samples are drawn, e.g. a Gaussian. In consequence,
the samples {ξ (i)}n

i=1 are more likely to be chosen from an area with high
probability in Q which leads to a better approximation with less samples if
the input distribution and Q are similar.
The standard Monte-Carlo simulation can be extended to cover dependen-
cies between the states in the so called sequential Monte-Carlo simula-
tion (MCS) [15]. In MCS, a number of particles τ is specified and each
particle is sequentially propagated through the transfer function. Thereby, in
each sequence, a random sample is chosen following the specified sampling
method. This enables MCS to solve the uncertainty propagation problem
posed by the necessity to forecast energy consumption based on an uncer-
tain velocity profile.
As shown in Section 5.2.1, the individual velocity samples cannot be cho-
sen independently of each other. While in Section 5.1.3 and Section 5.1.4,
the deterministic prediction was post-processed to be realistic, the stochas-
tic forecast was not. However, it can be imagined that, if a velocity sample
close to the lower boundary of the PI is chosen on segment k, not all velocity
values within the PI of segment k+1 are accessible with reasonable accel-
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eration. This is illustrated in Figure 5.18a, where the blue cross signifies
the chosen velocity sample on k within the stochastic velocity prediction ṽs.
The red region illustrates the implausible velocity values which exceed the
physical limit of the test vehicle, as the powertrain cannot provide enough
torque if the required acceleration areq is above the maximum acceleration
amax. Furthermore, among the physically plausible accelerations, not all are
equally likely. Driver’s acceleration behaviour usually follows a Gaussian
distribution, as shown by [108]. Drivers on long-distance trips especially
will tend to a calm driving style with more low than high accelerations. To
evaluate this, the acceleration behaviour of all 10 test drivers in the ICEV
data set was analysed and the KDEs are shown in Figure 5.18b. It can be
seen that the distributions do not differ significantly between the drivers and
all of them rarely accelerate or decelerate with more than 1ms−2. These dis-
tributions can be used for the sampling method in order to achieve a realistic
velocity profile for each particle i.

amax

areq > amax

areq < amax

ṽs

1 2
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20
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k [-]

v [ms−1]

a) Dependency of ṽk+1 on ṽk .

−2 −1 0 1 2

a [ms−2]

p [%]

b) Acceleration behaviour of the test
drivers.

Figure 5.18: Illustration of the inter-dependency of the velocity samples for MCS. Fig-
ure 5.18a shows the dependency of the velocity uncertainty on a segment k+ 1
on the prior segment k via the physical acceleration limit amax. Figure 5.18b
shows the acceleration kernel density estimation (KDE) of the 10 test drivers.
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The sampling distribution Q can be modelled with a Bayesian approach
where the distribution given by the VP serves as prior distribution p(ṽ) = ṽs.
The likelihood distribution represents probable individual acceleration be-
haviour of the driver p(a|ṽ) given the VP, following Figure 5.18b. The
posterior distribution p(ṽ|a), which reflects both the velocity profile and the
dependency of each sample on the previous one, can subsequently be calcu-
lated with Bayes’ rule:

p(ṽ|a) = p(a|ṽ)p(ṽ)
p(a)

. (5.7)

An exemplary illustration is shown in Figure 5.19a, where the prior p(ṽ),
likelihood p(a|ṽ) and the resulting posterior p(ṽ|a) are shown. That poste-
rior distribution serves as sampling distribution Q for the importance sam-
pling method presented above. The individual velocity samples {v(k,i)}n,τ

k,i=1

are subsequently drawn for each particle i and on each segment k from the
posterior distribution. An exemplary trajectory of three particles can be
seen in Figure 5.19. There, no unrealistically high accelerations are visi-
ble and the trajectories have a similar qualitative course but differ due to
their stochastic nature.
The energy consumption of each particle on each segment can be calculated
using the model presented in Section 4.1. The stochastic forecast for Ẽs

c,k is
afterwards obtained by collecting the energy and probability of each sample
on the specific segment. Thus, the desired result of the uncertainty propa-
gation problem is achieved. An example is shown in Figure 5.20. There,
τ = 10 particles were used which means a total number of 4320 velocity
samples {v(k,i)}n,τ

k,i=1 on n= 432 segments must be evaluated. The chosen VP
algorithm used a naive Bayesian classifier (NBC) for identifying the traffic
phase and multi-linear regression (MLR) for learning the driver behaviour
VPk (ṽmlr, φ̂nbc). The 90 % PI of the stochastic forecast Ẽs

c is illustrated with
the shaded area and the observation from the measurement on each segment
is denoted Ēc. From the graph, it seems the observation is mostly within
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Figure 5.19: Exemplary illustration of the sequential Monte-Carlo simulation (MCS). Fig-
ure 5.19a shows how the sampling distribution is computed using Bayes’ rule.
From the resulting posterior, the particles τ select velocity samples on each seg-
ment. The resulting profile of three particles is shown in Figure 5.19b.

the prediction interval. However the overall performance of the forecast is
evaluated in Chapter 6.

Ẽs
c

Ēc
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Figure 5.20: Energy consumption forecast resulting from the sequential Monte-Carlo simu-
lation (MCS) with 10 particles and importance sampling based on the velocity
prediction model VPk (ṽmlr, φ̂nbc).
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5.2.3 Convolution

The output of the sequential Monte-Carlo simulation (MCS) is the the indi-
vidual energy consumption distribution on every segment Ẽs

c,k. To achieve
the total energy consumption forecast Ẽs

c , the sum of these individual dis-
tributions must be obtained. For deterministic predictions, this would be
the sum of the predicted energy on all segments k. For stochastic fore-
casts, the predicted energy is a random variable on each k. The sum of
random variables can be obtained using convolution [49]. Normally, convo-
lution requires linear independence. While the predictions on the individual
segments are independent on each other as output of the VP, the result is
post-processed to exclude unrealistic accelerations. This post-processing is
regarded as weak dependence. In addition, the segments are only pairwise
dependent which is another definition for weak dependence. In [110], it was
shown that convolution can be used for weak dependent systems.
The analytical formulation of convolution is given in the following. Let
the resulting distribution for two segment energies Ẽs

c,1 and Ẽs
c,2 be given

by Ẽs
res,2. Then, for an arbitrary point y, the resulting distribution can be

calculated:

Ẽs
res,1 = Ẽs

c,1 (5.8)

Ẽs
res,2(y) = Ẽs

res,1 ∗ Ẽs
c,2

=
∫

Ẽs
res,1(z1) · Ẽs

c,2(y− z1)dz1
(5.9)

Extending (5.9) to the general case finally gives

Ẽs
res,k+1 = Ẽs

res,k ∗ Ẽs
c,k+1 ∀k ≥ 1 , (5.10)

Ẽs
c = Ẽs

c,1 ∗ ...∗ Ẽs
c,n = Ẽs

res,n . (5.11)

With (5.11), the total energy consumption for all n segments can be cal-
culated, which is the goal of the energy consumption forecast (ECF). Due
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to the central limit theorem (CLT), the resulting distribution for Ẽs
res,n = Ẽc

is normally distributed. The CLT states that the sum of random variables
which are not Gaussian tends to a normal distribution and is based on the law

of large numbers [3, 22]. In [108], it was shown that even on a small number
of segments and a bi-modal distribution, the resulting energy consumption
from the convolution is normally distributed. The same can be shown us-
ing an exemplary VP with SVM neglecting TPC, denoted VPk (ṽs

svm). Fig-
ure 5.21 illustrates different steps in the convolution of the MCS results. The
convolution of the first two segments Ẽs

res,2 is strongly non-normal but with
the convolution of more segments, the resulting uncertainty distribution be-
comes Gaussian after 25 segments due to the central limit theorem (CLT).
In this example, the 25 segments represent a prediction of 2.5 km into the
future. From this, it can be concluded that in a range estimation context, the
amount of predicted segments is always enough for the resulting distribution
to be normal.
Convolving all predictions Ẽs

c,k results in the total energy consumption fore-
cast Ẽs

c , which can subsequently be used to calculate attainability. Fig-
ure 5.22 shows an example of such a forecast. There, the stochastic forecast
based on the probe distribution for velocity prediction from Section 5.1.1
is denoted Ẽs

c(ũ). The result obtained using the same regression model
VPk (ṽs

mlr, φ̂nbc) for velocity prediction as in Figure 5.20 is denoted Ẽs
c(ṽ).

For the required MCS, 10 particles are used in both cases. As a comparison,
also the deterministic alternatives based on the mean values from velocity
prediction Ẽd

c (ũ) and Ẽd
c (ṽ) are shown. Thus, they are not the maximum

a posteriori (MAP) estimates of the respective stochastic forecasts. The
observed energy consumption on this test drive is denoted Ec. In this ex-
ample, it can be seen both deterministic predictions under-estimate energy
consumption for the future trip, as Ec is 1.59 kWh (7.00 %) higher than
Ẽd

c (ũ) and 0.47 kWh (1.97 %) higher than Ẽd
c (ṽ). Looking at the stochastic

forecasts, it can be seen that the realization based on the test-drive measure-
ment Ec is well within the predicted uncertainty distributions. The expected
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Figure 5.21: Illustration of different steps in the convolution for an exemplary energy con-
sumption forecast. Ẽs

res,2 shows the result of the first and second segment pre-
diction added together, Ẽs

res,5 the first five segments etc. After the 25th segment,
the resulting uncertainty distribution is a Gaussian due to the central limit theo-
rem (CLT).

values E(Ẽs
c(ũ)) = 23.61kWh and E(Ẽs

c(ṽ)) = 24.36kWh of the stochastic
forecasts are closer to Ec = 24.32kWh than their respective deterministic
counterparts. In addition, the predictions using the regression model are su-
perior to the probe information predictions. The question whether this is
true for all test drives will be answered in Chapter 6.

5.3 Attainability Calculation

After completing the energy consumption forecast (ECF) in the previous
section, the attainability pa can be calculated following the methodology
presented in Figure 5.1. Other than the predicted energy consumption Ẽc,
the estimated battery energy content Êb is required for the calculation. Êb

can be obtained using the battery model shown in Section 3.3 where en-
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Figure 5.22: Total convoluted energy consumption forecast on an exemplary test drive. The
stochastic forecasts are based on the probe distribution Ẽs

c(ũ
s) and on the regres-

sion model VPk (ṽs
mlr, φ̂nbc), denoted Ẽs

c(ṽ
s). The deterministic forecasts Ẽd

c (ũ
d)

and Ẽd
c (ṽ

d) use mean values from the respective velocity prediction. Ec repre-
sents the real required energy from the measurement.

ergy content uncertainty originates from SOC and SOH measurement un-
certainty. In addition, a mean degree of efficiency of η = 98% is assumed.
For realistic battery parameters, the characteristics of the BEV test vehicle
battery presented in Section 3.4 are applied in the model. This battery uses
pouch cells (s = 100, p = 4), has a nominal voltage of 370 V and a peak
power of 270 kW. An application and detailed analysis of the battery model
and its parameters were already published in [108]. For the calculation of at-
tainability in this work, the important output of the model is the distribution
of Êb depending on SOC (measured in q) and SOH (measured in h), which
is illustrated in Figure 5.23. There, a new battery Êb,new with h = 1 and an
aged battery Êb,aged with h = 0.8 is shown. It can be seen that the battery
energy content has significant uncertainty and neglecting it could lead to a
biased range estimation. Usable energy decreases with battery age and un-
certainty increases compared to a new battery. If a deterministic estimation
of battery energy content is used in the following of this work, it represents
the MAP of the uncertainty distributions, indicated with the solid lines in
Figure 5.23.
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Êb,aged
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Figure 5.23: Estimate of the battery energy content with the battery model. The mean values
and uncertainties for a new battery Êb,new and an aged battery Êb,aged are shown
where the shaded area represents 2σ of the uncertainty distribution.

Taking the battery model and the exemplary ECF from Section 5.2.3, attain-
ability pa can be calculated over the whole SOC range following the method
from Section 3.2. Thereby, the probability of Êb being greater or equal than
Ẽc can be evaluated using the approach of [86] with the mean values and
standard deviations of the respective distributions as well as the cumulative
density function of the standard normal distribution Φ:

pa = 1−Φ

(
−

µÊb
−µẼc√

σÊb
+σẼc

)
. (5.12)

Calculating (5.12) for the same trip and prediction models as in Figure 5.22
gives the results shown in Figure 5.24. Thereby, Êb was obtained for all pos-
sible q and thus also pa. In Figure 5.24a, a new battery scenario is used and
in Figure 5.24b, an aged battery is used. The denotation and the underlying
prediction models are equivalent to the results in Figure 5.22, e.g. the SOC
required to supply the measured energy demand is denoted with Ec. The
deterministic algorithms also use deterministic Êb estimation whereas the
stochastic forecast includes the uncertainty of the battery energy content.
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5 Destination Attainability Forecast

Looking at the new battery scenario, similar characteristics to the ECF re-
sults can be seen. The deterministic predictions under-estimate the neces-
sary charge, which could lead to unpredicted stranding. Among the two,
the forecast using the regression model Ẽd

c (ṽ
d) is closer to the measurement

than the forecast using mean traffic speed Ẽd
c (ũ

d). Especially the former
forecast seems to be very accurate but since it is a deterministic forecast,
knowledge about accuracy was not transported in the prediction. Analysing
the stochastic forecasts with probe distribution Ẽs

c(ũ
s) and the regression

model Ẽs
c(ṽ

s), it can be seen that the realization Ec is within the predicted
distribution. With the resulting curves of pa, the user could now specify the
probability of arrival. Selecting pa = 0.5 would mean that the forecast cal-
culated a 50 % chance of arriving at the destination with the respective SOC.
Figure 5.24b illustrates the forecast for the same trip but with an aged bat-
tery. The ECF results remain unchanged but the battery energy content Êb

is reduced and its uncertainty increased, as previously shown in Figure 5.23.
It can be seen that overall higher required SOC values are predicted than in
the new battery scenario, which is a logical consequence from having less
energy in the battery. Also, the curves for stochastic attainability are shal-
lower due to increased uncertainty. It stands out that stochastic attainability
values do not exceed 50 % by much, which indicates a high stranding risk.
The quantitative results for the new battery scenario are illustrated in Ta-
ble 5.2. Since the deterministic forecasts do not include a measure of uncer-
tainty, they have only solutions for pa = 1. The stochastic forecasts both do
not reach pa = 1 for a full battery, thus the possibility of higher energy de-
mand than energy content cannot be discarded absolutely. However, accept-
ing 1 % risk leads to quantitative solutions, e.g. Ẽs

c(ũ
s) indicates q = 0.904

is enough charge for pa = 0.99. Furthermore, for pa = 0.5, a charge of
q= 0.781 is predicted to be sufficient, which in this case would be below the
real required value Ec and therefore the vehicle would have been stranded.
Taking the forecast Ẽs

c(ṽ
s), even pa = 0.5 would have been enough energy

to complete the trip. To ensure safely arriving at a destination, drivers re-
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s)

Ẽd
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Ẽd
c (ṽ
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Figure 5.24: Attainability on an exemplary test drive using the battery model. The stochas-
tic forecasts are based on the probe distribution Ẽs

c(ũ
s) and on the regression

model using NBC and MLR Ẽs
c(ṽ

s). The deterministic forecasts use only mean
velocity prediction without uncertainty intervals. Ec represents the real required
SOC from the measurement. Figure 5.24a shows attainability when using a
new battery and Figure 5.24b illustrates the use of an aged battery. Positions for
pa = 0.99 and pa = 0.5 are indicated by the small points on the curves.

serve safety margins, as shown by [33]. In typical range estimation applica-
tions, forecasts are executed deterministically and constant safety margins
are added, e.g. q = 0.2 in [18]. In stochastic range prediction, it can be
evaluated numerically.
The quantitative results for the aged battery scenario are illustrated in Ta-
ble 5.3. It can be seen that for an aged battery, having enough energy in
the battery to complete the trip Ec means q = 0.989 which is almost the full
battery capacity. As in the new battery scenario, both deterministic fore-
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Table 5.2: Quantitative results for attainability in the new battery scenario Êb,new.

Ec Ẽd
c (ṽ

d) Ẽd
c (ũ

d) Ẽs
c(ṽ

s) Ẽs
c(ũ

s)

pa = 1 0.792 0.776 0.740 - -

pa = 0.99 - - - 0.929 0.904

pa = 0.5 - - - 0.805 0.781

casts under-estimate required charge with Ẽd
c (ũ

d) being further away from
Ec than Ẽd

c (ṽ
d). In both stochastic forecasts, a full battery is not enough for

pa = 0.99. Furthermore, even for pa = 0.5, almost all the battery energy is
required and thus safe arrival cannot be guaranteed. In fact, The maximum
attainability for Ẽs

c(ṽ
s) is q = 0.523 and for Ẽs

c(ũ
s), it is q = 0.619. This

example illustrates the importance of stochastic forecasts because the deter-
ministic solution implies safe arrival with the respective SOC, where in fact
the chance of stranding is almost 50 %. In addition, the aged battery exam-
ple shows that including a battery model is vital for estimating range in an
electric vehicle, as energy content and uncertainty have a strong influence
on range. It can be imagined that estimating battery energy content purely
based on SOC leads to a significant stranding risk. The question of which
forecast model performs best in predicting attainability will be answered in
Chapter 6.

Table 5.3: Quantitative results for attainability in the aged battery scenario Êb,aged.

Ec Ẽd
c (ṽ

d) Ẽd
c (ũ

d) Ẽs
c(ṽ

s) Ẽs
c(ũ

s)

pa = 1 0.989 0.970 0.925 - -

pa = 0.99 - - - - -

pa = 0.5 - - - 0.992 0.963
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6 Implementation and Test

After introducing the methodology for range estimation in the previous
chapters, the performance of the presented models and algorithms must be
evaluated, which is the goal of this chapter. In the first part, Section 6.1, the
quantitative results of the different models are presented objectively. In the
second part, Section 6.2, these results are discussed and implications as well
as comments are provided.

6.1 Performance Results

In this section, the algorithms for range estimation are evaluated and their
performance demonstrated using the test drive dataset from the ICEV. First,
the approach for evaluating the algorithms is introduced in Section 6.1.1.
Subsequently, a central part of performance evaluation, the performance in-
dex used in this work, is explained in Section 6.1.2. After the evaluation
method is thus introduced, the results for velocity prediction (VP), energy
consumption forecast (ECF) and attainability are presented in Section 6.1.3
to Section 6.1.5.

6.1.1 Evaluation Method

To analyse the model performance of the data-driven approaches presented
in this work, an evaluation method must be selected. Thereby, the out-of-

sample performance is important, as presented in Section 2.4. In that sec-
tion, the concept of cross validation was shown which is now applied on the
complete data set. As illustrated in Section 3.4, the total data set comprises
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6 Implementation and Test

of 10 test drivers each with trips A and B (Figure 3.8). Consequently, 2-fold
cross validation can be used for each driver, resulting in 20 different fore-
casts for evaluating out-of-sample performance as presented in Figure 6.1.
With this evaluation method, driver specific performance can be analysed
for all trips.

...

driver 1:

driver 2:

driver 10:

test data
training data

A B

Figure 6.1: 2-fold cross-validation for analysing the results. The test drives for each of the 10
drivers have two trips A and B. Each of those is used for testing and training the
models.

6.1.2 Forecast Performance Index

To evaluate the performance of stochastic forecasts, standard error mea-
sures, e.g. mean percentage error (MPE) or root mean squared error (RMSE),
are not applicable since they cannot examine the stochastic aspect of the
forecast. Instead of comparing two points, estimation and measurement, a
predictive distribution has to be compared to the measurement. Thereby, the
measurement represents a specific realization of possible events and is thus
deterministic while the forecast is stochastic. Assessing the forecast quality
in this case is achieved by so-called scoring rules [40].
Assuming the forecasted cumulative density function Z and the measure-
ment (realization) x, then the scoring rule S(Z,x) quantifies the performance
in that instance. In stochastic forecasting, the scoring rule should evaluate
the sharpness subject to calibration [39]. Thereby, calibration refers to the
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consistency of the forecast distribution and the measurements, meaning the
magnitude of uncertainty is calculated correctly and neither over- nor under-
estimated. Sharpness refers to the concentration of the forecast distribution
itself. In addition, the scoring rule should be proper, therefore

S(Z = Y,Y )≥ S(Z 6= Y,Y ) (6.1)

for the true distribution Y , meaning the obtained score is higher if the fore-
cast distribution Z equals the true distribution Y compared to other forecast
distributions.
A common proper scoring rule is the continuous ranked probability score
(CRPS):

CRPS(Z,x) =
∫ ∞

−∞
{Z(y)−Γ(y− x)}2 dy (6.2)

where Γ is a heaviside-function returning 1 if the argument is positive or
zero, else 0. Z denotes the cumulative density function of the forecast and x

the observation. In the above formulation, the CRPS is negatively oriented,
hence better results achieve lower values. CRPS expresses the results in the
unit of the forecast variable and is therefore easy to interpret. For deter-
ministic forecasts, it reduces to the absolute error (AE). Thus, it offers the
advantage of being able to compare stochastic and deterministic forecasts.
Usually, the overall forecast assessment is achieved by the mean CRPS
over the individual predictions, implying equal weight of the predictions.
Since in the range estimation application, predictions are executed for the
individual segments k of the future trip, weights are governed by the seg-
ment lengths lk. Therefore, it is more important to obtain good results on
longer segments. Consequently, the weighted continuous ranked probability
score (WCRPS) is introduced as follows:

WCRPS =
∑k CRPSk(Zk,xk) · lk

∑k lk
. (6.3)
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Taking a velocity prediction (VP) example, the performance evaluation with
CRPS can be demonstrated. Figure 6.2a shows the measurement v̄ and
stochastic velocity prediction ṽs, where the 90 % PI is illustrated in the
shaded area. Thereby, the red forecast in Figure 6.2a uses a prediction
model with SVM in combination with NBC for estimating traffic phase
VPk (ṽs

svm, φ̂nbc) and the blue prediction in Figure 6.2c is based on a model
neglecting traffic phase VPk (ṽs

svm). In Figure 6.2b, the corresponding CRPS
values in the respective colors can be seen. When the measurement v̄ is close
to the expected value of the distribution ṽ, a low CRPS value is achieved, as
in x1. At x2, v̄ is further away from the expected value but still within the PI,
hence the CRPS is higher. The worst case for a forecast is when the mea-
surement v̄ is outside the PI, therefore very high CRPS are obtained, as in x3.
The resulting stochastic forecast in Figure 6.2c has lower uncertainty than
the model including traffic phase but often the measurement is not within the
PI limits. In consequence, CRPS is often higher than for VPk (ṽs

svm, φ̂nbc).
This can be indicated with the overall WCRPS following (6.3), which is
3.14 ms−1 in the case of VPk (ṽs

svm, φ̂nbc) and 4.13 ms−1 for VPk (ṽs
svm). In

this example, the proper scoring rule indicates that including a traffic phase
estimate will improve predictive performance. The question whether this
is true for all test drives and not just the example will be answered in the
following sections using the presented performance index.

6.1.3 Velocity Prediction

The velocity prediction (VP) algorithms were presented in Section 5.1. They
use TRDB data and the past driving speed to predict the velocity ṽ on a se-
lected test drive. The out-of-sample error is evaluated with the WCRPS over
the whole dataset comprising 20 forecasts according to the cross-validation
method shown in Section 6.1.1. The models for VP generate determinis-
tic forecasts ṽd and stochastic forecasts ṽs, each will be evaluated. One
velocity prediction algorithm for long range trips is using traffic informa-
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Figure 6.2: Visualization of the performance index used for the forecasts. Figure 6.2a shows
the stochastic forecast VP with SVM and TPC with NBC. Figure 6.2b illustrates
the continuous ranked probability score (CRPS) on each segment. At x1, the
CRPS value is low because the expected value of the predicted distribution and
the measurement are close. At x2, CRPS is higher because v is further away from
the expected value. Point x3 shows that CRPS is very high if the forecast distribu-
tion fails to cover the realization. For comparison, Figure 6.2c shows another VP
with SVM but without using TPC.
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tion of probes ũ and was shown in Section 5.1.1. The resulting forecasts
on every segment k are denoted VPk (ũd) for the deterministic case and
VPk (ũs) for the stochastic case. Extending this model with learned driv-
ing behaviour can be achieved with the multi-linear regression (MLR) pre-
sented in Section 5.1.3 and the support vector machine (SVM) introduced in
Section 5.1.4 which leads to the prediction models denoted VPk (ṽmlr) and
VPk (ṽsvm). Thereby, the stochastic and deterministic alternatives are indi-
cated with superscripted (·)s and (·)d according to the convention used in
this work. The additional feature φ generated by the traffic phase classifi-
cation (TPC) algorithm from Section 4.2 can be included in the regression
algorithms. Among them, two models are selected: traffic phase obtained
by naive Bayesian classifier (NBC) φ̂nbc, which achieved the best result, and
traffic phase obtained by rule-based algorithm (RBA) φ̂rba which is the im-
plementation having lowest complexity and computing time. Combining the
TPC method with the regression algorithms gives four more VP algorithms:
VPk (ṽmlr, φ̂rba), VPk (ṽmlr, φ̂nbc), VPk (ṽsvm, φ̂rba) and VPk (ṽsvm, φ̂nbc).
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Figure 6.3: Comparison of stochastic and deterministic alternatives of the velocity prediction
with the WCRPS as error measure indicating performance. The algorithms are
ordered depending on their stochastic WCRPS result.

Figure 6.3 illustrates the performance of each VP algorithm in terms of
WCRPS on the whole data set. The algorithms are shown in descend-
ing order depending on their stochastic WCRPS value. On first glance, it
can be seen that stochastic algorithms generally perform significantly better
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than the deterministic alternatives, which can also be seen by the quanti-
tative results presented in Table 6.1. The best overall result is achieved
by the stochastic forecast VPk (ṽs

svm, φ̂nbc) with WCRPS = 3.29ms−1. The
worst result is the deterministic forecast using traffic information VPk (ũd)

with WCRPS = 4.75ms−1. Another notable fact is that the best perform-
ing deterministic forecast, VPk (ṽd

svm, φ̂nbc) with WCRPS = 4.47ms−1 is
still worse than the worst stochastic forecast VPk (ṽs

svm) with WCRPS =

3.81ms−1. In general, the stochastic forecasts are better than the determin-
istic alternatives for each individual algorithms. Also, with the exception
of VPk (ṽmlr), the algorithms making use of the traffic phase information
achieve better results. Interestingly, the SVM algorithms perform very dif-
ferently, from being the worst stochastic forecast without traffic phase in-
formation VPk (ṽs

svm) to the best overall result with VPk (ṽs
svm, φ̂nbc). The

MLR algorithms however are ranked next to each other with increasing
complexity in the TPC method leading to better results, from no TPC with
VPk (vpsmlr) over the rule-based model VPk (ṽs

mlr, φ̂rba) to the Bayesian ap-
proach VPk (ṽs

mlr, φ̂nbc). Except for pure SVM, all regression algorithms are
superior to using only probe information. The discussion of these results
can be found in Section 6.1.3.

Table 6.1: Performance of the velocity prediction with the WCRPS as error measure.

WCRPS deterministic WCRPS stochastic

VPk (ṽsvm) 4.74 ms−1 3.81 ms−1

VPk (ũ) 4.75 ms−1 3.73 ms−1

VPk (ṽsvm, φ̂rba) 4.71 ms−1 3.49 ms−1

VPk (ṽmlr) 4.73 ms−1 3.46 ms−1

VPk (ṽmlr, φ̂rba) 4.63 ms−1 3.36 ms−1

VPk (ṽmlr, φ̂nbc) 4.56 ms−1 3.31 ms−1

VPk (ṽsvm, φ̂nbc) 4.47 ms−1 3.29 ms−1
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6.1.4 Energy Consumption Forecast

After the performance of the VP was analysed in the previous section, the
energy consumption forecast (ECF) can be evaluated with the same error
measure and approach of cross-validation. Recalling the overall method
from Figure 5.1, the ECF uses the VP as input information in addition to the
TRDB data and the estimated vehicle parameters p̂. With these input data, a
sequential Monte-Carlo simulation (MCS) calculates predicted energy con-
sumption on each segment Ẽc,k, as shown in Section 5.2. Thereby, the MCS
method is equivalent for all VPs, therefore the algorithms to evaluate as well
as their notation are the same compared to Section 6.1.3. For example, the
stochastic energy consumption forecast based on traffic information on ev-
ery segment k is denoted ECFk (ũs) whereas the deterministic alternative is
written ECFk (ũd). However, MCS performance depends on the number of
particles ρ . To investigate the influence, MCS is performed with ρ = 10
and ρ = 100 for the total data set and the WCRPS results are shown in Fig-
ure 6.4. As in the analysis of VP, the algorithms are ranked depending on
their result in descending order. Thereby, only the stochastic algorithms are
shown because MCS is not performed for deterministic forecasts.
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Figure 6.4: Illustration of the particle number influence on the energy consumption forecast
(ECF) performance on all test drives in terms of WCRPS. The algorithms are
ordered depending on their WCRPS result.
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It can be seen that more particles lead to better results in every one of
the considered algorithms but the relative order of the algorithms does not
change. The worst performance is yielded by the forecast using probe infor-
mation ECFk (ũs) and the best performance is achieved by the most complex
algorithm ECFk (ṽs

svm, φ̂nbc). With the exception of ECFk (ṽs
svm, φ̂rba), the al-

gorithms using traffic phase as a feature obtain lower WCRPS values than
the others. In general, the ranking of the algorithms is similar to the VP
results because only ECFk (ũs) and ECFk (ṽs

svm) as well as ECFk (ṽs
mlr, φ̂rba)

and ECFk (ṽs
mlr, φ̂nbc) switched places.

Table 6.2: Performance of the energy consumption forecast with the sequential Monte-Carlo
simulation (MCS) using ρ = 10.

calculation time WCRPS stochastic

ECFk (ũs) 100 % 52.1 Wh

ECFk (ṽs
svm) 100 % 49.0 Wh

ECFk (ṽs
svm, φ̂rba) 100 % 47.4 Wh

ECFk (ṽs
mlr) 100 % 46.7 Wh

ECFk (ṽs
mlr, φ̂nbc) 100 % 45.9 Wh

ECFk (ṽs
mlr, φ̂rba) 100 % 45.4 Wh

ECFk (ṽs
svm, φ̂nbc) 100 % 45.1 Wh

The numeric WCRPS values for ρ = 10 are shown in Table 6.2. Computa-
tion time is set to 100 % and serves as a base for comparing calculation de-
mand. Table 6.3 shows the results for ρ = 100, where the left column shows
the increase in calculation time and the right column shows the stochas-
tic WCRPS as well as its relative deviation from the 10 particles solution.
From the numeric results in Table 6.3, the increase in computation time is
apparent, ranging between seven and almost eight times of the MCS with
10 particles. In contrast, the performance in terms of WCRPS improved by
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4 % to 8.4 %, depending on the model. However, the overall ranking of the
algorithms and thus their relative performance remains unchanged.

Table 6.3: Performance of the energy consumption forecast with the sequential Monte-Carlo
simulation (MCS) using ρ = 100.

calculation time WCRPS stochastic

ECFk (ũs) 762 % 47.7 Wh (91.6 %)

ECFk (ṽs
svm) 751 % 47.3 Wh (96.5 %)

ECFk (ṽs
svm, φ̂rba) 749 % 45.5 Wh (96.0 %)

ECFk (ṽs
mlr) 782 % 44.4 Wh (95.1 %)

ECFk (ṽs
mlr, φ̂nbc) 704 % 43.7 Wh (95.2 %)

ECFk (ṽs
mlr, φ̂rba) 743 % 43.3 Wh (95.4 %)

ECFk (ṽs
svm, φ̂nbc) 755 % 43.2 Wh (95.8 %)

To get the total energy consumption forecast (ECF), the predictions of the
stochastic forecasts on every segment k must be convoluted as presented in
Section 5.2.3. It basically represents the sum of all segment energies Ẽs

c,k

to one forecast for the total trip Ẽs
c . The results of the convolution using

the introduced models and the MCS with ρ = 10 can be seen in Figure 6.5
and the numeric WCRPS values in Table 6.4. Although for the determinis-
tic forecasts, neither MCS nor convolution is required, they are shown for
comparison as in the VP evaluation. Thereby, the total forecast represents
the aggregated value, therefore the subscript k is omitted for the algorithms.
The worst performance is achieved by the deterministic traffic model
ECF(ũd) with WCRPS = 1.88kWh and the lowest error is yielded by the
stochastic forecast ECF(ṽs

mlr, φ̂nbc) with WCRPS = 0.63kWh which is an
improvement by three times. For each model, the stochastic forecast is better
than the deterministic forecast. Contrary to the VPk results, in the convo-
luted outcome ECF, the stochastic forecasts are not generally better than the
deterministic models. For example, ECF(ṽd

mlr, φ̂nbc) has a lower WCRPS
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Figure 6.5: Comparison of stochastic and deterministic alternatives of the convoluted ECF
with the WCRPS as error measure indicating performance. The algorithms are
ordered depending on their stochastic WCRPS result.

than ECF(ũs). In addition, the ranking of the algorithms changes compared
to ECFk. For ECF, the algorithms not using traffic phase information φ gen-
erally perform worse than the others without exception. Better results are
gained by including the RBA traffic phase model and the best models use
the NBC algorithm. Also, the MLR regression improves the WCRPS value
compared to using the SVM.

Table 6.4: Performance of the convoluted energy consumption forecast with the WCRPS as
error measure. For the inherent sequential Monte-Carlo simulation (MCS), ρ = 10
is used.

WCRPS deterministic WCRPS stochastic

ECF(ũ) 1.88 kWh 1.26 kWh

ECF(ṽsvm) 1.66 kWh 1.26 kWh

ECF(ṽmlr) 1.16 kWh 0.82 kWh

ECF(ṽsvm, φ̂rba) 1.11 kWh 0.73 kWh

ECF(ṽmlr, φ̂rba) 1.07 kWh 0.73 kWh

ECF(ṽsvm, φ̂nbc) 1.07 kWh 0.72 kWh

ECF(ṽmlr, φ̂nbc) 1.00 kWh 0.63 kWh
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The performance difference in using 10 or 100 particles was analysed for
ECFk and subsequently, it can be illustrated for the convoluted solution
ECF. The results for ρ = 100 are illustrated in Table 6.5, where the ab-
solute performance as well as the relative improvement compared to the
solution with ρ = 10 is shown. Because the deterministic results remain
unchanged, they are omitted in the table. As before, the relative order of
the algorithms does not change with increasing particle number, although
the relative improvement differs, ranging between 0 % and 9.8 %. The best
algorithm ECF(ṽs

mlr, φ̂nbc) did not improve compared to using less particles
and the model using only MLR without TPC benefited the most from an
increase in ρ . The relative WCRPS improvements of the convoluted results
are not equivalent to the WCRPS improvements on the segments ECFk from
Table 6.3 but range in the same order of magnitude. For a discussion of these
results, see Section 6.2.2.

Table 6.5: Performance of the convoluted energy consumption forecast with the WCRPS as
error measure. For the inherent sequential Monte-Carlo simulation (MCS), ρ = 100
is used.

WCRPS stochastic

ECF(ũs) 1.21 kWh (96.0 %)

ECF(ṽs
svm) 1.20 kWh (95.2 %)

ECF(ṽs
mlr) 0.74 kWh (90.2 %)

ECF(ṽs
svm, φ̂rba) 0.72 kWh (98.6 %)

ECF(ṽs
mlr, φ̂rba) 0.71 kWh (97.3 %)

ECF(ṽs
svm, φ̂nbc) 0.70 kWh (97.2 %)

ECF(ṽs
mlr, φ̂nbc) 0.63 kWh (100 %)
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6.1 Performance Results

6.1.5 Attainability

The stochastic range estimation concept uses attainability pa to express the
probability of a destination being attainable, as introduced in Section 3.2.
For that, the total energy consumption forecast (ECF) Ẽc is used, which
was evaluated in the previous section. The other factor influencing attain-
ability is the energy content estimate Êb from the battery model explained
in Section 3.3. Using the test drive dataset and the cross-validation from
Section 6.1.1, attainability can be calculated deterministically and stochas-
tically, following the method presented in Section 5.3. The results in terms
of WCRPS with a new battery scenario and the MCS using ρ = 10 can be
seen in Figure 6.6 and the numeric values are shown in Table 6.6. Notation
and ranking order are used in accordance with the previous sections.
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Figure 6.6: Comparison of stochastic and deterministic alternatives of the attainability predic-
tion with the WCRPS as error measure indicating performance. The algorithms
are ordered depending on their stochastic WCRPS result.

The best model for attainability prediction is the stochastic forecast
pa (ṽs

mlr, φ̂nbc) with WCRPS = 2.08% and the worst performance comes
from the deterministic traffic model pa (ũd) with WCRPS = 6.13%. There-
fore, an improvement by three times can be achieved, which is consis-
tent with the results from ECF. For each algorithm, the stochastic fore-
cast is better than deterministic forecast. This also holds in general as the
worst stochastic result ECF(ũs) is still better than the best deterministic re-
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sult pa (ṽs
svm, φ̂nbc). The ranking of the algorithms in accordance with their

stochastic result is different when evaluating attainability compared to ECF.
The three models with highest WCRPS values neglect the traffic phase in-
formation. The two best models use traffic phase information together with
the MLR regression approach, which achieves better results than the SVM
regression.

Table 6.6: Performance of the attainability forecast with the WCRPS as error measure and the
new battery model.

WCRPS deterministic WCRPS stochastic

pa (ũ) 6.13 % 3.14 %

pa (ṽsvm) 5.38 % 3.03 %

pa (ṽmlr) 3.78 % 2.44 %

pa (ṽsvm, φ̂rba) 3.61 % 2.34 %

pa (ṽsvm, φ̂nbc) 3.22 % 2.22 %

pa (ṽmlr, φ̂rba) 3.50 % 2.19 %

pa (ṽmlr, φ̂nbc) 3.48 % 2.08 %

Apart from evaluating performance with WCRPS, the results can be anal-
ysed more directly with help of Figure 6.7. Thereby, Figure 6.7a illustrates
the overall variability of necessary SOC to complete the test drive, calcu-
lated from Ec and the battery model. It can be seen that due to different driv-
ing style, traffic and elevation profile, between qreal = 0.72 and qreal = 0.97
was required. Also, the issue of necessary safety margin raised in Sec-
tion 3.2 can be addressed. Traditionally, deterministic forecasts are used
in range estimation and a safety margin is added by the system to ensure
reaching the destination. Taking the worst and best performing determinis-
tic algorithms, the theoretically needed relative safety margin ∆bth

rel can be
calculated with
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6.2 Discussion of the Presented Results

∆bth
rel =

q[pa = 1]−qreal

q[pa = 1]
(6.4)

where q[pa = 1] represents the SOC required to complete the trip accord-
ing to the deterministic attainability prediction and qreal is the really needed
SOC. In Figure 6.7b, the results for each trip and the deterministic predic-
tions pa (ũd) as well as pa (ṽd

mlr, φ̂nbc) are shown. Using the state-of-the-art
model with mean traffic speed, between 0.1 and 15.5% more charge should
have been reserved to complete the trip, the median is 8.3 %. For the model
using deterministic pa (vmlr, φnbc), a maximum of 8.6% more charge would
have been sufficient. In some cases, the predicted energy was too high and
too much energy was in the battery, as indicated by the negative ∆brel values
with a minimum of −8.4 %. The median is 0.6 %. From these boxplots,
it can be seen that a forecast using mean traffic speed is always under-
estimating energy consumption in this data set thus there is always a risk
of stranding. The regression-based prediction is calibrated better around
the true value but in around half the cases, the battery energy would not be
sufficient.
The last boxplot shows the relation between prediction and realization for
the stochastic forecasts (Figure 6.7c). There, the predicted attainability
pa(qreal) at the really required SOC is shown for all the test drives. For the
probe distribution forecast, pa ranges between 25.1 % and 96.1 % with the
median being 81.5 %. In contrast, the stochastic forecast model with MLR
and NBC obtained pa values between 10.4 % and 83.4 % with a median
of 42.9 %. In comparison, an ideally calibrated forecast would achieve an
expected value of 50 %. For a discussion of these results, see Section 6.2.3.

6.2 Discussion of the Presented Results

After presenting the results of the algorithms in Section 6.1, this section
presents the analysis and discussion of the used forecasting models. The
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Figure 6.7: Boxplots illustrating more details into the test drive results than WCRPS. Fig-
ure 6.7a shows the variability of the required SOC to complete the trips. If de-
terministic traffic prediction and deterministic MLR with NBC are used, the the-
oretically needed safety margin is illustrated in Figure 6.7b. For the stochastic
versions, the predicted attainability can be seen in Figure 6.7c.

goal is to offer an explanation of the model performance in velocity predic-
tion (VP), energy consumption forecast (ECF) and attainability calculation
pa to the reader. Insights and initial conclusions from the results are devel-
oped, and the author’s opinion on the algorithms is included which makes
this section more subjective than the previous ones.

6.2.1 Velocity Prediction

The velocity prediction (VP) results were shown in Section 6.1.3. Given the
fact that performing VP includes human behaviour, the forecast can never
be perfectly accurate and a certain degree of uncertainty persists. This hy-
pothesis proves to be true, because for every model, the stochastic forecast
achieves better results than the deterministic alternative. Hence, apart from
the subjective advantage of offering the additional information of how cer-

tain the forecast is, including uncertainty objectively leads to better predic-
tions. Among the deterministic algorithms, the simplest model using only
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mean traffic speed offers the worst result and the most complex algorithm
using naive Bayesian classifier (NBC) for identifying the traffic phase and
support vector machine (SVM) for driver behaviour learning shows the best
performance. This is expected, as increased modelling effort should also
pay off when looking at the result. Consequently, the inclusion of traffic
phase identification algorithms improves the forecast. A surprising result is
that using SVM does not generally mean better performance, e.g. the com-
bination of SVM and RBA performs worse than MLR. It seems that the
machine learning algorithm needs the best possible features and does not
deal well with errors in the traffic phase.
Looking at the stochastic results, also the most complex model shows the
best forecast, which is expected. Close behind is the prediction using MLR
and the same TPC algorithm. From that, one could conclude that estimating
TPC is most important, as the best two algorithms use NBC, which has
been identified as the best traffic phase identification method in Section 4.2.
This statement would be further supported by the fact that the two worst
algorithms do not use TPC at all. However, it is not strictly true for velocity
prediction (VP) since pure MLR implementation is better than the SVM in
combination with RBA supplying traffic phase. This exception, however,
does not blur the fact that including TPC mostly means better forecasts.
When analysing the algorithms learning driver behaviour, it is also expected
that increased complexity leads to better results, meaning SVM is best, fol-
lowed by MLR and pure traffic information being last. Surprisingly, it is
only the case that MLR is better than traffic information but for SVM, no
general statement can be made. Depending on the combination with the
TPC algorithm, it is best (with NBC), worst (without TPC) or in between
(with RBA). It seems that SVM is more sensible to correct TPC information
than MLR and therefore it must be applied carefully. The MLR algorithms
behave as expected, all of them are better than the traffic information and
increased complexity in TPC leads to better results.
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In addition, it is worth noting that the state-of-the-art method, determin-
istic traffic speed prediction, shows the poorest result. Thus every algo-
rithm presented in this dissertation would be an improvement. Also, the
worst stochastic prediction is still better than the best deterministic algo-
rithm. In consequence, adding a measure of uncertainty in the forecast is
more reasonable than applying more complex algorithms and predicting de-
terministically. This is one of the most important insights of the velocity
prediction (VP) evaluation. Another insight is that including a traffic phase
estimate mostly improves forecast accuracy.

6.2.2 Energy Consumption Forecast

The results of the energy consumption forecast (ECF) algorithms were
shown in Section 6.1.4. Since ECF uses the resulting forecasts from VP
to calculate energy consumption, it could be assumed that the order of the
forecast models follows the same ranking as for the VP presented in Sec-
tion 6.1.3. However, the results show that while overall the models perform
similar, the ranking differs for some algorithms. This can be explained by
the non-linear dependency of energy consumption on velocity according to
the powertrain model introduced in Section 4.1. By the driving resistance
equations, it is quadratic already and the characteristic maps of the power-
train components are also non-linear. That means, an algorithm performing
well in velocity prediction is not necessarily the best choice for energy con-
sumption forecast. Another difference is the uncertainty propagation prob-
lem solved with MCS, which implies another calculation model that has an
influence on the outcome. Following that, a forecast algorithm should al-
ways be evaluated on the exact variable to predict and not a (closely) related
one.
From the evaluations of segment specific forecast ECFk, it can be seen that
increased particle number improves sampling accuracy and thus also fore-
cast accuracy at the cost of computation time. This is a natural outcome
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when using MCS but the interesting factor is the relation of improving ac-
curacy versus computation cost. Applied to the dataset used in this work,
increasing the particle number from ρ = 10 to ρ = 100 leads to a perfor-
mance improvement of lower than 10 % while increasing computation time
over 700 %. From this, it can be concluded that a high number of particles is
only viable in an environment with a lot of computational resources, which
is not the case in a control box of a modern vehicle. Therefore, in the range
estimation application for online-vehicle use, the 10 particle’s solution is
sufficiently accurate. Still, the algorithms could be implemented in a back-
end connected to the vehicle, where computational resources are not such a
big issue. Most importantly, the relative ranking of the algorithms does not
change with increased particle number, hence their comparison can be made
independently. This analysis does also hold for the convoluted results.
As in the VP, the best performance for ECFk is achieved with the most com-
plex solution, the stochastic forecast using support vector machine (SVM)
for driver behaviour and naive Bayesian classifier (NBC) for estimating traf-
fic phase. However, this is an intermediate result as the final solution of ECF
is obtained after convolution. In that convoluted result, ECF(ṽs

mlr, φ̂nbc)

turns out to be the best option. From the ranking, it seems as the TPC
is the decisive parameter and MLR is better than SVM. Interestingly, the
best algorithm, ECF(ṽs

mlr, φ̂nbc) does not improve with increased particle
number. Theoretically, this could mean the forecast is optimal but such a
hypothesis cannot be proved within this work. In summary, for the ECF,
stochastic algorithms also perform better than deterministic ones and traffic
phase information improves forecast quality. Surprisingly, the linear model
is superior to the support vector machine (SVM) and this remains unchanged
for increased particle number.
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6.2.3 Attainability

In this work, attainability is used to express stochastic range estimation and
therefore represents the central and most important value to be analysed.
Again, it might be assumed that the forecast algorithms should be ranked
in the same order as the ECF but because of the comparison with the bat-
tery model and its uncertainty, this assumption must be verified. From the
results in Table 6.6, the assumption must be rejected. Whereas for ECF,
the classification of traffic phase was the defining factor, when calculating
attainability, it is the regression algorithm of the VP. The overall best and
worst algorithms however stay the same.
From this end result, it can be concluded that the best way to improve the
forecasts is the introduction of an uncertainty measure, therefore making
them stochastic. In fact, even using the probe distribution without learn-
ing driver behaviour makes the range estimation already better than the
most complex deterministic model used in this work. Another benefit of
a stochastic forecast is the ability to assess how likely a destination is within
reach. In standard applications with deterministic forecasts, either high
safety margins must be chosen or the stranding of vehicles is risked. In
addition, the presented concept of learning driver behaviour with respect to
traffic phase leads to significantly better results than using only traffic in-
formation, as situation and driver specific knowledge is included. Even for
deterministic forecasts, the required safety margins could be reduced.
Lastly, the data-driven model development concept is strong when clear
physical dependencies are absent, in this case the behaviour of driver and
traffic. Instead of trying to model the details, learning algorithms can imply
the connections from data and the researcher simply gives the right boundary
conditions. For example, instead of using a SVM to learn driving behaviour,
in this dissertation the traffic phase is learned explicitly from relevant input
signals and then used as a feature because on a high level, it should give
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better results. Verifying this with cross-validation gives important insights
again back into model development.
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7 Concluding Remarks

In this chapter, the content of the presented dissertation is summarized (Sec-
tion 7.1). Subsequently, the implication of the findings on the related re-
search is given in Section 7.2 before providing an outlook with open prob-
lems and opportunities for further research in the area (Section 7.3).

7.1 Summary

Drivers of electric vehicles suffer from range anxiety, the fear of stranding
with an empty battery due to limited range and charging infrastructure. To
reduce this effect, the problem of reliable range estimation for electric vehi-
cles was analysed in this dissertation. Because various physical influences
such as powertrain efficiency or vehicle mass with their measurement errors
as well as non-deterministic influences such as driver behaviour and traffic
state effect driving range, its estimation is subject to uncertainty. Address-
ing the issue of uncertainty, a stochastic expression of driving range was
used, which is called attainability. Attainability represents the probability
of reaching a selected destination and depends on battery energy content
as well as energy consumption on the trip. While battery energy content
can be modelled physically, energy consumption on the trip is influenced
by driver and traffic, therefore it is non-deterministic. Forecasting energy
consumption reliably was the focus of this work.
For the physical influences in energy consumption, a powertrain model of
a real electric vehicle was generated and the necessary driving resistance
parameters were estimated using a robust Kalman filter (Section 4.1). It was
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shown that using a prediction model based on the parameter estimates, the
powertrain model and the kinetic energy from the velocity profile, future
consumption can be calculated accurately. However, in a forecast scenario,
the future velocity profile is not available. Therefore, driver behaviour with
respect to the specific traffic phase must be learned during vehicle operation
and this knowledge can be used to generate velocity predictions.
Hence, multiple traffic phase classification algorithms were created using
graphical models as well as decision rules (Section 4.2). These approaches
use signals from the CAN-bus, e.g. identified vehicles from the camera, to
infer the traffic phase. In a comparison of the classification methods, the
naive Bayesian classifier (NBC) achieved the best result. The information
about the current phase is provided to the velocity prediction (VP) algo-
rithm, which uses it as a feature among others to perform regression on the
driving data. Two regression algorithms were implemented, a multi-linear
regression (MLR) and a support vector machine (SVM) which generate pre-
dictive velocity distributions from the input data (Section 5.1).
To calculate future energy consumption from the predictive velocity distri-
bution, a sequential Monte-Carlo simulation (MCS) with importance sam-
pling was used (Section 5.2). The sampling distribution was obtained with a
Bayesian model to obtain realistic particle behaviour. Convolution of the re-
sulting uncertainty distribution of energy consumption on all parts of the trip
gives the total energy consumption forecast (ECF). This information could
be ultimately used to calculate attainability and thus, a stochastic range es-
timation.
A series of test drives with various drivers provided a data set where the
developed algorithms could be compared. Using a proper scoring rule,
deterministic and stochastic versions of forecasts were examined. It was
found out that the state-of-the-art solution, where a prediction is based on
mean traffic speed, offered the worst performance among the developed al-
gorithms. Furthermore, it was shown that more complex models including
driving behaviour and traffic phase improve the prediction result. Lastly, it
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was illustrated that stochastic forecasts generally obtain better results with
more information than deterministic ones. Even simple stochastic models
outperform complex deterministic solutions, which was one of the main
findings in this work. Another important outcome is the benefit of the traffic
phase feature in driving behaviour learning. The mean traffic speed is not
sufficient to describe the traffic situation, especially for the local surround-
ing of the vehicle.

7.2 Contribution

This dissertation contributes several findings and verifications to the re-
search community. Firstly, the need for stochastic forecasts in range esti-
mation is presented and detailed analyses as well as instructions on how
to express and calculate driving range stochastically are given. In related
research, using deterministic predictions is the normal case and often, the
uncertainty within the system is not addressed. More often, the focus lies
on incorporating ever more features and calculate energy consumption with
ever more complex models. The assumption that a deterministic forecast
can be 100 % accurate with enough effort is a weak one and with the in-
volvement of human interaction and behaviour, it is hardly possible. The
results of this dissertation show that for a more reliable forecast, it is more
helpful to include a measure of uncertainty than making the models more
complex.
In this dissertation, a data-driven approach to modelling is chosen. Standard
engineering practice would be to create a physical model and then compare
it with measurements in an open-loop scenario. If the model is not accu-
rate enough, more parameters are introduced or the accuracy of the chosen
parameters is increased. In the data-driven approach, the physical world is
only modelled to a certain extent and the details are learned using data. Us-
ing this methodology, accurate and flexible models can be created with less
effort. A good example for this is the use of parameter estimation in the
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powertrain model or the dependency learning of graphical models in traffic
phase classification. The later algorithm poses one of the main contributions
this dissertation provides.
The concept of including driver behaviour via machine learning based on
driving and traffic data is not new. However, to calculate the traffic situation
and classify the phase explicitly from the available observations has not been
introduced before to the best of my knowledge. This methodology can be
used for researchers even outside the field of range estimation, because it
offers a way of learning driver behaviour specific to the surrounding. The
use of graphical models furthermore is interpretable to the researcher in a
way that black-box approaches do not permit. This fact makes them more
applicable to modern day control boxes because validation is easier.
In general, the validation of generated models is a key in current research.
In this dissertation, special attention is given to the used performance in-
dices and thus model validation capabilities. One example is the use of
robust error measures for parameter estimation or the proper scoring rules
for stochastic forecasts. Too often, error measures are chosen at random by
researchers which could induce bias to the results.
Lastly, in related research there are many functionalities requiring reli-
able driving range or energy consumption estimates, such as eco-routing
or charge planning. Often, simplified deterministic approaches are used but
this could result in wrong decisions. For example in a charge planning sce-
nario, the information of how likely the driver will make it to the charging
station is necessary to choose which is the best option. This information
could be provided by the attainability value, as shown in this work.

7.3 Outlook

In this dissertation, various algorithms and models were presented and their
performance was analysed to compare them. However, in a vehicle appli-
cation, not only accuracy but also computation time is important. The best
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model might not be the the one with the best result but the one with low-
est computational demand of the control box while still achieving moderate
results. While this is the case, the increased connectivity of modern vehi-
cles and the availability of huge back-end structures nowadays offers new
ways for software development. Depending on the data required, the sig-
nals and sensors used as well as the calculation complexity, algorithms can
be split between vehicle control boxes and back-end. For example, the traf-
fic phase classification which needs vehicle sensors could be installed on the
control box and then send the information to the back-end where the sequen-
tial Monte-Carlo simulation (MCS) is performed which is computationally
intensive. This is especially interesting since range estimation algorithms
have low demands concerning real-time capability.
In addition, the research in predictive traffic phase classification should be
intensified as it would increase data quality of the traffic database. How-
ever, that has to be executed by traffic scientists with access to the direct
probe data instead of automotive engineers. Using more information from
the vehicle sensors on the other hand could also help traffic data providers,
for example since connected vehicles have position information about non-
connected vehicles via the camera. Improving traffic information in such a
way would not only help range estimation but also routing applications in
navigation systems.
For a real-time solution, all used algorithms must be implemented in a recur-
sive way. Also, a more detailed battery model would allow the consideration
of power demand, ambient temperature etc. Furthermore, the algorithms
should be validated with a lager data-set with trips worldwide. Drivers, traf-
fic and environmental conditions change depending on the country, region
or legal restriction. Finally, the concept of reliable range estimation enables
optimization of charge planning scenarios. This is an important task, as in
the future more electric vehicles will be on the streets.
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Nomenclature

Acronyms

AE absolute error
ANOVA analysis of variance

AR auto-regressive

API application programming interface

ARIMA auto-regressive integrated moving average

BER balanced error rate
BEV battery-electric vehicle

BN Bayesian net

CAN controller area network
CLT central limit theorem
CRPS continuous ranked probability score

DBN dynamic Bayesian net

DNBC dynamic naive Bayesian classifier

ECF energy consumption forecast

EKF extended Kalman filter
ESP electronic stability program

ETA estimated time of arrival
FF free-flow
FLA fuzzy-logic algorithm

GPS global positioning system

HEV hybrid electric vehicle
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Nomenclature

HMM hidden Markov model
ICEV internal combustion engine vehicle

IIR infinite impulse response

J wide moving jam

KDE kernel density estimation

LS least-squares

MAE mean absolute error
MAP maximum a posteriori

MC Markov chain
MCS sequential Monte-Carlo simulation

MEDAE median absolute error
MEDPE median percentage error

MISO multiple-input-single-output

MLR multi-linear regression

MME multiple model estimation

MPE mean percentage error

MSE mean squared error

NBC naive Bayesian classifier

NN neural network
PE parameter estimation

PI prediction interval

RBA rule-based algorithm

RKF robust and windup-stable Kalman filter

RKFM RKF with MME
RLS recursive-least-squares

RMSE root mean squared error

RPA relative positive acceleration

SY synchronized-flow

SMC sequential Monte-Carlo simulation

SOC state of charge
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Nomenclature

SOH state of health
SVM support vector machine

TPC traffic phase classification

TRDB traffic and routing database

VP velocity prediction

WCRPS weighted continuous ranked probability score

WLS weighted-least-squares
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Nomenclature

Symbols

symbol unit description
ˆ( · ) estimation
¯( · ) average
˜( · ) forecast
˜( · )d

deterministic forecast
˜( · )s

stochastic forecast
a ms−2 longitudinal acceleration of the vehicle
areq ms−2 required acceleration to realize the velocity

prediction
cw - aerodynamic drag coefficient
d km distance
d(x) m distance to the vehicle x
e model error
fr - rolling resistance coefficient
fu veh / h traffic flow
g ms−2 gravitational acceleration
h hypothesis model for regression
ic measured CAN data
it real-time TRDB data
k - navigation map segment
l m length
lk m length of k
m kg vehicle mass
o - observation
p driving resistance parameter vector
pa % attainability of a destination
q % battery state of charge
r residuals
rdyn m dynamic wheel radius
rxy correlation coefficient of variables x and y
sx uncertainty of variable x
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Nomenclature

t s time
thw(x) s time headway to vehicle x
tk s time on k
u ms−1 probe distribution
ucurrent ms−1 traffic speed on the route at the beginning

of the trip
uideal ms−1 ideal traffic speed on the route
ūk ms−1 mean traffic speed on k
ūk, f ms−1 free-flow speed on k
v ms−1 vehicle velocity
vlim ms−1 legal speed limit
vlim,k ms−1 legal speed limit on k
v(x)rel ms−1 relative speed to vehicle x
w - number of folds in cross-validation
x model variable
y model variable
z model variable
A m2 vehicle frontal area
Ai node in a Bayesian net
B dynamic vehicle states vector
E(·) energy consumption model
Eaux kWh energy consumption of the auxiliaries
Eb kWh battery energy content
Ec kWh tractive energy consumption
Ẽc|a=0 kWh energy consumption forecast without ac-

celeration force
Ẽc|a=const kWh energy consumption forecast with constant

acceleration force
F - F-test result quantity
Fr N driving resistance force
Facc N acceleration force
FL - free lane detected
H - expected frequency
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Nomenclature

I - total number of classes
Ibat A battery current
Ired kgm−2 reduced moment of inertia
N - total number of observations o
O - observed frequency
o(x) - vehicle x detected
P kW tractive power
Pbat kW battery power
Q sampling distribution
Ri Ω internal battery resistance
RPA ms−3 relative positive acceleration
S scoring rule
Tφ1,φ2 - transition probability between traffic

phases φ1 and φ2

U V battery voltage
X2 - result of the χ2 test
Y true distribution of a stochastic system
Z forecast distribution
α ° road gradient angle
ε insensitivity of the SVM-loss function
ζ kernel transformation function
ηdyn - dynamic powertrain efficiency
ηstat - static powertrain efficiency
Θ loss function
θ Bayesian net parameters
κk m−1 road curvature
κk m−1 road curvature on k
µ mean value of a distribution
ξ Monte-Carlo sample
π input feature vector
ΠAi parent of node Ai in a Bayesian net
ρ kgm−3 air density
ρu veh / km traffic density
σ standard deviation of a distribution
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Nomenclature

τ particle number in sequential Monte-Carlo
Φ cumulative distribution function of the

standard normal distribution
φ - traffic phase

159





Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 1 	� Urs Wiesel 
Hybrides Lenksystem zur Kraftstoffeinsparung im schweren  
Nutzfahrzeug 
ISBN 978-3-86644-456-0

Band 2 	� Andreas Huber 
Ermittlung von prozessabhängigen Lastkollektiven eines  
hydrostatischen Fahrantriebsstrangs am Beispiel eines  
Teleskopladers 
ISBN 978-3-86644-564-2

Band 3 	� Maurice Bliesener 
Optimierung der Betriebsführung mobiler Arbeitsmaschinen.  
Ansatz für ein Gesamtmaschinenmanagement 
ISBN 978-3-86644-536-9

Band 4 	� Manuel Boog 
Steigerung der Verfügbarkeit mobiler Arbeitsmaschinen  
durch Betriebslasterfassung und Fehleridentifikation an  
hydrostatischen Verdrängereinheiten 
ISBN 978-3-86644-600-7

Band 5 	� Christian Kraft 
Gezielte Variation und Analyse des Fahrverhaltens von  
Kraftfahrzeugen mittels elektrischer Linearaktuatoren  
im Fahrwerksbereich 
ISBN 978-3-86644-607-6

Band 6 	� Lars Völker 
�Untersuchung des Kommunikationsintervalls bei der 
gekoppelten Simulation 
ISBN 978-3-86644-611-3               

Band 7 	� 3. Fachtagung 
Hybridantriebe für mobile Arbeitsmaschinen.  
17. Februar 2011, Karlsruhe 
ISBN 978-3-86644-599-4 

Band 8 	� Vladimir Iliev 
Systemansatz zur anregungsunabhängigen Charakterisierung 
des Schwingungskomforts eines Fahrzeugs 
ISBN 978-3-86644-681-6               

Karlsruher Schriftenreihe Fahrzeugsystemtechnik
FAST Institut für Fahrzeugsystemtechnik
(ISSN 1869-6058)



Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 9 	� Lars Lewandowitz 
Markenspezifische Auswahl, Parametrierung und Gestaltung  
der Produktgruppe Fahrerassistenzsysteme. Ein methodisches 
Rahmenwerk 
ISBN 978-3-86644-701-1               

Band 10 	� Phillip Thiebes 
Hybridantriebe für mobile Arbeitsmaschinen. Grundlegende 
Erkenntnisse und Zusammenhänge, Vorstellung einer Methodik 
zur Unterstützung des Entwicklungsprozesses und deren 
Validierung am Beispiel einer Forstmaschine 
ISBN 978-3-86644-808-7

Band 11 	� Martin Gießler 
Mechanismen der Kraftübertragung des Reifens  
auf Schnee und Eis 
ISBN 978-3-86644-806-3

Band 12	� Daniel Pies 
Reifenungleichförmigkeitserregter Schwingungskomfort – 
Quantifizierung und Bewertung komfortrelevanter  
Fahrzeugschwingungen 
ISBN 978-3-86644-825-4

Band 13 	� Daniel Weber 
Untersuchung des Potenzials einer  
Brems-Ausweich-Assistenz 
ISBN 978-3-86644-864-3

Band 14 	� 7. Kolloquium Mobilhydraulik.  
27./28. September 2012 in Karlsruhe 
ISBN 978-3-86644-881-0

Band 15 	� 4. Fachtagung 
Hybridantriebe für mobile Arbeitsmaschinen  
20. Februar 2013, Karlsruhe 
ISBN 978-3-86644-970-1

Band 16 	� Hans-Joachim Unrau 
Der Einfluss der Fahrbahnoberflächenkrümmung auf den  
Rollwiderstand, die Cornering Stiffness und die Aligning  
Stiffness von Pkw-Reifen 
ISBN 978-3-86644-983-1

Band 17 	� nicht erschienen



Band 18 	� Stefanie Grollius 
Analyse des gekoppelten Systems Reifen-Hohlraum-Rad- 
Radführung im Rollzustand und Entwicklung eines  
Rollgeräuschmodells 
ISBN 978-3-7315-0029-2

Band 19 	� Tobias Radke 
Energieoptimale Längsführung von Kraftfahrzeugen 
durch Einsatz vorausschauender Fahrstrategien 
ISBN 978-3-7315-0069-8

Band 20 	� David Gutjahr 
Objektive Bewertung querdynamischer  
Reifeneigenschaften im Gesamtfahrzeugversuch 
ISBN 978-3-7315-0153-4

Band 21 	� Neli Ovcharova 
Methodik zur Nutzenanalyse und Optimierung  
sicherheitsrelevanter Fahrerassistenzsysteme 
ISBN 978-3-7315-0176-3

Band 22 	� Marcus Geimer, Christian Pohlandt 
Grundlagen mobiler Arbeitsmaschinen 
ISBN 978-3-7315-0188-6

Band 23 	� Timo Kautzmann 
Die mobile Arbeitsmaschine als komplexes System 
ISBN 978-3-7315-0187-9

Band 24 	� Roman Weidemann 
Analyse der mechanischen Randbedingungen zur Adaption der  
oszillierenden Hinterschneidtechnik an einen Mobilbagger 
ISBN 978-3-7315-0193-0

Band 25 	� Yunfan Wei 
Spurführungsregelung eines aktiv gelenkten  
Radpaars für Straßenbahnen 
ISBN 978-3-7315-0232-6

Band 26	 �David Schmitz 
Entwurf eines fehlertoleranten Lenkventils für  
Steer-by-Wire Anwendungen bei Traktoren 
ISBN 978-3-7315-0264-7

Band 27	 �Christian Schwab 
Beitrag zu einer universellen Baggerschnittstelle zur  
Übertragung elektrischer und hydraulischer Leistung sowie 
elektronischer Signale für komplexe Anbaugeräte 
ISBN 978-3-7315-0281-4

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Band 28	 �Peter Dengler 
Untersuchung zum effizienten Betrieb von Hydraulik- 
zylindern in Konstantdrucksystemen unter Verwendung  
einer Zwischendruckleitung 
ISBN 978-3-7315-0295-1

Band 29	 �Manuel Bös 
Untersuchung und Optimierung der Fahrkomfort- und Fahr-
dynamikeigenschaften von Radladern unter Berücksichtigung 
der prozessspezifischen Randbedingungen 
ISBN 978-3-7315-0310-1 

Band 30	 �5. Fachtagung 
Hybride und energieeffiziente Antriebe für mobile  
Arbeitsmaschinen. 25. Februar 2015, Karlsruhe 
ISBN 978-3-7315-0323-1

Band 31 	� Michael Eckert 
Energieoptimale Fahrdynamikregelung  
mehrmotoriger Elektrofahrzeuge 
ISBN 978-3-7315-0332-3

Band 32	� Martin Scherer 
Beitrag zur Effizienzsteigerung mobiler Arbeitsmaschinen. 
Entwicklung einer elektrohydraulischen Bedarfsstromsteuerung 
mit aufgeprägtem Volumenstrom 
ISBN 978-3-7315-0339-2

Band 33 	� Rinaldo Arnold 
Automatische Abstimmung der Sekundärseite eines 
dreiphasigen Systems zur berührungslosen induktiven 
Energieübertragung 
ISBN 978-3-7315-0355-2

Band 34 	� Johannes Gültlinger 
Kraftübertragung und Fahrbahnverschleiß durch Spikereifen 
ISBN 978-3-7315-0358-3 

Band 35 	� Thorsten Dreher 
Energieeffizienz von Konstantdrucksystemen  
mit sekundärgeregelten Antrieben beim Einsatz  
in mobilen Arbeitsmaschinen 
ISBN 978-3-7315-0377-4

Band 36 	� Steffen Kölling 
Konzeptionelle Untersuchung zur Neigekompensation  
von Stromabnehmern 
ISBN 978-3-7315-0387-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Band 37 	� Michael Fritz 
Entwicklungswerkzeuge für die Fahrzeugklimatisierung  
von Nutzfahrzeugen 
ISBN 978-3-7315-0384-2

Band 38 	� Ralf Oberfell 
Stochastische Simulation von Energieflüssen im  
Nutzfahrzeug. Ein einsatzorientiertes Bewertungs-  
und Optimierungsverfahren 
ISBN 978-3-7315-0403-0

Band 39 	� Christoph Sturm 
Bewertung der Energieeffizienz von Antriebssystemen 
mobiler Arbeitsmaschinen am Beispiel Bagger 
ISBN 978-3-7315-0404-7 

Band 40	� Florian Netter 
Komplexitätsadaption integrierter  
Gesamtfahrzeugsimulationen 
ISBN 978-3-7315-0414-6

Band 41	� Markus Springmann 
Auslegung eines asynchronen Langstatorlinearmotors  
mit großem Luftspalt als Straßenbahnantrieb 
ISBN 978-3-7315-0418-4

Band 42	� Alexander Basler 
�Eine modulare Funktionsarchitektur zur Umsetzung einer  
gesamtheitlichen Betriebsstrategie für Elektrofahrzeuge 
ISBN 978-3-7315-0421-4

Band 43	 Hans-Georg Wahl 
	� Optimale Regelung eines prädiktiven Energiemanagements 

von Hybridfahrzeugen 
ISBN 978-3-7315-0422-1

Band 44	� Jennifer Heck 
Zur Simulation des Rad-Schiene-Verschleißes 
bei Straßenbahnen 
ISBN 978-3-7315-0443-6

Band 45	� Moritz Vaillant 
Design Space Exploration zur multikriteriellen Optimierung  
elektrischer Sportwagenantriebsstränge: Variation von  
Topologie und Komponenteneigenschaften zur Steigerung  
von Fahrleistungen und Tank-to-Wheel Wirkungsgrad 
ISBN 978-3-7315-0452-8

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Band 46	� Philip Nagel 
�Entwicklung einer Betriebsstrategie zur Energierückgewinnung 
in hybriden Mehrverbrauchersystemen 
ISBN 978-3-7315-0479-5

Band 47	� Matthias Pfriem 
Analyse der Realnutzung von Elektrofahrzeugen  
in kommerziellen Flotten zur Definition einer  
bedarfsgerechten Fahrzeugauslegung 
ISBN 978-3-7315-0489-4 

Band 48	� Mohanad El-Haji 
Ontologie-basierte Definition von Anforderungen an  
Validierungswerkzeuge in der Fahrzeugtechnik 
ISBN 978-3-7315-0496-2

Band 49	� 9. Kolloquium Mobilhydraulik 
22./23. September 2016 in Karlsruhe 
ISBN 978-3-7315-0573-0 

Band 50	� 6. Fachtagung  
Hybride und energieeffiziente Antriebe für mobile  
Arbeitsmaschinen. 15. Februar 2017, Karlsruhe 
ISBN 978-3-7315-0601-0

Band 51	� Fabian Schirmaier 
Experimentelle Untersuchung und Simulation des  
Umformverhaltens nähgewirkter unidirektionaler 
Kohlenstofffasergelege 
ISBN 978-3-7315-0620-1 

Band 52	� Mathias Cabrera Cano 
Neuronale Netze mit externen Laguerre-Filtern  
zur automatischen numerischen Vereinfachung 
von Getriebemodellen 
ISBN 978-3-7315-0621-8 

Band 53	� Arwed Schmidt 
Flottenbetrieb von elektrischen und autonomen  
Serviceagenten im städtischen Personennahverkehr 
ISBN 978-3-7315-0633-1 

Band 54	� Katharina Knaisch 
Untersuchung von Spulensystemen zur induktiven Energie- 
übertragung von Elektrofahrzeugen. Vergleich von Topologien 
und Entwicklung einer Auslegungsmethodik 
ISBN 978-3-7315-0630-0 

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 55	� Frank Christof Stalter 
Ansätze zur akustischen Optimierung von Reifen und  
Fahrbahnen für Elektrofahrzeuge unter Antriebsmoment 
ISBN 978-3-7315-0645-4

Band 56	� Steffen Rose  
Modellbildung und Simulation von mobilen Arbeitsmaschinen. 
Untersuchungen zu systematischen Modellvereinfachungen in 
der Simulation von Antriebssystemen am Beispiel Bagger 
ISBN 978-3-7315-0684-3 

Band 57	� Ulrico Peckelsen  
Objective Tyre Development. Definition and Analysis of Tyre 
Characteristics and Quantification of their Conflicts 
ISBN 978-3-7315-0713-0 

Band 58	� Stefan Haag 
Sequentieller Versuch zur HiL-unterstützten  
Validierung hybrider Antriebssysteme mit  
gekoppelten Antriebseinheiten 
ISBN 978-3-7315-0752-9  

Band 59	� Dirk Hülsebusch 
Fahrerassistenzsysteme zur energieeffizienten Längsregelung - 
Analyse und Optimierung der Fahrsicherheit 
ISBN 978-3-7315-0755-0

Band 60	� Christian Pohlandt 
Intelligentes Gesamtmaschinenmanagement  
für elektrische Antriebssysteme 
ISBN 978-3-7315-0774-1 

Band 61	� Oliver Maier 
Modellbasierte Entwicklung eines aktiven Sicherheitssystems 
für elektrifizierte Fahrräder 
ISBN 978-3-7315-0778-9 

Band 62	� Stephan Rhode 
Robust and Regularized Algorithms for Vehicle Tractive  
Force Prediction and Mass Estimation 
ISBN 978-3-7315-0807-6 

Band 63	� Péter Megyesi 
Methode zur Einbindung realer Nutzerprofile in die ökologische 
und ökonomische Bewertung von Fahrzeugkonzepten 
ISBN 978-3-7315-0808-3 



Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 64	� Benedikt Reick 
Methode zur Analyse und Bewertung von stufenlosen  
Traktorgetrieben mit mehreren Schnittstellen 
ISBN 978-3-7315-0815-1 

Band 65	� Matthias Graf 
Entwicklung und Validierung einer neuen Methode zur  
Charakterisierung des Scherverhaltens von Carbonfaser- 
gewebe mit Binderauftrag unter Normalkraft und viskoser  
Reibung bei hohen Prozesstemperaturen 
ISBN 978-3-7315-0838-0

Band 66	� Christoph Kühn 
Simulation von Fahrspielen und Energieflüssen  
in Nahverkehrssystemen 
ISBN 978-3-7315-0740-6 

Band 67	� 7. Fachtagung 
Hybride und energieeffiziente Antriebe für mobile  
Arbeitsmaschinen. 20. Februar 2019, Karlsruhe 
ISBN 978-3-7315-0873-1

Band 68	� Oliver Krauss 
Experimentelle Untersuchungen zum Innengeräusch  
von Fahrzeugluftreifen 
ISBN 978-3-7315-0867-0 

Band 69	� Tristan Reich 
Beurteilung der Prüfprozesseignung bei Fahrzeugversuchen  
mit mobilen Arbeitsmaschinen 
ISBN 978-3-7315-0848-9

Band 70	� Matthias Bürckert 
Realitätsnahe Bewertung des Einflusses der Oberflächen- 
spannung flüssiger Zwischenmedien auf den maximalen  
Reibschluss zwischen Reifen und Fahrbahn 
ISBN 978-3-7315-0891-5 

Band 71	� Matthias Greiner 
Verfahren zur Prädiktion des Rollwiderstands bei  
variablen Betriebsparametern auf Basis standardisierter  
Rollwiderstandsmessungen 
ISBN 978-3-7315-0898-4 

Band 72	� David Hummelberger 
Hybride Werkstoffsysteme: Systematische Betrachtung und 
Bewertung der physikalischen Wirkmechanismen 
ISBN 978-3-7315-0901-1



Band 73	� Michael Kerber 
Analyse dynamischer Reifeneigenschaften und deren  
Auswirkung auf den Schwingungskomfort 
ISBN 978-3-7315-0944-8

Band 74	� Kilian Berthold 
Techno-ökonomische Auslegungsmethodik  
für die Elektrifizierung urbaner Busnetze 
ISBN 978-3-7315-0953-0 

Band 75	� Bernd Wassertheurer 
Reifenmodellierung für die Fahrdynamiksimulation  
auf Schnee, Eis und nasser Fahrbahn 
ISBN 978-3-7315-0957-8 

Band 76	� Kai-Lukas Bauer 
Echtzeit-Strategieplanung für vorausschauendes  
automatisiertes Fahren 
ISBN 978-3-7315-0949-3

Band 77	� Thomas Schirle 
Systementwurf eines elektromechanischen Fahrwerks  
für Megacitymobilität 
ISBN 978-3-7315-0995-0 

Band 78	� Dominik Dörr 
Simulation of the thermoforming process  
of UD fiber-reinforced thermoplastic tape laminates 
ISBN 978-3-7315-0998-1 

Band 79	� Dominik Robert Naake 
Simulation of damage mechanisms in weave reinforced  
materials based on multiscale modeling 
ISBN 978-3-7315-1005-5 

Band 80	� Martin Hohberg 
Experimental investigation and process simulation of the  
compression molding process of Sheet Molding Compound 
(SMC) with local reinforcements 
ISBN 978-3-7315-1007-9

Band 81	� Benedikt Fengler 
Manufacturing-constrained multi-objective optimization of 
local patch reinforcements for discontinuous fiber reinforced 
composite parts 
ISBN 978-3-7315-1006-2 

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.



Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 82	� Johannes Masino 
Road Condition Estimation with Data Mining Methods  
using Vehicle Based Sensors 
ISBN 978-3-7315-1004-8

Band 83	� 11. Kolloquium Mobilhydraulik 
10. September 2020, Karlsruhe 
ISBN 978-3-7315-1036-9

Band 84	� Felix Weber 
Beitrag zur Entwicklung von Konstantflusspumpen  
für Frischbeton unter genauerer Betrachtung der  
Dickstoffventile 
ISBN 978-3-7315-1037-6

Band 85	� 8. Fachtagung 
Hybride und energieeffiziente Antriebe für mobile  
Arbeitsmaschinen. 23. Februar 2021, Karlsruhe 
ISBN 978-3-7315-1071-0  

Band 86	� Sebastian Fünfgeld 
Vorausschauende Regelung von Fahrzeugsystemen durch  
stochastische Vorhersage der Fahrzeugdynamik 
ISBN 978-3-7315-1060-4

Band 87	� Isabelle Charlotte Ays 
Development of a CO2e quantification method and of solutions 
for reducing the greenhouse gas emissions of construction  
machines = Entwicklung einer CO2e Quantifizierungsmethode 
und von Lösungen zur Reduzierung von Treibhausgasemissio-
nen in Baumaschinen 
ISBN 978-3-7315-1033-8

Band 88	� Alexander Bernath 
Numerical prediction of curing and process-induced distortion  
of composite structures 
ISBN 978-3-7315-1063-5

Band 89	� Nils Bulthaupt 
Objektivierung des Schwingungskomforts  
schwerer Nutzfahrzeuge 
ISBN 978-3-7315-1075-8 

Band 90	� Lars Brinkschulte 
Assistenzsysteme zur Reduktion des Schädigungsverhaltens  
von Komponenten einer mobilen Arbeitsmaschine 
ISBN 978-3-7315-1089-5



Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 91	� Dominik Dörr 
Adaptive Fahrhinweise für ein längsdynamisches  
Fahrerassistenzsystem zur Steigerung der Energieeffizienz 
ISBN 978-3-7315-1090-1 

Band 92	� Jürgen Römer 
Steuerung und Regelung des Lenkradmoments  
durch Nutzung radselektiver Frontantriebe 
ISBN 978-3-7315-1104-5

Band 93	� Christian Riese 
Werkzeuge und Konzepte für die Untersuchung  
und Entwicklung zukünftiger Kfz-Bremssysteme 
ISBN 978-3-7315-1125-0

Band 94	� Yaoqun Zhou 
Dynamisches Bremsverhalten des Reifen-Fahrwerk-Systems 
ISBN 978-3-7315-1156-4

Band 95	� Stefan Haug 
Ganzheitliche Optimierung einer Axialkolbenpumpe durch  
bedarfsangepasste Entlastung tribologischer Kontakte 
ISBN 978-3-7315-1150-2

Band 96	� Stefan Scheubner 
Stochastic Range Estimation Algorithms for Electric Vehicles 
using Data-Driven Learning Models 
ISBN 978-3-7315-1166-3 



B
an

d
 9

6Karlsruher Schriftenreihe
Fahrzeugsystemtechnik

S.
 S

ch
eu

b
n

er
 

St
o

ch
as

ti
c 

R
an

g
e 

Es
ti

m
at

io
n

 f
o

r 
B

EV
s 

w
it

h
 D

at
a-

D
ri

ve
n

 M
o

d
el

s

ISSN 1869-6058
ISBN 978-3-7315-1166-3 

Current range estimation algorithms of electric vehicles are deemed unreliable 
and large safety margins are reserved to prevent the risk of stranding. This is one 
of the main problems limiting widespread acceptance of electric vehicles. One 
approach to reduce range anxiety is a more reliable range estimation, which in 
general depends on two factors: current battery energy content and the energy 
consumption forecast on the route to destination. This work aims at improving 
the latter by enhancing the forecast with a notion of uncertainty. The prediction 
algorithm itself learns from driver and traffic data in a training set to generate 
accurate, driver-individual energy consumption forecasts. Thereby, a central part 
of the algorithm is the explicit evaluation of the traffic situation by classifying 
the traffic phases. With the help of this methodology, individual forecasts can 
be made more precise since they are highly dependent on the surrounding traf-
fic. To demonstrate the validity of the algorithms, the performance is evaluated 
using real test drive data comprising multiple drivers. On the basis of the perfor-
mance evaluation, both the superiority of stochastic algorithms over determin-
istic predictions and the improvement of predictive performance by evaluating 
explicit traffic phases can be shown. 
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