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Abstract

Since the rise of deep learning, extraordinary progress has been made in �elds
revolving around high-level reasoning and understanding further narrowing the
gap between the capabilities of humans and AI. At the heart of these �elds lies the
question answering task which aims at implementing models that answer questions
based on a given knowledge base. Question answering has a wide variety of ap-
plications ranging from automatic indexing and use-cases in systems for assistive
technologies to research laying the groundwork for human-like AI. Due to its
importance in such applications, question answering was strongly addressed by
the research community in the past several years leading to tremendous strides in
both the structure of such models and in their accompanying datasets.
Popular approaches for question answering comprise neural networks which

embed the textual data (question) and the given information (e.g., image) into the
same representation space and, then, based on their joint encoding an answer is gen-
erated. However, most of these methods handle only a single data type (e.g., natural
images) and have di�culties representing highly-structured data (e.g., relations of
objects in the scene). Moreover, the proposed models have a black-box structure, as
one cannot infer their reasoning to generate the answer directly from the network.
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In this thesis, we address these shortcomings and propose human interpretable

approaches for the question answering task, where the reasoning of the networks
can be inferred directly from the architecture. Moreover, our approaches are able
to understand and reason on highly structured data from a knowledge base of both
the textual and visual domain, which we analyze on data extracted from learning
materials. We aim for networks that are capable of generalizing across multiple
modality types and structures, where one would require several reasoning steps for
inference. Learning materials are perfect candidates for such an analysis, as they
o�er rich and diverse content, di�erent types of �gures, and various interaction
possibilities. Moreover, visual reasoning on learning materials has other important
applications, e.g., for automatically answering questions of students with visual
impairments on lecture documents as well as for fast indexing of page data.

To enable the networks to reason on structured content, we leverage a graph rep-

resentation of the given information for our neural networks. In case of images, the
nodes represent object instances in the scene while the edges depict their relation-
ships. In comparison, for text content, the nodes are sentence embeddings where
the edges model their placement. We base our methods on graph neural networks,
which inherently deal with highly structured input data and can give a natural rep-
resentation of the knowledge base. In this thesis, we concentrate and explore two
types of graph networks: a relation-centered approach based on edge pooling and
a path-based method that traverses the visual input graph guided by the question.
Finally, we demonstrate the reasoning capabilities of our models in an analysis

where we achieve state-of-the-art results on popular benchmarks for visual question
answering, multi-modal reasoning, and page question answering. We evaluate di�er-
ent con�gurations of our architectures, input modalities, and data representation
(i.e., raw 3D visual tensors and graph representations). Our analysis shows that the
models are able to provide transparency and human interpretability, i.e., one can
directly infer the attended knowledge and reasoning for answering each question.
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1 Introduction

The ability to make e�ective decisions about events that occur in challenging sur-
roundings is a key trait of human cognition. This remarkable property is a result
of six million years of evolution, where humans gained the ability to make di�cult
decisions based on stimuli charged from the environment. We distinguish between
threemajor steps in our thinking process: recognition, reasoning, and action [Parasur-
aman, 2000]. The recognition step entails the interpretation of stimuli received from
the environment and their association to semantic meaning. While the stimuli can
be visual, audio, or tactile, the semantic interpretation can range from a simple list
of objects to a complex interaction between the recognized instances. In the second
part of the thought process, we reason on the perceived semantic information and
produce a possible action depending on the estimated state of the environment. The
�nal part consists of executing the selected action based on the result of the reason-
ing process and, thus, a change in the state of the human or the surroundings occurs.
AI is a thriving �eld aiming at developing models that are able to think like

humans addressing all the steps in the human thinking process: (1) recognition
(e.g., object recognition and classi�cation), (2) visual and knowledge reasoning
(e.g., question answering), and (3) action (e.g., visual navigation in robotics). In this
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thesis, we focus predominantly on one of these tasks namely on reasoning on visual
and textual input data. This task tackles the problem of selecting an action or gen-
erating a summarization either based on raw visual information or on the semantic
interpretation in text form produced by the recognition step of the visual data.
A popular task in the �eld of visual and text-based reasoning is Question An-

swering (QA), which aims at answering questions based on some given input data.
A key aspect of QA methods is their ability to be used in practice on a wide range
of applications from robotics to assistive technologies. First, QA is a helpful tool
for people with visual impairment that o�ers a human-friendly front-end for com-
munication between the user and the computer system. Question answering is
also used for indexing large scale data via the generated answers for each image
based on a question of interest. QA o�ers an excellent interface for an easy com-
munication between a user and an avatar or (house) robot. Moreover, QA is an
extended example of visual dialog systems and the cornerstone of visual navigation
approaches. Finally, QA is a generalization of object recognition, where di�erent
objects are recognized on request by the model.
When designing models for QA one has to decide on di�erent properties the

network should posses. In this work, we focus on: (1) high portion of correctly an-
swered questions (e.g., accuracy of the overall system spanning over di�erent query
types) and (2) human interpretability, i.e., helping us to infer why an error occurred.
While there are several possible applications for QA, we restrict ourselves on

answering questions on learning materials, especially focusing on graphical and
textual content. Thereby, we analyze how to buildmodels that possess the previously
de�ned key-properties. We discuss the advantages and shortcomings of previous
QA methods and show how to improve them for a better representation based on
our data. For designing our neural architectures we are guided by these aimed
properties and propose di�erent graph neural networks that are able to reason on
highly-structured visual and textual data. Next, we show the overall structure of
this thesis and discuss the contributions of each chapter.
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How is the 
magma called 
after cooling? 

Visual Reasoning  MultiModal QA Page QA
How many figures
are to the left of 
the table? 

What layers do 
have to melt to 
produce magma?

Answer included in 
the text or figure

Relational questions 
about objects

Table

Text
Title

Caption

Date

Describe
sLeft of

Reasoning on 
entire pages

Diagram

Diagram

Page Structure Analysis Reasoning on Visual and Textual Content
Magma is produced by melting of the
mantle and/or the crust at various
tectonic settings, including subduction
zones, continental rift zones, midocean
ridges and hotspots. Mantle and crustal
melts migrate upwards through the crust
where they are thought to be stored in
magma chambers or transcrustal crystal
rich mush zones.

+

Text

Figure 1.1: Example page of a learning material (left) with labels of the document
components (e.g., title, table) and their corresponding relationships (e.g., describes).
On the right, we show example questions for three input modality types.

1.1 Overview

In this thesis, we address the QA task and propose human interpretable approaches
that are able to analyze highly structured data from both the textual and visual
domain. Since our goal is to develop models that reason akin to humans, we employ
a similar test-bed procedure through learning materials. Learning materials are
good candidates for such a problem, as they o�er rich and diverse content, di�erent
�gure types, and various interaction possibilities (see Figure 1.1 for an example of a
slide extracted from a learning material and the associated document components).
Moreover, visual reasoning on learning materials has other important applications,
e.g., for automatically answering questions of students with visual impairments
about lecture content and fast indexing of document data.
For the reasoning task across documents, we employ several techniques spe-

cialized on di�erent types of page components. We distinguish between three
groups of approaches dependent on their input data type: (1)�gure-basedmodels,
(2)multi-modal networks for both text and image understanding, and (3) archi-
tectures that reason on entire pages. Since all these data modalities are highly
structured, we propose novel machine learning methods based on the recently in-
troduced graph neural networks that are able to handle relations between instances
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in the visual and textual domain (e.g., document components). We analyze the
e�ectiveness of various types of graph neural networks (i.e., relation-centric and
path-based approaches) on our learning materials. Dependent on the data type
(visual, multi-modal, or page data), we make use of di�erent graph network types:
(1) For the �gure-based setting, we introduce a novel path-based approach, which
leverages a visual graph representation of the image (i.e., the nodes parameterize the
object instances in the scenes and the edges depict their relation). We demonstrate
that our model is not only able to achieve state-of-the-art results on various popular
benchmarks for �gure-based QA, but also it is human-understandable as one can
interpret the decisions made by the model for generating each answer.
(2) In case of multi-modal data, we present a new technique, that focuses on
various parts of the image and text simultaneously dependent on the input query.
Speci�cally, our method employs an edge-centric technique that is able to search
on the entire structure of the text and �gures by dividing the data into entities and
combining them to a common edge representation. We show the strength of this
model on a dataset speci�cally designed for textbook question answering where
our model needs to understand both �gures and textual content.
(3) We introduce the task of visual reasoning on documents, which aims at
answering questions about an entire page covering queries about the document
components and their interaction. To tackle this problem, we collect a dataset
with images of pages and corresponding questions and present them in a public
benchmark. On this dataset, we evaluate several models previously used for QA
on natural images and show that they have di�culties on this new task. Thus, we
propose a fully-convolutional architecture that is able to tackle the drawbacks of
previous models by focusing on parts of the image based on the current question.
In a thorough evaluation, we show that our models achieve state-of-the-art

results on popular benchmarks for visual question answering, multi-modal reason-

ing, and page question answering. Through a qualitative analysis, we show that
our path-based and edge-centric models provide transparency, as one can directly
extract the attended knowledge and reasoning for answering each question.
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1.2 Contributions and outline

We analyze models for visual reasoning on di�erent types of graphical data ranging
from synthetically generated �gures to images of entire pages. Thereby, we pre-
process learning materials such as textbooks and slides. Then, we apply QA graph
neural networks on the recognized �gures, multi-modal data comprising text and
images, and directly on entire raw pages.

Chapter 2: Background and RelatedWork. This chapter shows an overview of
existing methods for document and graphical content recognition. First, we discuss
several page analysis approaches ranging from simple binarization to semantic page
segmentation consisting of various document component classes. Next, we present
an overview of di�erent methods for visual and textual representation, focusing on
compositional embeddings via graph neural networks. Finally, we present related
networks for visual and multi-modal question answering, which we grouped into
�ve classes: ranging from global embedding schemes to graph-based reasoning.

Chapter 3: PageAnalysis. For applying conventional QA approaches on learning
materials, we necessitate a pre-processing step that extracts relevant regions from
the page, e.g., natural images, diagrams, and text blocks. We analyze di�erent meth-
ods for �ne-grained localization and recognize 25 di�erent document component
types. In contrast to semantic segmentation (the counterpart task specialized on
natural images), we notice a strong overlap between distinct classes (e.g., table and
diagram). Thus, we allow our models to assign multiple classes to each region and
de�ne several evaluation metrics for a fair comparison between the architectures.
Due to the lack of large scale datasets for segmenting learning materials, we collect
and analyze two document datasets. We analyze the e�ectiveness of several models
by providing a thorough evaluation study augmented with qualitative results.

Chapter 4: Figure Question Answering. Due to the wide range of �gure types
encountered in documents (e.g., diagrams, natural images) and their strongly compo-
sitional nature, high-level understanding on graphical content remains a challenging
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task. In this chapter, we introduce a novel architecture for high-level reasoning
of several image types which represents the relational structure of the visual data
through a graph. Thereby, the network traverses the visual graph using the ques-
tion as a guide in search for a node that supplies information about the correct
answer. We demonstrate the strength of the proposed network and compare it with
state-of-the-art approaches on popular benchmarks for visual question answering.

Chapter 5: Multi-Modal Reasoning. In the multi-modal setting, since the ques-
tions are based on either the text or the visual data, it is not known a priori where the
information necessary to answer the current question is located. Thus, a path-based
approach would not be able to infer an answer, as the path-based network assumes
that the path is encoded in the question. In this chapter, we propose a relation model
that employs an edge re�nement technique on the shared embedding of the text
and the structured representation of the �gure. Finally, we evaluate our proposed
approach on a dataset for textbook question answering comprising school lessons
including text content and instructional �gures in the form of diagrams.

Chapter 6: Visual Reasoning on Pages. Previous question answering methods
comprise queries about di�erent components in the page, without considering
their relationship and the overall structure of the underlying documents. Thus, we
introduce the task of visual reasoning on entire pages, which entails answering
compositional questions on both the graphical content and the text data. Since there
are no available datasets in this task, we collect our own benchmark comprising
400k pages in the form of presentation slides, where models have to tackle a variety
of complex layouts and document components. Finally, additionally, to multiple
baseline and strong deep models, we propose a novel network specialized on page
reasoning, which improves the performance of other methods on our dataset.

Chapter 7: Generating Semantic Graphs. The previously proposed approaches
for question answering leverage graph neural networks for dealing with the high
structured data content. This reasoning procedure entails both inference from graphs

and building the graph itself from the input. While we focused until now on reason-
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ing based on a graph representation (i.e., we assumed the graph as given), in this
chapter, we discuss how to generate such graphs from data. To that end, we propose
a novel scheme for graph generation which addresses the following di�culties
in building semantic graphs: (1) variations in graph sizes between prediction and
ground truth and (2) the unordered nature of the nodes in the graph data structure.
Finally, we evaluate our approach on several popular datasets for node and graph
inference from both textual and visual content.

1.3 Published contributions

The contributions presented in this thesis were published at several computer
vision-related venues. The �rst step in our system chain is analyzing pages in var-
ious document types and extracting relevant information for reasoning (Chapter 3).
The proposed approaches and our collected datasets were previously published
in [Haurilet et al., 2019b; Haurilet et al., 2019c; Bender*, Haurilet* et al., 2019]. In the
work of [Haurilet et al., 2019a,d], we reason on diagrams, videos, and synthetic im-
ages by traversing the visual graphs in search of relevant information that could be
useful for us to answer the current question (Chapter 4). Then, we discuss various
types of graphical and textual data that can be useful for our models to extract. For
example, textbook question answering is a multi-modal problem where one has to
predict answers to questions about both text and diagrams. In [Haurilet et al., 2018],
we tackle this task by representing the diagrams as a set of edges and the entire
text body as a set of sentences (Chapter 5). We introduce a dataset with a novel
neural architecture for answering questions directly on entire pages (Chapter 6) in
the article published in [Haurilet et al., 2021b]. Finally, in Chapter 7, we introduce
an approach for inferring semantic graphs from image and text data without using
any external labels (e.g., bounding box annotations) which was already presented
in [Haurilet et al., 2021a]. A full list of my publications can be found in Section 8.2.





9

2 Background and Related Work

This thesis addresses the task of high-level understanding of �gures and textual
content in pages extracted from learning materials. To that end, we propose several
novel machine learning techniques for page processing as well as for visual and
multi-modal question answering, which were frequently tackled in the past via
specialized supervised classi�cation techniques. In this chapter, we �rst present
a broad overview of machine learning focusing on supervised learning methods
especially in the classi�cation setting. Then, we review popular machine learning
approaches based on neural networks and discuss shortly their limitations. Sec-
tion 2.1 revises methods used for page analysis and networks for object localization
employed on natural images, as well as compares popular datasets for pixel-wise
recognition on documents. In Section 2.2, we dive into methods for visual and
textual embedding based on both convolutional and recurrent networks as well
as structured representations using graph neural networks. Finally, in Section 2.3,
we discuss several networks previously used for question answering ranging from
simple global embedding approaches to more complex graph neural networks.
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Learning from data. Supervised techniques encompass a set of algorithms in ma-
chine learning that aim to derive relevant information from labeled data. More
formally, based on data following a �xed but unknown distribution pdata, the overall
aim is to select a fitting element from a family of functions FΘ = { fθ |θ ∈ Θ}.
Frequently one constraints the following: (1) each function f ∈ FΘ is uniquely
de�ned by the parameter θ and (2) any function from FΘ obtains as input an
instance x ∈ X (e.g., an image) and generates a value y ∈ T from the target
space, i.e., fθ : X → T .We call learning the process of selecting the parametrized
function fθ ∗ ∈ F that fits our data. Due to our �rst assumption, this function
selection is identical of �nding a fitting parameter θ ∗ ∈ Θ associated to fθ ∗ . Thus,
the learning stage comprises a minimization step of a loss function L between the
labeled samples in T and the output of fθ assessing the �tness of these functions:

θ ∗ = argmin
θ ∈Θ

�(x,y )∼pdata [L(y, fθ (x))] (2.1)

Neural networks. Neural networks are a speci�c type of family of functions,
that comprise layers, which in turn consist of neurons. We distinguish between
(1) an input layer that receives as input the given data, (2) an output layer that
generates the prediction of the network, and (3) a hidden layer that established
the connection between the input and output layer. The layers comprise entirely
of neurons which are simple functions, such as, a linear combination of the input
values. To enable the representation of more complex functions than linear ones,
each neuron is associated to a so called activation function – usually a nonlinear
function such as the Recti�ed Linear Unit ReLU(x) = max(0,x) with x ∈ �. One
also di�erentiates between layer types based on the connections of the neurons
in other layers. These connections can be fully-connected when each neuron in
the current layer is connected with every other neuron in the next layer. One can
also decrease the amount of connections between the layers, e.g., by inducing a
location-based constraint. A popular layer type for such a connection strategy is
the convolutional layer which comprises only edges between neurons and their
location neighborhood in a �xed window (e.g., a neighborhood size of 3 × 3).
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Classi�cation task. A set of attributes that shapes the form of our loss function
is the type of the target space T , which in turn depends on the type of problem
we address. In this thesis, we only consider classi�cation tasks, where the learning
problem is restricted to nominal target values, i.e., the target space is a non-ordered
and �nite set. To that end, the networks model a probability distribution over
the set of all possible classes (i.e., all values are between 0 and 1, and sum up to
1 over the class set). The function used for normalizing the output of the neural
networks depends on the problem type. (1) In case of multi-label tasks, one assumes
a Bernoulli distribution of the prediction, while for (2) single-label tasks only one
class is predicted per instance and assumes a multinomial distribution. Thus, the
sigmoid normalization is used for the multi-label classi�cation problems, that is
de�ned as follows: σ : � → [0, 1],σ (x) = 1

1+ex . In contrast, for single-label
tasks, the softmax function is frequently applied to the outputs of the networks:
so�max : �c → [0, 1], so�max(x)i = exi�

j e
xj ,∀i, j ∈ {1, . . . , c}.

Finally, we learn the weights of the network by minimizing a loss function that
depicts the discrepancy of the output of the network to the ground truth annotation.
We will use throughout this thesis the Cross Entropy (CE), which is a popular loss
function employed in classi�cation tasks:

L : [0, 1]c × {0, 1}c → [0, 1],L(ypred, ygt) = −
�
i

ygti log(ypredi ) (2.2)

where c is the number of classes, ypred is the output after normalization, while ygt

depicts if a speci�c class is present in the current sample. The reason of the popular-
ity of the CE loss is its property that by minimizing L one equivalently minimizes
the Kullback-Leibler divergence [Kullback, 1987] between the two distributions.

Dataset. In practice, there is only a limited amount of data that is used to approx-
imate our function fθ . Even though, in some cases (e.g., reinforcement learning)
the data can be generated dynamically, in our case, we use fixed data that we
split into training, validation, and testing. Thus, our datasets are of the form
D = {(x ,y) | x ∈ X andy ∈ Y}, where x is called an instance and y a target or label.
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2.1 Page analysis

Page recognition is a popular task in computer vision that analyzes the page of a
printed or digital document by breaking the visual representation of a page into rel-
evant parts. We distinguish between the subtasks based on the type of components
we want to extract from the page: (1) binarization splits the page into foreground
and background regions, (2) text localization detects textual content in the page, and
(3) semantic page recognition localizes textual, graphical, and structural components.

2.1.1 Segmentation techniques

Semantic segmentation. Semantic image segmentation is a task that aims to
estimate the �ne-grained location of objects in a visual scene. More precisely,
models for semantic segmentation associate each pixel in the input image with a
corresponding semantic class. Since suchmodels generate �ne-grained localizations
of the object instances in the scene, this task has a wide variety of applications
ranging from robotics to autonomous cars and assistive technology systems.
Fueled by the progress in computer vision and by the availability of publicly

available benchmarks [Caesar et al., 2018; Cordts et al., 2016; Everingham et al.,
2015; Lin et al., 2014; Neuhold et al., 2017], the task of semantic image segmentation
has experienced rapid advancements in recent years [Liang-Chieh et al., 2015; Lin
et al., 2016; Schwing and Urtasun, 2015; Yu and Koltun, 2015; Zhang et al., 2015].
Most of the architectures for semantic segmentation encompass an hour-glass
shape comprising an encoder and a decoder network. While the encoder realizes
a large receptive �eld by decreasing the image resolution via convolutional and
pooling layers with a large stride, the decoder in�ates the resulting encoding. The
expansion of the output of the encoder follows on the location dimensions through
deconvolutional and unpooling layers [Noh et al., 2015] until the height and width
of the �nal maps are equal to the input image. Finally, the output of the decoder
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has the shape h ×w × c , where h andw stand for the height and width of the input
image, and c is the number of classes. By normalizing the predicted values using
softmax, one models a probability distribution for each pixel over the c classes.

Page segmentation. In comparison to semantic segmentation, page segmentation
methods did not experience such strong recent advancements as segmentationmeth-
ods for natural images. In page segmentation, we distinguish between bottom-up
and top-down approaches, which both are based on feature engineering and often
do not even require any training data (e.g., by using unsupervised approaches like
clustering or thresholding). Bottom-up approaches [Amin and Shiu, 2001; Drivas
and Amin, 1995; Hinton et al., 2006; Lebourgeois et al., 1992] combine similar pixels
of even groups of pixels (i.e., superpixels) until a pre-de�ned condition is reached.
In case of top-down methods [Ha et al., 1995a,b], the entire page is considered at the
beginning, which is then split into its components based on some prede�ned strat-
egy (e.g., cutting in the x- and y-axis based on the distribution of dark pixels). Deep
learning models have only been scarcely used for page analysis, i.e., for segmenting
scienti�c papers [Breuel, 2017; Tensmeyer and Martinez, 2017; Yang et al., 2017] and
historical documents [Chen et al., 2015a, 2017]. While some networks address the
lack of large scale datasets by employing shallow architectures, i.e., comprising only
few layers [Chen et al., 2015a, 2017], other networks compensate the lack of data
by generating synthetic papers [Yang et al., 2017]. Nonetheless, page segmentation
is highly related with semantic segmentation on natural images and, thus, similar
hour-glass architectures can easily be transferred to page segmentation.
The work of [Chen et al., 2017] addresses the problem of segmenting historical

documents of handwritten text on a very small dataset of less than 100 images. Due
to the small size of the datasets, a shallow neural network is employed that consists
of a convolution and two fully-connected layers. Tensmeyer and Martinez employ a
Fully Convolutional Network (FCN) which was previously used for segmenting nat-
ural images on page binarization of documents comprising handwritten text [Tens-
meyer and Martinez, 2017]. In contrast, the work in [Breuel, 2017] addresses the
binarization problem of contemporary articles and proposes a combination of convo-
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lution layers and LSTMs to capture the global structure of the page. Finally, in [Yang
et al., 2017], both the visual data and the associated textual content is combined
to improve the segmentation performance on a dataset for contemporary articles.

2.1.2 Datasets for page analysis

While a wide variety of large scale benchmarks for semantic segmentation on nat-
ural images were proposed in recent years, datasets for page recognition are scarce.
Most of the available page datasets provide either a small number of samples [Clark
and Divvala, 2016; Luong et al., 2012; Tao et al., 2014; Yang et al., 2017] which make
them inadequate for deep learning approaches or comprise only a small number
of classes [Clark and Divvala, 2016]. The lack of large scale datasets is a possible
reason for the small number of available neural architectures for page segmentation.
RDCL [Antonacopoulos et al., 2015] is a layout recognition dataset, which cap-

tures in total 77 pages from magazines and journals used for training and testing.
While this dataset comprises several text-based classes, i.e., caption, credit, para-
graph, page number, heading, drop capital, footer, and �oating text, the number
of image-based classes is low containing only decoration and images. The DSSE-
200 [Yang et al., 2017] dataset considers six document classes: �gures, tables, section
headings, captions, lists, and paragraphs, of which it provides bounding box anno-
tations for 200 pages. A larger dataset was introduced by [Tao et al., 2014] which
covers in total 244 images of pages extracted from 35 English and Chinese e-books.
Sectlabel [Luong et al., 2012] encompasses bounding box annotations on a wide
variety of text-based classes for pages extracted from the PDF format of scienti�c
articles. The CS-150 and CS-Large [Clark and Divvala, 2016] benchmarks are pub-
licly available and comprise in total 150 and 3100 pages, respectively, with labels
in form of bounding boxes localizing text, �gures, tables, and the corresponding
�gure captions. While CS-150 only provides labels for articles that were released on
only three conferences, CS-Large captures randomly selected papers from Semantic
Scholar that have at least nine citations.
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2.1.3 Text recognition

Optical character recognition is a popular task in computer vision aiming to trans-
late an image into its underlying pre-de�ned text representation. Inspired by the suc-
cess of neural networks in problems such as image captioning where one generates
text from natural images, current methods for optical character recognition lever-
age a similar network structure. Namely, such networks have an encoder-decoder
structure, where the encoder comprises a Convolutional Neural Network (CNN)
and the decoder, frequently a recurrent network, generates the text sequence [Wang
et al., 2012, 2019; Xie et al., 2019]. Other extensions of these architectures im-
prove recognition results by using stacked encoder and decoder blocks [Xie et al.,
2019], leveraging an alignment module between encoder and decoder [Wang et al.,
2019], correcting text distortions [Zhan and Lu, 2019], employing attention mech-
anisms [Liao et al., 2019], or leveraging stacked attention modules [Li et al., 2019].

2.2 Modeling vision and language

2.2.1 Visual embeddings

Since the rise of deep learning, computer vision has experienced tremendous
progress. A major propellant of these rapid advancements lies in the success of
neural architectures on large scale object recognition datasets like ImageNet [Rus-
sakovsky et al., 2015] and Kinetics [Carreira and Zisserman, 2017]. Pre-trained
networks are frequently used as a resource for strong semantic embeddings of vi-
sual data. Thereby, the features are extracted from intermediate layers and are used
as input to di�erent techniques for high-level understanding, e.g., reasoning [Wu
et al., 2017], image captioning [Xu et al., 2015], and zero-shot recognition [Qiao
et al., 2016; Xian et al., 2017]. In case of attention-based techniques, the features are
generated from the convolutional layers generating 3D tensors, while for global
embedding schemes vectors from fully-connected layers are used.
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2.2.2 Sentence representation

In a similar manner, as for the visual data samples, one can embed sentences into se-
mantic representations by mapping its units, (i.e., words, sub-words, or characters)
into a global encoding. The words are represented by vectors, which can be simple
one-hot embeddings, i.e., binary vectors directly coupled with the word, or semantic

vectors extracted, for example, from a pre-trained network [Pennington et al., 2014].
A global encoding is further obtained through recurrent networks [Conneau et al.,
2017] or 1D convolution layers [Vaswani et al., 2017; Zhang et al., 2018].

2.2.3 Graph generation

Generating graphs from images. A variety of recent visual reasoning meth-
ods [Das et al., 2018a; Teney et al., 2016; Yang et al., 2019; Yao et al., 2018] operate
on graph encodings of the visual scene, where the nodes portray the objects while
the edges depict their relationship type [Krishna et al., 2016]. In order to generate
such graphs, current methods rely on localization techniques, e.g., object detectors,
to recognize the nodes [Krishna et al., 2016; Lu et al., 2016a]. Object localization
is a well-studied problem in computer vision addressing simple coarser detection
via bounding boxes [Girshick, 2015; Liu et al., 2016; Redmon et al., 2016] to �ne-
grained segmentation [He et al., 2017]. There are two popular object detection
techniques frequently used for coarse localization: (1) proposal-based methods and
(2) single-shot detectors. Proposal-based methods comprise an initial step where
proposals are generated using clustering [Uijlings et al., 2013], SVMs [Cheng et al.,
2014], or neural networks [Ren et al., 2015b] that are forwarded to a second model
that predicts if the bounding box contains any known objects. More popular model
types for node recognition are single-shot detectors, which are trained end-to-end

using a visual 3D tensor [Liu et al., 2016; Redmon et al., 2016; Ren et al., 2015b].
Each vector in the 3D tensors is associated to a set of object centers inferring a set
of con�dences being the center of an object and the corresponding possible classes.
Finally, each predicted bounding box serves as a node in the sought graph.



Modeling vision and language Section 2.2

17

The second step constitutes the inference of the relations between each recog-
nized node pair. In case of location-based edge types, the graphs are fully-connected
(i.e., a label is assigned to each node pair), while for semantic relation detection the
scene graphs are very sparse with only few annotations per node pair. Typically,
relationship detection models place a bounding box over the node pair in the image,
which is cropped and passed to a classi�cation network. In case of location-based
relations, a direct mapping of the found positions of the nodes is also frequently
employed. Recent methods additionally re�ne the estimated graph through graph
convolutions [Xu et al., 2017; Yang et al., 2018b], external knowledge [Gu et al.,
2019a], language priors [Lu et al., 2016a], multi-task learning [Li et al., 2017], or con-
strain the number of object pairs by leveraging heat-maps [Newell and Deng, 2017].

Inferring graphs from text. While various machine learning methods have been
introduced for inferring text from graphs [Koncel-Kedziorski et al., 2019; Wang
et al., 2018; Yang et al., 2019; Yao et al., 2018], the research of generating graphs from
text has been scarce so far [Cohan et al., 2020; Das et al., 2018b; Gu et al., 2019b].
Most methods operating on text data either utilize a recurrent neural network and
generate a single node in every iteration step [Das et al., 2018b] or pass a �xed
node set as input and only recognize the edges [Cohan et al., 2020; Gu et al., 2019b].

Graph auto-encoding. Another type of models for graph embedding, regulariza-
tion via graphs, and graph generation are ones for graph auto-encoding. Methods for
graph auto-encoding aim at injecting the edge matrix into the node encoding [Feng
and Duarte, 2018; Gidaris and Komodakis, 2019; Pan et al., 2018; Simonovsky and
Komodakis, 2018], e.g., through consecutive graph convolutions [Kipf and Welling,
2017]. A decrease in memory size is established by absorbing the edges into the
vertex representations and by decreasing the dimensionality of the nodes. Thus,
in current methods for graph auto-encoding, the set of nodes directly impacts the
variable-sized dimension of the graph embedding.
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2.2.4 Representing relations

The rich structure of the scene can be captured in an e�ective way through graphs,
where the object instances are represented by nodes while their relations are de-
picted by edges. Graph neural networks for data representation have already been
utilized in a wide range of applications, such as language [Kuhlmann and Oepen,
2016], social interaction [Kok and Domingos, 2007; Sen et al., 2008; Yang et al.,
2011], knowledge representation [Bouchard et al., 2015; Mahdisoltani et al., 2013;
Toutanova et al., 2015], and chemistry [Radivojac et al., 2013]. The graphs can be
captured directly from the CNN feature maps [Kim et al., 2017; Li et al., 2018b; Xu
et al., 2017] or by combining the existing graph representations with the previously
acquired knowledge base [Das et al., 2018a; Xiong et al., 2017]. While such infor-
mation is passed directly as input to the neural networks, the models need to have
an e�ective way for dealing with these data structures. There are several obstacles
that make the grasp of such data di�culty: (1) the nodes in the data structure are
unordered, (2) the adjacency tensor modeling the relations often requires a lot of
memory usage, and (3) graphs can have di�erent number of nodes.
Several previous approaches deal with these di�culties, e.g., by padding the

graphs to a common size or by assuming an ordering of the nodes based on their
prediction con�dence. We distinguish four groups of knowledge base-guided
algorithms: (1) recurrent-based methods [Teney et al., 2016], approaches using
graph re�nement either (2) for a better node representation [Do et al., 2019; Kipf
and Welling, 2017; Teney et al., 2016; Velickovic et al., 2017], or (3) for re�ning
the edges [Santoro et al., 2017; Simonovsky and Komodakis, 2017], and (4) graph
traversal approaches [Das et al., 2018a; Xiong et al., 2017]. While recurrent-based
techniques assume an ordering of the nodes, node re�nement methods frequently
leverage graph convolution layers [Kipf and Welling, 2017] which leverage convolu-
tions on the neighboring nodes for each of the vertices. In case of edge re�nement,
each edge is re-encoded to a new representation using, e.g., fully-connected layers.
Previous graph traversal approaches learn to pace graphs using reinforcement
learning techniques. We further discuss such graph-based models in Section 2.3.5.
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2.3 Visual question answering

Visual reasoning is often posed in the form of Visual Question Answering (VQA)
– a task lying in the intersection of vision and language which intends to answer
questions about the visual scene. Thereby, we distinguish between (1) multiple
choice answers (few possible answers are paired to the current query) and (2) open-
ended questions where we do not constrain to a small set of possible answers. Thus,
in the open-ended setting, we aim to predict the correct answer that:

â = argmax
a∈A

�(a |X , q;θ ) (2.3)

where a is an answer from the set of all possible answers A, X is an image, and q

the input question encoding. Thereby, we model the probability distribution as in
the previous case, i.e., using a neural network. Finally, we select the answer that
achieves the highest probability based on our input data.
VQA has rapidly gained popularity over the past years [Agrawal et al., 2017;

Gurari et al., 2018; Krishna et al., 2016; Zhu et al., 2016], mostly being addressed
through image feature maps extracted from a pre-trained CNN and subsequent
question-related attention module [Yang et al., 2016; Yu et al., 2017]. In general,
the ways of addressing this problem can be divided into four categories: (1) global
embedding methods [Agrawal et al., 2017; Ma et al., 2016; Malinowski and Fritz,
2014; Malinowski et al., 2017; Ren et al., 2015a] that use a joint embedding of the
global image representation and the question to produce an answer; (2) attention-
based models that focus to parts of the image based on the question [Fukui et al.,
2016; Xu and Saenko, 2016; Yang et al., 2016; Yu et al., 2017]; (3) compositional

models [Andreas et al., 2016; Hu et al., 2017; Johnson et al., 2017b] use a modular
representation of the neural networks; (4) graph-based VQA models [Kembhavi
et al., 2016; Kim et al., 2017; Santoro et al., 2017; Teney et al., 2016], where a graph
representation of the image or the question is used to produce the answer.
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2.3.1 Global embedding methods

Visual and textual encoding. Global embedding methods represent the entire
visual and question input through a single vector that is then fused with the input
query in the prediction module which, in turn, answers the current question. These
type of approaches employ popular CNNs previously used for object recognition,
e.g., VGG [Jabri et al., 2016; Ma et al., 2016; Ren et al., 2015a], GoogLeNet [Mali-
nowski et al., 2017], and ResNet [Ben-Younes et al., 2017; Jabri et al., 2016], which
were pre-trained on the large scale ImageNet dataset [Deng et al., 2009]. The
questions are also mapped into a single global embedding using the �nal hidden
layer of an LSTM [Malinowski et al., 2017; Ren et al., 2015a], a GRU [Perez et al.,
2017], by averaging word2vec representations [Mikolov et al., 2013] of the words in
the query [Jabri et al., 2016], or via 1D-convolutions [Ma et al., 2016]. Succeeding
the visual and textual encoding step, the multi-modal fusion module combines the
visual and textual data into a single representation. The fusion techniques for VQA
can be divided by their interaction complexity into �rst- and second-order inter-
action. While �rst-order fusion comprises a �at interaction between input streams,
second-order methods model complex interactions between each feature-pair.

First-order fusion. The method presented in [Jabri et al., 2016] tackles only the
multiple choice QA task by employing a Multi-Layered Perceptron (MLP) on the
concatenation of the question and image feature. In [Malinowski et al., 2017; Ren
et al., 2015a], the �rst hidden state used to embed the input query is initialized using
the visual feature vectors. While in [Malinowski et al., 2017], the LSTM generates
the answers word-wise after all the words of the question were passed into the
model, in [Ren et al., 2015a] an MLP generates the answer from the �nal hidden
state of an LSTM. Ma et al. propose a multi-modal convolution layer that combines
the words in the question with a vector representation of the image [Ma et al., 2016].
In [Perez et al., 2017], the question is combined with the 3D tensor extracted from
a CNN using a Feature-wise Linear Modulation (FiLM) layer, which comprises an
element-wise multiplication and addition.
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Second-order fusion. Second-order pooling is a technique for capturing the
interaction between di�erent input streams by combining each pair of features
between two input streams. Multimodal Compact Bilinear pooling (MCB) employs
element-wise product in FFT space, i.e., convolving both the textual and visual
vectors [Fukui et al., 2016]. MUTAN [Ben-Younes et al., 2017] interpolates the global
representations of the image and question via a single large 3D tensor that uses the
Tucker decomposition [Tucker, 1966] strongly decreasing the number of parameters.

Prediction network. Finally, multi-modal embeddings are passed to a prediction
module comprising an MLP with a classi�cation layer. For the open-ended setting,
the network selects a response from all possible answers seen during training. In
contrast, for multiple choice questions, the network models a probability distribu-
tion over the given multiple choice answers, where the answer with the highest
activation is selected for the �nal prediction.

2.3.2 A�ention-based models

Global embedding schemes encode the entire visual data into a single vector en-
couraging the network to keep the semantic information and discard location
information. Even though such properties might be useful for object recognition,
VQA tackles multiple other tasks beyond conventional recognition, e.g., counting
task. Attention mechanisms [Xu et al., 2015] allow networks to focus on parts of
the image and thus concentrate on the relevant information in the visual data.

Visual and textual encoding. While the questions are either encoded by an
LSTM [Chen et al., 2015b; Yang et al., 2016] or by a 1D-CNN [Lu et al., 2016b;
Shih et al., 2016; Xu and Saenko, 2016], the image embedding scheme keeps the
location information by removing the �nal fully-connected layers. Vector-slices of
the generated 3D tensor are then used to represent regions of the image. As in the
case of the global embedding schemes, the image is encoded by a pre-trained CNN,
e.g., VGG [Chen et al., 2015b; Lu et al., 2016b; Shih et al., 2016; Yang et al., 2016],
GoogLeNet [Xu and Saenko, 2016], and ResNet [Lu et al., 2016b]. Since attention
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can be applied on the images alone or simultaneously on both image features and
words in the question, we distinguish in the following between ‘vanilla’ attention
mechanisms and networks using co-attention modules.

Simple attentionmechanisms. Attention modules combine each vector sliced in
the location axis of the 3D tensor with a vector representation of the question (e.g.,
the last hidden state of an LSTM). Then, con�dences of each region being relevant
to answer the current question are estimated by using fully-connected layers [Yang
et al., 2016], an LSTM over the words of the question [Chen et al., 2015b], or simply
element-wise multiplication [Xu and Saenko, 2016]. The values in the con�dence
matrix are normalized using softmax on both dimensions such that the entire matrix
sums to one [Kiros et al., 2015; Yang et al., 2016] or using the sigmoid function
aiming to keep the values in the scale between zero and one [Chen et al., 2015b].
Then, the attention maps are used to weight the vector slices generated by the CNN,
which are then summed up for a �nal visual vector representation.

Co-attention modules. When focusing on regions of the image, some parts of
the questions are more relevant for generating the answer than others (e.g., What
color is the umbrella in the image?). To this end, co-attention mechanisms focus on
parts of the question and image simultaneously. This paired attention mechanisms
is applied multiple times enabling multi-step reasoning [Lu et al., 2016b; Yu et al.,
2019]. The visual attention maps are used in a similar manner as in case of the
‘vanilla’ attention modules, namely, for weighting the 3D tensor slices extracted
from the CNN. In case of the input query, the attention maps are only used to obtain
the attention mechanisms over the images. Thus, the textual attention over the
words is only used to re�ne the visual representations.

Prediction network. Finally, the visual vectors are combined with the question
representation identically as in case of the global embedding methods by fusing
them through concatenation or addition and employing a fully-connected layer.
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2.3.3 Memory networks

Memory networks are a specialized type of architectures that leverage a neural
external memory [Graves et al., 2014] that can be accessed by the network through
reading heads, while new information is induced into memory through write opera-

tions. The memory is composed of vectors that depict the memory cells and, thus,
the entire memory is fully described by a single matrix.

Visual and textual encoding. As for the attention-based techniques, the visual
embeddings are extracted from a convolution layer from a pre-trained CNN, e.g.,
ResNet in [Hudson and Manning, 2018; Ma et al., 2018] and VGG in [Li et al., 2018a;
Ma et al., 2018]. In contrast, for the textual domain, a bidirectional recurrent net is
used in [Li et al., 2018a] or a GRU with attention mechanism in [Xiong et al., 2016].

Memory. The memory comprises a set of cell-vectors that constitute information
extracted from the image. The memory matrix is updated in multiple steps, carving
the reasoning process of the network. The selection of the visual content to be
written into memory comprises a co-attention module followed by concatenation of
the question and image vector in [Ma et al., 2018], a multi-modal global encoding ex-
tracted via an attention mechanism [Hudson and Manning, 2019; Li et al., 2018a], or
a recurrent model [Xiong et al., 2016]. The selected information is then leveraged to
update the memory cells, which is performed by a GRU on the current memory cell
and the GRU hidden state [Xiong et al., 2016], by adding the previous stored informa-
tion and the hidden state of an LSTM [Ma et al., 2018], or using a global visual encod-
ing obtained via an attentionmodule [Hudson andManning, 2018]. Thus, the update
is conditioned on the visual information [Li et al., 2018a], on the memory state [Hud-
son and Manning, 2018], or on the previous memory updates [Xiong et al., 2016].

Prediction network. Finally, a fully-connected layer is employed to generate the
answer using a visual encoding obtained by a read operation from the memory
via weighted average pooling over the cells [Hudson and Manning, 2018; Li et al.,
2018a; Ma et al., 2018; Su et al., 2018; Xiong et al., 2016].
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2.3.4 Compositional models

The previously presented networks include attention mechanisms and memory
matrices, where multi-step reasoning is established through stacking [Yang et al.,
2016]. To counteract this and enable more interpretable multi-step reasoning, a
novel type of methods was proposed that generates the structure of the visual em-
bedding network conditioned on the input-question. This visual network comprises
modules that can be attention mechanisms, element-wise operations (e.g., addition),
or convolutional layers. The composition of the network can either be estimated
using grammar rules based on the input query [Andreas et al., 2016] or learned
through the network in an end-to-end manner [Gupta et al., 2020; Hu et al., 2017].

Visual and textual encoding. As in the other models, the image is embedded
using a pre-trained CNNwith the �nal fully-connected layers discarded (i.e., the out-
put is a 3D tensor). A large di�erence to previous methods lies in the representation
of the input query that now serves as a network structure estimate. The input query
is parsed using, e.g., a natural language parser [Manning et al., 2014], grammar
rules [Gupta et al., 2020], or by learning end-to-end through expert-annotations [Hu
et al., 2017]. To that end, the output of the query representation is the layout of
which the reasoning network is composed.

Neural modules. While the weights of the modules (e.g., convolutions) are
learned byminimizing the loss over the question-answer pairs, the di�erentmodules
are de�ned by a human expert and coupled to di�erent types of words in the input
query. The composition of the modules de�nes the structure of the reasoning
network, which is estimated using the layout generated in the previous step.

Prediction network. Finally, the output of the reasoning network is either
combined with the input question (e.g., via concatenation) to generate the an-
swer [Andreas et al., 2016; Gupta et al., 2020] or the raw output of the neural
modules alone are leveraged for the �nal prediction [Hu et al., 2017].
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2.3.5 Graph neural networks

While neural module networks require strong human intervention, memory net-
works are not human interpretable having a black-box structure. A novel type of
networks were recently proposed called graph neural networks [Kipf and Welling,
2017] that operate directly on graph data structures. Due to the highly structured na-
ture of images, one can easily represent the visual scene as graphs where the nodes
represent object instances and edges depict the relationships between them. There
are several graph neural networks proposed for VQA, which we group into four
categories: (1) recurrent-based networks that traverse the graphs in a pre-de�ned
order, (2) node refinement methods where in each reasoning step the nodes re�ne
the embedding using the neighboring nodes, (3) edge-pooling approaches that re�ne
the edges between the nodes in each processing step, and (4) path-based approaches,
which traverse the graphs in search of relevant information for answering the
question. Next, we will discuss each graph network type separately.

(1) Recurrent-based approaches. Recurrent Neural Networks (RNNs) are archi-
tectures employed for embedding or generating sequential data (e.g., embedding
words in a sentence). Since RNNs inherently deal with variable-sized dimensions,
which we are confronted with when dealing with graphs (i.e., variable-sized node
set), they are possible candidates for graph encoding. However, since RNNs neces-
sitate sequential data, an ordering of the nodes in the graph has to be de�ned. In
[Kembhavi et al., 2016], an RNN is applied on the edges which are subsequently
�ltered through a question-based attention, while in [Kim et al., 2017] an end-to-end
version is proposed, where the edges are learned inside the model. In both of these
methods the ordering of the nodes is carved by the con�dence of the model for
each node (i.e., output of the highest softmax activation). The �nal state is passed
to the prediction module, which consists of fully-connected layers. To counteract
the ordering problem, the work in [Teney et al., 2016] proposes to re�ne the node
features using an RNN via similarity-based pooling proceeded by averaging the
hidden states for each node obtaining a �xed visual encoding.
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(2) Node re�nement techniques. Models based on node re�nement [Narasimhan
et al., 2018] require a set of node encodings (e.g., extracted from a CNN) and adja-
cency tensor (i.e., comprising binary values showing the connection type between
each pair of nodes). The re�nement process entails several graph convolution layers
that comprise convolving the node encodings with learnable weights based on the
adjacency tensor. Namely, given a matrix representation V ∈ �n×d of n nodes and
an adjacency matrix A ∈ {0, 1}n×n , the graph convolution function gconv can be
computed by simple matrix multiplications between the input variables:

gconv(V ,A,W ) = σ ((A ·V ) ·W ) (2.4)

where the function σ is an activation function such as ReLU andW ∈ �d×h is a
learnable weight matrix that maps the input node vectors of size d to h-dimensional
vectors. Thus, while the adjacency matrix the features of all neighboring features
for each node separately (viaA ·V ), the weight matrix maps these combined features
to a new embedding space (via the multiplication withW ). For VQA, this operation
is applied several times on the input node features and, then, a global representation
of the graph is obtained through global average pooling on the variable dimension
of the node set. This global graph representation is then combined with the question
(e.g., via concatenation or sum) to infer the �nal answer using a prediction layer.

(3) Relational-embedding methods. Another type of networks [Battaglia et al.,
2016; Santoro et al., 2017] are edge-centric approaches, which represent the graphs
as an unordered set of edges each of which is framed as a vector. Therein, the
edges can be semantic predicates between the objects (e.g., holding), or node pairs
(e.g., concatenating the two vectors representing the two nodes). The variable-
sized dimension caused by the change of size of the edge set is discarded through
weighted average between the edges obtaining a �xed visual vector representation.
As in the previous cases, the global graph vector representation is passed through
fully-connected layers which output a probability distribution over the answer set.
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(4) Path-based approaches. While node and edge processing methods refine the
graph input based on the question, in path-based approaches the graphs remain fixed
during the entire inference. Even though there are no previous path-based methods
for QA on images, the recent works of Xiong et al. [Xiong et al., 2017] and Das et
al. [Das et al., 2018a] address the question answering task on knowledge graphs by
generating paths. The authors represent text-based knowledge as a graph, where the
nodes determine knowledge terms (e.g., Germany) and the edges show their relation-
ship (e.g., capital-of). To answer an input query, the models generate discrete paths
(i.e., a single node is traversed at a time). Due to the discrete nature of the paths, the
networks are not di�erentiable and, thus, conventional back-propagation cannot be
used for training. Thus, the training procedure follows the REINFORCE [Williams,
1992] algorithm loosening the discretization of the node assignment. Moreover,
these models entail that at each iteration step a single node is visited (due to the dis-
crete nature of the approach). This property makes it impossible for the networks to .
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3 Page Analysis

In this thesis, we aim to analyze models for visual and multi-modal reasoning on

learning materials, where various types of �gures (e.g., diagrams, natural images)
and modalities (images and text) come into play. However, in previous years, con-
ventional question answering models mostly focused on single �gure and modality
types, contrary to the rich data variety incorporated in learning materials. To that
end, we follow two di�erent directions for high-level reasoning on entire pages:
(1) localizing di�erent components in the page and enabling the use of o�-the-shelf
QA techniques dependent on the data type and (2) applying QA models trained end-
to-end on image representations of pages. For the �rst direction, we �rst need to lo-
calize the di�erent components in the page and classify them to their respective type
(e.g., natural image, diagram). In the �rst setting, the additional page pre-processing
step enables the use of conventional visual and text-based question answering di-

rectly on the detected page components (Figure 3.1). In this chapter, we address the
problem of page analysis and �ne-grained page-component localization as a pre-
processing step for our question answering task. Therein, we focus in analyzing two
learning material types: (1) digital presentation slides and (2) photos of slides cap-
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Semantic Page Analysis

2.   Classify into sem. classes
1.   Detect relevant regions

Multi-Modal QA

Figure QA

Text Content

Diagrams

Figure 3.1: The pipeline for the �rst direction that we take for reasoning on learning
materials: (1) localizing page components and (2) applying di�erent conventional
QA techniques based on the recognized component types.

tured during lectures (i.e., captured in the wild). In comparison to other document
types like textbooks, magazines, and scienti�c papers, presentation slides comprise
a high variety of layouts as well as capture a wide range of di�erent �gure types.

Contributions. In this chapter, we address the component localization problem
in documents and propose a novel task of page segmentation of presentation slides.
Since page analysis of digital slides and slides in the wild was not approached before,
we collect our own datasets and analyze the data by various methods proving their
unique properties, e.g., overlap between di�erent classes and location variance
of several document components. We tackle this task and analyze several neural
architectures previously used for semantic segmentation on natural images on
our collected datasets. Additionally to several deep networks, we evaluate multi-
ple baseline approaches and show that the neural networks are able to improve
their results by a considerable margin. Finally, to compare the models on our
page segmentation problem, we introduce novel evaluation metrics specialized for
measuring the discrepancy between pixel-wise, overlapping regions.

Publications. This chapter is based on the works published in [Haurilet et al.,
2019b] and [Haurilet et al., 2019c].



Slides in digital format Section 3.1

31

3.1 Slides in digital format

Presentation slides are one of the most prominent document formats to share
information and ideas for educational and business purposes. For example, the
slide sharing service SlideShare1 alone states to have more than 400 thousand slides
uploaded monthly with an estimated 80 million unique visitor per month2. Thus, in
order to tap this massive knowledge base it is crucial to enable automatic analysis

of such documents. Automatic document understanding and retrieval enables
millions of users to have fast and convenient access to the sought information.
Moreover, slides are used massively in many educational institutes, hence, it is
quite important to enable students with visual impairment to have a convenient
and reliable access to this knowledge source. However, the research of automatic
slide analysis is scarce as no publicly available datasets exist to enable the vision
research community to tackle this problem. The availability of such a dataset is vital
for developing novel and accurate approaches for slides automatic understanding
and visual analysis. Additionally, a large scale and diverse dataset is crucial to
benchmark and enable modern machine learning technique like deep learning.
Page analysis aims to extract the semantic components of a document page

represented in digital format, i.e., images. These components are usually related
to the layout (e.g., headers and footnotes) or to the individual page contents (e.g.,
tables and diagrams). In this thesis, we approach the page segmentation task as a
pixel-wise classi�cation task where each pixel in the page is classi�ed into a subset
of prede�ned categories. Page segmentation is quite relevant to the popular image
segmentation task [Everingham et al., 2015] where natural images from indoor or
outdoor environment are segmented into one of the de�ned object categories like
person, bike, or building. Nonetheless, there are some key di�erences between these
two segmentation problems. For example, unlike image segmentation where we
usually deal with relatively large scale objects like car, road, sky, in page segmenta-
tion, we need to handle a �ne-grained set of classes that usually occupy only a tiny

1http://slideshare.net
2https://blog.linkedin.com/2015/08/25/
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Figure 3.2: Examples pages from our proposed dataset. We associate each page
with document component labels spanned over three categories: textual, structural,
and graphical elements. Since distinct semantic classes are overlapping (right), we
allow each pixel to be mapped to multiple classes.

spatial area of the image like footnote, page number, or legend (Figure 3.2 right).
Furthermore, the semantic categories of components in natural images is location
invariant (e.g., a car is a car regardless whether it appears on the top, left, or to the
right part of the image). However, in page segmentation, components represent
di�erent semantics depending on their size and spatial location in the page; for
example, Centrioles in Figure 3.2 (left) appears as both a title and a bullet-point.
Additionally, there is a high overlap of labels in page segmentation as a pixel can be-
long to multiple categories at the same time, e.g., in Figure 3.2 (right) we have pixels
that are part of four di�erent classes: text, bullet-point, table, and diagram.

To that end, we collect and publicly release a dataset for Slide-Page Segmentation
(SPaSe), which augments the publicly available SlideShare-1M dataset [Araujo et al.,
2015] for slide retrieval with segmentation labels. Our dataset comprises 2000 la-
beled slide images with �ne-grained annotations of 25 classes (e.g., title, drawing,
and table). The dataset has a high intra-class variance where, e.g., plots and text

can be both produced digitally and handwritten (Figure 3.2). Additionally, the col-
lected slides are multilingual where in addition to English there are languages like
Spanish, French, and Romanian. This creates an interesting and challenging bench-
mark for tasks like text segmentation. While it is common in image segmentation to
have a single annotation associated to each pixel (e.g., [Cordts et al., 2016; Evering-
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ham et al., 2015; Lin et al., 2014]), this is inadequate for slide segmentation due the
multi-facet nature of the slide components. Thus, we provide multi-label annota-
tions of individual pixels to capture the overlapping semantic representations of ob-
jects. Furthermore, we de�ne novel evaluation metrics to quantify the performance
of di�erent segmentation approaches in our multi-label setup. In a thorough evalu-
ation on SPaSe, we show that our large scale dataset enables deep learning methods
to be trained from scratch without the need of additional data sources. Moreover,
we analyze the correlation of the de�ned categories and locations and demonstrate
the impact of spatial information on segmentation performance. In summary, we
show the following unique properties of the collected dataset: (1) the visual data is
balanced in the semantic classes, (2) a subset of classes are frequently co-occurring,
(3) document components in pages are location-variant, and (4) a high number of
pixels are associated to more than one label. Finally, we adapt and evaluate several
popular approaches for natural image recognition on our dataset and show that po-
sitional embeddings can improve the performance of models for page segmentation.

3.1.1 Data collection and annotation

Next, we describe the collection and annotation process of the SPaSe dataset for
page segmentation of digital slides.

Slide selection. SlideShare-1M is a publicly available dataset of one million presen-
tation slides scraped automatically from the website SlideShare and leveraged for
tackling the novel task of slide retrieval. However, this dataset contains very similar
or duplicate slides, pages containing only single words, and images with very low
resolution. To retain a high quality of the page images in SPaSe, we apply the follow-
ing slide selection process: (1) we choose at most one slide from each presentation
available in the SlideShare-1M dataset, (2) we discard presentations with low quality
images, and (3) we select slides with a high variety of document component types.

Category de�nition. We then de�ne the set of categories used to annotate the
pixels of the 2000 selected slides. For that purpose, we collaborate with an academic
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institute which o�ers aid services for students with visually impairment. One of
their main activities is to provide detailed description of lecture materials like pa-
pers, exams, and presentation slides. This is usually achieved through manual e�ort
of tens of trained assistances. Theses assistances will go through the large amount
of slides and supply structured descriptions that are tailored to the needs of the
visually impaired in regards of the slides structure and content. These descriptions
represent an excellent data source to identify the most frequent and important
object types that are usually encountered in the slides. Based on this data source
and discussions with the experts, we identi�ed 25 relevant categories. In addition
to the background class, these categories can be split into three main groups (see
Figure 3.3): (1) 14 text classes (e.g., title, code, and footnote); (2) 6 �gure classes
(e.g., plot, map, and logo); (3) 4 structural classes (e.g., table and enumeration);

Annotation process. We provide �ne-grained annotations at pixel-level for 25
classes. This level of granularity is necessary for this type of data as many of these
semantic classes represent fine entities like page number or date. Another option
are bounding box annotations, however, they are not adequate as many of the
background pixels will be wrongly annotated with the foreground class which will
signi�cantly increase the noise in the training data. Additionally, we notice that
there is a high region overlap between the categories, e.g., some tables contain
enumerations inside the cells, while a subset of diagrams contain text, drawing,
or even tables in its nodes (Figure 3.2 left).
Hence, we use multi-label annotations where a pixel may belong to multiple

overlapping categories at the same time. To that end, we develop an annotation
tool based on the one used in [Caesar et al., 2018]. Each slide image is �rst divided
into �ne superpixels using Simple Linear Iterative Clustering (SLIC) [Achanta et al.,
2012]. SLIC leverages both visual and spatial information of pixels in a weighted dis-
tance measure that controls the size and compactness of the superpixels. Since we
have very �ne structures in our data, we set the superpixels extracted by SLIC to be
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Number of overlapping classes 1 2 3 4 5
Number of pixels in overlap 130M 65M 3.6M 180k 2k

Table 3.1: Number of pixels with an associated per-class label overlap from one to
�ve (e.g., 65M pixels have two associated classes)

relatively small (13000 superpixels per image). Finally, the output of SLIC is used by
the annotators to classify each of the superpixels into the 25 classes. With this strat-
egy the annotators can label an entire region comprising multiple pixels at a time.
To show the performance of this annotation method, we annotate 100 images

by three di�erent annotators in a similar manner as [Caesar et al., 2018; Shen
et al., 2017]. We obtain a mean pairwise label agreement of 77% over the anno-
tators, similar to COCO-Stu� [Caesar et al., 2018] with an agreement of 74% and
ADE-20K [Shen et al., 2017] with 67%.

3.1.2 Per-pixel class overlap

Another aspect of our dataset is the amount of class overlap per pixel, as this
in�uences some of our metrics where a prediction is considered correct if and only
if all classes of the pixels are classi�ed correctly. Moreover, the high amount of
class overlap per pixel justi�es our original motivation for enabling multi-label
per-pixel classi�cation. Finally, strong overlapping classes indicates the overall
di�culty of this dataset portraying a major challenge for our neural networks.

Table 3.1 depicts the number of pixels in the entire dataset for di�erent amount
of per-pixel overlap. As we see, 130M pixels (excluding the background class) have
no overlap and, thus, in these cases one-class segmentation would have su�ced.
However, in around 70M pixels this would have failed, as we have an overlap of at
least two categories. By far the highest multi-class labels is with an overlap of two,
where we have 65M pixels, around a third of non-empty pixels in our dataset. This
is mostly caused by the text class that has very frequently an overlap with structure
classes, e.g., enumerations and tables. The maximum overlap that SPaSe has is �ve
which we have in around 2k pixels.
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Figure 3.3: Overview of the class distribution in our dataset. In this �gure, we split
the classes by their main categories, i.e., textual (blue), image-based (purple), and
structural (green) element types.

3.1.3 Per-class image distribution

In Figure 3.3, we visualize the distribution of the classes over the page images in our
dataset. Most of the classes appear in 10% to 30% of the slides showing a relatively
balanced distribution. Two of the most prominent classes in more than 75% of the
data are text and slide-title. This is not surprising as several of our classes are
simultaneously text-classes, e.g., date, heading, slide-number. Among the least
frequent classes (in less than 6% of the data) are footnote, code, and screenshot.
In case of the structural classes, the most represented class is the enumeration

category, while the logo class is the most frequent in the image-based main category.
Additionally, in around 12.3% of the data we encounter handwritten text (i.e.,
comments and handwritten mathematical expression). This is, for example, one
of the unique properties of slides in comparison to other document formats like
papers or magazines where text is always typed.
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Figure 3.4: Pixel frequency of the pair-wise class overlap normalized over each
semantic class (i.e., x-axis).

3.1.4 Overlapping regions

Next, we analyze the frequency of the pairwise occurrences of di�erent classes
in our dataset (Figure 3.4). Note that in this �gure, we only show a subset of the
classes that have a strong overlap among each other.
Not surprisingly, we have a strong overlap with the text class, since especially

structure classes like diagrams and tables contain text. Another category with
a strong class-wise intersection is the enumeration component type, which has
an overlap with text-based entities, e.g., URL and code. Interestingly, we have
more legends assigned to plots than to maps. We also notice that handwritten
text (comments) are often written on plots and tables to provide additional
information for these complex illustrations. Furthermore, the dataset encompasses
many enumerations which comprise typed mathematical expressions that are
usually included in math homework slides, i.e., a list of exercises containing some
formulas. Natural images and drawings usually do not have an overlap, but drawings
are more likely to appear within a diagram than in natural images.
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(a) backgr. (b) affiliation (c) title (d) slide nr (e) date

(f) footnote (g) logos (h) URL (i) code (j) legend

Figure 3.5: Pixel-wise heat maps showing the location of di�erent entities in the
page (lighter indicates more frequent).

3.1.5 Location heat maps

In Figure 3.5, we show the occurrence frequency in the page of ten of our classes.
We see that classes like title, slide number, and logo have a strong position prior.
Especially, we have text that changes its semantic meaning dependent on its size
and position like title, slide number, and footnote. For example, numbers located
in the page body are either mathematical expressions or just belong to the text
body, while stand-alone text at the corners of the page is usually the page number.
The same we have for slide title at the top and footnote at the bottom of the
image. In the case of the title class, we also notice the larger font that is typically
used and, thus, simply classifying the text at the top as title is not su�cient. The
font size of the surrounding text is therefore also important to be able to classify
slide titles. Interestingly, we see that the legend component are mostly positioned
in the right and bottom side. Also, we are able to recognize programming code by
the short line breaks that we see in most programming languages. Not surprisingly
the background is mostly located at the borders of the page as we see in Figure 3.5a.
Due to the positioning and the high frequency of the slide titles, the background
appears slightly less at the top than at the bottom of the page.



Slides captured during lectures Section 3.2

39

Title

Plot

Text

Title

Text

Diagram

Figure 3.6: Example of slides captured in the wild (left) with the corresponding
class annotations (right).

3.2 Slides captured during lectures

Presentation slides are highly useful documents for introducing a topic to an audi-
ence in an intuitive way. The importance of slides has grown rapidly from being a
supplement to lecturers’ speeches and printed papers to being the main pathway for
dissemination of knowledge, e.g., in university classes. A downside of this medium
is the di�cult automated analysis and information extraction, as slides are more
visual and vary greatly in their structure, layout, and relations of the entities, which
can become very complex. While understanding and automatically converting
the knowledge in a digital form is more di�cult for slides than for conventional
textbooks, solving this problem would make information more accessible, having a
substantial impact for people struggling with visual impairment or blindness.

As mentioned previously, page segmentation is an essential prerequisite step for
most of document understanding tasks, which identi�es distinct portions of the
document and assigns them a semantic meaning. Problems in this task vary greatly
in terms of the segment types: ranging from simple binarization which classi�es a
pixel to page or non-page; to semantic page segmentation with a high number of
diverse content classes, such as heading, title, URL, and table.
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While multiple works targeted the problem of page segmentation in contempo-
rary documents in the past, the research of slide analysis has been sparse so far.
Compared to previously published methods which focus on scienti�c articles [Clark
and Divvala, 2016; Yang et al., 2017], magazines [Clausner et al., 2017], e-books
[Tao et al., 2014] etc., page segmentation of presentation slides captured in the wild
encounters a far higher complexity of page structure and various possible visual
classes (e.g., drawings and handwritten text).

In the previous sections, we introduced the task of page segmentation on digital

presentation slides, which were automatically extracted from PDFs. However,
slide documents are not always o�ered to the viewers beforehand. Besides, the
listener might not know, which of the slides is currently presented making such
presentations very hard to follow for visually impaired people. It is unclear, how
such methods perform in an uncontrolled setting, where the slide image does not
originate from a pre-processed document, but, for example, from a display photo
taken during a lecture. A model for segmenting such “slides in the wild” should
be able to additionally handle problems related to natural images, such as noise,
varying illumination conditions, and di�erent rotation and scaling (see Figure 3.6).

Next, we tackle the problem of slide segmentation in the wild, where the slide
does not originate from a digital document but is contained in a part of a natural
image. Our overall application goal is a model, which allows a person to take a
live photo of a slide, e.g., from a display during a lecture, and then provides the
associated semantic information of the captured page.
TheWiSe dataset for slide Segmentation in theWild covers pixel-wise annota-

tions for 25 di�erent classes on 1300 pages captured during lectures. Since a pixel
can belong to multiple independent classes (such an example is shown in Figure 3.6
with an overlap between text and plot), we allow overlapping annotations, i.e., a
pixel can be associated to multiple labels as in the case of SPaSe.

Finally, we employ several neural architectures on our proposedWiSe benchmark
which were originally used for semantic segmentation and report promising results
for unconstrained slide segmentation (Section 3.6).
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Figure 3.7: Overview of the class distribution in the WiSe dataset. We group the
classes into three categories: text-based, graphical, and structural regions.

3.2.1 Annotation protocol

In total, we annotated 1300 slides which we split into 300 images for testing, 100
for validation, and the remaining 900 slides are kept for training. To help reduce
redundancy and, thus, possible over-�tting of our models, we made sure that there
are no identical slides in the dataset. We extracted the slides in our dataset from the
publicly available Class-X lecture dataset provided by Araujo et al. [Araujo et al.,
2015], which we manually label using pixel-level annotations for our 25 previously
selected classes. As stated previously, �ne-grained annotations are especially
important in case of slides, as we have graphics and structures that often do not
have a quadratic shape (see examples in Figure 3.6). We used the same annotation
tool as for labeling SPaSe and generate a high number of superpixels.

3.2.2 Analysis of the semantic classes

In Figure 3.7, we show the distribution of the di�erent classes in WiSe and group
them into textual, graphical, and structure-based regions. As we see, the text label
is by far the most prominent class with more than 90% of the available slides contain
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(a) background (b) enumeration (c) title

Figure 3.8: Distribution of three of our classes on the page. As for SPaSe, some
classes are strongly location variant.

some type of text. The text label is followed by more speci�c text classes like title,
slide number, and printed mathematical expressions which occur in over 60%
of WiSe. Finally, classes like maps and handwritten mathematical expressions

are not very common, but still are present in some slides.

3.2.3 Location heat maps

In comparison to semantic segmentation on natural images where the class of
an object does not change dependent on the location in the image, in case of
pages, some classes are strongly location variant. While in SPaSe the slides were
completely centered in the page, in slides captured during lectures, the slides su�er
distortions, rotations, tilts, and translations (Figure 3.6).

Even though photos of slides captured using a camera have such kind of strong
transformations, we still see that the slides are mostly centered in the image, as some
components are clustered in some regions in the �gure (see Figure 3.8). For instance,
large text on top of the page is very frequently the title of the slide, while document
components like diagrams and enumerations are located in the center of the page,
whereas footnotes are mostly at the bottom. In comparison, the background class
can be seen in the �rst image showing that most content is localized in the center
with a small interruption due to the title class at the top of the page.
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Dataset #Pages #Txt #Img Wild Pixw. Overl.
Magazines

RDCL17 [Clausner et al., 2017] 77 10 2 ✗ ✓ ✗

E-Books
CM [Tao et al., 2014] 244 12 3 ✗ ✓ ✗

Papers
CS-150 [Clark and Divvala, 2016] 150 2 2 ✗ ✗ ✗
DSSE-200 [Yang et al., 2017] 200 2 3 ✗ ✗ ✓
SectLabel [Luong et al., 2012] 347 20 3 ✗ ✗ ✓
CS-Large [Clark and Divvala, 2016] 3100 2 2 ✗ ✗ ✗

Street-View
SVT [Wang and Belongie, 2010] 350 1 0 ✓ ✗ ✓

Presentation Slides
SPaSe (Ours) 2000 14 10 ✗ ✓ ✓
WiSe (Ours) 1335 14 10 ✓ ✓ ✓

Table 3.2: Overview of datasets for page segmentation grouped by document type.
We show the number of text, graphical, and structural classes for each dataset and if
the images were captured by a camera (i.e., are captured in the ‘wild’). We point out
which datasets contain pixel-wise segmentation and have overlapping annotations
(i.e., enabling the possibility of a pixel belonging to multiple classes).

3.3 Comparison between datasets

In Table 3.2, we compare our datasets on digital slides and slides captured in the
‘wild’ with other publicly available datasets used for page segmentation. We show
the document type covered in each dataset with the corresponding number of pages
and the number of classes for the text, images, and structural elements (e.g., tables,
lists). While CS-Large has the largest number of pages, it also has the lowest
number of classes. It provides annotations for only four classes: �gures, tables,
image captions, and text. In comparison, our datasets have the second highest
number of pages, while providing pixel-wise annotations of more than 20 classes.
Moreover, a key feature of our dataset in comparison to the others is that we
provide overlapping class annotations of pages. The closest dataset in this regard is
the semantic segmentation dataset ADE-20k [Shen et al., 2017], which allows an
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overlap between maximum of two subsets of classes (objects and parts of objects).
In comparison to them, we allow any possible combination of classes, especially
since multiple combination (i.e., more than two) of region classes can occur.

3.4 Methods for page segmentation

Baselines. First, we evaluate two baselines on the slide segmentation task: (1)
Uniform, which picks each class with equal probability and (2) Background, which
chooses the most frequent category as the output class, i.e., the background class.

FCN-8s [Long et al., 2015]. The Fully Convolutional Network (FCN) is a neural
network for semantic segmentation that comprises an encoder of several convolu-
tional layers [Simonyan and Zisserman, 2015] pre-trained on ImageNet [Deng et al.,
2009] (i.e., the features are continuously down-sampled bymaxpooling layers), and a
decoder withmultiple upscale layers for resizing the features to the initial image size.

FRRN [Pohlen et al., 2017]. The Fully Resolutional ResNet (FRRN) is a network
that leverages two processing streams to capture both the semantic information in
the image and �ne-grained contours. While the �rst stream processes the input im-
age with progressively larger receptive �elds, the second stream leverages residual
connections to keep the feature maps at a high resolution.

DeepLab [Chen et al., 2018]. DeepLab contains multiple dilated convolution
layers [Holschneider et al., 1990] to enlarge the receptive �eld, but at the same
time keep the feature dimensions. The pyramid pooling then extracts features at
multiple scales and, thus, captures small objects and image context.

Learning setup. For the multi-label page segmentation, we require for our models
to infer multiple classes per pixel. Thus, we replace the softmax output layer which
was used throughout the previously presented neural networks with a sigmoid
activation function and train these models using binary cross entropy loss. We train
these neural networks for a total of 50 epochs using the same optimizers as they
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were originally used for image segmentation in [Chen et al., 2018; Long et al., 2015;
Pohlen et al., 2017]. Then, we select the model with the highest mean intersection
over union over the validation set for the �nal evaluation.

3.5 Evaluation metrics

As noted earlier, our datasets encompass multi-label, pixel-wise annotations, con-
trary to the conventional single-label version for semantic segmentation in natural
images. Thus, this setup is di�erent than the common segmentation problem where
classes are assumed to be mutually exclusive [Lin et al., 2014]. Hence, besides the
popular mean Intersection over Union (mIoU) metric [Everingham et al., 2015], we
de�ne three additional evaluation metrics for multi-label segmentation, namely:
mean balanced Accuracy (mbAcc), pixel Accuracy (pAcc), and pixel Intersection
over Union (pIoU). Let h,w , and c be the height, width of the image, and the number
of categories, respectively. The variables Lk, Pk ∈ {0, 1}h×w×c depict the ground
truth labels and predictions, respectively, for a sample k in our test data.

Pixel Accuracy (pAcc). We de�ne the number of correctly labeled values for a
pixel (i, j) in image k as: T k

i, j :=
�
l
[Lki, j,l � Pki, j,l ], where l ∈ {1, . . . , c}. Then, the

pixel accuracy for image k is de�ned as the percentage of pixels which have an
exact match with all ground truth labels of each pixel:

pAcck := 1
h ·w

�
i, j

[T k
i, j � c] (3.1)

where i ∈ {1, . . . ,h} and j ∈ {1, . . . ,w}. We denote with [x � y] the indicator
function that generates a one if the condition inside the brackets is true, and zero
otherwise. In this particular case, the condition in the indicator function veri�es if
the two entities x and y are equal to each other. While this metric gives us an idea
of the pixel-wise segmentation accuracy it has the following drawbacks: (1) the
metric harshly punishes partially correct segmentation by assigning a zero accuracy
for pixels if one label is misclassi�ed and (2) the metric might be biased towards
the most frequent annotations in case of unbalanced distribution of classes.
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Pixel Intersection over Union (pIoU). To tackle the �rst drawback, we de�ne
the pIoU metric, which softens the weight given for incorrect classi�cations:

pIoUk := 1
h ·w

�
i, j

N k
i, j

Ski, j − N k
i, j

(3.2)

where Ski, j :=
�
l
(Lki, j,l + Pki, j,l ) and N k

i, j :=
�
l
min([Lki, j,l � 1], [Pki, j,l � 1]). This

metric is conceptually similar to the mIoU but for multi-label predictions.

Mean balanced Accuracy (mbAcc). The mbAcc tackles the second drawback by
using a class-based weighted accuracy measure (i.e., the balanced accuracy):

bAcckc :=
�

�∈{0,1}
(1 − αc� ) ·

�
i, j

min([Lk,ci, j � �], [Lk,ci, j � Pk,ci, j ]) (3.3)

where the weights αc
�
∈ [0, 1] are proportional to the number of pixels labeled with

class c and pixel label �. More precisely, αc
�
is equal to percentage of Lki, j equal to �:

αc� := 1
t
·
�
k,i, j

[Lki, j � �] (3.4)

where t is the number of pixels in the test split. Finally, the mean balanced accuracy
is obtained by averaging the balanced accuracy across all classes:

mbAcck := 1
c

�
l

bAcckl (3.5)

where l iterates over all classes and c is the total number of classes.
In comparison to our proposed evaluation metrics for overlapping segmentation,

non-overlapping semantic segmentation employs the following metrics: the mean
intersection over union, the mean accuracy (i.e., the accuracy balanced by the
classes), and the pixel accuracy (i.e., accuracy for each pixel in the image). While we
cannot use the mean and pixel accuracy for the multi-label classi�cation setup, we
further leverage the popular mean intersection over union as our primary metric.
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Approach Subsaml. mIoU pAcc pIOU mbAcc
Baseline Methods

Uniform – 1.1 3.4 4.0 50.0
Background – 2.5 61.6 61.6 50.0

Neural Networks
FCN-8s ×8 20.0 66.2 73.5 62.0
FRRN-A ×4 28.4 69.5 73.8 67.0
FRRN-B ×2 30.9 71.2 75.3 68.5
FRRN-B + Location ×2 33.2 73.4 77.2 70.1
DeepLab ×2 34.1 76.5 80.3 71.2
DeepLab + Location ×2 35.8 77.4 81.2 72.6

Table 3.3: Test results of the multi-label page segmentation task on our SPaSe
dataset. We provide the performance based on the four previously introduced
evaluation metrics for overlapping segmentation.

3.6 Evaluation

This section shows the performance of the previously de�ned models on di�erent
document analysis tasks. The problems that we consider on our datasets range
from simple binarization, which entails in classifying a pixel into foreground or
background, to the high-level task of categorizing the pixels into 25 semantic classes.
Nonetheless, all the tasks that we consider are �ne-grained localization problems
(i.e., classifying each pixel into a set of discrete classes).

3.6.1 Semantic slide segmentation

Digital slides. In this experiment, we measure the performance of the baselines
and networks in pixel-wise multi-label slide segmentation. That is, each pixel is
classi�ed into one or multiple classes of the 25 categories de�ned in our dataset.
As noted previously, segmentation approaches have the conundrum of (1) sub-

sampling the input enlarging the receptive �eld for a high-level view of the objects
and (2) keeping a small receptive �eld and being able to segment �ne-grained
structures. For example, the FCN-8s network reverts the down-sampling of the
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Approach Subsampl. mIOU pAcc pIOU mbAcc
Baseline Methods

Uniform – 0.2 0.0 0.0 50.0
Background – 3.0 76.1 76.1 50.0

Neural Networks
FCN-8s ×8 18.3 81.7 59.8 59.8
DeepLab ×2 35.8 88.3 90.4 72.2
DeepLab+Location ×2 37.2 88.5 90.4 72.8

Table 3.4: Results of the semantic segmentation on the test set of WiSe. We group
our approaches into baseline methods and deep learning approaches.

feature maps through so-called upscore layers which, however, have di�culty in
capturing �ne-grained structures. FRRN maintains the �ne-grained information
by leveraging two streams: one for a large receptive �eld and the other one for
�ne-grained prediction. DeepLab leverages dilated convolutions to increase the
receptive �eld while maintaining the size of the feature maps.
We �rst evaluate the baseline methods on SPaSe which we de�ned in the �rst

section (Table 3.3), while in the second part we show the performance of the deep
neural networks. We see that the baselines perform by far worse than the deep
learning models as the neural architectures improve over the baselines between
17.5% (FCN) and 33.3% (DeepLab) in terms of mIoU. Both FRRN versions were able to
outperform the mIoU achieved by FNC-8s. The deeper FRRN-B increased the mIoU
by 2% in comparison to the shallower FRRN-A. On the other hand, DeepLab achieved
the highest performance with 34.1%, further gaining over FRRN-B an additional
3%. Finally, we notice that the di�erence between FRRN-B and DeepLab in mIoU is
smaller than in pIoU and pAcc. This shows that the gain was mostly in�uenced by
improvements to the most frequent classes. In comparison, we notice that FRRN-A’s
performance boost over FCN-8s is mainly due to better segmentation of the less
frequent classes as depicted by the higher gain in mbAcc compared to pAcc.
Since convolution layers are partially translation invariant, our models cannot

use the location information, which is important in our location dependent classes.
Thus, we tackle this shortcoming by concatenating a 2-channel map (x and y
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Approach Subsampling mIoU pAcc mAcc
Baseline Methods

Uniform – 29.8 50.0 50.0
Background – 41.8 83.7 50.0

Neural Networks
FCN-8s ×8 80.7 93.7 90.4
FRRN-A ×4 80.4 93.7 88.9
FRRN-B ×2 83.2 94.6 91.7
DeepLab ×2 82.6 94.5 90.5

Table 3.5: Performance of the text segmentation task on the test set of SPaSe. We
show the results for di�erent evaluation metrics previously used for single-label
semantic segmentation on natural images.

positional embeddings) to our input image with the location of each pixel. This
simple modi�cation improved the DeepLab model to an mIoU of 35.8% and FRRN-B
to 33.2% (see DeepLab+Loc and FRRN-B+Loc in Table 3.3).

Slides captured during lectures. The most di�cult of the proposed settings
is the semantic slide segmentation where our models aim to assign each pixel to
one or multiple labels from the 25 available classes. As for the SPaSe dataset, we
implement two baseline methods to show possible biases in the data, i.e., we report
the random performance and the accuracies for the most common class.

As can be seen in Table 3.4, the baselines perform poorly especially inmIoUwith a
performance of 3% and 0.2%, respectively. By using as input solely the slide image in
RGB format, DeepLab is able to achieve an accuracy of 35.8% improving the baseline
methods by over 30%. Since some components in the page are location variant
(e.g., title, footnote) and fully convolutional networks are translation invariant, we
conducted an experiment where we obtain as input additionally to the RGB values
of each pixel its location in the page (DeepLab+Location). This new setting is able
to achieve an improvement over the RGB-only model of 1.4% in mIoU.
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Approach Subsampling mIoU pAcc mAcc
Baseline Methods

Uniform – 29.8 50.0 50.0
Background – 42.4 84.9 50.0

Neural Networks
FCN-8s ×8 83.7 95.2 91.4
DeepLab ×2 84.4 95.5 91.3

Table 3.6: Text segmentation results on the WiSe dataset on slides captured during
lectures. We group the methods in baselines (uniform and background) and in
neural networks, where we show the results of two segmentation architectures.

3.6.2 Text segmentation

Next, we explore other popular page segmentation tasks on our datasets. We �rst
show the performance of our models for the text segmentation task which aims to
assign to each pixel one of two classes: text and non-text.

Digital slides. In Table 3.5, we report the results of the models on the SPaSe test
set for the text segmentation problem. Note that we consider non-text the entirety
of the page which was not assigned a text-label (i.e., our overall task is binary) as
well as we consider text not only the text-classes but also regions belonging to
paragraphs and, thus, labeled with the text class. We therefore leverage popular
metrics for non-overlapping semantic segmentation [Long et al., 2015] (i.e., as for
conventional segmentation of natural images) and report the mean Intersection
Over Union (mIoU), pixel Accuracy (pAcc) – accuracy over all pixels in the image,
and mean Accuracy (mAcc) that calculates the mean accuracy over all classes.

While the baselines have a low performance of only 41.8% for the aimed two-class
segmentation task, the deep learning models improve results by more than 40% and
30%, respectively. We see in Table 3.5 that FRRN-B has the best results on the text
localization task improving its shallower counterpart by almost 3%. The reason
for its strong performance for text segmentation is probably linked to the residual
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Approach Subsampling mIoU pAcc mAcc
Baseline Methods

Uniform – 34.5 55.8 50.0
Background – 30.8 61.6 50.0

Neural Networks
FCN-8s ×8 76.3 87.2 86.6
DeepLab ×2 80.4 89.6 89.3
FRRN-A ×4 80.3 89.6 89.3
FRRN-B ×2 81.0 90.0 89.4

Table 3.7: Binarization results on the test set of the SPaSe dataset for digital slide
page segmentation. This task entails the assignment for each pixel on of two
available classes, i.e., either the foreground- or the background-class.

stream structure as this keeps the feature maps to a constant size. Thus, it is able to
segment �ne structured objects like text. In comparison, DeepLab uses a pyramid
of di�erent sizes of receptive �elds leading to a worse text segmentation result.

Slides during lectures. Table 3.6 illustrates the results of our baseline methods
and the deep learning networks on the text task of the WiSe benchmark on presen-
tation slides captured in the wild. As mentioned previously, for text segmentation
each pixel is associated to a single class and, thus, this task is a single-label, binary
classi�cation problem. Not surprisingly, since in this setup the uniform baseline
only chooses between two classes, it is able to achieve a pixel and mean Accu-
racy of 50%. The prior baseline, that always predicts the most frequent class (i.e.,
background), obtained an overall pAcc of 83% and mIoU of 42.4%. The overall pixel
accuracy of 83% shows the unbalanced nature of our slides, as by far more pixels
belong to the background than are part of text. While FCN is able to improve the
baseline methods by over 40%, DeepLab achieves the highest performance on all
metrics, where it shows a mIoU of 84.4% and pAcc of 95.5%.
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Approach Subsampling mIoU pAcc mAcc
Baseline Methods

Uniform – 32.9 50.0 50.0
Background – 38.1 76.1 50.0

Neural Networks
FCN-8s ×8 84.3 93.7 91.4
DeepLab ×2 86.3 94.5 92.8

Table 3.8: Binarization results on the test set of WiSe, where we aim to classify
each pixel into two classes: page or non-page.

3.6.3 Binarization

Digital slides. In this section, we further address the problem of page binarization
of presentation slides, which aims at labeling each pixel with one of two classes:
foreground or background. We de�ne foreground of a page all pixels that are
associated to one of our 25 document categories. To that end, we train the models
in the same way as on the text segmentation task, i.e., we minimize the cross
entropy loss with sigmoid normalization on a single output neuron (note that we
do not have any overlapping regions as in the case of semantic page segmentation).

Table 3.7 shows the results of the baselines and neural networks on the test set of
SPaSe. While the two baseline methods show a very low performance of a mean IoU
of less than 35%, the deep networks improved performance by over 40%, achieving
more than 76% in mIoU. Moreover, the more recent DeepLab model comprising
dilated convolutions was able to increase accuracy in comparison to the fully convo-
lutional FCN-8s network. We also notice a divergence in the amount of improvement
in the di�erent metrics, e.g., in mIoU the deeper networks show a stronger improve-
ment than in case of the pixel accuracy. This is, however, not surprising, as the
mIoU averages the performance over all classes, while the pixel accuracy is stronger
biased towards unbalanced data. The best performance was achieved by the FRRN-B
network, which employs residual connections for a better gradient �ow, obtaining
an overall mIoU of 81% and a pixel accuracy of 90% on the binarization task.



Evaluation Section 3.7

53

Slides during lectures. Table 3.8 shows the results of the baselines and the
segmentation networks on the test set of the WiSe dataset for slides collected
during lectures. As for SPaSe, we leverage as evaluation metrics ones that are
usually employed for single-label semantic segmentation on natural images.

The background-only method improved performance by around 5% in mIoU over
the random baseline, which uniformly selects between the fore- and background
class. The pixel accuracy of the background-only baseline onWiSe is higher than for
SPaSe showing that the slides captured during lectures encompass more background.
This is, however, not surprising as WiSe contains additional elements such as walls
or the lecturer himself in the image that are not part of the slide.

As in case of SPaSe, DeepLab improved performance of around 2% on all metrics
over the shallower fully convolutional FCN-8s network. Interestingly, the models
on WiSe achieved a higher performance than on the digital slides of SPaSe on
both the text segmentation and binarization task. A possible reason behind these
results is that the slides from SPaSe were selected by a human to comprise more
complex pages, while in WiSe the slides were chosen randomly from lecture videos
(i.e., WiSe includes simpler slides). We also notice that the di�erence between the
datasets is higher in the binarization problem (i.e., 5%) than for text segmentation
(i.e., around 1%). This indicates that page segmentation is an easier task on slides
captured in the wild, while the text segmentation problem has a similar di�culty
level for both setups (digital pages and pages captured during lectures).

Finally, the subsampling rate is a hyper-parameter expressing the down-sampling
rate of the input images through the network caused by convolutional and pooling
layers with strides greater than one. The results shows that this parameter is a major
factor on our page analysis problems, as we show that models with lower such
values achieve a higher overall accuracy. This indicates that the pages encompass
�ne-grained structures that require a precise boundary detection, while a higher
receptive �eld (achieved through a strong downsampling of the input image) shows
a lower importance. Next, we show qualitative results of the best performing
DeepLab model on the semantic page segmentation task.
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Image Ground Truth Prediction

Figure 3.9: Examples of slides along with ground truth annotations and predictions
produced by our best model for multi-label page segmentation.

3.7 �alitative results

Digital slides. In Figure 3.9, we visualize some example slides (left) with both
ground truth annotations (center) and predictions (right) on the multi-label task.
We see that DeepLab was able to recognize di�cult classes like plots, tables,
diagrams, and programming code correctly. Even though DeepLab uses a small
downsampling rate, it still has some di�culties to get the exact borders of �ne
structures like the borders between paragraphs (e.g., bottom example in Figure 3.9).
Problematic is also the title in the �rst example (top row), which comprises of

multiple lines: while the �rst line was classi�ed correctly to the title-class, the
next two lines were partially assigned to the text-class. The reason behind this
is probably the scarce number of slides in our dataset which include multi-line
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Image Ground Truth Prediction

Figure 3.10: Example of pixel-wise labeled slides: Raw images from lectures col-
lected by [Araujo et al., 2015] (left) extended with corresponding manual annota-
tions in our WiSe dataset (center), and the predictions of DeepLab (right).

titles. Overall, the DeepLab network was able to distinguish di�cult classes and the
boundary of the component localization shows a better smoothness at the region
boundaries than the ground truth.

Slides during lectures. In Figure 3.10, we show examples of slides captured during
lectures (left) with their corresponding manually annotated segmentation (center),
and segmentation masks inferred by the DeepLab neural architecture (right). As
we see, the model is able to correctly predict di�cult classes like enumerations and
diagrams. Even though the model shows some problems to recognize the correct
edges of the current segment (e.g., the contours of the diagram) it is able to produce
a smoother boundary than the manual annotation (e.g., text and enumeration

labels). Moreover, the model recognized the document components in frontal slides
(e.g., the images at the top and center) as well as in tilted and cropped ones (bottom).
Overall, the network correctly localized di�erent components on complex slides
captured on diverse view-points and various illumination conditions.
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3.8 Summary and discussion

In this chapter, we addressed the problem of semantic page segmentation and
introduced two novel datasets comprising �ne-grained annotations of 2000 digital
slides and 1330 slides captured during lectures. We include in total pixel-wise labels
of 25 semantic classes: 4 structural, 6 image-based, and 14 textual components.
Additionally, we provide a thorough analysis of the data properties and its unique
features: e.g., the multi-class characteristic of the pixels where a pixel is associated
to multiple semantic categories simultaneously. Moreover, we show that our classes
are partially location variant and, thus, include pixel spatial location leading to
improved segmentation results. On our datasets, we establish strong baselines
and demonstrate the suitability of our dataset for developing deep learning model
from scratch. Finally, we show that the deep learning models are able to achieve a
strong performance on all three tasks: text segmentation, binarization, and semantic
segmentation improving baseline methods by over 30% in mIoU.
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4 Figure�estion Answering

In this thesis, we aim to analyze multi-modal content from learning materials
in a question answering setup. A large amount of this data comprises �gures
which range from synthetically-generated images to complex diagrams (Chapter 3).
While most previous methods focus on natural images with �at questions (i.e., that
require a single reasoning step for inferring the answer) approaches for highly-
structured content were only recently considered for the �rst time. In this chapter,
we address the Visual Question Answering (VQA) task and introduce a novel
architecture aimed at capturing the interplay among individual objects in a graph
representation of the image. To that end, our approach traverses the visual graph
searching for information relevant for answering the current question. As not
all graph components are relevant for the input query, we introduce the concept
of a question-based visual guide, which constrains the potential solution space by
learning an optimal traversal scheme. The �nal destination nodes alone are then
used to produce the answer. We show that �nding relevant semantic structures
facilitates generalization to new tasks by introducing a novel problem of knowledge
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transfer: training on one question type and answering questions from a di�erent
domain without any training data. Furthermore, we achieve state-of-the-art results
for visual reasoning on multiple query types and diverse image and video datasets.

Contributions. We address the problem of answering questions on graphical con-
tent and introduce a novel neural path-based architecture, which traverses the visual
graph using the question as guide. In comparison to other related path-based graph
nets, our network is trained end-to-end via conventional back-propagation without
employing any reinforcement learning techniques (e.g., REINFORCE [Williams,
1992]). Moreover, we use the traversed paths to understand the reasoning behind
the answering approach as well as to deduce mistakes produced by the model. Since
the prediction model comprises a multi-head module, we decouple the model based
on the query-type and show the task-level generalization capabilities of our model.
Finally, we evaluate our proposed approach on several popular benchmarks aimed
at high-level relational reasoning on which our network shows strong results.

Publications. This chapter is based on work published in [Haurilet et al., 2019d].

4.1 Task overview

Interpreting and answering subsequent questions about the semantic relationships
of the complex and noisy environment is a key trait of our cognition. Extraordinary
progress linked to the rise of deep learning in core vision tasks [Girshick, 2015;
Krizhevsky et al., 2012; Long et al., 2015; Russakovsky et al., 2015] (e.g. object recog-
nition) has created a solid basis for the new research direction of higher-level visual
reasoning. Going beyond the conventional recognition, visual reasoning [Santoro
et al., 2017; Yang et al., 2018a] decides about the necessary future actions [Johnson
et al., 2017b], which is crucial for arti�cial intelligence applications. The composi-
tional structure of our world makes this task especially hard, as merely recognizing
individual building blocks at a lower level is not enough. Such models require
precise relational reasoning about the entities present in the scene (cat, desk) and
the interaction between each other (e.g., sleeping on).



Task overview Section 4.1

59

D

S

Traveler

Destination

M
et

al

…

R
ub

be
r

Answer

Pr
ed

ic
tio

n
M

od
ul

e

Visual 
Guide

Question

Scene Graph

What is the
material of the
sphere that is
behind the tiny
brown thing to
the right of the
green object?

Figure 4.1: Example where the object interplay is crucial for inferring the correct
answer and an overview of our proposed approach. The visual guide learns to give
question-dependent directions to follow on the scene graph. The �nal answer is
then produced solely from the embeddings of the reached destination nodes.

Visual reasoning tasks are often posed in the form of visual question answer-
ing [Johnson et al., 2017b; Santoro et al., 2017; Yang et al., 2018a], which lies in
the intersection of vision and language and attempts to answer a speci�c question
about the scene. Complex semantic associations between both language query and
the visual scene entities (Figure 4.1) are characteristic for this task.
Despite the exceedingly structured nature of the visual information needed to

answer open-ended questions, the majority of previous works focus on spatial
feature maps obtained from a pre-trained CNN and further combined with an
attention mechanism on parts of the image [Shih et al., 2016; Xu and Saenko, 2016;
Yang et al., 2016]. While pre-trained CNNs o�er excellent object embeddings,
they face problems in relational reasoning about their large scale interactions. An
excellent way tomodel suchmulti-step associations in an image are scene graphs [Xu
et al., 2017], where the nodes represent the object and the connecting edges specify
their relationship embeddings. We notice that even though the relations between
objects are indispensable for the complete scene understanding, only a portion of
the graph is relevant for answering a speci�c question. We therefore leverage the
visual graph in a selective way through a question-dependent visual guide.
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We aim at unifying graph-based inference with question-specific visual guidance,
in order to identify paths with relevant information �ow and present a new model
for visual reasoning. Given an image-question pair, we �rst use the visual guide to
create question-speci�c directions to follow in the graph. Next, the graph traveler

traverses the visual graph guided by these directions and computes the probability
distributions over the nodes being the �nal destination. We then compute the
answer prediction solely from the expected destination node as visual representation
for our prediction module. Finally, as in other QA networks, the prediction module
uses this visual encoding of the destination and outputs a probability distribution
of the set of possible answers or over the multiple choice answers.

While conventional graph-based models follow the graph re�nement paradigm
(i.e., re�ned encodings of all components are used for the prediction), we maintain
the original node representations, identify the key paths, and answer the question
only from the expected �nal destination nodes.
We demonstrate the e�ectiveness of our model on three well-known datasets

for di�erent visual reasoning tasks: question-answering on video data (COG [Yang
et al., 2018a]), compositional reasoning on 3D synthetic images (CLEVR [Johnson
et al., 2017a]) as well as diagram question-answering with real-life �gures extracted
from textbooks (AI2D [Kembhavi et al., 2016]), which is much noisier while having
less training data. Our model consistently outperforms previous approaches on the
AI2D and COG benchmarks and shows strong performance on the CLEVR dataset.

As our model operates on semantic structures inside the scene graph, it has two
bene�cial properties: interpretability and generalization abilities to new tasks. An
ablation study illustrates that we can easily shed light on the internal choices our
model makes to produce the answer by following the �nal soft path. To evaluate the
generalization capabilities, we propose a new task of knowledge transfer for VQA
by splitting the training and test set based on question types (e.g. query attributes

questions for training and counting for testing). Through knowledge obtained from
training on one kind of questions, our neural network is able to derive the answers
for queries for which type it has never seen before.
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4.2 Visual reasoning via guided so� paths

We present a new model for visual reasoning that deals with the composite object
relationships in the scene as a graph traversal problem. The challenge is that the
space of potential paths in a visual graph is very large. When asked `What is the

material of the sphere that is to the left of the tiny brown thing behind the green object?'

(Figure 4.1), a human would immediately look for the green object, thereafter, at
the tiny brown sphere and, then, select the sphere left of it. Likewise, our idea
is to greatly constrain the solution space by learning the optimal graph traversal
strategies based on question-speci�c decisions.
Conceptually, our visual reasoning model is composed of three main compo-

nents: (1) the visual guide, (2) the graph traveler, and (3) the prediction module.
The visual guide takes as input the question and produces direction embeddings.
The graph traveler follows these directions and computes the soft paths – proba-
bility distributions over the nodes of being in the route to the nodes that include
relevant information to produce the answer. The �nal decision is made by the
prediction module, which exploits the found destinations as weights for the graph
nodes and infers the �nal answer. We want to highlight, that the prediction module
operates exclusively on the destination node representations, dismissing the pre-
ceding components of the paths. While the visual guide and the prediction module

can be viewed as individual neural networks connected by the graph traveler, they
are optimized jointly in an end-to-end training fashion.
We illustrate an overview of our model in Figure 4.4 where we show an ex-

ample image extracted from the CLEVR dataset overlayed with its visual graph
representation. The traveler uses both the visual graph and information extracted
from the question-based guide to produce paths in the visual data. The �nal found
destination is used to infer the answer (in this example: ‘rubber’).

Next, we give a general de�nition of the data structures we leverage throughout
this chapter (Section 4.2.1), provide a mathematical foundation for computing the
soft paths (Section 4.2.2), and we �nally present our complete graph-based neural
architecture for visual question answering (Section 4.2.3).
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Figure 4.2: Example of a visual graph extracted from an image from the CLEVR
dataset. We represent the input image as a graph, where the nodes denote object
instances and the edges depict semantic relations between them. Each node
represents an object instance in the scene via a feature vector (i.e., the entirety
of the nodes is a matrix), while the edges comprise a 3D tensor portraying all
pair-wise object relations (i.e., we assume that the graph is fully-connected).

4.2.1 Data structures

Next, we de�ne the data structures that we require for our VQA model: the graph
representing the input of our model, the discrete path as a set of nodes, and the
soft path counterpart which enables our network to train in an end-to-end manner.

Graph. We call a visual graph of size n a data structure G := (V ,E) comprising
node and edge encodings that we de�ne as follows:

1. V ∈ �n×v – v-dimensional features for each of the n visual nodes. The
features can be one-hot vectors, i.e., binary embedding encompassing a single
one set at the location equal to the semantic class index. Another option is
localizing di�erent object instances using an object detector, e.g., [Liu et al.,
2016; Redmon et al., 2016]. Then, one can leverage the crops carved by the
generated bounding boxes and extract feature vectors by passing the crops
to a pre-trained CNN (e.g., [He et al., 2016; Simonyan and Zisserman, 2015]).

2. E ∈ �n×n×e – an e-dimensional edge representation for each pair of vertices
(j,k) with j,k ∈ {1, . . . ,n}. The edge representation E can be a one-hot
embedding of predicates (e.g., on top, holding), which can be obtained using
a graph generation method, e.g., as in [Lu et al., 2016a], features extracted
from a CNN on the image crop surrounding both objects, or by concatenating
each node encoding pairwise extracted from the feature matrix V .
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Path. We call p a path of length r in graph G a list of nodes with:

pi ∈ {1, . . . ,n},∀i ∈ {1, . . . , r } (4.1)

We note that we do not require for the nodes in the path to be unique (i.e., the path
does not have to be cycle-free) and that we only consider direct paths. Moreover,
this de�nition of path assumes a discrete assignment of each node in each reasoning
step i . Thus, each vertex is traversed with absolute certainty in each reasoning
step i (i.e., no probabilities are assigned to the nodes in each reasoning step).

Soft path. To that end, we de�ne the soft path paradigm, where we do not return
discrete associations of each of a node with the path, but soften their inclusion.
Formally, for each reasoning step i and vertex j in graph G, we have an association
score π i (j) ∈ [0, 1]. As we aim to model a probability distribution, we require that
the sum over all nodes in reasoning step i in the graph is one:

�
j

π i (j) = 1 where j ∈ {1, . . . ,n} (4.2)

Thus, a soft path is described by the output of the functions π i , i.e.,

[π 1(j),π 2(j), . . . ,π r (j)], ∀j ∈ {1, . . . ,n} (4.3)

where we use π i : {1, . . . ,n} → [0, 1] element-wise on each node.

Starting node. The starting node of a path is the node in the �rst reasoning step. In
case of a soft path, it is carved by the con�dence in step i = 1, i.e., the distribution π 1.

Destination. While a destination is the last vertex in the discrete path, in case of
soft paths, it is equal to the probability in the last reasoning step r .

4.2.2 Reaching the destinations

Ourmodel builds upon the premise that by traversing the scene graph in a controlled
way, we are able to identify the information relevant for the speci�c question. In case
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Figure 4.3: Overview of the question-based guide. We map the words in the ques-
tion to a one-hot representation, which are then embedded using 1D convolutions
with self-attention. We generate r attention maps, where r is the number of rea-
soning steps that our model produces. Thus, we obtain r vector representations,
which should contain directional information for the traveler.

of discrete paths, we can compute the probability of the node v being a destination,
which is equal to the sum of the probabilities of all paths ending in j:

�(pr � j) =
�
p
�(p) · [pr � j] (4.4)

with [x � y]we denote the indicator function depicting if x is equal to y and pr rep-
resents the destination vertex of a discrete path. According to the marginalization
rule, the probability of the path p is equal to:

�(p1, . . . , pr ) = �(p1) ·
r�
i=2
�(pi |pi−1, . . . , p1) (4.5)

Our approach models a discrete Markov chain (i.e., we assume the Markov
property and consider discrete reasoning steps i) with the set of states equal to the
nodes V in our graph G. We obtain the probability of each path as:

�(p1, . . . , pr ) ≈ �(p1) ·
r�
i=2
�(pi |pi−1) (4.6)

In case of i = 1, it is straight forward to compute the probability of the nodes in
the path (i.e., P(p1)) as one only needs to generate a single con�dence value per
node (e.g., in a similar manner as conventional attention mechanisms produce a
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Figure 4.4: Proposed graph neural network architecture which learns traversal
strategies for the scene graph (simpli�ed for path length r = 3). While the visual
guide, the graph traveler, and the prediction module are individual neural network
components, they are optimized jointly in an end-to-end fashion. The visual guide
takes as input the question and provides direction embeddings for the traveler to
follow. The prediction module gives the �nal answer based only on the question
and the destination nodes embeddings, the predecessors are therefore dismissed.

distribution over objects). For i > 1, we have to consider the transition probabil-
ities P(pi |pi−1). Since the number of possible path options grows exponentially
with the path length, we further reformulate this calculation for reasoning steps
larger than one. We iteratively transform the path probability to the probability of
each node laying for each step i as follows:

�(p1, . . . , pr ) = �(p1) · �(p2 |p1) ·
r�
i=3
�(pi |pi−1)

= �(p2) ·
r�
i=3
�(pi |pi−1)

Thus, the new estimation lies in the calculation of each probability �(pi ). For this,
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we make use of the function π i which computes the probability of each node being
in the path in an iterative way using the formulation:

π i (j) �
�
k

�(j |k) · π i−1(k),∀j,k ∈ {1, . . . ,n}, i ∈ {2, . . . , r } (4.7)

Thus, we only require the starting probabilities π 1 and transition probabilities

�(j |k) in each reasoning step i to obtain the �nal destination nodes. We stop the
calculation at reasoning step r and the �nal values become the probability of each
vertex being the destination, i.e., the node has information relevant for the question.
Next, we de�ne the models for obtaining the start and transition probabilities.

4.2.3 Neural graph architecture

In conventional graph neural networks for VQA, the node features V change
depending on their neighbors in each training reasoning step, becoming amixture of
the initial and foreign object representations (i.e., re�ning the vertex set) [Kembhavi
et al., 2016; Santoro et al., 2017; Teney et al., 2016]. In comparison, our model keeps
the semantic node representations and focuses on the network topology, learning
to �nd relationships of the scene entities relevant for the current question (see
Figure 4.4). We can easily shed light upon the choices of our model, as we retain
the initial interpretation of its nodes and highlight the key links between them.

1. Visual guide. The visual guide considers the static graph as a map to be
traversed using the question as the reference. That is, the guide takes as input the
question, embeds it to a vectorh, e.g., using an LSTM [Hochreiter and Schmidhuber,
1997] or a one dimensional CNN with self-attention [Gehring et al., 2016] and
produces directional embeddings di for the traveler to follow on the graph. In
case of an LSTM, we represent the question as the �nal hidden state, while we
use weighted average over the feature maps in case of a CNN. We then use these
question embeddings to generate vectors that guides our traveler module in the
direction of the sought destination nodes (i.e., nodes that comprise information for
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inferring the current answer). The direction vectordi at reasoning step i is obtained
through learned fully-connected layers di �W i

dir · h + bidir, whereW i
dir ∈ �d

i×h

and bidir ∈ �d
i with the size of the direction embeddings di chosen empirically.

2. Graph traveler. The graph traveler traverses the visual graph based on the
directions suggested by the guide. Thus, it produces prior probabilities (i.e., the
con�dence of each node being the �rst one visited) and computes the transition
probabilities (i.e., con�dence of traversing one node to the next).

For the �rst node in a path, we obtain the con�dence by training a fully-connected
layer on top of the node representations V from the visual graph and the first

directional embedding d1 given by the guide:

π 1
θ � so�max(W 1

path · [d1 � V ] + b1path) (4.8)

where θ is the set of all the learnable parameters in the model, e.g.,W 1
path,b

1
path ∈ θ

and [· � ·] denotes the element-wise concatenation of the rows of a matrix and
a vector. Thus, the weight and bias are shaped asW 1

path ∈ �1×(d1+v) and b1path ∈
�, respectively. Note that the linearity is applied node-wise (on the x-axis), i.e.,
the output is a vector modeling a probability distribution over the nodes: π 1

θ ∈
[0, 1]n . The so�max function therefore normalizes over the nodes (the sum of the
n con�dences of each vertex being a starting node is equal to one):

so�max(x)i = exp(x i )/
�
j

exp(x j ),∀j ∈ {1, . . . ,n} (4.9)

where x is a vector, e.g., in our setting, x comprises a logit for each vertex in G.
In case of the transition probabilities, we leverage the edge features E ∈ �n×n×e

between each pair of nodes in the graph G and the directional embeddings:

π i
θ � so�maxrow(W i

path · [di,E] + bπi ) (4.10)

whereW i
path ∈ �1×(d i+e) and bipath ∈ �. Note that there are in total r − 1 transitions

(e.g., for a path of length three, we compute two transition matrices), i.e., i ∈
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{2, . . . , r }. Here, the so�max row operates on matrices and normalizes over the
outgoing edges (i.e., over the rows), such as the sum over the outputs is equal to
one. More formally, the function π i has the following property:

�
j

π i
j = 1,∀i, j ∈ {1, . . . ,n} (4.11)

In the �nal reasoning step r , the graph traveler computes the probability of a
node being the �nal destination π r

θ (as introduced in Equation 4.7).

3. Prediction module. The prediction module di�erentiates between the problem
types and generates the answer leveraging the probability distribution over the
destinations (Figure 4.4). In case of query-type questions (i.e., questions about the
shape, color etc. of an object), the solution is determined from the destination nodes
i.e., soft path probabilities π r at reasoning step r . Thereby, we estimate a global
graph encoding д where we leverage the entire set of nodes which we weight by
their probability being the destination as follows:

д � V · π r
θ (4.12)

where · marks the multiplication of a matrix with a vector. We then concatenate
this visual global representation д with the question embedding q ∈ �q . Then,
a fully-connected layer is used to produce the �nal prediction over all possible
answers. For existence questions, we answer the question with ‘yes’, in case that
any of the destinations has a probability over 0.5, while in case of counting, we set
the sum over the destination con�dences as the �nal answer.

In counting and exist tasks, we leverage the number of destinations from our des-
tination representation. For tasks, where the sum of the �nal soft path probabilities
may be larger than one, as multiple destinations could be applicable (e.g. counting or
existence), we use sigmoid function instead of softmax for these edge normalization.
Then, we simply sum the output of the sigmoid function for each node j and use
them for the �nal prediction (we provide more details in the next section).
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4.3 Configuration details

In this section, we providemore details for implementing ourmodel and on the learn-
ing speci�cs. To that end, we give insight into the parameter setup, optimization
scheme, and initialization procedure of the learnable parameters in our network.

4.3.1 �estion-based guide

On the AI2D dataset, for better comparability with related work, we employ the
same input representation as [Kembhavi et al., 2016; Kim et al., 2017], i.e., GloVe [Pen-
nington et al., 2014] features pre-trained on 6B tokens fromWikipedia. As previous
work [Kembhavi et al., 2016; Kim et al., 2017] uses Long-Short TermMemory (LSTM)
modules [Hochreiter and Schmidhuber, 1997] for embedding the question sentence,
we also use a single-layered LSTM with 256 hidden units for our question-based
guide. We set the last hidden state of the word-level LSTM as the �nal global
representation of the question.

For the CLEVR and COG datasets, we experienced LSTM convergence instabilities
linked to signi�cantly longer sentences (over 15 tokens). This LSTM-related issue
was previously reported by others [Graves et al., 2014]. However, various works
show strong potential of using 1D convolutions instead of recurrent neural networks.
Such convolution-based models oftentimes exceed the accuracy of LSTMs while
having a more stable learning procedure [Bai et al., 2018; Dauphin et al., 2016;
Gehring et al., 2017]. We therefore opt to embed the questions using 1D convolutions
with an attention module for these speci�c datasets.

The question-based guide encodes the words represented as one-hot vectors
using a 1D convolutional neural networkwith self-attention. We use six convolution
layers (with 32 output �lters of size 3, stride 1) each with zero padding and ReLU
activation. In case of COG and CLEVR, we do not share weights between the
guides for each question type, however, the structure of each guide is identical.
Finally, we obtain the attention module with a further 1D convolution and a sigmoid
non-linearity. Even though softmax is the widespread way to normalize attention
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modules, sigmoid has the bene�t of weighting individual elements (i.e., words)
independently to the total amount (i.e., each of the word con�dences does not
in�uence the values of the other words in the sentence).

Our goal is that, e.g., the word sphere is weighted in the same way in both ‘How
many spheres are there?’ and ‘How many green spheres are there?’. This would
not be the case for softmax, as softmax would give both sphere and green a high
weight and, thus, sphere would automatically have a smaller weight as it has to
share the amount with green after normalization. In the �nal layer, the number
of hidden units corresponds to the maximal path length r (i.e., we get a di�erent
attention map over the words for each step in the path). The �nal representation of
the traversal directions (i.e., for each i ∈ {1, . . . , r }) is obtained via a weighted sum
of the words in the question based on the distribution of the previously de�ned
attention maps. Thus, if several attributes are relevant for the speci�c reasoning
step, the values in the the directional embeddings increase.

4.3.2 Graph traveler

The graph traveler uses the directional embeddings produced by the guide to
traverse the graph in search of the destination nodes. To obtain the con�dence
π i (j) for each reasoning step i and vertex j being in the path, we concatenate each
node for r = 1 and each edge when we have r > 1 with the directional embeddings
followed by two fully-connected layers. The �rst layer has a size of 256 and ReLU
activation, while the second layer is a single hidden unit representing the con�dence
of the starting nodes and transition probabilities, respectively.
As we constrain π r (j) to be in the interval [0, 1], we use either sigmoid (for

counting and existence tasks) or softmax (for other tasks). The nonlinearities are
both applied on either the starting nodes i.e., π 1(j) or on each edge (i.e., for each
node pair). In case of the sigmoid normalization, we replace the sum operation of
Equation 5 with the maximum function applied on the input edge con�dences, in
order to hold the premise that all con�dence values are at most one, i.e., π r (j) ≤ 1.
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4.3.3 Prediction module

Datasets for visual reasoning cover a wide variety of task formats (e.g., counting,
diagram question answering) and, therefore, di�er greatly in their solution modes
(e.g., multiple choice vs. free result format), which we need to take into account in
the prediction module output (examples of the datasets are shown in Figure 4.5).

Since AI2D is a dataset in a multiple choice setting, we need to input the multiple
answers to the model. As an input to our prediction module, we concatenate each
of the possible multiple choice answers with the �nal representation of the question
and of the destination node individually. This is followed by two fully-connected
layers with the last layer containing a single output unit corresponding to the
con�dence of the current answer being the correct one.

In contrast, COG and CLEVR are both open-ended datasets, and, thus, we obtain
the �nal prediction by leveraging the set of all seen answers in the training set.
More precisely, the prediction module is carved as a classi�cation task where the
�nal layer is fully-connected with the number of output units equal to the number
all of possible answers across all tasks. For COG, we use two di�erent streams in
the same way as related work [Yang et al., 2018a], i.e., we di�erentiate between:
pointing to an object in the graph and other type of answers in text format (e.g.,
‘yes’, ‘circle’, ‘red’). In case of pointing questions, the prediction module consists of
a fully-connected layer with a single output unit for each node in the graph, which
are normalized using softmax (i.e., sum over all nodes will equal to one), while the
other answer-types comprise either yes/no or attribute-based predictions. As we
previously speci�ed, for yes and no answers, we use sigmoid activation for the soft
paths, while for the attribute-based questions we leverage softmax.
In case of CLEVR, we have �ve di�erent types of questions, where we use

sigmoid in all counting-related tasks (exist, count and compare numbers), and softmax
otherwise (query attributes and compare attributes). The prediction modules of
softmax related tasks consist of a simple fully-connected layer with the number of
output units equal to the number of possible answers in the training set. This �nal
layer is also using a softmax normalization over the answers present in the training
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CLEVR. How many green cylinders are
left of the large sphere?

AI2D. What is the name of the process of a
liquid converting to the gaseous state?

Frame 1 Frame 2 Frame 3 Frame 4
COG. Is the color of the current r and latest c and the color of m and u equal?

Figure 4.5: Examples extracted from the CLEVR, AI2D, and COG benchmarks.

set. In case of the sigmoid-based tasks, we use a greedy procedure in combination
with the cross entropy loss. For example, in the case of exist-type questions, we
use the neuron with the highest activation of the nodes in the �nal step r (i.e.,
destination con�dences) as the label in our loss function, while for the target we
use zero if the correct answer is ‘no’, otherwise we input a one.

During the test phase we predict a ‘yes’ if any of the nodes have a �nal con�dence
of over 0.5, otherwise the model outputs a ‘no’. In case of counting, we use the cross
entropy loss over the con�dences in time step r as the prediction. For a ground
truth answer equal to k , we assign as the target a vector that has the same size as
the number of nodes in the graph. In this vector we set a one if the particular node
value is in the top-k highest con�dence in the prediction (i.e., con�dence in step r ),
otherwise the particular value in the target vector is set to zero. In the test phase,
we count the number of activations that have a higher value than 0.5.
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Dataset Type # Images # Instances # Questions
Textbook Graphics

AI2D [Kembhavi et al., 2016] Diagrams 5k 9.1 15k
Synthetic Datasets

COG [Yang et al., 2018a] Videos 11M 9.6 44M
CLEVR [Johnson et al., 2017a] 3D-Forms 100k 6.5 700k

Table 4.1: Benchmarks for visual reasoning that we for evaluating our network
based on soft paths. We report the task type, number of images/videos, average
amount of instances per sample, and number of questions.

4.3.4 Optimization

Learning setup. Except for the weights of the pre-trained GloVe model in AI2D,
all weights are initialized randomly following the Xavier initialization [Glorot and
Bengio, 2010]. Biases are initialized with zeros. Network weights are optimized
using Adam [Kingma and Ba, 2015] with an initial learning rate of 0.00025. For
other parameters, we use the default values in TensorFlow: 0.9 for the exponential
decay rate for the �rst moment estimates β1 and 0.999 for the second one β2. The
small initial learning rate is common for graph neural networks (e.g., [Santoro et al.,
2017]) as larger ones often cause convergence instabilities.
The models are trained at most 30 epochs using early stopping with the vali-

dation set performance as an indicator. All models are initialized from scratch in
TensorFlow. We choose a maximal path length r empirically on the validation data.
The question-based guide uses multiple 1D convolution layers with 32 hidden units,
while the �nal fully-connected layers of the graph traveler have the size of 128.

Computational complexity. For each step, we have a computational complexity
of O(E) where E is the number of edges. Note that this is also the case for graph
convolutions [Kipf andWelling, 2017] whichwe discussed in Chapter 2. The training
time for 30 epochs on a single GeForce GTX 1080 Ti lasts around one hour for the
AI2D and 20 hours for CLEVR, and 100 hours in total for the COG video dataset.
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4.4 Answering questions by following paths

4.4.1 Dataset overview

We perform several studies on three challenging datasets for visual reasoning with
diverse query types (overview in Table 4.1). All datasets cover visual samples, task
queries with the ground-truth solutions (in open-ended or multiple choice form),
and graph annotations for the images. In Section 4.4.2, we evaluate our model on
video sequences, then, in the task of diagram question answering (Section 4.4.3)
and on highly compositional reasoning problems on 3D synthetic images (Sec-
tion 4.4.4). We further discuss how di�erent path lengths r impact the performance
(Section 4.4.5), evaluate how well our model generalizes to previously unseen tasks
( Section 4.4.6) and, �nally, visualize concrete examples of soft paths (Section 4.4.7).

4.4.2 Visual reasoning on videos

Setup. In this section, we use the COG [Yang et al., 2018a] dataset as a test bed
for both spatial and temporal reasoning. The dataset comprises over 11 million
questions on videos. While the videos are of synthetic 2D scenes, it speci�cally
targets temporal memory and logical deductive reasoning about video input, being
di�cult for humans [Yang et al., 2018a]. The task is to deduce the correct answer
while taking into account changes of the scene in four di�erent query types: point-
ing, yes/no, conditional, and attribute-related questions. Higher number of scene
entities is also characteristic for the dataset.

Results. We demonstrate the e�ectiveness of our model in Table 4.2. Additionally
to the original Working Memory [Yang et al., 2018a] approach, we compare our
model to three baselines: (1) random performance, (2) a question-only model con-
sisting of a 1D CNN over the question words followed by fully-connected layers, and
(3) a graph-based approach, where instead of computing the answer from the desti-
nation nodes of the found paths, we use a joint embedding of the question and all of
the nodes in the graph as input and use fully-connected layers to make a prediction.
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Video Reasoning Method Atts. Condit. Point Yes/No All
Baselines

Random 1.9 8.4 17.5 50.0 26.6
Question-only [Yang et al., 2018a] 1.6 2.3 19.4 49.7 27.4

Memory Networks
Working Mem.† [Yang et al., 2018a] – – – – 93.7

Graph-based Methods
Question+Nodes (Ours) 73.7 63.5 92.5 57.9 63.3
Soft Paths (Ours) 99.2 98.4 100.0 95.0 97.2

Table 4.2: Results for visual reasoning on videos on the test set of COG for di�er-
ent tasks: pointing, existence, conditional questions, and questions about object
attributes. † Best model selected from 50 trained networks (opposed to the other
models that were evaluated after a single optimization run).

Our model yields the best recognition rates in all query types. The distinction
from the natural language-based benchmarks becomes obvious, as the question-only
approach exceeds the random baseline by less than 1%. Visual reasoning is therefore
decisive for this benchmark. The yes/no questions have been the major source of the
unreliability of ourmodel. Our analysis of these confusions indicates occasional di�-
culties in case of ‘and’ connections in the question (e.g., ‘Shape of last magenta object
equal shape of last lavender object and shape of now mint object equal shape of last
olive object?’). Nonetheless, our model achieves excellent performance of 100% for
pointing questions and establishes a new state-of-the-art overall accuracy of 97.2%.

4.4.3 Diagram question answering

Setup. Next, we evaluate our approach on real-life images in the diagram un-
derstanding task. The AI2D [Kembhavi et al., 2016] dataset encompasses images
extracted from school textbooks of various subjects and evaluates understanding of
causal relations in these �gures. As middle school pupils are required to learn from
such diagrams, reason, and answer questions about them, this dataset represents an
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Diagram QA Method Overall Accuracy
Baselines

Random 25.00
Classical VQA Methods

VQA [Agrawal et al., 2017] 32.90
Graph Neural Networks

DQA-Net-DSDP [Kembhavi et al., 2016] 38.47
DQA-Net-DGGN [Kim et al., 2017] 39.73
DQA-Net [Kim et al., 2017] 41.55
Soft Paths (Ours) 43.45

Table 4.3: Results on the AI2D dataset for diagram question answering on real
images extracted from school textbooks [Kembhavi et al., 2016]

excellent realistic testbed for visual reasoning. As we are dealing with real-life data,
AI2D is smaller and noisier than other datasets we used for testing with 666 lessons
of total 5k diagrams and 15k questions.

Results. In Table 4.3, we compare our model with a multitude of published ap-
proaches including three graph-based methods. As AI2D is evaluated in multiple
choice form with four possible options, random choice performance is 25%. Overall,
there is a clear bene�t of using structured approaches. Our graph traversal-based
model consistently outperforms state-of-the-art graph neural networks and, there-
fore, con�rms the e�ectiveness of focusing on traversal schemes and the found
destination nodes, instead of the message passing paradigm.

4.4.4 VQA on 3D synthetic images

Setup. The Compositional Language and Elementary Visual Reasoning dataset
(CLEVR) [Johnson et al., 2017a] is a widely used diagnostic benchmark for compo-
sitional understanding of 3D scenes for di�erent tasks, such as counting, �nding
attributes of objects based on their relations with other instances, and comparison
between object attributes. Long reasoning chains demanding memory-related tasks
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Approach Count Exist Comp. Query Comp. AllNrs. Attrs. Attrs.

Human [Johnson et al., 2017b] 86.7 96.6 86.5 95.0 96.0 92.6
Qtype [Johnson et al., 2017b] 34.6 50.2 51.0 36.0 51.3 41.8

Classical VQA Methods
LSTM [Johnson et al., 2017b] 41.7 61.1 69.8 36.8 51.8 46.8
CNN [Johnson et al., 2017b] 43.7 65.2 67.1 49.3 53.0 52.3
CNN+SA [Santoro et al., 2017] 64.4 82.7 77.4 82.6 75.4 76.6
QGHC [Gao et al., 2018] 91.2 78.1 79.2 89.7 86.8 86.3
FiLM [Perez et al., 2017] 94.3 99.1 96.8 99.1 99.1 97.7

Compositional Models
N2NMN* [Hu et al., 2017] 68.5 85.7 84.9 90.0 88.7 83.7
PG(9K)* [Johnson et al., 2017b] 79.7 89.7 79.1 92.6 96.0 88.6
PG(700K)* [Johnson et al., 2017b] 92.7 97.1 98.7 98.1 98.9 96.9

Memory Networks
Work. Mem. [Yang et al., 2018a] 91.7 99.0 95.5 98.5 98.8 96.8
MAC† [Hudson and Manning, 2018] 97.1 99.3 96.8 99.1 99.1 98.9

Graph Neural Networks
CNN+RN‡ [Santoro et al., 2017] 90.1 97.8 93.6 97.9 97.1 95.5
Soft Paths (Ours) 91.3 98.6 99.6 99.5 99.8 97.5

Table 4.4: Visual reasoning results for di�erent tasks on the CLEVR test set [John-
son et al., 2017a]. * denotes the use of extra supervision in form of program labels,
‡ denotes the use of data augmentation, † denotes the use of pre-trained models.

and absence of question-based biases are distinctive for this benchmark. Although
it is comprised of synthetic scenes, conventional VQA models often face signi�cant
di�culties on CLEVR as they tend to focus on the dataset bias [Gao et al., 2018;
Johnson et al., 2017b; Santoro et al., 2017].

Results. We report results on all �ve problem types of the CLEVR benchmark: (1)
counting (e.g., How many cubes are there), (2) existence (e.g., Are there any yellow
cubes in front of the sphere), query attributes (e.g., ), and questions about comparing
numbers and attributes of objects. A high number of novel methods have been
recently proposed to tackle CLEVR reasoning tasks, which we group based on their
way of addressing object relations and compare to our model in Table 4.4. We
achieve state-of-the-art accuracy of over 99% on three tasks (comparing numbers
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(b) CLEVR
Figure 4.6: Performance for di�erent maximal path lengths r on the validation sets
of COG (left) and CLEVR (right).

and two attribute-related problems) and repotr a strong overall performance (97.5%)
surpassing humans (92.6%), and the recent graph-based method [Santoro et al.,
2017] based on edge re�nement (95.5%).

4.4.5 Impact of path length on performance

As we explicitly focus on relations in the scene, we compare variants of our model
to measure the e�ect of di�erent restrictions of the soft path at length r . Figure 4.6
illustrates changes of accuracy in relation to r for di�erent COG and CLEVR tasks.
The model bene�ts immensely from considering paths of length two or more,
e.g., for the query attributes task, the percentage of correct answers rises from
53.1% (r = 1) to 98.1% (r = 2), further improving to 99.8% (r = 3), con�rming the
signi�cance of causal connections in the scene.
Starting at r = 4 for CLEVR and r = 3 for COG, we observe a slight decline

in overall performance, which we link to the extend of chained questions in the
datasets. For example, in a question ‘What is the material of the sphere behind
the tiny brown thing to the right of the green object?’ (Figure 4.1) the reasoning
chain consists of two pairwise relationships. In general, enforcing longer paths
than necessary for the question is not a problem in our architecture, as it permits
self-loops. However, the option of including more nodes than required might result
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in higher level of noise, as the overall search space becomes larger. This slight
accuracy drop should be viewed with caution, as it is also connected to the nature
of the questions in the dataset, i.e., it is expected to increase with the amount of
entities mentioned in the question. Nonetheless, when further increasing the path
length the performance stabilizes, e.g., for COG, our model achieves 95.6% when
the maximum length is set to eight (i.e., r = 8).

4.4.6 Performance on unseen tasks

Humans have an impressive ability to address new tasks of increasing di�culty
by transferring solutions from familiar problems. Similarly, our motivation for
focusing on the scene structure is to develop a model which processes queries
by decomposing them into granular tasks, which then could be easily re-used to
answer questions our model has never seen before.

To evaluate our assumption, we propose a new challenging benchmark for visual
reasoning on problems not previously seen during training. We regard three tasks
from the CLEVR dataset: query attributes, existence, and object counting. In our
proposed evaluation setup, the model is trained on one of these tasks and is intended
to solve another one. Consider the existence task, where we output yes if in the last
reasoning step r there is at least one destination node with probability over 0.5 (see
Section 4.2.3). As the node representations are not re�ned throughout the process,
we can extend our model to counting without additional training, by merely using
the counting prediction module version, i.e., summing the number of destinations
with an activation over 0.5, as we describe in Section 4.2.3. For the query attribute

task, we select the node with the maximal activation.
We report the performance of our model on previously unseen tasks in Figure 4.7.

Our approach successfully applies the knowledge it had acquired from counting or
existence to previously unseen query types. These two tasks are especially re-usable
as they involve a universal granular question: whether objects are present in the
scene, or not. In case of learning on the attribute-based questions, we assume that
the destinations are always available (as we question speci�c attributes of the node
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Figure 4.7: Generalization to unseen tasks: our model is trained on one query type
and evaluated on a di�erent one (e.g., trained on counting and tested on existing).

and not their presence). Re-usability of the learned information is therefore lower.
Training on the counting queries turned out to be most bene�cial for solving new
problems. We assume, this is due to counting being a more composite task as it
covers both checking for object presence and determining whether the objects
have certain properties (e.g., ‘What number of brown balls are the same size as the
metal object?’). Our model trained on the counting task was able to solve the query
attribute problem in 56.4% of the time, surpassing random chance (30.6%) by 25.8%.
Obviously, solving previously unseen tasks is per design a much harder prob-

lem than conventional supervised visual reasoning and the recognition rates are
considerably lower. Apart from the lack of supervision, language expressions not
present during training pose an additional challenge (e.g., ‘how many’ if the model
was trained on the existence task and evaluated on counting). Still, our model con-
sistently outperforms the random chance baseline being able to address new tasks
without costly annotations of training samples.

4.4.7 �alitative results

An important property of our model is the ability to trace back the underlying
reasoning behind the �nal answer by analyzing the traversed paths for inference.
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(a) Starting node (i = 1)

mantle
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(b) Transition
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crust
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(c) Node at i = 2

Question: What is between mantle and inner core? || Answer: Outer Core

Figure 4.8: A correctly answered question with the generated path on a diagram.

Frame 1 Frame 2 Frame 3 Frame 4

Question: Does a white object exist in the current frame (i.e., frame 2) to the
right side of the latest lime object? || Answer: True

Figure 4.9: An example answer generated by our model on the COG dataset.

In Figure 4.8, we revisit the �nal soft paths of our model on an example from the
AI2D textbook diagram benchmark. Our model solves the query ‘What is between
mantle and inner core’ with a soft path of length 2 by starting at the mantle and,
next, choosing the destination outer core. As the correct destination was selected
by our model, it easily infers the correct answer: outer core.
Figure 4.9 visualizes four frames from the COG dataset and an accompanying

question with an answer inferred by our model. Since the question is related only to
objects in the second frame, the generated soft path is fully included in a single im-
age: in the �rst reasoning step the model selected the lime object (i.e., the letter k)
and, then, selected as the destination node the white object. Since the sought object
was found by our approach, the model inferred the correct answer ‘yes’.
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(a) Input �gure (b) Starting node (i = 1)

(c) Second step in the path (i = 2) (d) Third step in the path (i = 3)

Question: There is a tiny rubber thing that is right of the matte cube; are there
any yellow cubes in front of it? || Answer: ‘Yes’

Figure 4.10: A correctly predicted answer of a compositional question comprising
three reasoning steps and its traversed path to the destination node.

In case of CLEVR, most queries are very long and strongly compositional for
which we require to generate paths of length 3. In Figure 4.10, we visualize an
example �gure, question, and predicted answer of our soft path architecture. We
show the nodes with the maximal probability at each reasoning step i . Edges which
belong to the path are marked with red arrows, starting with the source node (i.e.,
the small yellow cube) and ending in the �nal destinations, which are the only
graph components used as input in the prediction modules (i.e., the large yellow

cube). We see that the network found in the �rst step the matte cube, then followed
it to the right where it found a tiny rubber thing. This new object was then used
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to get to the destination by searching objects in front of it that are both yellow

and have a cube shape. Finally, the network selects if such an object exists, and
since it found a matching object, it directly infers the correct prediction ‘yes’. We
show more examples of the answers with the associated paths in Appendix A.

4.5 Summary and discussion

In this chapter, we presented a novel approach for compositional visual reason-
ing, where we employ a graph neural network architecture to tackle far-reaching
relationships in the scene. Our framework learns how to traverse the graph in a
controlled way and, then, answers the question based on the reached destination
nodes of the found paths. Our model exceeds state-of-the-art methods on two
challenging datasets for visual reasoning: on videos (COG) and diagram question
answering (AI2D) as well in the three tasks on 3D synthetic data (CLEVR). At the
same time, our model is highly interpretable as the graph trails directly shed light
on the underlying reasoning, showing that our model breaks complex instructions
into smaller tasks. Furthermore, we demonstrate the positive impact of focusing
on relevant semantic structures on the ability to reuse the acquired knowledge for
novel tasks. In this new benchmark setting, our model was trained on a certain
question type (e.g., existence) and could successfully handle tasks of a di�erent kind
(e.g., counting) without any further training. Our experiments show encouraging
evidence that modern visual recognition approaches could bene�t further from
structured methods especially in high-level understanding of global causal relations.
In the next chapter, we address the task of multi-modal question answering that
aims at reasoning on both visual and textual data simultaneously.
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5 Multi-Modal Reasoning

In the last chapter, we considered the task of visual question answering, where we
leveraged methods for high-level understanding on the detected graphical content
in the page. However, a multitude of questions cannot be answered solely based
on such �gures, but external knowledge of the surrounding text is often necessary.
Multi-modal machine comprehension is a task in machine learning that deals with
extracting knowledge from multiple modalities like diagrams and text. Particularly,
Textbook Question Answering (TQA) focuses on questions based on the school
curricula, where the text and diagrams are extracted from textbooks.

In this chapter, we propose a novel deep model that can handle di�erent knowl-
edge modalities for answering di�cult questions from textbook content. We com-
pare three di�erent information representations that are encountered in TQA: a
visual representation learned from images, a graph representation of diagrams, and
a language-based representation learned from the accompanying text. We evaluate
our model on the TQA dataset that contains text and diagrams from lessons of
the sixth grade curricula. Even though our model obtains competing results com-
pared to state-of-the-art, we witness a signi�cant gap in performance compared to
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Question
What layer is underneath the  confined aquifer?
Answers
a) Unconfined Aquifer
b) Confined Aquifer
c) Water Table
d) Confining Bed 

Text
Under the impermeable layer, a thick layer
containing water is called confined aquifer.
The earth region that supports the confined
aquifer is called confining bed. The hole to
obtain water in the unconfined aquifer is..…

Figure 5.1: Overview of textbook question answering task. Our model needs to
answer a question based on knowledge gained from text, a diagram, or both.

humans. In this work, we perform a thorough analysis of our model and discuss
possible improvement strategies by visualizing the distribution of the multiple
types of errors produced by our proposed neural network.

Contributions. To that end, we introduce a novel network for recognizing the
text content which we need to extract for the multi-modal question answering
approach. Then, we propose an architecture specialized on answering questions
on both visual content in the form of diagrams and the surrounding text extracted
from sixth grade textbooks. Finally, we provide an in-detail evaluation of the
performance of our model for di�erent dataset settings.

Publications. In this chapter, we present a text recognition approach published
in [Bender*, Haurilet* et al., 2019] and a novel architecture for reasoning on textbook
content introduced in [Haurilet et al., 2018].

5.1 Task overview

While at a very early age humans can answer basic questions about their environ-
ment, we start to analyze and understand graphics, (e.g., diagrams) at a much later
time. In school years, children learn to analyze and understand complex illustrations,
and are capable to extract important information and answer di�cult questions
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about them. The type and style of these illustrations have many di�erent forms in
terms of colors, structure types, and structure di�culty. While some illustrations in
textbooks are easy, like simple drawings, in later school years we see more di�cult
types of �gures like diagrams, plots, and tables. Diagrams are especially complex,
since they can comprise di�erent types of nodes encompassing other �gure types,
e.g., drawings, text, and even natural images. Furthermore, we have various rela-
tionship types between the entities, e.g., textual descriptions linked to the nodes or
directly to the edges. We also have directed relations, usually representedwith edges
marked with an arrow sign, while some relations are not explicitly marked (example
in Figure 5.1 of a query related to both the text content and the diagram).

While answering questions on natural images has received widespread attention
in the computer vision community for several years, inferring answers on textbook
content has been scarce. In this chapter, we address this task where we �rst shortly
discuss how to extract relevant information from such pages. We then introduce an
edge-centric neural architecture that leverages the relations between multi-modal
nodes encompassing both sentences and information extracted from illustrations.
To that end, we compare di�erent knowledge representations for our model:

(1) the text-based model, where we use the surrounding text for answering the
questions, (2) the image-basedmodel represents the image by extracting the features
of a pre-trained CNN, and (3) the graph-based representation embeds the diagram as
a graph where the nodes consist of the detected text and its location. We investigate
the predictions of our model to �nd out the reasons for the large gap to human
performance. To that end, we select a subset of incorrectly answered questions in
the test set of TQA and analyze the reasons why the approach failed.

5.2 Analyzing textbook content

For enabling the use of methods for multi-modal question answering, we �rst
need to process the underlying textbook content. We discuss how to recognize the
di�erent components in documents in Chapter 3 where we leverage deep networks
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for �ne-grained localization. While this pre-processing is su�cient for graphical
content (as one only needs their location), textual content requires a further pre-
processing step entailing the recognition of characters and mapping these to textual
format (e.g., natural language, LaTeX). As mentioned in Chapter 2, the mapping
of visual representation of text to character sequence is called text recognition and
was addressed in the past [Liao et al., 2019; Wang et al., 2012]. While in Chapter 2,
we discuss di�erent approaches for text recognition, in Appendix B, we introduce
a novel architecture for this task. Our network comprises a CNN for encoding the
visual input and an RNN for generating the underlying text sequence. Our approach
achieves state-of-the-art results on the IM2LATEX-100k dataset [Deng et al., 2017].

5.3 Method overview

We de�ne the multi-modal comprehension task in the context of question answering
in amultiple choice setting. That is, themodel is given knowledgeK from a textbook
lesson (e.g., a set of sentences, a set of nodes, or visual features) and a representation
of the questionQ . Based on such information, the model needs to select the correct
answer from a set ofm answers A := {A} withm := |A|.
However, the knowledge K can comprise a large amount of data (e.g., several

pages of text) while the information relevant for answering the current question
lies only in a small portion of it (e.g., in a single sentence). Since this is mostly
the case for the text- and graph-based data, to avoid over�tting of our model, we
employ a pre-processing step where we �lter out unrelated sentences and nodes.
Our approach relies on the basic intuition that for each question Q , there is a

set of s supporting entities S := {S} with S ∈ K and s := |S | that would help in
verifying the correctness of each (Q,A) pairs. Thus, our approach consists of two
main steps: (1) Selecting n supporting sentences/nodes from K for a given question
Q and; (2) Based on (Q,S), verify the correctness of each answer ∀A ∈ A. Next,
we show how we select the supporting knowledge entities from K and, then, we
describe our neural network that we use to infer the answer.
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[a, q, s, q · s, q · a, a · s, q · s · a]

Q: Which level of clouds cause rain?A: Low level.

Visual Information

CNN

T: Precipitating clouds are nimbus clouds.

S: Low level clouds cause rain.
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Figure 5.2: Architecture of the image+text deep neural network. The model com-
prises three di�erent parts: (1) visual and textual embedding module, (2) a multi-
modal fusion network, and (3) the prediction module. Note that T , S,Q , and A
are matrices that represent the knowledge entities, question, and answer, respec-
tively, where each row encompasses a vector depicting a word encoding. These
variable-sized matrices are decoded to a vector format using pre-trained bidirec-
tional recurrent networks applied on each word embedding. Then, we use the �nal
hidden state of the recurrent networks as the �nal �xed vector representations
denoted with s , t , a, and q. These vectors are combined via pairwise and triplewise
similarity, which are used to compute the confidence of the supporting entities in
being relevant for the input query (marked with the function f ) as well as the
con�dence in the current answer (denoted with д).

5.4 Selecting supporting nodes and sentences

To select the set of supporting knowledge for a certain question Q , we measure
the similarity of a vector representation k of each knowledge entity K ∈ K (in
the provided text and diagrams) and the vector embedding of the current ques-
tion q. That is, we �rst embed the question and knowledge entities to a common
d-dimensional representation space using text encoders such as recurrent neural
network or pre-trained transformers. Next, we calculate the similarity between the
encoded input query q and each knowledge entity k using the similarity measure
σ : �d × �d → [0, 1] (e.g., the cosine similarity). Then, the top-s most similar
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knowledge entities are included to the set of supporting sentences/nodes S . Given
the supporting entities and the question, we use the deep neural network presented
in Figure 5.2 to verify each answer A from the set of multiple-choice answers A.

5.5 Answering questions through edge refinement

First, our approach encodes the inputs to: (1) a question embedding q, (2) a repre-
sentation of each supporting entity s (vector encoding of elements from the set of
supporting sentences and nodes, i.e., S ∈ S , and (3) each multiple choice answer a
using separate fully-connected layers (i.e., without weight sharing). Then, these
embeddings are concatenated with their pairwise and triplewise similarity using
element-wise multiplication, i.e., for each answer, question, and knowledge entity:

ϕ(q,a, s) := [s � q � a � s ∗ q, s ∗ a � q ∗ a � q ∗ a ∗ s] (5.1)

with � marking the concatenation and ∗ denoting the elementwise multiplication.
Then, we split the output of this layer into two streams: (1) the �rst stream

captures the con�dence of the answer A to be the correct one, (2) while the second
stream weights the con�dence of the model in the knowledge subset S for being
suitable to verify (Q,A). We calculate this con�dence through an attention module
using softmax normalization. Therefore, we encode each S ∈ S using a fully-
connected layer followed by the softmax normalization modeling a probability
distribution over the s supporting entities. Finally, the two streams are fused
using element-wise multiplication. During testing, the answer with the highest
con�dence is selected as the prediction of our architecture.

Next, we introduce several networks for textbook question answering, which op-
erate on di�erent input modalities: text-, graph-, and image-only. To have a better
understanding of these networks leveraging the di�erent modalities, we propose
two additional networks: a graph-baseline that only leverages nodes for inference
and a model that leverages the fusion of the image with the text embeddings. Next,
we describe our network and our implemented baselines .
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Text-based network. Our text-only model uses the surrounding text to generate
the answers of the question. To that end, the input to our approach comprises the
entire textual content available in the lesson associated to the current input query.
Thus, the knowledge data encompasses the set of sentence pairs in the lesson, i.e.,
each supporting entity S is equal to a pair of sentences. We set a �xed number of
sentences s for each setting and choose the sentences based on the con�dence to
be supporting the input query (as described in Section 5.4).

Graph-based network. In a similar manner as for the text-based network, since
the number of nodes in the diagrams is high, we select a set of supporting nodes
based on the question. Thus, we choose s nodes that have the highest similarity to
the question, where the similarity is shaped by σ (q,k)where k is a vector encoding
of each edge in the graph. In comparison to the text-based model, in the graph
setting, we leverage an edge representation of the supporting nodes (i.e., for each
edge in the diagram that contains a supporting node). To that end, we encode each
edge by concatenating the vector representation of the source and target node.

Image-based network. The image-based network receives additionally to the
question and answer pair, a global visual representation of the diagram I extracted
from a CNN pre-trained on ImageNet [Russakovsky et al., 2015].

Graph baseline. This baseline leverages the top-1 supporting node (i.e., the node
that is closest in cosine similarity with the input query) and infers the answer from
the set A which has the highest similarity to the top-1 node.

Text+Image network. In case of the Text+Image setting, we include the visual
information as another vector in the supporting sentences set (Figure 5.2).

5.6 Evaluation se�ing

Dataset overview. TQA [Kembhavi et al., 2017] is a dataset for multi-modal ma-
chine comprehension encompassing over 600 lessons and exercises from the sixth
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Method True/False MC Text Diags
Baselines

Random 50.1 22.9 33.6 25.0
Memory Networks

MemN + VQA [Kembhavi et al., 2017] 50.5 31.1 38.7 31.8
MemN + VQA + HT [Li et al., 2018a] 50.3 28.1 36.9 29.8
MemN + DPG [Kembhavi et al., 2017] 50.5 30.1 38.7 32.8

Other Approaches
BiDAF + DPG [Kembhavi et al., 2017] 50.4 30.5 38.7 32.7
Challenge – – 45.6‡ 35.9
IGMN [Li et al., 2018a] 57.4 40.0 46.9 36.4

Graph Networks
Our [InferSent] 61.9 36.2 46.4 33.4
Ours [SkipThought] 60.2 36.4 45.6‡ 34.0

Table 5.1: Comparison of di�erent approaches on the validation set of the TQA
benchmark. ‡ These two results cover the same model.

grade curricula. This benchmark has a wide span of lessons comprising life science,
earth science, and physical science textbooks with 26k multi-modal questions that
relate to the illustration, to the text content, or to both of them.
Around half of the questions are associated to the text content-only (i.e., text

questions), while the other ones include additionally an accompanying diagram (i.e.,
diagram questions). While the diagram questions comprise only multiple choice, the
text questions include additional true/false questions, where the only possible an-
swers are either true or false (one only needs to decide if the input query is correct).

Implementation details. As a similarity metric σ for sorting the supporting
sentences, we leverage the cosine similarity: σ (x ,y) := (x ·y)/(�x � ·�y �). We empiri-
cally choose s = 4 for the multiple choice setting and s = 2 for true/false queries. We
encode each sentence to a global vector representation using di�erent pre-trained
models. If not otherwise speci�ed, we use the SkipThought [Kiros et al., 2015] en-
coding, while for some experiments, we also provide results for InferSent [Conneau
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Modality Accuracy
Baselines

Image-only 33.2
Text-only 33.9

Multi-Modal QA
Graph baseline 29.2
Graph-only 33.3
Text + Image 34.0

Nr. of supp. entities Accuracy
Diagram-only

2 33.3
3 32.9

Text-only
3 33.8
4 33.9
5 33.4

Table 5.2: Results on the diagram questions (Diags.) on the validation set of TQA
for di�erent modalities and number of supporting entities.

et al., 2017]. The image we represent using a Residual Network [He et al., 2016] pre-
trained on ImageNet [Deng et al., 2009]. Our model is trained using Adam [Kingma
and Ba, 2015] for stochastic optimization with an initial learning rate of 0.01.

5.7 Evaluation

Next, we visualize the performance of our network in comparison with related
methods and present an analysis for di�erent parameter settings of our model.

5.7.1 Final results

As we see in Table 5.1, our network outperforms state-of-the-art in the true/false
questions and obtains competitive results in the entire text-only task. In the case of
the diagrams setup, while our model has a lower performance than state-of-the-art,
it achieves a higher accuracy than complex models such as BiDAF. Moreover, we no-
tice that InferSent [Conneau et al., 2017] obtains a higher accuracy in the true/false
questions than SkipThought [Kiros et al., 2015]. A possible reason for such a di�er-
ence in performance is the way InferSent was trained. While SkipThought is trained
in an unsupervised setting, InferSent is trained in a similar scenario as the true/false
task aiming to �nd the relation type between a pair of sentences (i.e., no relation, con-
tradiction, and entailment). Finally, our model won the text-track of the Textbook
Question Answering Challenge achieving the highest performance on the test set.
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(b) Diagram questions

Figure 5.3: Distribution of the problems of the model in the TQA task.

5.7.2 Comparison between modalities

In Table 5.2 (left), we show the performance of our model for three di�erent knowl-
edge modalities: visual, graph-based, and textual. While when using both the visual
and text-based data we obtain the highest performance, the text-only setting has al-
most an identical accuracy. Nonetheless, our model outperforms the graph baseline
independent on the modality type. From all setups of our model, the image-only
version obtained the worst accuracy which, however, can be explained with the
use of a CNN pre-trained on natural images and not graphs.

5.7.3 Impact of the number of supporting sentences

In Table 5.2 (right), we evaluate our model for di�erent number of selected sup-
porting sentences and nodes. As we see, the graph-only version has a higher
performance when leveraging few supporting nodes (i.e., two supporting nodes)
as the three node settings show a drop in performance. In a similar manner, the
text-based model shows the highest accuracy at four supporting sentences, while
selecting �ve sentences produces a drop of around 0.5%. This decrease in per-
formance of the network when using a higher number of supporting entities is
presumably due to over�tting, since we pass a larger amount of data to our model.
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Question
Human actions that increase the risk of soil loss include

Answers
(a)  Logging
(b) Terracing
(c) Tree planting 
(d) No tree planting

Supporting Sentences
(1) Human actions that can increase soil erosion are described below
(2) Other human actions that put soil at risk include logging, mining, and construction
(3) Show how farming practices can increase soil erosion 
(4) There are several other ways to help prevent soil loss



Figure 5.4: Example where the attention focuses on an unimportant sentence.

5.8 Error analysis

In this section, we discuss the properties of our model and show the sources of
errors which we categorize based on the parts of the network that produced them.

Text-based task. To get a better overview of the common errors of our model, we
group them into the following categories (Figure 5.3 left): (1) necessity of external
knowledge to answer the question (External), (2) the required information spreads
over more than one sentence (Mult. sent.), (3) the supporting sentences selected
by our model do not contain the relevant one (Supp. sent.), (4) the attention module
failed to attend to the relevant sentence (Attention), and (5) the prediction module
was not able to provide the correct answer (Prediction).

In Figure 5.3, we show the distribution of the problem types for true/false and
multiple choice questions for 100 randomly picked questions in the dataset. For
true/false, most of our mistakes are due to the prediction module, followed by the
supporting sentence and attention module. Finding if two sentences are contra-
dictory or have the same statement is a di�cult task, especially when we have
multiple statements in a single sentence. Finally, Figure 5.4 visualizes an example
of an error caused by the attention module (i.e., Attention-type error).
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Question
If a cell has gone through 
the interphase state,
what will happen next?

Answers
(a)  Cytokinesis
(b) Growth
(c) DNA Replication
(d) Mitosis

Supporting Nodes



Figure 5.5: Example, where our approach selected the correct source node (green),
but failed to select the correct target node (in red the predicted target node and in
blue the correct one). This category we call ‘Edge’ in the results table.

Diagram-based task. Next, we analyze the diagram-based question types where
we group the errors into: (1) necessity of external knowledge (External), (2) the
required information is in the visual data (Image), (3) the supporting node selected
by our model does not contain the relevant information (Source), (4) the source
and edge nodes are incorrect (Edge), (5) the attention module failed to focus on the
relevant sentence (Attention), and (6) the prediction module did not provide the
correct answer (Prediction). An example of the Edge error type is shown in Figure 5.5.

Table 5.3 (right) visualizes the distribution of errors our approach produces in the
graph-only setting. Similar as for the text-based questions selecting the support-
ing entities causes many mistakes (i.e., Source). Thus, this indicates that a better
selection process can greatly improve performance by better �ltering unimpor-
tant information. Including more (supporting) nodes to the network is a possible
solution, however, as we showed in Table 5.2 this leads to over�tting. While the
error analysis shows that we can achieve at most 13% improvement through the
visual modality, our results indicate that additional visual information only slightly
improves the performance of our network. A reason for this slight increase in
performance (compared to the 13%) is that our model was not able to learn complex
visual features from such few training samples. On the other hand, as almost 20%



Summary and discussion Section 5.9

97

of questions are incorrectly answered due to the lack of external knowledge and
the network shows strong results on the text-based task, augmenting the method
with the surrounding text has a high potential to further improve performance.

5.9 Summary and discussion

In this chapter, we introduced a novel neural architecture for multi-modal question
answering in a multiple choice setup. While soft paths assumes that the input query
comprises all necessary information to traverse the graphwithout a priori knowledge
of its data, in this chapter, the model pre-processes the knowledge base and then de-
cides where to attend. Our approach �rst selects relevant information based on the
current question which are passed to our neural network which gives the �nal deci-
sion which entities are relevant for predicting the answer. We compare the network
for di�erent knowledge modalities: text-, image-, and graph-based, and show that
the textual model has the best performance in all tasks. Furthermore, we analyze
the mistakes that our model produces and uncover the di�culties that our model
encountered. Finally, our approach won the �rst place in the Textbook Question
Answering Challenge where it obtained the best performance on the test set of TQA.
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6 Visual Reasoning on Pages

Imagine looking for a speci�c answer in a technical document. Especially if one is
new to the material, it is hard to keep all information in mind and one spends time
searching for the right answer. Besides saving precious time of an average user,
automatic visual reasoning on documents comes with immerse bene�ts for visually
impaired people, detaching the accessibility of knowledge from the biological vision.
Automatic understanding of documents can be posed in the form of visual question
answering [Agrawal et al., 2017]. Such models mostly focus on scenes in natural im-
ages and have experiencedmajor progress in recent years, due to advances in natural
language processing [Conneau et al., 2017; Pennington et al., 2014; Vaswani et al.,
2017] and computer vision [Huang et al., 2017; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015], where novel architectures signi�cantly improved the representa-
tions of both, images and text. While there are few works addressing �gures, they
are restricted to a very speci�c entity type, such as diagrams or tables [Jauhar et al.,
2016; Kembhavi et al., 2016]. Presumably due to the insu�cient datasets for training
these models, the research of visual reasoning on complete pages is far behind.

While other QA methods address di�erent �gures (e.g., photographs, diagrams)
individually in the previous chapters, the challenges for their understanding are
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not the same. Interpreting natural images requires robustness to changes in illumi-
nation and shading, approaches for reasoning on diagrams face highly-structured
data and should incorporate external knowledge, while plots entail other di�culties
as data points include real numbers. Although previous models attempt to interpret
a single graphical element type, many applications, such as information retrieval
from pages, would require understanding both the underlying page components
(e.g., title, tables) and their interplay. While humans are excellent in putting all these
page elements together and have a natural grasp of how they relate, automated
visual reasoning over such compositional pages is a wide-open research question.

While in the previous chapters, we focused on answering questions related to dif-
ferent page entities (either �gures alone or combining text and graphical elements),
such focused representation of the data strongly restricts the possible question
types. In Chapter 4, we followed soft paths on �gures of a �xed type where the
information necessary to answer the current question lied in the given input image.
Thus, we assumed that the input query is associated to a single and known knowl-
edge source. In case of MoQA in Chapter 5, the relevant information either lied in
the (available) diagram or the associated text content and, thus, the model basically
needed to decide between the two modality types. However, such assumptions fre-
quently do not hold, as questions can relate to several components (e.g., comparing
the semantic information in two �gures) or can be based on the overall structure of
the page (e.g., counting the number of �gures on a page). Thus, extracting di�erent
entities such as natural images from the document or even discarding the overall
structure of the page strongly restricts the type of questions our models can handle.
We address these shortcomings and aim to bring VQA to a setting, where syn-

chronous understanding of di�erent types of graphics and their interaction is crucial
to �nd the correct answer. To that end, we introduce the problem of visual reasoning
on pages (Figure 6.1). Speci�cally, we focus on question answering on presentation

slides where properties such as high variety in layout, content type, �gure-to-text
ratio, diverse placement, and enhancements of the graphical elements make this
document type especially hard for the VQA algorithms.
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Questions in SlideQA
1. Structure Analysis
Question: What color
does the slide have?

Dataset Overview

3. Relational Reasoning

2. Componentbased

4. Reasoning on Figures

Question: What does 
the table display? 

Question: How many 
tables are to the right of 
the diagram? 

Question: Acc. to the 
diagram, what is magma 
after cooling? 

4M questions (4 types)
400k images of slides
300k unique words

Diagram Table

Text
Title

Caption

Date
Tables Lists Par. Figs.

DescribesLeft of

300k
200k
100k

Figure 6.1: Overview of the slide question answering task with an example page
and its corresponding structure (left), example questions grouped into four repre-
sentative classes (top-right), and statistics of our dataset (bottom-right).

From the application point of view, presentation slides are a wide-spread messag-
ing pathway in business and education, used for exchanging knowledge between
people (e.g., providing learning material for students) and accompanying oral talks.
Still, understanding presentation slides has been barely touched by research with
only three published works addressing fundamental computer vision problems re-
lated to them: slide retrieval from videos [Araujo et al., 2015] and slide segmentation
which we introduced in Chapter 3.

Contributions. In this chapter, we collect the SlideQA dataset comprising 4M ques-
tions on 400k slide images. Solving the SlideQA reasoning tasks requires simul-
taneous interpretation of multiple types of page components (i.e., diagrams, pho-
tographs), structural elements (table and enumerations) and text categories (e.g.,
title, slide number, date, a�liation) and understanding their interplay. To produce a
high diversity of slides and increase di�culty, we propose a new collection strategy
that combines multiple knowledge sources from the internet to further generate re-
alistic slides using LaTeX. We collect text, enumerations, and tables fromWikipedia,
natural images from the popular VQA-v2 dataset [Goyal et al., 2017], and semantic
information about them from GQA [Hudson and Manning, 2019], image captions
from the COCO [Lin et al., 2014] and diagrams from the AI2D [Kembhavi et al.,
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Q: Which �gure contains more people?
A: The right one.

Q: How many diagrams are lower than the
natural image? A: 2

Figure 6.2: Examples of questions and slides with di�erent page component types
(e.g., natural images, page number) from the SlideQA dataset.

2016] datasets. Content collection using authentic web-based knowledge sources
assures the realism of the slide, while automatic LaTeX generation allows us to
freely parameterize the slide properties facilitating high variety of component
placement, colors, �gures, and content type. In Figure 6.2, we show two example
slides from our SlideQA dataset with associated questions.
We adopt and evaluate various baselines and o�-the-shelf neural architectures

for reasoning on natural images [Agrawal et al., 2017; Hudson and Manning, 2018;
Yang et al., 2016]. Motivated by the vulnerability of conventional models to the
large vocabulary size of our benchmark, we present FUSE, a model specialized
for our task of visual reasoning on entire pages. Our model is fully-convolutional
in both the visual and textual encoder and fuses the multiple modalities using
an attention mechanism at character-level. Thereby, the network generates the
answer as tokens simultaneously (i.e., without employing any recurrent layers) and
outperforms conventional VQA methods on our SlideQA dataset.

Publications. This chapter is encompassed in [Haurilet et al., 2021b].
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6.1 Dataset collection

To address the lack of visual reasoning benchmarks operating on complete pages,
we collect the SlideQA dataset featuring 400k presentation slides and 4M questions
with varying degree of reasoning complexity (examples provided in Figure 6.2).
In the following, we describe the collection mechanism that we have developed
to reach multiple design goals: a high variety of layouts (Section 6.1.1), diverse
interplay of graphical and textual content (Section 6.1.2), and semantic soundness,
i.e., page entities should be consistent in their topic (Section 6.1.3).

6.1.1 Choice of layout

To produce a high variety of layouts, we utilize multiple controls available in
LaTeX. We choose uniformly from 29 di�erent layout modes, 68 colors, 5 inner-
and 3 outer-themes of the Beamer LaTeX package resulting in 30k different layout

configurations. We de�ne three types of slides: (1) title-slides covering the title
and author information, (2) overview-slides displaying the presentation structure
(i.e., table of contents), and (3) content-slides, the most vital page type, as it carries
the information about the topic. Consequently, 90% of our dataset is attributed to
content-slides, while title- and overview-slides each form 5% of the data.

6.1.2 Graphical and textual content

Text, tables, and enumerations. To ensure the realism of our slides, we employ
Wikipedia articles for collecting text, table, and enumeration data in our dataset.
From the 5.7M pages available in Wikipedia, we have selected the 500k longest
articles. In total, we have extracted 1.2M tables, 2M bullet points, and 6M paragraphs
which constitute the basis of our slides.

Figures. We collect the �gures from the public AI2D diagram benchmark [Kemb-
havi et al., 2016] and the VQA-v2 dataset [Goyal et al., 2017] for question answering
on natural images (details in Table 6.3). To obtain image captions, we utilize the
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(2. Starting-Figure)
1. number_comp. = 3
2. layout_shape = 1 x 2
3. component_types =

[diagram, nat.-im, text]
4. randomly set parameter:
• font type and size
• description on/off

3. Article
Choose randomly 
an article from:
A. the entire set
B. top-k articles:
• Song Sparrow
• Sparrow
• Rock Sparrow

(4. Other Figures)
Randomly select from top-k 
figure-to-article mapping

Randomly pick starting-fig.
from the entire set of images

1. Page Settings

Figure 6.3: Overview of the slide generation process: (1) layout and component
types selection, (2) if a �gure is included in the component types, a starting-�gure
is randomly chosen, (3) article selection either randomly from all 500k articles (if
step 2 is skipped), or based on the �gure_to_article mapping (for at least one �gure),
(4) selecting the remaining �gures (if the slide should contain multiple images).

COCO dataset [Lin et al., 2014] and randomly select one of the �ve available de-
scriptions. We select these benchmarks as a basis for our dataset as they provide
additionally to image captions, semantic annotations (e.g., text labels in the dia-
grams), and control over the choice of �gure types.

6.1.3 Slide generation engine

Component choice. To ensure that our slides are semantically sound, we in-
troduce a mechanism for selecting document components that encourages the
page content to fall into the same topic (overview given in Figure 6.3). First, we
select the number and type of components (Step 1 in Figure 6.3) that we include
in the current slide (e.g., a diagram, a natural image, and a paragraph). �→ If no
�gures exist in the set of selected components, we randomly sample an article from
the Wikipedia data (Step 3.A). �→ Otherwise, we randomly pick a starting-figure
(Step 2), and based on it, we choose an article that is semantically close using the
figure-to-article function (Step 3.B) that we de�ne as follows.

Figure-to-article mapping. For every starting-figure, we compute the similarity
between the words in the set of captions (for natural images) or description-nodes
(for diagrams) and the article titles of Wikipedia.
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To that end, we iterate over all captions for the current �gure as follows:

σ (C, t) = 1
|C |

�
S∈C

�
1
|S | ·

�
w ∈S

cos(w, t)
�

(6.1)

where t is a title from an article, cos is the cosine similarity, andw is the embedding
of a word (i.e., wor2vec [Mikolov et al., 2013]) in the set of captions C. We then
randomly sample one of the top-k most similar articles to the descriptions of the
current image and use the text content and tables in the corresponding article
to produce the slide. We set a �xed threshold for the number of selected articles
(k = 40, totaling to 8M article instances) enabling a balanced and diverse mapping,
opposed to a variable threshold, e.g., based on similarity values. If more �gures
need to be included (additionally to the starting-�gure), we use a similar mapping
from the current article to the top-k most similar �gures as further described.

Article-to-�gure mapping. If the number of �gures in the slide is over one, we
need to select additional graphical content besides the starting-�gure (Step 4). As
for the �gure-to-article mapping, we select the remaining page components using
the similarity function σ . In this case, we use the title of the article chosen for
the current slide, to get the top-40 most similar natural images and diagrams, and
randomly select the remaining graphical content.

Why not figure-to-figure mapping? An alternative method to collect the remaining
�gures from an article is to directly use a �gure-to-�gure mapping from the starting-
�gure to its closest images. However, this could lead to an inconsistency in the
overall topic of the slide. For example, a starting-�gure has the caption: ‘A dog and
a cat lying on the bed.’ and our �gure-to-article mapping picks the article ‘Dog’. A
�gure-to-�gure mapping has the possibility to focus on the word cat and select cat
images for the remaining graphical content in the slide. This is, however, incorrect
as the overall topic of the slide is dog and not cat.
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Page structure. As page components are put together through our algorithm, we
can directly infer the underlying structure as a graph, where the nodes stand for se-
mantic entries (e.g., title, a�liation, diagram) and edges represent relations between
them (e.g., top, describes). Note that our proposed FUSE model operates directly on
the image input in an end-to-end fashion and does not require the structure graph.
Still, we provide the graphs as additional annotations opening the possibility for
future research of graph-based methods, such as architecture based on soft paths.
We further leverage the page structure to generate the question-answer pairs.

6.1.4 QA collection process

For generating the question-answer set, we harness the layout information, page
structure (i.e., placement of the components and the relationship type between
components), and semantic information from the �gures (e.g., number of cats in the
image). Our collection process employs 40 patterns grouped into four representative
reasoning tasks (examples in Figure 6.2), which are now discussed in detail.

1. Global structure understanding. In our �rst task, we address the structure
understanding of the page image. For example, there are questions about the type
of slide, the color of the slide template, and the presence of speci�c components,
such as date or page number.

2. Questions about components. The second task is related to gaining knowl-
edge from the slides and targets the information present in the document. It is
usually linked to the content of captions, text, and enumerations.

3. Relational reasoning. The third group of questions shows if the network is
able to understand the structure of the page and to reason about the found entries
(e.g., how many components are left of the diagram). To solve this task, the model
has to localize the relevant page components (e.g., the diagram) and, then, generate
an answer based on the found region (i.e., �nd how many components are left of
it). Longer reasoning chains are typical for this task.
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Figure 6.4:Analysis of articles dependent on the �gure-mapping type. The diagram-
mapping selects more frequent articles with shorter document components (para-
graphs, lists, and tables) than the image-to-article function.

4. Reasoning on �gures. Finally, the last task entails fine-grained understanding
of the figure content. This task is generally harder than the questions about compo-

nents, as it requires greater details and the models need to both select the relevant
�gure (e.g., �nd the left diagram in the slide) and �nd the correct answer based on
its semantic information (e.g., counting the number of cats in an image).

6.2 Data analysis

We now elaborate on the key properties of SlideQA and analyze the articles selected
by our mapping scheme, the generated slides and question-answer pairs. First, we
discuss the properties of the �gure-to-article mapping schemes as well as the key
attributes of our generated presentation slides. Then, we analyze the questions and
the necessary reasoning capabilities for answering the queries.

6.2.1 Articles and slides analysis

Comparison of components between page type. In Figure 6.4, we show the
average number of collected tables, lists, and paragraphs by our �gure-to-article
mapping strategy. As we see, the articles selected by the diagram-to-article function
varies in the amount of content to the articles chosen by the natural images. That
is, the articles in the top-k diagram-mapping include on average more paragraphs,
lists, and tables. The reason behind this lies in the diagram-mapping selection of a
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(a) Main-categories generated by the
the diagram-to-article mapping.
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(b) Distribution of the frequency of words in
the corpus for text, titles, and lists (in %).

Figure 6.5: Distribution of the articles selected by our collection scheme and
analysis of the text content in the SlideQA dataset.

high number science-related articles, which are often shorter. Even though there is
a large discrepancy between the di�erent articles for the two mapping functions,
since we select the document components using a uniform distribution, the slides
do not include a distinction in the component types distribution.

Distribution of selected articles. Wikipedia groups its articles topic-wise into
39 major categories. We now utilize these topic groups for an initial analysis of our
proposed �gure-to-article function in order to gain insight into the selected articles.
As the diagrams are often related to anatomy (human body), biology (food chains),
and astronomy (solar system), we expect our articles to lie in the science �eld. Fig-
ure 6.5a depicts the major topics distribution of the articles included in the top-40 list
of our diagram-to-article scheme. Our assumption is, therefore, con�rmed as most
articles are in the science (30%), academic disciplines (24.9%), and life sector (10.3%).

Vocabulary of the text content. An important property of QA datasets is
the word distribution of the collected written content, as this directly impacts the
di�culty of answering text-related questions. Figure 6.5b shows that a large fraction
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Figure type # Slides Rows [#] / Height [cm] Cols. [#] / Width [cm]
Diagram 132k 3.88 [cm] 4.95 [cm]
Nat. Image 132k 4.07 [cm] 4.73 [cm]
Table 109k 3.44 [#] 2.97 [#]

Table 6.1: Number of slides containing graphical and structural elements and their
average size (in [cm] for �gures and in number of rows and columns for tables).

Text type # Slides # Sent./Component # Words/Sentence
Title 400k 1.00 1.05
Description 180k 1.63 4.77
Paragraph 124k 2.72 21.13
List 122k 3.01 12.28

Table 6.2: Number of pages including text, number of sentences for each appear-
ance, and number of words per sentence.

of words (e.g., 50% in the text-body) are unique. As a consequence, our answer set
inevitably contains out-of-vocabulary words making SlideQA especially challenging
for some visual reasoning models, as we further show in the evaluation section.

Analysis of the graphical and textual document elements. In Table 6.1 and
Table 6.2, we illustrate the distinct properties of the document components covered
by our dataset. There is a noticeable gap between the text classes as it comes to the
amount of included text: While on average only a few words are present in titles,
the paragraph class usually covers over 50 tokens, which surpasses the number of
words per sentence in a title by a factor of 20. Moreover, lists have around half as
many words per sentence as the paragraphs, while, on the other hand, comprising
twice as many sentences per page than figure-descriptions. In case of the graphical
components, the properties are more similar: both diagrams and natural images are
frequent in the slides and more than 50% of the dataset contains at least one �gure
type. Due to scaling di�erences (diagrams have often a larger height), diagrams
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(a) Queries and answer length based on quest.
type (radius � # questions).
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(b) Distribution of questions with varying
compositionality degree.

Figure 6.6: Analysis of the question and answer set in our proposed SlideQA
benchmark and its comparison with related VQA datasets.

and natural images vary slightly in their average size (i.e., diagrams are generally
wider). Finally, since some articles do not include tables, we see a lower number
of slides containing tables than natural images and diagrams.

Parsed components collected fromWikipedia. We extracted 1.2million tables
in the top 500k largest articles in the Wikipedia dump with 21 million bullet points
and 6 million paragraphs. We discarded the �nal rows and columns for too long
and too wide tables, as well as, removed sentences in the long bullet points and
paragraphs. In case of enumerations, we randomly pick at most �ve bullet points
and for paragraphs, we select the �rst four sentences.

Vocabulary of the words in the answers. In SlideQA, we counted 15k unique
words in the questions and 320k unique answers. The questions can easily be
represented using a one-hot embedding for training the networks, i.e., without
even reducing the query vocabulary. In contrast, due to the large number of unique
answers, the prediction module would require 320k output neurons that leads to
an explosion in parameters in the �nal layer (in the millions). Thus, to capture the
entirety of the answers in the dataset, one would require a di�erent strategy than
the classi�cation-driven strategy of current VQA models.
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Figure 6.7: Average number of structural components (tables, lists, paragraphs) in
each article selected by our mapping function for diagrams and natural images.

6.2.2 Overview of the QA set

Query-types. In total, we generate 4M open-ended questions associated with
eight main query types (overview in Figure 6.6a). Most queries belong to the
which type representing often short questions with long answers. In comparison,
the questions of the which type are on average more than twice as long. This
is not surprising, as in case of which the queries describe multiple attributes for
discriminating between objects, while for what questions attributes or easily found
objects are pursued. Queries of the types how and is revolving around counting
and existence type questions have the shortest answer length (of around one word).

Reasoning. Figure 6.6b illustrates the percentage of questions that require di�er-
ent levels of reasoning complexity: (1) global structure (i.e., overall layout), (2) single
entity centered around a single component, and (3) relational questions. The vi-
sualization indicates that the dataset is mostly balanced in the length of reasoning
chains especially in the global structure and the single-entity questions. Relational
queries are less common (around 15% of the dataset), as some questions only apply if
more than one component is in the page. Finally, we show that almost all questions
cannot be answered by using Optical Character Recognition (OCR, e.g., [Smith,
2007; Wei et al., 2018]) alone with OCR being helpful in less than 25% of cases.
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Dataset Reference #Imgs #Quest +Text +Comp.
Natural Images

DAQUAR [Malinowski and Fritz, 2014] NIPS’14 1k 12k ✗ ✗
VQA [Agrawal et al., 2017] ICCV’15 205k 760k ✗ ✗
COCO-QA [Ren et al., 2015a] NIPS’15 69k 118k ✗ ✗
Visual7W [Zhu et al., 2016] CVPR’16 47k 328k ✗ ✓
VQA-2 [Goyal et al., 2017] CVPR’17 205k 1.1M ✗ ✗
Visual Gen. [Krishna et al., 2016] IJCV’17 113k 1.4M ✗ ✓
TextVQA [Singh et al., 2019] CVPR’19 28k 45k ✓ ✗
TallyQA [Acharya et al., 2019] AAAI’19 165k 183k ✗ ✗
GQA [Hudson and Manning, 2019] CVPR’19 113k 22M ✗ ✓

Geometric Forms
S.-of-CLEVR [Santoro et al., 2017] NIPS’17 10k 200k ✗ ✓
CLEVR [Johnson et al., 2017a] CVPR’17 100k 700k ✗ ✓
COG [Yang et al., 2018a] ECCV’18 11M 44M ✗ ✓

Plots & Tables
TabMCQ [Jauhar et al., 2016] ACL’16 63 9k ✓ ✓
FigureQA [Kahou et al., 2018] ICLRW’17 100k 1.3M ✓ ✗
DVQA [Ka�e et al., 2018] CVPR’18 300k 3M ✓ ✗

Diagrams
AI2D [Kembhavi et al., 2016] ECCV’16 5k 15k ✓ ✓
TQA [Kembhavi et al., 2017] CVPR’18 13k 26k ✓ ✗

Visual Reasoning on entire Pages
SlideQA (Ours) – 400k 4M ✓ ✓

Table 6.3: Overview of VQA datasets. We group the datasets based on the �gure
types and compare them based on number of images and questions. We include if
the images contain text and component annotations (e.g., object instances).

Long-range dependencies in the answers. Other relevant characteristics of QA
datasets are the answer length and the number of unique answers. The �rst property
requires the algorithm to understand long-range dependencies, while the latter
enforces the need for answering open-ended questions. SlideQA includes more
queries with long answers than other popular benchmarks (overview in Figure 6.7)
totaling to 320k unique answers. While related datasets on VQA include answers
that are around 5-10 tokens on average, SlideQA encompasses answers comprising
up to 20 words in length. Finally, since SlideQA comprises answers with a large
number of words, we propose a novel architecture that employs self-attention to
generate the answers at character-level.



Comparison of SlideQA with related datasets Section 6.3

113

��
��

���
����
���
�

���
��
���

��
��

���
���
����
�

���
��
����
��

��
��

��
���
��

��
���
���
��
��

���
���

�

��
��

���
���
�

��
���

���

���

���

���

���

���

�
�
�
�
�
��
�
��
�
�
�
��
��
�
��
�
�
��
�

����� �������

Figure 6.8: The number of slides containing di�erent page components in our
proposed SlideQA benchmark for QA on pages and our SPaSe dataset for semantic
page segmentation comprising 2000 slides that we introduced in Chapter 3.

6.3 Comparison of SlideQA with related datasets

Number of images and questions. In Table 6.3, we show an overview of VQA
datasets, which we group based on the visual input data type: (1) natural images,
(2) synthetic images of geometric forms, (3) plots and tables, (4) diagrams, and
(5) images of entire pages. Additional to the publication references, we show the
number of images and questions included in these benchmarks, which we mark
for a threshold of 100k in case of �gures and 1M for the images. Several datasets
comprise more than 100k images: While the datasets including natural images
have at most 205k �gures, synthetic images comprise up to 11M images. The
synthetically generated FigureQA and DVQA on plots also show a large amount
of questions and images totaling to over 100k images with over 1M queries. In
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comparison, our SlideQA benchmark comprises 400k images with 4M questions
covering four query types ranging from overall slide type to relational questions.
Another key aspect of the VQA datasets is the available additional annotations of
the visual content marked with ‘Comp.’ in the Table 6.3, as these labels enable the
use of graph neural networks. Finally, we show that some datasets include �gures
with text and mapped labels, which are mostly available in more document-related
datasets (e.g., AI2D, TQA, and SlideQA).

Comparison with SPaSe. In Figure 6.8, we show the distribution (y-axis, log
scale) of document components (x-axis) for our SlideQA benchmark and SPaSe,
the dataset introduced in Chapter 3. As we see, the SlideQA dataset is more
comprehensive in each document component type than SPaSe where we have by
an order of 100 more pages in all categories. Namely, while SPaSe has around 1000
slides for each class, SlideQA includes around 100 000. Nonetheless, SlideQA shows
a similarly distribution of the occurrence for the di�erent document component
classes in the pages as in our human-generated SPaSe data.

6.4 Methods

In this section, we present several baselines that we implemented on our SlideQA
dataset as well as stronger attention- and graph-based networks. Then, we de-
scribe our attention-based FUSE architecture, which fuses the question and visual
information using self-attention at character-level.

6.4.1 Baselines

a. ANS illustrates the prior in our dataset and predicts for all questions the most
frequent answer (i.e., ‘Yes’).

b. QTYPE predicts the most frequent answer for each question type (i.e., one of
the four pre-de�ned categories).



Methods Section 6.4

115

c. QUES is a blind model that uses as input only the question embedded by an
LSTM [Hochreiter and Schmidhuber, 1997]. This approach was previously used on
other VQA datasets, e.g., ‘deeper-LSTM’ in VQA [Agrawal et al., 2017] and ‘LSTM’
in CLEVR [Johnson et al., 2017a].

d. IMG-only is an MLP on the visual vector-embedding extracted from a pre-
trained ResNet-101 [He et al., 2016] (i.e., the output of the global average pooling).

e. Q+IMG merges the vector representation of the image with the last hidden
state of the LSTM applied to the question. Then, an answer is generated by two
subsequent fully-connected layers on the concatenation of the two features.

f. SAN [Yang et al., 2016] employs multiple rounds of spatial attention re�nement
for a better image representation.

g. RN [Santoro et al., 2017] represents pairwise relations between regions in the
image through concatenation with the question. The resulting relation embedding
is used to obtain the answer by employing several fully-connected layers.

6.4.2 The FUSE network

Existing VQA methods usually extend the image/question encoder either with
fully-connected layers [Agrawal et al., 2017; Ma et al., 2016; Malinowski and Fritz,
2014; Perez et al., 2017] or RNNs [Guo et al., 2019; Qin et al., 2019; Xu et al., 2015;
Yang et al., 2019] to generate an answer. Both paradigms, however, have a downside
in the challenging SlideQA setting. Fully-connected layers struggle in case of a
high number of possible predictions or in case of out-of-vocabulary words, as
they treat VQA as a classi�cation task over the static set of answers seen during
training. While RNN-based approaches can handle these issues, they are known for
convergence problems especially for long-range dependencies [Graves et al., 2014;
Haurilet et al., 2019d] as it is the case in SlideQA. Motivated by these limitations
on our task, we adopt a di�erent design and introduce FUSE, a network including
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FUlly-convolutional visual and textual encoders. Our network is able to generate
tokens at character-level Simultaneously through a multi-modal Encoder with
multiple token-wise attention maps.

Modules. In Figure 6.9, we give an overview of our proposed architecture on an
example slide and question from our dataset. The network comprises: (1) a visual
encoder, (2) a question representation, (3) a multi-modal embedding scheme, and
(4) a prediction module. As in several approaches for VQA [Santoro et al., 2017],
(1) the visual encoder embeds the image using a 2D-CNN applied directly on the
raw pixels generating a visual representation I ∈ �h×w×d . For (2) the question
encoding, we employ 1D convolutional layers as in our soft paths architecture
(Chapter 4) ensuring a faster and more stable training procedure than in the case of
RNN-based question embedding schemes. Thereby, we employ several convolutions
on the words in the query and then discard the variable-sized dimension via global
average pooling (i.e., variable in the number of words), which results in a �xed-sized
representation (i.e., an f -dimensional vector q).

Next, (3) the multi-modal module joins the embedded visual data with the text
representation. We re�ne the visual data I by employing an attention mechanism
in the spatial dimensions based on the input query q. In particular, we generate an
attention map of the size h ×w that aims at localizing each token (i.e., characters
of the answer) in the image. Thus, we compute the kth attention map as follows:

Ai, j,k = ϕ
�
k · [q, Ii, j ] + bk (6.2)

resulting in a tensorA of the shape h×w × t . Thereby, we leverage the learnable pa-
rameters ϕk ∈ �(d+f )×t and bk ∈ �t . Next, we apply softmax normalization on the
spatial dimensions such that each matrix k slice sums to one. To obtain the �nal vi-
sual representation, we combine the 3D-tensor generated by the CNN in (1) and the
attentionmapsA in (3) by outer product and �atten the spatial dimensions using sum,
i.e., v =

�
h,w Ah,w⊗Ih,w ∈ �t×d . Then, we fuse q and the visual data v using con-

catenation followed by a fully-connected layer with д units resulting in a matrixm.
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Figure 6.9: Overview of our FUSE network that leverage attention mechanisms
on the spatial dimensions at character-level.

Finally, (4) the prediction module embeds the multi-modal representation
M ∈ �t×д using a fully-connected layer with softmax normalization. As we deal
with out-of-vocabulary words, the set of token classes comprises the symbols (e.g.,
letters) seen during training (their number being c=150), in contrast to the conven-
tional word-level counterpart. Thus, we obtain t probability distributions over our
set of c selected symbols. To generate sequences that are shorter than the maximum
number of tokens t=200, we stop when facing the specialized ‘END’ token to mark
an end of a sentence (e.g., as in [Xu et al., 2015]). We then concatenate the generated
characters into a string to produce the answer (e.g., `Basalt Magma' in Figure 6.9).

6.5 Parameter setup and learning procedure

In this section, we give an overview of the parameter setup and learning procedure
of our baselines and the FUSE network.

6.5.1 Baselines

IMG. For the image-only baseline, we extract 2048-dimensional feature vectors of
the slide-images from a ResNet-101 [He et al., 2016] pre-trained on ImageNet [Rus-
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sakovsky et al., 2015]. These visual representations are included into an multi-
layered perceptron comprising two fully-connected layers. The �rst layer contains
512 hidden units with ReLU activation, while the second layer models a probability
distribution over the answers (i.e., uses softmax normalization). Since we have a
high number of answers, we remove answers that appear less than 15 times in the
training set, resulting in 3970 possible answers in total. We train the model for
30 epochs using a learning rate of 1e − 5.

QUES. In case of the question-only baseline, we �rst embed the questions using an
LSTM cell on the one-hot encoding of the words in the input query. To enable batch
training, we pad the question using zero values and crop where necessary to a �xed
size of 10 words per query. We use the last hidden state of the LSTM cell to obtain
our �nal query representation and use two subsequent fully-connected layers. The
�rst layer consists of 512 hidden units with ReLU activation, while the second
generates a probability distribution over the answers (i.e., the number of units is
equal to the number of answers). The number of answers we keep identical to the
IMG baseline. We train QUES also for 30 epochs using a learning rate of 1e − 5.

QUES+IMG. In the QUES+IMG baseline, we concatenate the 512-dimensional
question embedding generated by an LSTM (as in QUES) with the 2048-dimensional
visual representation (as in IMG). Then, we use a multi-layered perceptron for
the prediction module comprising two fully-connected layers in the same way
as in QUES: a 512-dimensional layer with ReLU activation and a prediction layer
with softmax normalization. We train this baseline with the same parameter and
learning settings as in QUES and IMG.

6.5.2 FUSE network

Next, we give more details about the parameters and learning procedure of the
proposed FUSE architecture. In Table C.1 in Appendix C, we show an overview of
the parameters and output shapes of each layer in our network.
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1. Visual embedding. The generated slides have a high resolution of 1512 ×
1134 × 3 pixels – too large for most GPUs to handle and prone to over�tting. Thus,
we resize our images to a �xed size of 168× 224× 3 using nearest interpolation and
process the pixels ranging from 0 to 255 to smaller values using the same processing
setups as in ResNet. That is, the images are converted from RGB to BGR, then we
zero-center each color channel according to the ImageNet dataset. We encode these
images with twelve 2D-convolutional layers with ReLU activation, as described in
Table C.1. We do not use any data augmentation.

2. Question encoder. We represent the question as a set of words encoded using
one-hot embedding (i.e., binary representation with a single one for mapping to the
word in the vocabulary). Therefore, we pre-process the question by removing punc-
tuation and transforming the characters to lower case. We use these pre-processed
questions to create a dictionary of the 5k most frequent words from the training set.
Due to the variable number of words per question, we are not able to apply batch
training directly on this representation. Thus, we map all questions to a �xed size
(25 words) by either removing words for too long queries or apply zero-padding for
short ones. Finally, we apply one dimensional convolutions with ReLU activation
without any data augmentation or word embeddings, as we show in Table C.1.

3. Multi-modal fusion module. In the �rst step of the multi-modal module, we
want to fuse the visual and textual embeddings into a new representation that we
further use to generate the attention maps. However, since the question is a vector
while the visual features are in the form of a 3D tensor, we need to bring the two
variables to a common shape. We achieve this by tiling the question by the height
and width of the visual tensor. Then, we concatenate the tiled query with the visual
feature on the last dimension resulting in a 16 × 14 × 160 tensor. To obtain the
attention maps, we apply multiple rounds of convolutions and, �nally, use so�max
on the spatial dimensions for each of the 200 attention maps. We want to note that
the number of attention maps is equal to the number of output tokens that our
model is able to generate, since each attention map focuses on parts of the image
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for generating the corresponding token. Lastly, we obtain the �nal encoding by
employing the outer product between the attention maps and multi-modal features
followed by addition over the location dimensions (x- and y-axis) and resulting in
a 200 × 160 matrix. Thus, we have a 160-sized vector encoding for each token that
we want to generate for the current question.

4. Prediction network. We use three fully-connected layers to compute each
token as shown in Table C.1. That is, for each token we re-embed the 160-sized
vector using two fully-connected layers followed by the prediction layer with 150-
hidden units. Each of the 150 hidden units represents a probability of a character
class (e.g., ‘a’, ‘X’, ‘?’). Thus, to form the �nal answer, for each token from the
200 available ones, we compute the index with the maximum activation from the
150 character categories. We obtain 200 indices which we simply map directly to
characters based on the computed vocabulary. Since the answers have a variable
length (e.g., some answers are shorter than 200 tokens), we use ‘END’ tokens to
mark the end of a string. For example, to generate the answer ‘yes’ our model
predicts the following tokens: ‘y’, ‘e’, ‘s’ followed by 197 ‘END’ symbols. The ‘END’
symbols are discarded and we keep the three preceding characters.

Learning procedure. We train our model by minimizing the cross entropy loss
using Adam [Kingma and Ba, 2015] as an optimization scheme with an initial
learning rate of 1e − 4, β1 = 0.9, β2 = 0.999, ε = 1e − 8, and a minibatch size of
32. The weights of the convolution and fully-connected layers are initialized using
Glorot distribution [Glorot and Bengio, 2010] while the biases are all set to zero.
We select the questions for training pseudo-randomly: we pick a large set of images
(a batch of around 16k) that are loaded into memory and we train all questions
assigned to them (around 10 questions per image) which are picked randomly. This
technique allows a faster training procedure as we strongly decrease the loading
time of the large number of images into memory. We provide more information on
the parameters of FUSE network in Appendix C.
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Approach Structure Component Relational FigureQA Overall
Baseline Methods

ANS 31.7 0.0 0.0 14.2 15.0
QTYPE 31.7 21.1 30.3 13.6 26.5
IMG 31.3 0.4 0.0 14.2 15.0
QUES 69.6 27.3 57.0 24.3 49.8
Q+IMG 81.1 29.2 56.6 20.3 55.2

Attention-based and Graph Networks
SAN 77.5 29.4 58.0 25.0 54.2
RN 88.8 33.1 62.4 23.7 61.0
FUSE 89.8 45.0 65.2 18.7 65.6

Table 6.4: Test accuracy in the standard split of the SlideQA dataset for each of our
representative question types and the overall accuracy.

6.6 Experiments

6.6.1 Final results

We adopt the testbed of previous VQA datasets [Agrawal et al., 2017; Johnson et al.,
2017a] and use the accuracy on exact-matches over all question-answer pairs in
the test set as the main evaluation metric. Table 6.4 illustrates the overall perfor-
mance of the employed algorithms for each task as well as the average accuracy
over all four task types. Our baselines that do not use the question to generate an
answer (ANS, QTYPE, and IMG) clearly underperform with accuracies under 27%.
In comparison, the performance of the question-only model QUES rises to 49.8%,
which is similar to the accuracy obtained by this method on other popular VQA
datasets (e.g., 46.8% in CLEVR [Johnson et al., 2017a], 50.5% in VQA [Agrawal et al.,
2017]). When using both the question and image as input, the correct answer rate
increases to an accuracy of over 53% for our VQA approaches SAN, Q+IMG, and
RN. Our proposed FUSE model reaches an overall accuracy of 65.4%, exceeding all
previous methods and achieving the highest performance in the three page-related
tasks. An exception to this are the �gure-type questions, where the leading SAN
algorithm speci�cally designed for FigureQA reaches an accuracy of 25.0%.
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Approach Structure Component Relational FigureQA Overall
Baseline Methods

ANS 31.7 0.0 0.0 14.3 15.0
QTYPE 31.7 21.2 30.2 13.7 26.5
IMG 31.0 0.6 0.0 13.7 14.9
QUES 69.8 27.4 57.1 22.7 49.8
Q+IMG 78.6 28.7 56.5 19.2 53.8

Attention-based and Graph Networks
SAN 78.2 29.6 57.7 24.6 54.5
RN 87.8 32.3 62.1 22.3 60.1
FUSE 89.8 39.5 64.7 17.3 63.5

Table 6.5: Performance for the layout-agnostic setting (distinct layouts between
the training and test set).

Approach Structure Component Relational FigureQA Overall
Baseline Methods

ANS 31.7 0.0 0.0 14.5 15.0
QTYPE 31.7 21.3 30.2 13.6 26.5
IMG 31.4 0.5 0.0 14.2 15.1
QUES 67.3 27.4 57.1 22.6 48.8
Q+IMG 69.7 28.8 56.2 20.4 50.0

Attention-based and Graph Networks
SAN 74.7 29.5 57.9 24.0 53.0
RN 67.3 27.4 57.1 23.7 48.9
FUSE 80.6 37.1 63.9 17.2 58.6

Table 6.6: Performance of the models in the color-agnostic setting.

6.6.2 Layout- and color-agnostic se�ing

Next, we analyze our models in the layout and color-agnostic setting in order to
target their generalization capabilities (Table 6.5). To achieve this, we split our
data by layout and color such that 35% of layout and color types are excluded from
training and are seen during evaluation for the �rst time. As expected, in both of
our proposed setups, the baseline methods ANS, QTYPE, QUES, and IMG have a
similar performance as in the standard setting (Table 6.4).
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In case of the layout-agnostic setting the accuracy of the stronger VQA networks
(i.e., Q+IMG, SAN, RN, and FUSE) only slightly decreases (Table 6.5) demonstrating
good generalization across di�erent page types. Thereby, the largest gap between
the layout-agnostic and conventional settings lies in the component-based query
type, i.e., the networks have di�culties in �nding and analyzing document entities.

In comparison, in the color-agnostic setting, the color palettes which we used for
training and testing are disjoint (green and blue shades are kept for evaluation-only,
the rest of colors are included for training). This setup is harder for the VQAmodels,
as we observe a higher performance drop (Table 6.6).
Finally, in both color- and layout-agnostic settings, FUSE achieves the highest

overall accuracy compared to previous models totaling to: 63.5% and 58.6%, re-
spectively. Overall, the models trained on SlideQA generalized well to previously
unseen page variants, given that handling such domain shifts is challenging.

6.7 Summary and discussion

In this chapter, we introduced the task of visual reasoning on complete pages,
which extends the conventional QA problem to the simultaneous understanding
of di�erent structural, graphical, and text-based elements. We addressed this task
and collected the SlideQA dataset comprising over 400k slides and 4M questions
spanned over four task groups. We conducted an extensive analysis of our dataset
and demonstrated its unique properties and evaluated several baselines and VQA
networks. Our experiments demonstrate that SlideQA tasks are di�cult for modern
algorithms, which we link to the diversity in component types included in the
SlideQA setting as well as the large vocabulary size in the answer-set. Finally, we
designed the FUSE architecture for reasoning on pages that combines convolu-
tional layers with multiple token-wise attention maps at character-level obtaining
a considerable gain in performance over previous VQA methods.
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7 Generating Semantic Graphs

As we discussed in the previous chapters, graphs o�er a natural way for modeling
multi-step associations inside the data, leading to excellent performance of graph
neural networks in tasks with long reasoning chains (i.e., question answering).
However, graph networks for question answering require both inference from the

graph and building the graph itself from the input. While in the previous chapters we
focused on reasoning using graphs, we further discuss how to generate such graphs.

Even though many previous question answering works partially skip the graph
inference step by assuming the nodes as given through manual annotations [Kim
et al., 2017; Sankar et al., 2019; Teney et al., 2016], the research of automatic graph
generation is rapidly gaining attention [Garcia and Bruna, 2018; Ma and Zhang,
2019; Zhang et al., 2019]. However, existing graph generationmodels cannot operate
on any kind of input modality type but are crafted for a speci�c task. For example,
methods such as [Krishna et al., 2016; Li et al., 2017; Lu et al., 2016a; Xu et al., 2017;
Yang et al., 2018b] designed for visual data usually entail object detectors as a pre-
processing step, causing considerable annotation overhead in the form of bounding
boxes. The detected objects then represent the nodes while the pairwise image crops
around them are often used as a starting point for edge prediction. In case of visual
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question answering the bounding boxes are then discarded completely and only
the graph itself is used for inference. In tasks, such as graph auto-encoding [Feng
and Duarte, 2018; Gidaris and Komodakis, 2019; Pan et al., 2018; Simonovsky and
Komodakis, 2018], a set of nodes is passed as input and their embeddings are further
re�ned during the encoding process. Due to the mechanism of such methods and
the variable-sized dimensionality of the node set, the encoding size of the graph is
directly dependent on the initial number of nodes, i.e., the dimensionality of the
encoding changes based on the size of the input.

Contributions. We aim to make a step towards generic graph generation from
feature vectors and introduce a new approach for predicting the entire graph, i.e.,
both the nodes and the relations directly from a global representation of the data.
The challenge arises from the unordered nature of the nodes, which hinders the
direct computation of the loss between the predicted and ground truth graph. To
address this, we introduce the Node Association Procedure (NAP) that iteratively
associates the predicted nodes and edges with the ground truth. Based on these
associations, we re-order the nodes in the ground truth facilitating end-to-end train-
ing of our neural architecture. With the proposed NAP optimization scheme, the
underlying network is trained to generate both nodes and edges without employ-
ing any object detectors or assuming the node set as given. Overall, our learning
procedure comprises four steps: (1) generating the nodes and edges from a vector,
(2) computing an assignment cost between the predicted and ground truth graphs,
(3) matching the estimated nodes and edges based on the assignment cost, and
(4) calculating the loss and updating the parameters of the network.

We demonstrate the potential of our approach on synthetic (Graph2Graph,
MNIST-Graphs, CLEVR [Johnson et al., 2017a]) and real-world datasets (VRD [Lu
et al., 2016a], Visual Genome [Krishna et al., 2016], COCO-Images, and COCO-
Captions [Lin et al., 2014]) for node estimation and graph generation. While
methods for visual graph generation like [Krishna et al., 2016; Li et al., 2017; Lu
et al., 2016a; Xu et al., 2017; Yang et al., 2018b] rely on ground truth bounding boxes,
our approach is able to estimate the nodes and edges from a single vector without
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employing any object detection techniques. In comparison to previous methods
for graph generation from text content, which build upon recurrent models to
sequentially predict a node at a time, our approach generates the entire graph at
once. While previous graph auto-encoders include a bottleneck layer that comprises
the list of nodes (i.e., a matrix with a varying dimension dependent on the number
of nodes), our approach �attens the entire graph into a single fixed vector, which
then is used to re-assemble the input graph.

Publications. This entire chapter is based on [Haurilet et al., 2021a].

7.1 Task overview
In this chapter, we address the problem of building complete graphs (i.e., both
nodes and edges) from single feature vectors, which we denote as semantic graph

generation. As a preliminary, we de�ne the semantic graph data structure and
provide a formal de�nition of the task. We then proceed with our proposed learning
scheme and the accompanying model in Section 7.2. We include an overview of all
the variable and function de�nitions throughout this chapter in Table 7.1.

Semantic graph. First, we describe the target entity for graph generation – the
semantic graph. This data structure refers to a fully-connected graph G = (v,E)
with semantic information associated to the n vertices v and to the edges E. Let
C = {1, . . . , c} be a set of c categories and R = {1, . . . , r } be a set of r relationship
types. We enrich the graph with semantic information and constrain that the nodes
and edges take values in these �nite semantic sets: v ∈ Cn and E ∈ Rn×n.

Semantic graph generation. We de�ne semantic graph generation as the task of
�nding a function Ψ that maps the input to its underlying semantic graph:

Ψ : D →
�
n∈�

�Cn × Rn×n � (7.1)

where D is the set of data samples, e.g., D ⊆ �h×w×3 for images where h and w
stand for the height and width of the image, respectively.
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Input Data and Graph Representation

G = (v,E) Graph comprising a tuple of nodes and edges
v ∈ Cn Vector with n entries representing the vertices in G
vi ∈ C Class associated to the ith vertex
n ∈ N0 Number of nodes in the graph G
C = {1, . . . , c} Set of c semantic node classes
c ∈ N Number of node categories
E ∈ Rn×n Edge matrix of size n × n
Ei, j ∈ R Class of edge between the ith and jth vertex
R = {1, . . . , r } Set of r semantic edge classes
r ∈ N Number of relation categories
G∗ = (v∗,E∗) Ground truth graph of nodes and edges
v∗ ∈ Cn∗ Vertex vector with n∗ entries
n∗ ∈ N Number of nodes in the graph G∗

E∗ ∈ Rn∗×n∗ Ground truth edge matrix of shape n∗ × n∗

G∗ Set of all ground truth graphs G used during training
Ḡ = (v̄, Ē) Supergraph of G with n̄ − n additional empty vertices
v̄ ∈ C̄n̄ Extension of the vector V with n̄ − n empty vertices
Ē ∈ Rn̄×n̄ Extension of the edge matrix to comply with Ḡ
C̄ = C ∪ {c + 1} The category node set with an additional empty class
n̄ ∈ N, n̄ ≥ n Number of nodes in the supergraph Ḡ of G

Network Structure

D Set of all data samples
d ∈ D A data point from the dataset
γ : D → Rm Global vector representation of a data sample
ϕi : Rm → Rf Node-speci�c representation de�ned ∀i ∈ {1, . . . ,n}
ν : Rf → [0, 1]c+1 Mapping of each ϕi to a node class distribution
ε : Rf × Rf → [0, 1]r Mapping of the node encodings to edge con�dence values
Θτ Set of all parameters at iteration τ in our network
Θ
γ→ϕ
i ∈ Rf ×m Weights in the function ϕi that encodes γ

Θϕ→ν ∈ R(c+1)×f Weight matrix in the function ν that maps ϕi to objects
Θϕ→ε ∈ Rr×2f Weight matrix for estimating the relation distribution
m, f ∈ N Hyper-parameters in our network

Matching Cost

n̄∗ ∈ N We expand the ground truth graph to match the prediction
Note that: n̄ = n̄∗ We use n̄ and n̄∗ to mark indexing di�erences
κV Cost for matching the nodes based on the node activation
κE Cost for matching the nodes based on the edge con�dence
κG Cost based on both the node- and edge con�dence

Node Association and Loss Function

A ∈ {0, 1}n̄×n̄ Association between the prediction and ground truth
v̄A ∈ C̄n̄ Vertex vector v̄∗ ordered by the matrix A
ĒA ∈ Rn̄×n̄ Edge matrix Ē∗ ordered by the matrix A
ḠA = (v̄A, ĒA) Ground truth graph with ordered nodes and edges
LV : [0, 1]c+1 × C̄ → R Classi�cation loss of the predicted and ground truth nodes
LE : [0, 1]r × R → R Classi�cation loss for the edges

Table 7.1: Overview of the variables and functions in this chapter.



Methodology Section 7.2

129

empty

dog
person

empty

persondog

dog
empty

person

Prediction Ground Truth

person
γ ν,ε
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Figure 7.1: Overview of our neural architecture. We embed the input data into
a single global vector γ using convolutions, fully-connected layers, or graph
convolutions. Then, we in�ate the vector into the node v̄ and edge classes Ē by
selecting the elements with maximum values in ν and ε , respectively. During
inference, we remove all vertices classi�ed by the network with the empty class
(marked gray) and keep the rest of the graph as our prediction (v,E). To the right,
we show an example of a ground truth graph (v∗,E∗) that contains a di�erent
number of nodes and edges than our prediction.

7.2 Methodology

Conceptually, our graph generation model comprises two steps: (1) supergraph gen-

eration (Section 7.2.1), where the given input data is embedded into a global vector
and then in�ated into an enlarged set of nodes with their associated relationships,
and (2) graph inference (Section 7.2.2), which reduces this oversized representation
to the essential underlying graph G. As previously mentioned, computing the loss
directly is hindered by the order mismatch between the generated and the ground
truth nodes. To address this, we introduce the NAP learning scheme (Section 7.2.3),
which computes a �tting assignment between the nodes and, therefore, enabling
supervised training of our model.

7.2.1 Architecture for graph generation

Extending the graphs. To enable batch training and to compare the prediction
with the target graph as required during training, we want to bring our graph output
to a �xed encoding size. To that end, we estimate a large wrapping graph representa-
tion – a semantic supergraphwith an arbitrary but �xed number of nodes (example in
Figure 7.1). Note, that we compute the supergraph of both the prediction and the tar-
get requiring that they match in size and, thus, enabling comparison of their entities.
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Algorithm 1: Network optimization through the
Node Association Procedure (NAP)
1 Input: data samples D, graphs G∗, number epochs τtotal
2 Initialization: Θ0

3 // iterate over epochs
4 for τ ∈ {1, . . . ,τtotal } do
5 // iterate over graphs or graph batches
6 for (d,G∗) ∈ (D,G∗) do
7 // estimate the graph (1)
8 Calculate feature vector γΘτ(d);
9 Infer the node con�dences νΘτi using Eq 7.3;

10 Get their relation con�dences εΘτ (Eq 7.4);
11 // get the matching cost (2)
12 Compute the matching costs (Eq 7.9 and Eq 7.10);
13 Calculate total cost κG as in Eq 7.11;
14 // associate the nodes (3)
15 Get node association matrix A (Eq 7.12);
16 // update weights (4)
17 Calculate the loss between G and G∗ (Eq 7.15);
18 Update parameters to Θτ+1;
19 end
20 end

We refer to Ḡ = (v̄, Ē) as a semantic supergraph of G with n̄ vertices, if it extends
G with n̄ − n vertices so that all its vertices and edges have the same associated
classes. Formally, we constrain that the hyper-parameter n̄ is at least n, i.e., n̄ ≥ n

and that an injective function α (for graph-to-supergraph node mapping) exists
with α : {1, . . . ,n} → {1, . . . , n̄}, v̄α (i) = vi , and Ēα (i),α (j) = Ei, j , ∀i, j ∈ {1, . . . , n̄}.
Note that the function α is bijective if and only if n̄ = n. Moreover, we restrict that
the additional vertices of Ḡ are of a specialized empty class which we map to the
index c + 1. We therefore extend the set of semantic node classes to C̄ � C ∪ {c + 1}.
Thus, we require that the additional nodes (that are not selected by α ) are mapped
to c + 1, i.e., v̄i = c + 1,∀i ∈ {1, . . . , n̄} \ α({1, . . . ,n}). With these constraints, we
can model graphs up to an order of n̄.
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Node recognition. Let γ : D → �m be a function mapping the input data
d ∈ D to a global vector representation (e.g., using a CNN followed by average
pooling). Note that, for ease of notation, we skip the inputs to previously de�ned
functions (e.g., we use γ instead of γ (d)). We further leave out possible parameter-
izations, which are marked with Θ, from the function de�nitions.

To map the vertices to their respective class, we estimate the con�dence for each
of the n̄ nodes being assigned to each class in C̄. First, we transform the global
vector γ to the node-specific features ϕ:

ϕi : �m → �f , ϕi (γ ) � ReLU(Θγ→ϕ
i · γ ) (7.2)

where i iterates over all n̄ vertices and Θ
γ→ϕ
i ∈ �f ×m is a weight matrix where f

is a �xed hyperparameter. Note that we use a di�erent weight matrix Θ
γ→ϕ
i for

each vertex in the supergraph. We leverage the supergraph representation Ḡ at this
point ensuring a �xed number of node-speci�c transformations ϕi . We then apply a
second mapping to each node-speci�c feature ϕi followed by so�max normalization
to obtain the node-wise distributions ν over the classes C̄ (the extended category set):

ν : �f → [0, 1]c+1, ν(ϕi ) � so�max(Θϕ→ν · ϕi ) (7.3)

where Θϕ→ν ∈ �(c+1)×f is a weight matrix. We include the additional category that
marks that no semantic class is assigned to the node (i.e., the previously de�ned
empty node category) leading to c + 1 possible classes. For simplicity of notation,
we shorten ν(ϕi ) to νi throughout this chapter.

During inference, we assign to each vertex i the class with the highest proba-
bility score estimated by the probability distributions νi (more details on the node
inference in Section 7.2.2). Note, that the parameters Θ

γ→ϕ
i and Θϕ→ν are learned

jointly using our NAP learning scheme (Section 7.2.3).

Edge recognition. Next, we leverage the previously found node-speci�c fea-
tures ϕi to estimate the edge-embeddings ε . To that end, we re-encode the feature
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vectors ϕi pair-wise and map them to a probability distribution estimate over the
possible relationship types R as follows:

ε : �f ×�f → [0, 1]r , ε(ϕi ,ϕ j ) � so�max(Θϕ→ε · (ϕi � ϕ j )) (7.4)

where ϕi � ϕ j denotes the concatenation between ϕi and ϕ j , Θϕ→ε ∈ �r×2f is a
learnable weight matrix, and the indices take values in i, j ∈ {1, . . . , n̄}. In a similar
manner as for the vertices, we use εi, j for ε(ϕi ,ϕ j ). The softmax normalization is
applied over all possible relationship types of every node pair (i, j), i.e., modeling a
probability distribution over the r output values.

Concerning node-speci�c features. The node-speci�c featuresϕi have a special
role in our approach, since we aim for a joint semantic space as an intermediate
representation for inferring both the node classes and their relationship types. The
global vector is, therefore, mapped toϕi , which is associated to a node with a unique
index i in the graph, while the edges are inferred using these same ϕi through
pair-wise combination. An important e�ect of modeling the edge-embeddings ε
pair-wise from the node-speci�c features is that only a single weight matrix Θϕ→ε

is needed for all edges. Alternatively, one could estimate ε directly from the global
vector γ . However, this would lead to an explosion in parameters as it requires a
distinct weight matrix for each node-pair in the supergraph.

7.2.2 Graph inference

The previously described steps infer a supergraph Ḡ, i.e., a wrapper representation,
that might include additional unnecessary nodes and edges. Next, we describe
the graph inference process, where the placeholder nodes are removed, therefore,
re�ning the �nal graph G (as in Figure 7.1). To each node with index i , we assign
the class that scores the highest con�dence value in the distributions νi :

v̄i � argmax
k ∈C̄

νi,k where i ∈ {1, . . . , n̄} (7.5)

We obtain the �nal vertices v by discarding the ones associated to the empty class
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(i.e., to class index c + 1) in the vector v̄. Let I be the set of indices of the non-empty
vertices in v̄, i.e., I � {i ∈ {1, . . . , n̄} | v̄i � c + 1} and let ι : {1, . . . , |I |} → I be
a bijective function. Then, we estimate v as:

v j � v̄ι(j) where j ∈ {1, . . . , |I |} (7.6)

To re�ne the edges, we leverage the estimates of the function ε and select the
relationship type associated to the strongest activation by considering only the
edges that do not comprise any empty nodes:

Ei, j � argmax
r ∈R

ει(i), ι(j),r where i, j ∈ {1, . . . , |I |} (7.7)

In a similar manner, we can also estimate the edge classes of the supergraph Ē:

Ēi, j � argmax
r ∈R

εi, j,r where i, j ∈ {1, . . . , n̄} (7.8)

While we de�ne our output for fully-connected graphs only, we can enable the
model to predict sparse graphs by expanding the relation categories R with an
additional no-relation class that is discarded if it produces the highest activation.

7.2.3 NAP learning scheme

At the heart of our approach is the Node Assignment Procedure (NAP) – a parame-
ter optimization scheme that enables our network to train end-to-end (Algorithm 1).
The NAP method comprises a node and an edge cost, which are used to match each
ground truth node to a predicted vertex. These assignments are, then, leveraged
to compute the loss of the previously described graph generation network.

Node matching cost. Due to the arbitrary ordering in prediction and ground
truth, we cannot establish a direct matching between the vertices. To address
this, we de�ne a matching con�dence for associating each node in the ground
truth to a node in the prediction. We aim for linking each predicted node with
index i with a ground truth vertex with index i∗ if and only if they portray the
same entity. Note that by de�nition, the size of the ground truth is equal to the
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predicted supergraph (i.e., n̄∗ = n̄). To generate these connections, we de�ne a
cost function κG that models the con�dence of i and i∗ being associated. The cost
function κG : {1, . . . , n̄}× {1,. . . , n̄∗}→� takes high values if it is unlikely that i
and i∗ belong to the same entity, and gives a low estimate otherwise.

To obtain the association cost based on the ν estimates, we leverage the class of
the ground truth nodes v̄∗. Therefore, we set the cost to the negative of the network
con�dence modeled by the node distributions ν:

κV : {1, . . . , n̄} × {1, . . . , n̄∗} → �, κV (i, i∗) � −νi,ρ(i∗) (7.9)

where ρ(i∗) := v̄∗i∗ is the value at index i∗ in the supergraph. We estimate the cost
of aligning the two vertex indices i and i∗ by considering the best edge match:

κE: {1, . . . , n̄}×{1, . . . , n̄∗}→�, κE (i, i∗) � −
�

k∗ ∈{1, ...,n̄∗}
max

j ∈{1, ...,n̄ }

�
νj, v̄∗k∗ · εi, j, Ē∗

i∗,k∗

�
(7.10)

The edge assignment cost of i and i∗ considers the matching con�dence of all
edges originating in i∗. For all vertices with index k∗, we �nd a node with index j

that best matches k∗ in terms of the relation prediction ε and node con�dence ν.
The con�dence values of all the best edge matches (i.e., relation classes and target
nodes) are added and amount to the cost of aligning i and i∗. The �nal assignment
cost is a linear combination of both cost functions κV and κE :

κG(i, i∗) � wV · κV (i, i∗) +wE · κE (i, i∗) (7.11)

We use the weightswV,wE > 0 when estimating both nodes and edges, while we
setwV > 0 andwE = 0 for node recognition-only, as we do not estimate any edges.

Estimating the graph assignment. Next, we leverage the previously de�ned
cost function κG between the ground truth and predicted nodes to estimate the
node assignment matrix A ∈ {0, 1}n̄×n̄ . To establish that, we minimize the function:

min
A

�
i

�
i∗

κG(i, i∗) · Ai,i∗ with
�
i

Ai,i∗ = 1,
�
i∗

Ai,i∗ = 1 (7.12)

where i, i∗ ∈ {1, . . . , n̄} iterate over all nodes in the supergraph.
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We pose the graph assignment task as the problem of minimum weight matching
in bipartite graphs, where the goal is to �nd a mapping between two distinct node
subsets that are connected by weighted edges shaped by κG . For addressing this
problem, we leverage the Munkres algorithm [Kuhn, 1955], a popular assignment
technique previously employed in machine learning [Bewley et al., 2016; Hamuda
et al., 2018; Sahbani and Adiprawita, 2016; Xu et al., 2020]. The output is a binary
matrix A with Ai,i∗ = 1 if the ground truth vertex index i∗ is matched to i . Finally,
we leverage A to re-order the ground truth graph Ḡ∗.

Re-ordering the nodes. To address the unordered nature of the nodes and
facilitate the comparability to the prediction, we re-order the ground truth vertices
using the previously estimated matrix A. Since A is a binary matrix, we re-order
the node classes via multiplication: v̄A � A · v̄∗. In a similar manner, we re-order
the edges (both rows and columns): ĒA � A · Ē∗ · A�.

Loss Estimation and Parameter Update. After the re-ordering phase, we
compute the loss L of nodes and edges using cross entropy, as we deal with a
classi�cation task in both cases:

LV(νi , v̄Ai ) � −
�
h∈C̄

� �
v̄Ai �h

� · log(νi,h)� (7.13)

Thereby, [·] is the indicator function that returns the value one if the given con-
dition is true, and zero otherwise. The node loss is estimated over all i in {1, . . . , n̄}.
Then, we set the edge loss using the cross entropy over the relations:

LE (εj,k , ĒAj,k) � −
�
h∈R

� �
ĒAj,k �h

�
· log(εj,k,h)

�
(7.14)

Note that we use the edges after the node re-ordering step. The �nal cost is
computed as a linear combination of the node and edge loss:

L(Ḡ, ḠA) � �V ·
�
i

LV(νi , v̄Ai ) + �E ·
�
j

�
k

LE(εj,k , ĒAj,k ) (7.15)

where �V > 0 and �E ≥ 0 are hyper-parameters weighting the node and edge loss.



Chapter 7 Generating Semantic Graphs

136

Dataset #Nodes #Classes #Edges #Samples Annot. Type Data Type

Graph2Graph 5 2-20 2 250k Fully Graphs
COCO-Images 1-15 91 – 123k – Natural Img
COCO-Captions 1-15 91 – 617k – Captions
MNIST-Graphs 5 10 4 210k Fully Digits
CLEVR 3-10 3 4 90k Fully 3D Shapes
VRD 1-10 100 70 5k Sparse Natural Img
Visual Genome 1-10 150 50 108k Sparse Natural Img

Table 7.2: Overview of the datasets we used in our evaluation. We compare by the
number of nodes n, semantic node categories c , relation types r , and number of
data samples. Moreover, we report the annotation and data types.

The index i takes values in {1, . . . , n̄}, i.e., we iterate over the nodes in the super-
graphs. Therein, some nodes are encouraged to have a stronger activation either
towards the empty class or towards a category in C. In case of the edge indices, as
we do not have any labels associated to the ingoing and outgoing edges of the empty
vertices, we only consider the nodes that are not associated to the empty class in the
ground truth. Thus, we only iterate over the edges connecting non-empty vertices,
i.e., j and k take values in {1, . . . , n̄}, where v̄Aj � c+1 and v̄Ak � c+1. We update all
the parameters in our network (denotedwithΘ) usingAdam [Kingma and Ba, 2015].

7.3 Datasets overview
We evaluate our approach for graph auto-encoding (Graph2Graph), visual node and
graph generation (COCO-Images, VRD, Genome, MNIST-Graphs, CLEVR) as well
as for inferring graphs from text (COCO-Captions). Table 7.2 shows an overview
of these datasets, where we di�erentiate between the number of annotated graphs
and the number of nodes and relation types. Note that in case of COCO and CLEVR
we do not have any labels in the test set and, thus, we use the validation set for
evaluation and report the number of graphs without the o�cial test set. Since graph
annotations are di�cult to acquire, in VRD and Genome, we encounter missing
edge annotations, which we denote with ‘sparse’ in Table 7.2. Finally, we include
the type of the input data, which we use to construct the graph entities: visual
input (e.g., natural images), textual (captions), and random graphs.
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Figure 7.2: Analysis of NAP on the Graph2Graph dataset. Accuracy for small
vector capacities (left) and number of iterations for a near perfect performance
when varying the bottleneck sizes (right).

7.4 Experiments

In this section, we conduct several studies of our NAP learning scheme. First, we
analyze two fundamental properties of NAP: its ability to recover graphs that are
embedded into a vector (Section 7.4.1) and how the learned coordination of the
neurons ν links the nodes to the classes (Section 7.4.2).

Then, we demonstrate NAP for inferring graphs from di�erent input modalities
(e.g., text and images) and datasets (Section 7.4.6 for node generation and Sec-
tion 7.4.7 for inferring complete semantic graphs). In this line of experiments, we
evaluate additionally to our propose NAP scheme, additional baseline methods and
establish an upper bound for our model which leverages additional supervision.

7.4.1 Vector capacity for graph auto-encoding

First, we evaluate how well NAP is able to extract graphs that are embedded into a
vector by designing a graph auto-encoding experiment. To that end, we generate
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Cls 0 Cls 1 Cls 2 Cls 3 Cls 4 Cls 5 Cls 6 Cls 7 Cls 8 Cls 9
A single occurences of each class in the ground truth

Node 0 0.0 100.0 1.4 0.0 60.7 3.7 36.0 0.1 3.5 6.9
Node 1 0.9 0.0 4.9 0.0 6.6 14.7 0.0 99.9 30.1 59.2
Node 2 17.0 0.0 61.2 0.0 1.9 24.9 64.0 0.0 20.8 3.4
Node 3 0.3 0.0 23.3 100.0 2.6 22.0 0.0 0.0 30.8 25.2
Node 4 81.7 0.0 9.2 0.0 28.2 34.6 0.0 0.0 14.9 5.3

Two occurences of each class in the ground truth
Node 0 15.4 50.0 3.5 0.0 33.4 8.8 22.5 14.3 5.1 13.6
Node 1 6.2 0.0 8.2 5.5 13.5 14.2 4.6 50.0 20.5 31.4
Node 2 27.1 0.0 39.4 40.0 6.7 23.8 49.9 4.7 23.4 8.8
Node 3 3.1 0.0 33.0 50.0 5.3 24.5 2.9 18.9 31.3 31.0
Node 4 48.2 50.0 16.0 4.5 41.1 28.8 20.1 12.2 19.7 15.1

Table 7.3: Proportion [%] of the �ve nodes inV for predicting each of the ten digits

the Graph2Graph dataset of random graphs with an order of �ve, where each node
is associated to one of c classes while the edges are binary. The vector embeddings
γ are obtained using several layer of graph convolutions [Kipf and Welling, 2017]
followed by average pooling over the node representations.
NAP is able to retrieve the original graph from the vector representation with

near perfect performance if the embedding is large enough (Figure 7.2 left), while the
impact of the embedding size is rather small (e.g., an embedding with only 12 neu-
rons is enough to achieve at least 50% accuracy over the nodes and edges for c ≤ 20).
Nonetheless, increasing the embedding size reduces the number of iterations during
training that NAP requires to learn to extract the entire graph (Figure 7.2 right).

7.4.2 Activation analysis of the node-wise distributions

As we do not place any external restrictions on the node order, a key property of
NAP is the learned coordination between the neurons. To evaluate this property,
we take a closer look at the neurons ν, which learn to associate the vertices with the
classes. We perform this analysis on our generated MNIST-Graphs dataset, where
we placed MNIST digits [LeCun et al., 1998] randomly on a large blank image,
producing �ve nodes (n = 5) per image with four relation types (e.g., left).
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Figure 7.3: Entropy of the nodes averaged over each class in C for each of our
datasets (left) and separate entropy for each of the classes in MNIST-Graphs (right).

Table 7.3 shows the activation proportion of the ν neurons for each of the ten
classes. Therein, we constrain that the ground truth graphs G∗ contain a single

instance (top) or exactly two instances (bottom) of each targeted class. For the single
instance case, we observe that the network learns to specialize di�erent neurons
for distinct classes, e.g., the neuron with the ID 0 is the only one predicting the
class 1. This property is facilitated by NAP, as it encourages the nodes that have
a strong match for a speci�c class to activate even stronger into that direction. In
a similar manner, when we have two instances in G∗ for some digits (e.g., class 1
and 3) we have mostly two neurons predicting them.

7.4.3 Entropy of the node-neurons

In the previous section, we visualize the assignments of each of the predicted nodes
v̄ to the classes C on the MNIST-Graphs dataset. Thereby, when we analyzed a
speci�c class c ∈ C, we constrained that we only have a single instance in the
ground truth for class c , i.e., if

�
i
�
v∗i �c

�
is equal to one (for i ∈ {1, . . . ,n∗}). As
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we deducted from that example, many nodes were activating for speci�c classes,
thus, the node-purity was high (i.e., the entropy for each node was low). Next, we
analyze this property across all our datasets.

In Figure 7.3 (left), we show the resulted average entropy over all nodes in the pre-
diction for �ve di�erent frequencies of the classes (e.g., node entropies whenwe have
exactly 3 occurring instances in v∗). The purity of the nodes is decreasing by the
number of instances in the scene. Finally, Figure 7.3 (right) visualizes the entropy for
the di�erent digits in MNIST-Graphs. Some of the nodes have specialized to a digit
class (e.g., digit one), while other have several nodes recognizing them (e.g., digit 5).

7.4.4 Evaluation metrics

In the following, we evaluate our NAP scheme for node prediction and graph
generation on a wide range of input data and annotation types. Due to the high
divergence in data types and the di�erence in data representation of the node and
edges, we leverage several kinds of evaluation metrics for comparing our models.

For measuring the node recognition performance, we use the Jaccard index and
F1 score which are frequently used for comparing sets. In case of the edges, we
cannot use the same metrics as for the nodes, as their correctness directly depends
on the match between the nodes. For example, it does not su�ce to predict that
the left relation is present in an image, but one has also to specify the source
and target nodes. Thus, we leverage �rst the edge accuracy after matching and
implement several metrics over triplets (relation, source, and target) depending
on the ground truth graph types. In case of fully-connected graphs (CLEVR and
MNIST-Graphs), we consider the triplets as sets and use the same metrics as for
the nodes (i.e., Jaccard index and F1 score). For the sparse graphs, we use the same
metrics as previous work [Xu et al., 2017], i.e., the recall@k over the triplets.

Node recognition. Since the nodes of a graph can be seen as multisets comprising
the object classes found in the scene, we employ evaluation metrics typically used
for set comparison. To that end, we leverage the Jaccard index and F1 score between
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the vertex vectors v and v∗. Note that we use v after removing the empty vertices
from the prediction v̄ (Section 7.2.2). We �rst de�ne a function that counts the
number of classes in the vectors v and v∗, as follows:

χ :
�
k ∈�

(Ck × C) → �, χ (v,h) �
�

i ∈{1, ...,dim(v)}
[Vi �h] (7.16)

where dim(v) is the number of entries in the vector v, while with | · | we marks the
size of a set (i.e., the number of its elements).
We then de�ne the intersection between these sets by counting the number of
objects of each class h in both v and v∗:

Ω :
�

k ∈�,k∗∈�
(Ck × Ck∗ ) → �0, Ω(v, v∗) �

�
h∈C

min(χ (v,h), χ (v∗,h)) (7.17)

where the function min selects the minimum value of the two inputs.
In a similar manner, we estimate the union between the objects in the nodes:

ϒ :
�

k ∈�,k∗∈�
(Ck × Ck∗ ) → �, ϒ(v, v∗) �

�
h∈C

max(χ (v,h), χ (v∗,h)) (7.18)

where max selects the maximum of χ (v,h) and χ (v∗,h).
Note that we only consider non-empty ground truth graphs in our evaluation and
de�ne the Jaccard index as follows:

JaccV :
�

k ∈�,k∗∈�
(Ck × Ck∗ ) → [0, 1], JaccV (v, v∗) � Ω(v, v∗)

ϒ(v, v∗) (7.19)

As a second metric, we compare the node sets based on their F1 score:

F1V :
�

k ∈�,k∗∈�
(Ck × Ck∗ ) → [0, 1], F1V (v, v∗) � 2 · Ω(v, v∗)

Ω(v, v∗) + ϒ(v, v∗) (7.20)
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Edges. Since the edges are directly connected to the nodes (as they depict their
relation), we compute the edge performance by leveraging the accuracy after
matching the ground truth and predicted nodes in the supergraphs. Let I be a set
of indizes that point to all non-empty vertices in v̄A. We then use the re-ordered
ground truth edges ĒA and predictions Ē and compute their accuracy:

AccE:
�

k ∈�,k∗∈�
(Rk×k×Rk∗×k∗) → [0, 1], AccE (Ē, ĒA) � 1

|I |2
�
i ∈I

�
j ∈I

�
Ēi, j � ĒAi, j

�
(7.21)

While the accuracy over the edges gives some insight into the strengths of
the models, it is dependent on our matching scheme. Thus, we de�ne next the
evaluation metrics that consider sets of triplets.

Triplets. The properties of the edge annotations have a strong deviation across
datasets: (1) variations in the number of relationship types: we have up to 70 di�er-
ent relation types, (2) sparseness of the graphs, and (3) completeness and amount
of noise of the edge annotations (i.e., the manually annotated datasets contain in-
correct labels). Thus, we leverage di�erent metrics depending on these properties.

First, for MNIST-Graphs and CLEVR, we consider the triplets as sets and compare
them using the Jaccard index and F1 score as for the nodes. To that end, we de�ne
a counting function for triplets:

χgraph(G, s, t , e) �
�
i

�
j

([vi �s] ·
�
v j � t

� · �Ei, j �e�) (7.22)

where i and j are iterating over i, j ∈ {1, . . . , dim(v)}, e ∈ R and s, t ∈ C. For
ease of notation, we leave out in the following the function de�nitions as they are
identical to their node counterpart (except that we input triplets instead of nodes).
We then de�ne the intersection and union as follows:

Ωgraph(G,G∗) �
�
s ∈C

�
t ∈C

�
e ∈R

min(χgraph(G, s, t , e), χgraph(G∗, s, t , e)) (7.23)
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ϒgraph(G,G∗) �
�
s ∈C

�
t ∈C

�
e ∈R

max(χgraph(G, s, t , e), χgraph(G∗, s, t , e)) (7.24)

Then, we estimate the Jaccard index over the triplets as follows:

Jacctriplet(G,G∗) � Ωgraph(G,G∗)
ϒgraph(G,G∗) (7.25)

Thus, the Jaccard index is simply the intersection of the sets over their union.
In a similar manner, we compute the F1 score:

F1triplet(G,G∗) � 2 · Ωgraph(G,G∗)
ϒgraph(G,G∗) + Ωgraph(G,G∗) (7.26)

In case of the sparsely labeled datasets (VRD and Genome), we leverage the
recall@k as in related work. Note that since we do not predict any bounding boxes
we do not use the overlap over bounding boxes in our formulation of the recall@k .
Let ϑ be the triplet con�dence de�ned as:

ϑ : I × I → [0, 1], ϑ (i, j) � νi,s · νj,t · εi, j,e (7.27)

where s = argmaxh∈C(νi,h), t = argmaxh∈C(νj,h), and e = argmaxh∈R(εi, j,h).
Based on the triplet con�dence, we build 3 matrices carving p triplets with

the source and target nodes S,T ∈ Cp and relations R ∈ Rp as: Si = vιs (i),Ti =
vιt (i),Ri = Eιs (i), ιs (i), ∀i ∈ {1, . . . , p}. We de�ne ιs , ιt : {1, . . . , p} → {1, . . . , p} as
bijective functions having the following property:

ϑ (ιs (i), ιt (i)) ≥ ϑ (ιs (j), ιt (j)),∀i, j ∈ {1, . . . , p}, i ≤ j (7.28)

Thus, we re-order the triplets in descending order based on the triplet con�dence
given by ϑ . We then select the top k triplets by directly leveraging the previously
de�ned ordering of the edges as well as the source and target nodes:

Ski � vιs (i),T
k
i � vιt (i), P

k
i � Eιs (i), ιs (i),∀i ∈ {1, . . . ,min(k, p)} (7.29)
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Then, we compute a counting function for our previously de�ned matrices:

χ triplet(S,T ,R, s, t , e) �
�
i

([Si �s] · [Ti � t] · [Ri �e]) (7.30)

where i is iterating over all triplets de�ned by the matrices S,T , and R depicting
the source, target, and relation. As for the predicted triplets, we build p∗ ground
truth triplet representations using the matrices S∗,T ∗ ∈ Cp∗ and R∗ ∈ Rp∗.
For estimating the recall@k , we leverage both ground truth and predicted triplets
via the three matrices shaping the triplets (S,T , and R):

recall@k �
1
p∗

�
i

min(χgraph((v∗,E∗), S∗i,T ∗
i ,R

∗
i ), χ triplet(Sk ,T k ,Rk , S∗i,T

∗
i ,R

∗
i ))
(7.31)

where i iterates over i ∈ φ(S∗,T ∗,R∗). Therein, we de�ne φ as a function that maps
the three triplet matrices to the indices that point to a single occurrence of each
triplet. More formally, we design φ such that ∀i, j ∈ φ(S∗,T ∗,R∗) the condition holds
that the function only points on unique triplets, i.e., [(S∗i � S∗j ,T

∗
i � T

∗
j ,R

∗
i � R∗

j ) ⇒
i � j]. Thus, φ(S∗,T ∗,R∗) ⊆ {1, . . . , p∗} and is equal to {1, . . . , p∗} if and only if all
triplets are unique. Note that we further report all results in percentages.

7.4.5 Evaluated methods

Additionally, to our proposed NAP model, we provide the results of two baseline
methods (static graph and multi-class network). Moreover, we establish an upper
bound for our approach and evaluate methods that require additional location super-
vision. We provide further implementation details of the baselines in Appendix E.2.

Static graph. First, we employ a static graph baseline that always infers the
same graph comprising the most frequent nodes and edges. For example, the most
frequent node is the person category in Visual Genome, while the most common
predicate (except for he no-relation class) is the on relation.
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Annotation: {toothbrush, toothbrush, person, sink, person}
Caption 1: “Two children stand at the sink and brush their teeth”
NAP: {toothbrush, toothbrush, sink, person, person}
Caption 2: “Children standing in the bathroom brushing their teeth”
NAP: {toothbrush, toothbrush, toothbrush, person, person, sink}
Image
Multi-cls: {toothbrush, person, sink, toothbrush, person}
MRCNN: {person, person, table, sink, toothbrush, toothbrush}
NAP: {toothbrush, toothbrush, person, person, sink}

Figure 7.4: Example node estimates for visual and textual input data. NAP
generated the correct number of nodes for all classes in caption 1. In comparison,
caption 2 does not contain any number speci�cations of the objects, leading to
an incorrect estimate of NAP for the toothbrush object. For image-only, NAP
recognized the correct number of people and toothbrushes but missed the sink.

Multi-class network. We further employ a multi-class network, which uses
the same backbone architecture as NAP, but is trained in a multi-class setup (i.e.,
leveraging the sigmoid activation). More precisely, the network predicts at most
one object instance (i.e., one node) per semantic class and does not predict any
edges. We show an example of a prediction of the multi-class network in Figure 7.4
where the model recognized two categories: tootbrush and person.

Networks with additional supervision. When further supplementary anno-
tations are available in the dataset (i.e., bounding boxes and instance masks), we
implement methods that leverage this additional information, therefore, de�ning
an upper bound for our NAP scheme.

7.4.6 Node estimation in textual and visual data

Setting. NAP can also be used for node estimation only, e.g., if the graph repre-
sentation contains the nodes but not their relationships (i.e., the number of objects
present in an image and their respective class). In such cases, the scoring function
ν associates individual vertices to their respective class, while dismissing the pre-
dicted edges. We evaluate NAP for this task in context of multi-set object prediction
from images and textual descriptions obtained from the COCO [Lin et al., 2014]
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Method Mask- COCO [#caps=1] [#caps=5] COCO+Cap
Super. Jacc. F1 Jacc. F1 Jacc. F1 Jacc. F1

MRCNN ��� 81.23 86.98 – – – – – –
Static Graph �� 15.41 21.98 15.41 21.98 15.41 21.98 15.41 21.98
Multi-class �� 35.04 43.55 36.77 44.44 43.49 51.94 43.91 52.74
Ours (NAP) �� 47.72 57.11 47.72 56.14 54.38 63.08 57.95 67.05

Table 7.4: Results on the COCO dataset for di�erent input modality types: images
(left), captions (center), and both modalities (right).

dataset. In case of visual data, we embed the images into the global representation
vector γ using the penultimate layer of a ResNet50 [He et al., 2016]. For the tex-
tual descriptions, we compute γ by stacking multiple 1D-convolution layers from
the one-hot representations of the words. As the captions and images in COCO
cover the same examples (but di�erent modalities), we also generate a combined
descriptor by combining both visual and textual descriptors via concatenation.

Results. In Table 7.4, we report the node recognition results using the Jaccard
index and F1 score between the ground truth v∗ and inferred node classes v as
our metrics. To derive an upper bound for our approach, we use the instance-
segmentation network Mask-RCNN [He et al., 2017] and generate a node for each
predicted object instance. Mask-RCNN reaches a Jaccard index of around 85.05%,
but requires pixel-wise segmentation masks as labels during training. NAP obtains
a better performance than the multi-class network that also does not require lo-
cation supervision for any input modalities (example predictions in Figure 7.4 of
our caption and image only networks). Since the COCO dataset contains multiple
captions per graph, we analyze the impact on the results when multiple image
descriptions are passed to NAP as input. Using all �ve captions improves the per-
formance considerably (54.38%), while when leveraging both the �ve captions and
the image the Jaccard index rises to 57.95%.
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Method Box- Nodes Edges Triplets Nodes Edges Triplets
Superv Jacc. Acc. R100 R150 Jacc. Acc. R100 R150

[Lu et al., 2016a] ��� 42.35 33.10 20.89 20.89 – – – –
Static Graph �� 10.61 12.56 0.00 0.00 2.53 3.50 0.00 0.00
Multi-class �� 23.39 – – – 10.86 – – –
Ours (NAP) �� 25.17 56.38 6.15 8.22 30.83 44.90 8.66 11.33

Table 7.5: Semantic graph generation on VRD (left) and Visual Genome (right)

Method Box- Nodes Edges Triplets Nodes Edges Triplets
Superv Jacc. Acc. Jacc. F1 Jacc. Acc. Jacc. F1

SSD ��� 99.53 99.99 99.19 99.43 99.81 99.02 98.61 99.24
Static Graph �� 5.53 25.42 0.13 0.24 21.41 24.95 1.39 2.64
Multi-class �� 71.18 – – – 31.35 – – –
Ours (NAP) �� 99.23 99.22 97.56 98.45 99.59 91.63 91.20 95.05

Table 7.6: Semantic graph generation on MNIST-Graphs (left) and CLEVR (right)

7.4.7 Learning graphs from natural and synthetic images

Setup. We now evaluate our method for complete graph generation using both
natural and synthetic visual data. While the VRD [Lu et al., 2016a] and Visual
Genome [Krishna et al., 2016] datasets comprise natural images with manually
labeled graphs of object instances (e.g., cat) and predicates (e.g., sleeping-on),
MNIST-Graphs and CLEVR are synthetically generated datasets with location-
based edge labels (e.g., left-behind). While we generate MNIST-Graphs ourselves
by placing digits from MNIST randomly on a blank 128 × 128 image, CLEVR [John-
son et al., 2017a] is a popular dataset comprising up to ten nodes (3D geometric
shapes) per graph. As mentioned previously, to evaluate the quality of node gener-
ation, we adopt the Jaccard index. For the edges, we leverage the accuracy between
Ē and ĒA after matching (as the edges cannot be shaped into sets as in case of the
nodes). In the completely labeled datasets (CLEVR and MNIST-Graphs), we also
report the Jaccard index and F1 score over the triplets (relation, source and target
node), while for the sparsely annotated datasets (VRD and Visual Genome), we use
recall@k as in [Lu et al., 2016a]. However, in contrast to other works, our de�nition
of the recall does not take into consideration location information.
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Dataset Graph2Graph C-Img C-Cap MNIST CLEVR Genome VRD

Inference [ms] 0.58 24.54 0.03 0.46 2.50 24.66 24.92
Matching [ms] 1.95 1.42 1.61 1.54 7.28 5.17 7.66

Table 7.7: Average inference and graph matching time of our proposed method.

Results. In Table 7.5, we show the results of our method for the manually anno-
tated datasets VRD and Visual Genome. Thereby, we use V+L+K [Lu et al., 2016a] as
an upper bound, which requires both bounding box annotations and semantic em-
beddings for training. Without using such additional labels, NAP clearly surpasses
the multi-class network, with largest gains on the Visual Genome dataset (with
a node Jaccard index of 30.83% and edge accuracy of 44.90%). Next, we evaluate
our model on synthetic datasets (MNIST-Graphs and CLEVR) in Table 7.6, where
in contrast to the previous benchmarks, the graphs are balanced and completely

labeled, i.e., there are no missing or noisy graph annotations. We create an upper
bound for our approach using the SSD [Liu et al., 2016] detector (in this case there
are no labeled masks as in COCO). Since the relations are location-based, the edges
are computed directly from the bounding box coordinates as we did in Chapter 4
for our architecture generating soft paths. While SSD achieves a near perfect per-
formance on the synthetic datasets, NAP achieves a triplet Jaccard index of 97.56%
on MNIST-Graphs and 91.2% on CLEVR.

7.5 Learning and inference speed

While there are many ways of addressing our node assignment problem, we lever-
age a matching algorithm that runs in O(n̄3). Computing the node assignment cost
κV is constant for each pair (i, i∗). Thus, this results in an overall time complexity
of O(n̄2). In case of the edges, for computing the assignment cost κE , we require
O(n̄2) for each node pair (i, i∗) in the supergraphs.

Our NAP scheme requires two modi�cations to the conventional image classi-
�cation training scheme: (1) two additional fully-connected layers that generate
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the node and edge set and (2) a matching step between the predicted and ground
truth nodes. Next, we analyze the extra time (in seconds) our network takes on
di�erent datasets and settings (Table 7.7). For the inference step, our network
generates the node and edge set in around 1ms for Graph2Graph, COCO-Captions,
MNIST-Graphs, and CLEVR. In case of COCO-Images, Genome and VRD we have
an increased inference time, which is caused mostly by generating the feature vec-
tors themselves, i.e., passing the image through a pre-trained CNN (around 23ms).
The overhead of the matching scheme is sustainable as it needs on average at most
8ms per graph instance, which is around one third of the time of the 2D-CNNs.

7.6 Summary and discussion

While previously we focused on reasoning on given graph representations of visual
and textual data, in this chapter, we addressed the problem of constructing such
semantic graphs automatically. To that end, we presented a method for inferring
semantic graphs from input data sources that can be encoded in vector form. The
core of our approach is the Node Association Procedure (NAP), a novel learning
scheme that leverages a matching step between predicted and ground truth ver-
tices. NAP does not assume a given order of the nodes, does not require location
supervision, and allows us to train our model end-to-end. We demonstrate how
our approach can be applied for graph auto-encoding, node recognition in images
and captions, and visual graph generation on synthetic and real-world data. As
NAP does not require any additional supervision besides graphs, our method has
the potential to facilitate progress in high-level reasoning by detaching structured
representations from costly task-speci�c processing steps.





151

8 Conclusion

While AI has made large strides in semantic analysis of natural images (e.g., image
captioning, visual reasoning), high-level understanding of documents has been
scarce. In this thesis, we address the problem of question answering on learning
materials where we target diverse types of graphical content. Our emphasis is
on textbook content and presentation slides that have a strong variety of page
structure and are rich in variations of �gure types. To that end, we address the
question answering task on three different levels of page granularity:
• We �rst address the visual reasoning task and introduce a novel architecture
for answering compositional questions based on di�erent types of images. Our
model achieves state-of-the-art results on several popular benchmarks and one
can infer the reasoning of the model for answering di�erent questions.

• We propose a novel network for multi-modal QA based on edge re�nement,
which achieves strong results on textbook question answering.

• We dive into the page analysis task and collect a novel large scale dataset of 4M
questions associated to 400k pages.

Moreover, in order to employ graph neural networks on graphical and textual
content extracted from pages, we need to both pre-process the page and bring the

extracted information into graph format:
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• For extracting relevant document components from pages, we use multi-class
page segmentation approacheswhichwe performed on our own collected datasets.

• Since VQA methods based on graph networks require a graph representation of
the input image, we propose a novel technique for generating semantic graphs
directly from feature vectors (without requiring bounding box supervision).

8.1 Contributions

Next, we summarize the key contributions made in this thesis:

Page analysis on presentation slides
Related publications: [Haurilet et al., 2019b,c]
We introduce the task of semantic analysis of presentation slides. To the best of our
knowledge, this problem was not addressed before and we therefore collect and
publicly release two large scale datasets with accompanying presentation slides. To
that end, we manually annotate 2000 and 1330 pages, respectively, with pixel-level
annotations of 25 semantic classes. While previous page segmentation datasets
constrain that a single class is assigned to each pixel, we allow themapping of several
categories in a multi-class setup. We provide a detailed analysis of our collected
data where we show the class distribution of our labels, the class overlap per pixel
showing the importance of the multi-class property of our datasets, and the location
dependence of di�erent document classes. Finally, we establish a lower bound by
implementing several baselines on our data and adapt complex deep learningmodels
previously used for semantic segmentation of natural images to our tasks.

Answering questions by following paths
Related publications: [Haurilet et al., 2019d]
We introduce a novel architecture for answering questions from graphical content.
As visual data can be highly compositional (i.e., several objects interacting with
each other), we leverage a graph representation of the scene. Our model traverses
this graph structure in search of information relevant for answering the current
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question. While previous traversal schemes are either non-differentiable or can only
focus on single nodes at once, our approach is trained with regular back-propagation
techniques and can attend to several nodes simultaneously. Thus, our model can
easily infer answers for counting and exist-type questions, where it is necessary to
focus on several nodes at once. Due to the traversal characteristic of our method,
we can directly infer the reasoning of our model for answering di�erent questions.
Finally, our model achieves state-of-the-art results on several datasets for visual
reasoning improving the performance of other complex VQA methods.

Multi-modal question answering on textbook content
Related publications: [Bender*, Haurilet* et al., 2019; Haurilet et al., 2018]
We address the problem of answering questions on multi-modal data (text and
images). To that end, we introduce an architecture for automatically extracting text
from visual representations of pages which constitutes a pre-processing step for
our multi-modal QA technique. We evaluate our text generation method on the
large scale IM2LATEX dataset comprising 100k images of typed text content.

We move forward with the multi-modal question answering task where we focus
on textbook content extracted from the sixth grade curricula. Due to the vast
amount of input content associated to each query, we propose a pre-processing
approach for selecting supporting entities that are relevant for generating an answer.
We propose a neural architecture based on edge re�nement that operates on node-
pairs (sentences and scienti�c terms) for capturing the compositional input content.
Finally, we evaluate our approach for textbook question answering, where we obtain
compatible results with other VQA methods on the validation set of the TQA bench-
mark and the �rst place in the TQA challenge encompassing the test set of TQA.

Answering questions on entire pages
Related publications: [Haurilet et al., 2021b]
We introduce the novel task of answering questions on entire pages. To that end,
we collect SlideQA – a large scale dataset of 4 million page-related queries and 400k
pages. While we include di�erent types of document components to our generated
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pages (e.g., natural images, tables, enumerations), we also provide a high diversity
of questions which focus on di�erent parts of the page. We perform a thorough
analysis of our collected data where we show the unique properties of our questions
and slides, e.g., compositionality of the pages, diversity of document components,
variety in query tasks, and a high number of unique answers.

On our dataset, we evaluate our novel architecture specialized on answering
questions on page content. Our network fuses the input image and question into
the same representation space and, then, via several attention modules we infer an
answer at character-level simultaneously. The proposed attention-based method im-
proves the performance of other complex VQA approaches by a signi�cant margin.

Graph generation from single feature vectors
Related publications: [Haurilet et al., 2021a]
We introduce a novel approach for generating graph structures from global data
representations in form of vectors. Our neural architecture generates the nodes
and edges directly from the feature vector leveraging conventional fully-connected
layers. Due to the unordered nature of the node set, we propose a matching scheme
between the predicted and ground truth nodes, enabling end-to-end training of our
network. In contrast to other graph generation techniques, our method does not
require bounding box supervision and can operate on both images and text. We
show the strength of our network on several datasets for node recognition from
images (COCO-Images) and text (COCO-Captions) as well as graph generation from
synthetic (MNIST-Graphs and CLEVR) and natural images (VRD and Genome).

Collected datasets and benchmarks
Throughout this thesis, we introduce multiple tasks for document understand-
ing which were not addressed before and, thus, we collect several accompanying
datasets. Most prominently, the SlideQA dataset encompasses 4M questions asso-
ciated to 400k pages. While the queries are related to the structure and semantic
information related to di�erent entities in documents, we ensure that the pages
comprise a high variety of graphical and structural types.
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Moreover, we collect two datasets for page segmentation encompassing in total
over 3000 presentation slides with �ne-grained labels of 25 classes. While previous
methods include a single label per pixel, we enable multi-label classi�cation where
regions can belong to several semantic categories (e.g., text and diagrams). To foster
further research on slide segmentation, we made the datasets publicly available.
Finally, we propose a novel learning scheme for training graph generation net-

works. To show its strength on a wide variety of datasets, we analyze our approach
on two novel datasets in addition to existing benchmarks. Namely, we introduce the
MNIST-Graphs dataset comprising over 210k images of digits with location-based
relations and Graph2Graph encompassing synthetically generated nodes and edges
which we use for graph autoencoding.

8.2 Future work

While models for high-level understanding and especially for question answering
have made extraordinary strides in recent years, there is still a wide gap to human
performance. Due to the nature of our proposed approaches, we can directly infer
the reasoning of our models and, thus, we can easily deduct weak spots in the data
and overall architecture. Thus, a possible future work is leveraging this feature for
improving and balancing the data and re-structuring its under-performing modules.
A reason for such a strong improvement of models for high-level reasoning

tasks lies in the strong development of visual and textual embeddings. Thus, a
possible extension of our work is to employ di�erent novel embeddings in our
graph and visual data structure (e.g., features extracted from transformers). Finally,
our question answering methods can be utilized in a wide variety of applications,
such as: (1) for a more convenient interaction with a mobile assistant/robot, (2) in
assistive technologies conveying relevant information from learning materials to
people with visual impairments, and (3) automatic indexing of document content
based on information carved by the input query.
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A Examples - So� Paths

Image There is a tiny rubber thing that is right
of the matte cube; are there any yellow cubes in
front of it?

Step 1 There is a tiny rubber thing that is right
of the matte cube; are there any yellow cubes in
front of it?

Step 2 There is a tiny rubber thing that is right
of the matte cube; are there any yellow cubes in
front of it?

Step 3 There is a tiny rubber thing that is right
of the matte cube; are there any yellow cubes in
front of it? Answer: yes �

Figure A.1: Existence question with a necessary reasoning chain length of three.
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Image Are there any small cyan objects on the
left side of the yellow object?

Step 1 Are there any small cyan objects on the
left side of the yellow object?

Step 2 Are there any small cyan objects on the
left side of the yellow object?

Step 3 Are there any small cyan objects on the
left side of the yellow object?

Figure A.2: Existence question with a necessary reasoning chain length of two
and with a single found destination. Answer: yes �

In this section of the appendix, we analyze the soft paths generated by our model
for both correct and incorrect answers. Figures A.1 to A.8 provide examples for
maximum path length r = 3, with each column illustrating the state at step i . White
circle markings depict the nodes with low con�dence of being visited by the traveler
in the current step i . Orange markings depict high probability nodes and the arrows
mark a high transition con�dence (> 0.5). Underneath each image, we highlight
the words in the question that received high attention values (> 0.5) in the visual
guide for the current path section.
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Image Are there any tiny objects in front of the
purple rubber object?

Step 1 Are there any tiny objects in front of the
purple rubber object?

Step 2 Are there any tiny objects in front of the
purple rubber object?

Step 3 Are there any tiny objects in front of
the purple rubber object? Answer: yes �

Figure A.3: Existence-type question with multiple found destinations. All the
destination nodes identi�ed by our model are correct.

Correct predictions. Figures A.1 to A.4 show a variety of the existence task
queries, which were correctly handled by our network. In the �rst example (Fig-
ure A.1), the number of required reasoning steps corresponds to the maximum
path length r and our model easily �nds the path leading to the correct destination.
The next example (Figure A.2), on the other hand, only requires two reasoning
steps while our model has to traverse exactly r = 3 steps. This is, however, not an
issue in our approach, as we allow self-loops. The self-loop is present in the second
time step on only a single node (the yellow sphere). This con�rms, that the model
leverages object attributes for traversal, as only edges with a yellow target have
high transition con�dence. Figure A.3 correctly found four destinations that are in
front of the purple rubber object as multiple objects �t the query.
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Image Is there a big blue metal thing that is be-
hind the rubber object behind the blue shiny ob-
ject?

Step 1 Is there a big blue metal thing that is be-
hind the rubber object behind the blue shiny
object?

Step 2 Is there a big blue metal thing that is be-
hind the rubber object behind the blue shiny
object?

Step 3 Is there a big blue metal thing that is
behind the rubber object behind the blue shiny
object? Answer: no �

Figure A.4: Example of question about the existence of an object where the correct
answer is ‘no’ (i.e., there are no such destinations).

In case that the query addresses a non-existent object (i.e., the correct answer is
‘no’), our model does not have any high con�dence destination nodes, as illustrated
in the Figure A.4. The traveler followed the correct path from the blue shiny object

to the rubber object behind it. However, there are no other objects behind this
rubber object and, thus, there are no �nal high con�dence destination nodes.
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Image How many cubes are there? Step 1 How many cubes are there?

Step 2 How many cubes are there? Step 3 How many cubes are there?

Figure A.5: Counting task with a reasoning chain length of one. Answer: 2 �

Figures A.5 and A.6 visualize the paths produced for counting. Both examples
necessitate shorter reasoning chains than our maximal path length (i.e. ‘How many
cubes are there?’ only requires a single reasoning step). The traveler handles this
successfully by visiting some nodes more than once. Surprisingly, we observe
di�erent strategies for di�erent lengths of the required reasoning chain. In case of
the path of length 1 (Figure A.5) the traveler visits all nodes twice and chooses the
nodes of the type cube in the last step.
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Image What number of other things are the same
color as the small matte ball?

Step 1 What number of other things are the same
color as the small matte ball?

Step 2 What number of other things are the
same color as the small matte ball?

Step 3 What number of other things are the
same color as the small matte ball?

Figure A.6: Counting question with a necessary path length of two. The model
was able to �nd all three destinations. Answer: 3 �

Figure A.6 shows an example for a reasoning chain with two steps. To address this
di�culty, our soft paths network selects a single source node (the same small matte
ball), i.e., the model leveraged the self loop.
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Image Are there any big green things that are in
front of the large metal object that is on the left
side of the gray thing?

Step 1 Are there any big green things that are
in front of the large metal object that is on the
left side of the gray thing?

Step 2 Are there any big green things that are
in front of the large metal object that is on the
left side of the gray thing?

Step 3 Are there any big green things that are
in front of the large metal object that is on the
left side of the gray thing? Answer: no ✗

Figure A.7: Example of an incorrectly answered question. Since the large metal ob-
ject left of the starting node was not found in the second step (computed con�dence
of 0.3 below our threshold of 0.5), the model also did not �nd any destination nodes.

Analysis of incorrect predictions. In Figures A.7 and A.8, we analyze queries
which were not answered correctly. In the existence task example (Figure A.7), the
traveler was not able to �nd the large metal object on the left side of the source
node, as it produced a con�dence of 0.3 (our threshold was 0.5). Due to this de�cit
in an intermediate step, the traveler did not reach the correct destination node (the
big green object) and is predicting the incorrect answer ‘no’.
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Image How many matte things are on the left
side of the blue thing on the left side of the large
blue metal thing?

Step 1 How many matte things are on the left
side of the blue thing on the left side of the
large blue metal thing?

Step 2 How manymatte things are on the left
side of the blue thing on the left side of the large
blue metal thing?

Step 3 How many matte things are on the left
side of the blue thing on the left side of the large
blue metal thing? Answer: 3 ✗

Figure A.8: Due to an incorrect self-loop in the second step, presumably retained
because the object satis�es one of the conditions of the next step (it is blue), the
answer for the counting question was higher than required (correct answer is 2).

Figure A.8 is an example of counting, where our model found one object more than
necessary. First, the traveler correctly chose the blue sphere as its starting point.
Then, the traveler should have moved to the blue object left of it, as stated in the
query. While our model did this transition, it also wrongfully retained a self-loop
to an object from the previous step. We suppose, this relation was kept, as this
source object met one of the two conditions for the next step: it is blue (but not left
of itself, which is the second condition). Finally, our model considers destinations
left of both, the small cylinder and the incorrectly visited blue sphere, resulting in
three counted objects, instead of two.
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B Text Recognition

B.1 FGFE network

In this chapter, we address the text recognition task and introduce a neural architec-
ture for text recognition in form of mathematical formulas (overview in Figure B.1).
While we evaluate our approach for mathematical expression recognition, our
network can be directly applied for text recognition in natural language. Our
model �rst embeds the input image containing a mathematical formula using the
fine-grained feature extractor FGFE (Figure B.2). The produced features are then
passed to the encoder, which maps them to (1) local features and to (2) a global
representation of the image. Based on both the global and the local features, the
decoder constructs the predicted formula via an LSTM with an attention mecha-
nism step-by-step. The formula thereby is represented as LaTeX tokens of atomic
size, e.g., ‘a’, ‘\begin{array}’ or ‘\frac’. We choose this token-wise format over a
character-based representation, as this avoids irregular results and reduces the
formula length. Next, we de�ne the modules of our proposed architecture.

Publications. In this chapter, we present a text recognition approach previously
published in [Bender*, Haurilet* et al., 2019].
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FGFE
Feature Map

Row-wise EncoderFeature Map

Local Features 
(H' x W' x C') 

Global Feature (C')Score-Function

xΣContext Vector (C')

Decoder-LSTM

Decoder State (C') Projection Layer
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\end{array} \right) , 

Input Image (H x W x 1)

Predicted Latex Formula

Attention Map (H' x W')

Feature Map 
(H' x W' x C) 

Figure B.1: Our neural architecture for generating mathematical expressions based
on an input image. The core modules of our model are: (1) a feature extractor based
on a CNN for obtaining the feature maps; (2) a relational encoder that embeds
the feature cells into a new representation; (3) a decoder that generates the LaTeX
markup using the embeddings produced by the relational encoder.

Fine-grained feature extractor. Our �ne-grained feature extractor consists of
a Convolutional Neural Network (CNN) that is able to compute useful high-level
features from the pre-processed input gray-scale image of size h × w . Through
the number of layers and especially the size of the stride of each convolutional or
pooling layer, the receptive �eld and, thereby, the granularity of the features can
be adjusted. While in case of image captioning on natural images, large receptive
�elds are conventional used [Xu et al., 2015; Yao et al., 2018], we argue that for
mathematical expression recognition as we have very small symbols, a �ne-grained
representation bene�ts the neural network.
As we see in Figure B.2, FGFE comprises three CNN blocks which consist of two to
four convolution layers, a max-pooling layer, and �nally batch-normalization is
applied. In order not to reduce the size of the image too fast and, thus, keep the
�ne-grained structure of the mathematical expression, 2 × 1 and 1 × 2 max-pooling
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H/2 x W/2 x 64 H/4 x W/4 x 128 H/4 x W/2 x 128 

H x W x 1 

Conv, 3x3 (x2) + 
Max Pool, 2x2 + 

Batch Norm. 

Conv, 2x2 (x4) + 
Max. Pool, 1x2 
Batch Norm. 

Input Image 

Conv, 3x3 (x4) + 
Max Pool, 2x1 + 

Batch Norm. 

Figure B.2: The Fine-Grained Feature Extractor (FGFE) consists of three blocks:
the �rst consists of two convolutional layers, while the latter ones contain four
convolutions each. We apply max pooling for increasing the receptive �eld and
normalize the feature maps using batch norm.

layers are applied with a stride of 2 × 1 and 1 × 2 in the second and the third block,
respectively. For an input image of dimensions h ×w , our FGFE produces an output
of the shape h/4 ×w/4 × 128, i.e., only slightly reducing the image size.

Encoder. To translate a variable-sized three dimensional feature map into a
formula, we leverage an encoder-decoder module. The encode operation maps the
visual feature map to a global feature and a re�ned local representation. An LSTM
is used row-wise on the feature map and then by concatenating the outputs of the
rows, we obtain the �nal local representation. For the global feature, we average
all �nal states of each row processed by the encoder LSTM.

Attention-based decoder. Finally, we use the local and global visual represen-
tations to generate the underlying markup by applying an LSTM with attention
mechanism. In every step, we get a score value for every local feature using an
additive scoring function, which compares the local feature with the current state
of the decoder LSTM (see Figure B.1). We model a probability distribution over the
local features by normalizing these scores using softmax and, then, we use them as
weights for the local features. Next, we average these weighted local embeddings
and obtain a single �xed-dimensional context vector that is fed together with the
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current decoder state into the decoder LSTM cell. The projection layer thenmaps the
new decoder state to a probability distribution over the token classes. During pre-
diction, we select the token class with the highest activation in each decoding step.

Learning setting. We minimize the cross entropy loss using stochastic gradient
decent on the IM2LATEX-100K dataset for 15 epochs. As [Deng et al., 2017], we
start with an initial learning rate of 0.1 and decay it by 10 every time the validation
loss does not improve. For a stable training procedure, we feed the embedding
of the correct token from the last decoding step into the decoder LSTM. During
test time, we use beam search [Abdou and Scordilis, 2004] with a width of 5 for
decoding in order to reduce search errors.

B.2 Evaluation

In this section, we compare our model to related work based on both token- and
image-based evaluation metrics. Then, we discuss the performance of our models
for di�erent formula lengths and show that even though the accuracy drops for very
large expressions, we are still able to produce frequently the correct prediction. We
analyze the performance for di�erent formulas based on their structure types, e.g.,
matrices and fractions, and the impact of rare token classes on accuracy. Finally, we
provide some example predictions with the corresponding attention maps where
we show that our model can generate highly-structured formulas.

Evaluation metrics. To evaluate our network, we leverage the same token- and
image-based metrics as related work [Deng et al., 2017]. While token-based metrics

compare the predicted token sequence pred with the ground truth markup дt ,
image-based metrics use images predImд and дtImд, images that were generated
by the LaTeX compiler from the predicted and ground truth markup.

1. Absolute Token Accuracy (ABST ) is a metric that calculates the accuracy of
exact matches between the ground truth and prediction in LaTeX format.



Evaluation Section B.2

195

2. Token Edit Distance Accuracy (EDAT ) softens the ABST by rewarding pre-
dictions that are similar to the ground truth:

EDAT (pred, gt) = 1 − δ (pred, gt)
max(|pred|, |gt|) (B.1)

where δ denotes the Levenshtein distance [Levenshtein, 1966] between pred and дt ,
and |x | denotes the number of tokens of the sequence x . The Levenshtein distance
is de�ned as the number of edit operations (comprising remove, swap, add) that
are necessary to map pred to gt.

3. Absolute Image Accuracy (ABSI ) is similar to the token-based absolute accu-
racy where we have a correct prediction if predimд and дtimд match exactly. As in
related work [Deng et al., 2017], since white spaces have no semantic meaning in
mathematical expressions, for the comparison we remove columns consisting only
of whitespace in predimg and gtimg.

4. Image Edit Distance Accuracy (EDAI ) is calculated by �rst converting the im-
ages predimд and дtimд to arrays of booleans based on the threshold 0.5. The �nal
EDAI is de�ned as the average row-wise Levenshtein distance as depicted in Eq. B.1.

5. BLEU is a popular metric used to evaluate distances between sentence pairs
in natural language (e.g., in image captioning). BLEU is de�ned as the geometric
mean of BLEU-1 to BLEU-4 times a brevity penalty. BLEU-n, thereby, calculates the
n-gram overlap between both sentences (i.e., precision), while the brevity penalty
penalizes short sentences (i.e., recall).

Overall results on IM2LATEX-100K. Next, we provide the �nal results of our
model on the test set of the large scale IM2LATEX-100K dataset (see Table B.1).
Since the LaTeX compiler is not an injective function (i.e., di�erent LaTeX markups
can generate identical images), a text-only metric can have di�culties to provide a
good comparison between mathematical expressions. Thus, we provide results for
both token- as well as image-based metrics.
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Approach Attention BLEU EDAT ABST EDAI ABSI

Classical Methods and Baselines
Prior – 0.0 20.0 0.0 85.0 0.0
INFTY [Suzuki et al., 2004] – 66.7 – – – 26.7

Deep Learning Architectures
CTC [Graves et al., 2006] – 30.4 – – – 9.2
Caption [Xu et al., 2015] softmax 75.0 – – – 55.7

Im2Tex [Deng et al., 2017]

hierarch. 86.2 – – – 79.6
hard 87.1 – – – 77.1

sparsemax 87.0 – – – 78.1
softmax 87.7 92.1 41.2 88.6 79.9

Ours softmax 90.3 92.8 46.8 93.1 84.3

Table B.1: Performance on the IM2LATEX-100K dataset based on �ve metrics. We
group the methods into: deep learning and non-deep learning methods.

Table B.1 shows the results of our prior baseline which always produces the most
frequent tokens in the training data. More precisely, in case of the image-based
metrics, the prior model produces an image containing the most frequent pixel, i.e.,
only white pixels. For the token-based metrics, the prior classi�er always predicts
a formula of the average formula length from the training data, i.e., consisting of
52 tokens. The �rst half contains only left curly bracket tokens, as these are at the
�rst positions the most frequent ones, while in the second half the most frequent
token is the right curly bracket. Not surprisingly, as we have a very large number of
di�erent classes the baseline shows 0% for BLEU , ABSI , and ABST , while in case of
the easier EDAT and EDAI we achieve a signi�cantly better performance of about
20% and 85%, respectively.
The INFTY Reader applied to mathematical expression recognition easily beats our
prior baseline by a large margin (i.e., from 0% to 26.7% ABSI ), while CTC improves
the performance of the baseline by 9%. In comparison, the Caption method which
does not use an encoder module, shows a further improvement compared to INFTY.
The Im2Tex deep learning method that uses both an encoder and an attention-based
decoder, is able to show very promising results improving the Caption network
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Figure B.3: Overview of the impact of formula length on performance. While short
formulas almost achieve perfect accuracy (over 95%), long formulas still follow
short with a performance of around 20%.

by over 20% ABSI . As we see in Table B.1, di�erent attention mechanisms are
evaluated on the Im2Tex architecture: (1) a hierarchical attention that combines
di�erent layer outputs of the encoder, (2) hard, and (3) sparse max which both
use discretized values and, thus, have to be trained using reinforcement learning.
Nonetheless, the popular (4) softmax normalization shows the best performance in
comparison the other proposed attention modules, having an overall improvement
of over 50% over the widely used INFTY model in Image Absolute Accuracy.
Finally, our model achieves state-of-the-art results of 84.3% in Image Absolute
Accuracy outperforming Im2Tex by over 4% and the Caption model by almost 30%.
We want to note that the gap between our model and related work is much greater
in absolute accuracies than in the edit distance metrics. This is not surprising, as the
edit distance metrics are by far easier, as we also see the small gap in edit distance
of our prior baseline to the other approaches. Nonetheless, we were able to improve
the results in the edit distances as well as the popular text-based BLEU metric.

Impact of the formula length on performance. In Figure B.3, we analyze the
impact of formula length on the image absolute accuracy of our neural architecture.
As expected, we experience a drop in performance for longer formulas, e.g., for
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Figure B.4: Impact of rare token classes on the absolute image accuracy.

formulas under 100 tokens we achieve an accuracy of 80%, while for mathematical
expressions over 150 tokens we obtain around 20%. We also note that very short
formulas (i.e., shorter than 15 tokens) have a worse performance than medium-sized
ones (i.e., between 15 and 30 characters). The reason for these results is presumably
due to the imbalance in the training data, since short formulas are by far less
frequent (under 3% of mathematical expressions) than the longer ones (over 13% of
formulas have a length between 15 and 30 tokens).

Impact of rare token classes. In Figure B.4, we show the relation between the
average ABSI of images containing a token and the frequency of the particular
token classes. Thus, the Y-axis shows the absolute image accuracy of all images
containing the particular token class at least once. The X-axis corresponds to its
frequency, i.e., percentage of images that contain at least one appearance of the
particular token class in the ground truth data.
We notice that there is a strong correlation between the frequency of the token
classes and the prediction performance of our model: the fewer training samples we
have at our disposal, the lower is our accuracy. Moreover, formulas which contain
at least one of the 61 worst recognized token classes, are never predicted correctly
and have a frequency of less than 1% in the training set. The reason that ABSI does
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Figure B.5: Comparison of the attention maps of FGFE when generating the token
‘\Delta’ (top) and of Im2Tex when incorrectly producing the token ‘\alpha’ (bottom).

Figure B.6: Examples of correctly predicted mathematical expressions containing
arrays, subscripts, superscripts and fractions.

not drop to 0% when reaching rare tokens with a frequency of nearly 0 is that many
symbols have exact synonyms (i.e., predicting the exact synonym instead of a rare
token does not impact ABSI ).

Importance of a �ne-grained visual representation. In Figure B.5, we show
an example attention map that was produced by our model (top) and by the archi-
tecture in related work [Deng et al., 2017] (bottom). Since the formulas contain sub-
and superscripts, many characters are smaller than the default token size. Nonethe-
less, the decoder using the attention maps of FGFE is able to concentrate its weights
to the small delta character, leading to a correct prediction of the ‘\Delta’ token. In
comparison, the decoder applied on the coarser features of related work, was not
able to focus on a single character, but on multiple characters simultaneously. Thus,
this unwanted fusion of features of multiple di�erent characters lead the model
to produce erroneously an ‘\alpha’ token.
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+\frac{1}{2}\[   …
D_1((x-x\prime)^2)

LaTeX Prediction Compiled Image

T = 108

\lambda

T = 109

\delta

…

)

T = 132 T = 133 T = 134

_ \lambda

… …

FGFE

Figure B.7: Recursive behavior of the model for long expressions. This example
shows correctly predicted tokens up to time step T = 132. For T = 133, the model
loops back to the previously generated lambda causing a recursion in the prediction.

Analysis of highly-structuredmathematical expressions. Highly-structured
formulas still constitute a problem for the model, as we show in Figure B.4 where
we experience a strong drop in performance due to expressions of the matrix type
(i.e., arrays). Even though array tokens have around 5k sample images, the network
has di�culties in learning these complex structures. Nonetheless, the model is
often able to correctly predict such complex structures (see examples in Figure B.6).

Discussion on typical errors. Additionally to di�culties due to highly-structured
mathematical formulas, we encounter other two types of errors: (1) simple errors
caused by brackets and (2) a subsequence of the formulas are generated multiple
times. The former error type is not caused by the model forgetting to close an open
bracket (which occurs less than 1% of the time), but when it is closed.

Recursive behavior in long formulas. The former error type revolves around
long formulas. In some long expressions, the network produces in�nite many
times a subsequence of the formula, i.e., the model stops only when the maximum
number of time steps is reached. In Figure B.7, we show an example of a formu-
las on which the model generates an in�nite loop of the following subsequence:
‘λσµρ )]D1((x − x�)2)’. After predicting the �nal round bracket, the model jumps
back to generating the lambda from previous steps. When visualizing this behavior,
we see that even the attention module focuses on the previously predicted token
(i.e., the lambda in our example). The probable culprit of these loops is the decoder,
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which is not able to keep track on the already generated tokens. Nonetheless, these
errors occur only on very long formulas, where the decoder LSTM has to memorize
a large number of previous steps.

B.3 Summary and discussion

In this chapter, we developed a deep learning architecture for text sequence gener-
ation. We proposed a �ne-grained feature extractor that is trained in an end-to-end
manner with a relational encoder and a decoder with an attention mechanism using
softmax normalization. Since the symbols have a large range of di�erent sizes,
a small receptive �eld in the feature extractor bene�ts our model, especially as
we use an encoder on the produced feature maps that is able to link regions of
larger characters. We show the strength of our network on a large scale dataset
for mathematical formula recognition, where our model is able to learn nontrivial
spatial relations like fractions and arrays (see Figure B.6). Furthermore, the model
is able to predict some remarkably complex formulas, which are longer than for-
mulas contained in the training set. Our model shows strong results on all metrics
outperforming current state-of-the-art by over 4% in absolute image accuracy.
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C FUSE Network

Table C.1 shows the structure of the FUSE architecture. We group the network into
four parts: (1) The visual embedding module encodes the image using convolution
layers where the receptive �eld is strongly enlarged by increasing the stride. (2) In
a similar manner, the question is encoded via convolutions. In contrast to images,
we pass the words of the query as input (i.e., encompassing a matrix) and, thus, we
leverage 1D convolutions over the word vectors. To obtain a �nal global representa-
tion, we average the encodings into a single vector. (3) We then combine the image
and question features via concatenation, where we append the query on each visual
slice over the location dimensions. We re-encode this multi-modal encoding using
1× 1 convolutions followed by sum pooling. (4) Finally, as in other VQA models, we
use several fully-connected layers to encode the feature vector from the previous
step. The output of the last fully-connected layer models a probability distribution
over the answers seen during training.
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Module Output size Layers

(1) Visual embedding

134×112×32
conv(3×3, 32, ReLU, str=1)
conv(3×3, 32, ReLU, str=1)
conv(3×3, 32, ReLU, str=2)

67×56×64
conv(3×3, 64, ReLU, str=1)
conv(3×3, 64, ReLU, str=1)
conv(3×3, 64, ReLU, str=2)

33×28×128
conv(3×3, 128, ReLU, str=1)
conv(3×3, 128, ReLU, str=1)
conv(3×3, 128, ReLU, str=2)

16×14×128
conv(3×3, 128, ReLU, str=1)
conv(3×3, 128, ReLU, str=1)
conv(3×3, 128, ReLU, str=2)

(2) Question encoder

12×32
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=2)

6×32
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=2)

3×32
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=2)

3×32
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=1)
conv1D(3, 32, ReLU, str=1)

32 sum over variable dim.

(3) Multi-modal module

16×14×160 concat(question, image) = y

16×14×200
conv(1×1, 64, ReLU, str=1)
conv(1×1, 64, ReLU, str=1)
conv(1×1, 200, softmax) = A

200×160 global represent.:
�

(A ∗ y)

(4) Prediction network 200×150
fc(512, ReLU)
fc(512, ReLU)
fc(150, softmax) = prediction

Table C.1: Overview of the FUSE network
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D Examples - SlideQA

In this chapter, we show example pages with accompanying questions from our
collected SlideQA dataset. Moreover, we include the predictions of our proposed
FUSE model together with our baselines (Q+IMG, SAN, and RN).

Figure D.1 shows questions aiming to analyze the reading comprehension of
the VQA models. In both examples, our FUSE architecture was able to infer the
correct title and caption, respectively. In Figure D.2, we include example relational
questions where the models need to identify several page components and use these
as a reference to localize, count, or recognize other document entities. As we see,
our model inferred the correct number of birds in the natural image as well as
recognized the table category left of the �gure. Figures D.3 and D.4 show pages
with associated questions on the global structure and overall appearance of the
page. Finally, Figure D.6 and Figure D.5 visualize di�erent variations of color and
layout for the same document content.
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Question: What is the title of the slide?
Q+IMG: ‘Melanie C’✗ SAN: ‘Man on the
Moon: The End of Day’✗ RN: ‘Man on the
Moon: The End of Day’✗ FUSE: ‘Tampa Bay
Area’✓

Question: What does the caption of the
table entail?
Q+IMG: ‘The natural im-
age’✗ SAN: ‘Weekly charts.’✗ RN: ‘Weekly
charts.’✗ FUSE: ‘Year-end charts.’✓

Figure D.1: Example answers of the proposed networks for structural and
component-based questions.

Question: How many birds are pictured in
the bottom-right image?
Q+IMG: ‘2’✗ SAN: ‘2’✗ RN: ‘1’✓
FUSE: ‘1’✓

Question: What component type
is to the right of the �gure?
Q+IMG: ‘enumeration’✗ SAN: ‘enumera-
tion’✗ RN: ‘table’✓ FUSE: ‘table’✓

Figure D.2: Example of predictions for relational questions.
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Question: What page number does the slide
have?
Q+IMG: ‘72’✗ SAN: ‘4’✗ RN: ‘3’✗
FUSE: ‘31’✓

Question: What color does the layout of the
slide have?
Q+IMG: ‘green’✓ SAN: ‘blue’✗
RN: ‘green’✓FUSE: ‘green’✓

Figure D.3: Example answers of the proposed networks for structural and
component-based questions.

Question: How many components does the
page have?
Q+IMG: ‘1’✗ SAN: ‘2’✗
RN: ‘2’✗ FUSE: ‘3’✓

Question: What slide type is this page?
Q+IMG: ‘Content-slide’✗ SAN: ‘Content-
slide’✗ RN: ‘Title-slide’✓
FUSE: ‘Title-slide’✓

Figure D.4: Example answers of the proposed networks for structural and
component-based questions.
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Figure D.5: Example of di�erent layouts for the same document content (enumer-
ation and table) and identical color (midnight blue).

Figure D.6: Example of di�erent colors for the same document content (two enu-
merations, a table, and a natural image) and identical layout.
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E Node Matching

E.1 �alitative results

COCO-Images and COCO-Captions [#caps=1]

Annotation: {horse, horse, person, person}
Caption 1: “Two equestrians riding their horses on

the beach together”
NAP: {horse, horse, person, person}
Caption 2: “Two people riding horses along the

ocean beach”
NAP: {horse, horse, person, person}
Img (NAP): {horse, horse, person, person}

Annotation: {sheep, sheep, sheep, sheep, sheep}
Caption 1: “Pack of �ve sheep sleeping on a snowy

day’
NAP: {sheep, sheep, sheep, sheep, sheep}
Caption 2: “Sheep are laying down together in the

snow”
NAP: {sheep, sheep, sheep}
Img (NAP): {sheep, sheep, sheep, sheep, sheep}
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COCO-Captions [#caps=5] and COCO-Images+COCO-Captions [#caps=5]

Caption 1: “A man and woman sitting on
a stone bench under umbrellas”
Caption 2: “Man and woman with umbrel-
las seated on a stone bench”
Caption 3: “Two people sitting on a rock
while holding onto umbrellas”
Caption 4: “A beautiful woman sitting next
to a man”
Caption 5: “Two people sitting on a stone
bench holding umbrellas”
NAP [#caps=5]: {person, umbrella,
person, chair, handbag, umbrella}
NAP [#caps=5]+Img: {handbag, person,
person, bench, umbrella, umbrella}
GT: {handbag, person, person, bench,
umbrella, umbrella}

Caption 1: “Two little girls holding up
chocolate and vanilla donuts”
Caption 2: “Two young girls peeking
through the holes in their donuts”
Caption 3: “Two little girls looking the
through the holes in doughnuts”
Caption 4: “Two young girls holding
doughnuts over their eyes”
Caption 5: “Two children hold up dough-
nuts to their eyeballs”
NAP [#caps=5]: {person, donut, person,
donut}
NAP [#caps=5]+Img: {person, person,
chair, donut, donut}
GT:{person, person, chair, donut, donut}
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VRD
GT Nodes: {wheel, car, bus, wheel, sky, street}
GT Triplets: {(wheel, on, bus); (car, behind, bus);
(car, under, sky); (bus, has, wheel); (bus, near,
car); (bus, above, wheel); (bus, under, sky); (bus, on,
street); (wheel, under, bus); (sky, above, bus)}
NAP Nodes: {wheel, building, bus, person, sky,
street, car, wheel}
NAP Triplets: {(sky, above, wheel); (sky, above,
street); (wheel, on, street); (bus, on, street); (bus,
has, wheel); (sky, above, bus); (street, under, sky);
(street, under, bus); (wheel, under, sky) }

Visual Genome
GTNodes: {racket, man, shirt, face, man, head, hand,
hair, shirt}
GT Triplets: {(man, wear, shirt); (man, have, face);
(man, have, hair); (man, wear, shirt); (man, have, head);
(man, wear, shirt); (hand, hold, racket)}
NAP Nodes: {racket, man, shirt, short, man, head,
hand, hair, shirt, face}
NAP Triplets: {(man, wear, shirt); (man, have, hair);
(head, on, shirt); (shirt, on, man); (man, hold, racket);
(hair, on, shirt); (hair, on, racket); (hair, on, hand);
(man, hold, racket); (man, have, hand)}

GT Nodes: {grass, giraffe, tail, branch, giraffe,
tree, head, dirt, giraffe, leg}
GT Triplets: {(giraffe, have, head); (giraffe, have,
leg); (tree, have, branch); (dirt, on-top-of, grass);
(giraffe, have, tail)}
NAP Nodes: {grass, giraffe, tail, giraffe, tree,
head, neck, giraffe, leg, branch, dirt}
NAP Triplets: {(giraffe, have, leg); (tree, behind,
giraffe); (giraffe, have, tail); (giraffe, have, head);
(giraffe, have, giraffe); (tree, behind, giraffe);
(head, of, giraffe); (head, on, grass); (giraffe, have,
tree); (tail, on, leg)}
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MNIST-Graphs1, 2

1 9 6 9 1

1 – ←↓ ←↓ →↑ →↓
9 →↑ – ←↑ →↑ →↑
6 →↑ →↓ – →↑ →↓
9 ←↓ ←↓ ←↓ – →↓
1 ←↑ ←↓ ←↑ ←↑ –

4 7 3 3 8

4 – ←↓ ←↓ ←↓ ←↓
7 →↑ – ←↓ →↓ ←↑
3 →↑ →↑ – →↑ ←↑
3 →↑ ←↑ ←↓ – ←↑
8 →↑ →↓ →↓ →↓ –

4 7 6 9 9

4 – →↑ ←↑ ←↑ →↑
7 ←↓ – ←↓ ←↓ ←↓
6 →↓ →↑ – ←↓ →↓
9 →↓ →↑ →↑ – →↑
9 ←↓ →↑ ←↑ ←↓ –

4 7 8 9 9

4 – ←↑ →↑ ←↑ →↑
7 →↓ – →↑ →↓ →↑
8 ←↓ ←↓ – ←↓ →↓
9 →↓ ←↑ →↑ – →↑
9 ←↓ ←↑ ←↑ ←↓ –

CLEVR3, 4

� � � � � � �
� – ←↓ ←↑ ←↑ ←↓ ←↑ ←↑ ←↓ ←↑ ←↑

→↑ – ←↑ →↑ ←↑ ←↑ ←↑ ←↓ ←↑ →↑
� →↓ →↓ – →↓ ←↓ ←↓ ←↓ ←↓ ←↓ →↓
� →↓ ←↓ ←↑ – ←↓ ←↓ ←↓ ←↓ ←↓ →↓
� →↑ →↓ →↑ →↑ – ←↑ →↑ →↓ ←↑ →↑

→↓ →↓ →↑ →↑ →↓ – →↑ →↓ ←↓ →↓
� →↓ →↓ →↑ →↑ ←↓ ←↓ – →↓ ←↓ →↓
� →↑ →↑ →↑ →↑ ←↑ ←↑ ←↑ – ←↑ →↑
� →↓ →↓ →↑ →↑ →↓ →↑ →↑ →↓ – →↑

→↓ ←↓ ←↑ ←↑ ←↓ ←↑ ←↑ ←↓ ←↓ –

1We represent with ←,→, ↑, and ↓ the left, right, top, and bottom relationship between the digits
2We mark with red errors in the prediction
3�, , and� stand for a sphere, cylinder, and cube shape, respectively
4We denote with←, →, ↑, and ↓ the left, right, behind, and in front relation between the shapes
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In the previous pages, we visualize the nodes and graphs inferred by our approach
for several datasets: COCO-Images, COCO-Captions (with a single caption), COCO-
Captions (with �ve captions), COCO-Images+COCO-Captions (with images and
the �ve captions), VRD, Visual Genome, MNIST-Graphs, and CLEVR. For MNIST-
Graphs, we mark with red the incorrect predictions.

E.2 Parameter and learning se�ing

Data splits. We split all our data into training, validation, and testing in an
identical manner as related work. In the case that no available labels are provided
for testing (CLEVR and COCO), we use the provided validation set for testing.
Thus, we show the performance of the baselines, the networks requiring additional
supervision, and NAP on the validation set provided in the datasets. We extract
our own data samples for validation from the o�cial training set.

Learning procedure. While our approach can be combined with any conven-
tional backpropagation algorithms, we train all our methods using Adam [Kingma
and Ba, 2015] as an optimization schemewith an initial learning rate of 0.00025
and the exponential decay rate for the �rst moment of 0.9 and the second moment
of 0.999. In case of the node set estimation, we empirically choose a lower learning
rate of 0.0001. Note that we have not evaluated other optimizers in combination
with our networks and we analyze learning rates in the range 0.00001 and 0.001.
In the loss, we set the node weight to 1 and for the edges to 0.5. Finally, we use
early stopping based on the sum of the accuracy over the nodes and edges.

Graph2Graph. We generate random graphs comprising c semantic classes as-
sociated to the nodes, which are connected through binary edges. Since we can
generate a large amount of di�erent graphs, the models are not prone to over�tting.
We represent each sample as a set of nodes encoded using a one-hot representation,
while the edges are depicted by a binary matrix. Moreover, we set the number of
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nodes �xed throughout our evaluation to �ve. Since for each model we have �xed
graph sizes, we do not have any empty nodes and, thus, n̄ is equal to n (i.e., we do
not require a supergraph expansion).

In the �rst step of our approach, we �atten the entire input graph sample d ∈ D
into a global vector representation γ . In case of Graph2Graph, we leverage graph
convolutions, which we apply multiple times to re�ne the data point d . Thereby,
we choose the number of graph convolution layers based on the longest path in
the input graphs, i.e., we use n − 1 layers. While using less layers would still
achieve a reasonable accuracy, in most cases, we would not achieve a near perfect
performance as each node would need information from all other nodes in the
graph. All the graph convolutions leverage a ReLU activation function and have
4096 hidden units. Thus, the last graph convolution layer outputs a matrix of the
form n × 4096, which we �atten over the nodes by averaging, we obtain a 4096-
dimensional vector. Then, in our experiments, we decrease this vector into a smaller
global encoding γ ranging from only 3 to 30 numbers using a fully-connected layer
with ReLU activation and 3 − 30 units (i.e., comprising the bottleneck).

Then, we in�ate the global vector γ to our graph using our previously described
NAP scheme. We use the global vector γ and map it to the node-speci�c features ϕi
through a fully-connected layer with ReLU activation using 4096 units each. The
probability distribution νi for each node i over the classes C is obtained by passing
ϕi through a fully-connected layer followed by so�max normalization. In a similar
manner, we compute the edge embeddings εi, j using a fully-connected over the rela-
tion classes, which in our case are binary, i.e., we use a fully-connected with so�max
normalization over two classes (for consistency, we use two units and so�max).

COCO. COCO is a popular large scale dataset with a high number of annotations
for instance segmentation and image captioning. The annotation process comprised
several rounds of check ups, where incorrect labels were discarded and resulted
in very clean instance segmentations and image captions. We leverage the images,
instance labels, and captions to analyze our model for generating nodes from visual
and textual data. Thereby, the instance-wise annotations of the 91 object classes
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will represent the ground truth node set V ∗. Since for each image the number of
nodes is variable, we expand V ∗ with empty nodes resulting to v̄∗ with ten nodes
per supergraph. Note that we do not have any edges between these nodes and,
thus, we do not use any edge information for the loss or matching procedure.

For the visual representation, we leverage the penultimate layer after the global
average pooling of a ResNet-50 [He et al., 2016] pre-trained on ImageNet. The CNN
embeddings are represented by a 2048-dimensional vector, which we re-encode
using two fully-connected layers of 1024 units with ReLU activation generating
our global vector γ . Note that we process the images in the same way as required
for the ResNet-50 model.

In case of the COCO-Captions variant, we represent each word separately using
one-hot encodings. We lower-case all words and remove all punctuations from the
sentence. Thereby, we restrict the vocabulary to comprise only words occurring at
least 100 times in our training set, resulting in a vocabulary size and one-hot encod-
ing dimension of 1926. To enable batch training, we necessitate that all captions
have an equal length and, therefore, we set all sentences to a common size of 20
words through padding or by discarding excess words at the end of the sequence.

While we fuse the captions by averaging their representations to obtain a single
vector embodying all �ve captions, we combine the two vectors representing the
visual and textual content, respectively, via concatenation.

We in�ate γ to the nodes by using a fully-connected layer to the probability
distribution of the 91 semantic classes plus the empty category. Thereby, we set
the maximum number of possible nodes to 15 as most of the images fall into this
set (86%) and discard all graphs that have more nodes. In this setup, since we only
address the task of node recognition, we set the edge weights to λE = 0 and �E = 0
and train the network as mentioned in Section E.2.

VRD. While COCO comprises over 123k images, in case of VRD, we only have
5k data points from which 1k we leave for testing as de�ned in the standard split.
Due to the small amount of data in VRD, we restrict our graphs to have at most



Appendix E Node Matching

216

ten nodes associated to 100 semantic categories and 70 edge classes. We have not
included any additional pre-processing than required by the neural networks that
we considered for embedding the images.

We have analyzed several pre-trained networks (ResNet, Inception, and VGG) for
extracting a visual representation and leverage the architecture that obtained the
highest accuracy on the validation set, i.e., Inception-v3 [Szegedy et al., 2016]. We
obtain a 2048-dimensional embedding, which we re-encode with a fully-connected
layer with ReLU activation representing our 1024-dimensional global vector γ .

We then in�ate the global vector γ into the node-speci�c embeddings ϕi through
a fully-connected layer with 128 units for each node index i . We map each vector ϕi
to the node distributions ν which have the shape 10×101 (as we have 100 categories
plus the empty class). In a similar manner, we extract the edge distributions ε that
comprise 70 classes. We update the parameters in an end-to-end manner.

Visual Genome. To keep the analysis consistent with the model for VRD, we use
an identical setup for both the backbone and data pre-processing. We also keep the
same supergraph sizes, while the main di�erence lies in the number of node and
edge categories. In case of Visual Genome, we predict 100 node classes plus the
empty class, and 50 relation types.

We re-embed the 2048-dimensional visual vector by employing two fully-
connected layers with ReLU activation of sizes 1024 each resulting in a global
vector γ of size 1024. Then, we in�ate the 1024-dimensional vector γ through a
fully-connected layer resulting in 128-dimensional vectors ϕi for each node i . We
map each vector ϕi to the node distributions ν (comprising 101 categories) and
edge distributions ε (with 50 classes).

MNIST-Graphs. We generate MNIST-Graphs ourselves by leveraging the MNIST
dataset comprising grayscale images associated to ten handwritten digit categories.
First, for each data sample, we create a blank 128× 128 image and, then, we include
a digit at a time by replacing the black pixels of the input image with the randomly
selected digits totaling to �ve per graph. Thereby, we make sure that the digits do
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not highly-overlap and make sure that only digits from the training set are included
in our training images. We create in total 210k such images, where the same digit
can occur more than once. We generate the labels by directly setting the class of
the selected digits as the nodes, while the relations (left, right, in front, behind)
are computed based on the center of the digits in the 128 × 128 image.

As input to our network, we use the 128 × 128 (grayscale) image, which we
re-encode using a CNN, which we train with the rest of the network via the NAP
scheme in an end-to-end manner. The number of node classes is equal to ten, while
we have four relation types. Note that the supergraph Ḡ is equal to the graph G as
we have a constant number of nodes for each image (thus, the empty nodes are not
required in this setup).

We encode the image using a CNN with �ve blocks comprising two convolution
layers with ReLU activation and 3 × 3 kernels each. Therein, the �rst layer has a
stride of one keeping the input dimensionality, while the second one employs a
stride of two. Each block contains a di�erent number of units for the convolutions:
32, 32, 64, 64, and 128. Finally, we use a �nal convolution layer with 128 units and
with a stride of one, and obtain our global vector γ by �rst averaging the resulting
tensor and, then, using a second fully-connected layer with 1024 units.

From the 1024-dimensional vector γ , we in�ate the node-speci�c features ϕi via
a fully-connected layer with 256 units. We then get the distributions for the nodes
through another linear mapping with 151 units followed by so�max and the same
for the edges, where we use a fully-connected layer with 50 units.

CLEVR. We resize all images in CLEVR to a common size of 120 × 160 × 3 and
generate the graphs directly from the annotations provided in the dataset. Since
we do not have any labels in the test set for comparing the quality of the graphs,
we leverage the validation set provided in the dataset for testing. We extract from
the training set 10k graphs for validation.

We embed the images using a CNN which is trained together with the graph
generation module. The CNN comprises �ve blocks of three convolution layers
each with ReLU activation and 3 × 3 kernels. The �rst two layers comprise a stride
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of two, while the �nal one in each block contains a stride of two for decreasing
the dimensionality. All the layers in one block have an identical number of units:
128, 256, 256, 256, and 512, respectively. Then, we use another convolution layer
with a size of 512, ReLU activation, and a stride of one. The global vector is obtained
through average pooling followed by another fully-connected layer with 1024 units
as for MNIST-Graphs. Using the global vector γ , we generate the node-speci�c
features ϕi with a fully-connected layer with 256 units. We then map them on
the three node classes and four edge categories. Since the number of nodes per
graph varies for each image, we leverage empty nodes (i.e., the supergraphs are not
necessarily equal to the subgraphs). Finally, we train the backbone CNN together
with the graph generation module end-to-end using only the graphs as supervision.
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F Deutsche Zusammenfassung

Seit dem Aufkommen von Deep Learning wurden außerordentliche Fortschritte
in Bereichen erzielt, in denen es um die semantische Analyse und des Verste-
hens von Daten geht. Durch diese Entwicklung wurde die Kluft zwischen den
Fähigkeiten von Menschen und der KI deutlich verringert. Im Zentrum der se-
mantischen Analyse und des Verstehens von Daten steht die Aufgabe des Question
Answering, die darauf abzielt, Systeme zu implementieren, welche Fragen auf der
Grundlage einer gegebenen Wissensbasis beantworten. Das Beantworten von Fra-
gen hat eine Vielzahl von Anwendungen, die von der automatischen Indizierung
und Anwendungsfällen in Systemen für assistive Technologien bis hin zur Grund-
lagenforschung zu menschenähnlicher KI reichen. Aufgrund ihrer Bedeutung in
derart weitreichenden Anwendungsbereichen, hat das Beantworten von Fragen
in den letzten Jahren in der Forschung enorme Aufmerksamkeit bekommen, was
zu beträchtlichen Fortschritten sowohl in der Struktur solcher Systeme als auch in
den zugehörigen Datensätzen führte.
Beliebte Ansätze zur Beantwortung von Fragen umfassen neuronale Netze, die
die textuellen Daten (Fragen) und die eingegebenen Informationen (z.B. Bilder) in
den gleichen Repräsentationsraum einbetten und dann auf der Grundlage ihrer



Appendix F Deutsche Zusammenfassung

220

gemeinsamen Kodierung eine Antwort generieren. Die meisten dieser Verfahren
verarbeiten jedoch nur einen einzigen Datentyp (z.B. natürliche Bilder) und haben
Schwierigkeiten bei der Darstellung hochstrukturierter Daten (z.B. Beziehungen
von Objekten in der Szene). Darüber hinaus haben die vorgeschlagenen Modelle
eine Black-Box-Struktur, da man ihre Argumentation zur Generierung der Antwort
nicht direkt aus dem Netzwerk ableiten kann.
In dieser Arbeit gehen wir auf diese Unzulänglichkeiten ein und schlagen men-
schlich interpretierbare Ansätze für die Beantwortung von Fragen vor, bei denen
die Argumentation der Netzwerke direkt aus ihrer Architektur abgeleitet werden
kann. Darüber hinaus sind unsere Ansätze in der Lage, hoch strukturierte Daten
aus einer Wissensbasis, die sowohl textuelle als auch visuelle Daten umfassen
kann, zu verstehen und aus ihnen zu schlussfolgern. Wir streben Netzwerke an,
die in der Lage sind, über mehrere Modalitätstypen und -strukturen hinweg zu
verallgemeinern, und die Schlussfolgerungen auf der Grundlage von längeren Argu-
mentationsketten ziehen können. Lernmaterialien sind perfekte Kandidaten für die
Analyse solcher Systeme, da sie reichhaltige und vielfältige Inhalte, verschiedene
Figurentypen und verschiedene Interaktionsmöglichkeiten bieten. Darüber hinaus
hat die visuelle Argumentation auf Lernmaterialien weitere wichtige Anwendun-
gen, z.B. für die automatische Beantwortung von Fragen sehbehinderter Studenten
zum Vorlesungsinhalt sowie für die schnelle Indexierung von Dokumentdaten.
Um den Netzwerken das Verstehen von strukturierten Inhalten zu ermöglichen,
nutzen wir eine graph basierte Darstellung des Wissensinhalts für unsere neu-
ronalen Netze. Im Falle von Bildern stellen die Knoten Objekte in der Szene dar,
während die Kanten ihre Beziehungen repräsentieren. Im Vergleich dazu sind die
Knoten bei Textinhalten Satzeinbettungen, bei denen die Kanten ihre Platzierung
modellieren. Wir stützen unsere Methoden auf Graph-Neuronalen Netzen, die
von Natur aus mit hochstrukturierten Eingabedaten umgehen und eine natürliche
Darstellung der Wissensbasis liefern können. In dieser Arbeit konzentrieren und
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untersuchen wir zwei Arten von Graphnetzwerken: einen beziehungsorientierten
Ansatz, der auf Kantenpooling basiert, und eine pfadbasierte Methode, die den
visuellen Eingabegraphen anhand der Fragestellung durchsucht.
Schließlich demonstrieren wir die Argumentationsfähigkeiten unserer Modelle
in einer umfangreichen experimentellen Analyse. Dabei zeigen wir, dass unsere
Modelle in den Bereichen Fragenbeantwortung, multimodales Argumentieren und
Beantwortung von Seitenfragen Ergebnisse auf dem neuesten Stand der Technik
erzielen. Wir evaluieren darüber hinaus verschiedene Kon�gurationen unserer
Architekturen, Eingabemodalitäten und der Datenrepräsentation (z.B. rohe visuelle
3D-Tensoren oder gra�sche Darstellungen). Unsere Analyse zeigt, dass unsere
Modelle in der Lage sind, Transparenz und menschliche Interpretierbarkeit zu
bieten, d.h. es ist möglich, direkt Rückschlüsse über das bearbeitete Wissen und die
Argumentation zur Beantwortung jeder Frage zu ziehen.


