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Kurzfassung

Die photonische Integration ermöglicht die Kombination verschiedener optischer
Komponenten zu funktionalen Baugruppen in Form von integrierten photonischen
Schaltungen (engl. photonic integrated circuits — PIC). Diese optischen Analoga
von integrierten elektronischen Schaltungen finden Anwendungen in verschiedenen
Bereichen der Nachrichtentechnik, der Signalverarbeitung, der Metrologie und der
Sensorik. Integrierte photonische Schaltungen werden in verschiedenen Integra-
tionsplattformen hergestellt, wie z. B. Silizium-auf-Isolator, Silizium-Nitrid, III-V-
Verbindungen, und jede Integrationsplattform hat bestimmte Vor- und Nachteile.
Um die Möglichkeiten der photonischen Integration voll auszunutzen, indem man
das Beste aus jeder Integrationsplattform nimmt, ist es notwendig, integrierte
photonische Schaltungen, gefertigt auf verschiedenen Plattformen, zu kombinieren.
Eine einfache Möglichkeit, verschiedene integrierte photonische Schaltungen
zu verbinden, ist 3D-Laserlithographie von 3D-gedruckten Polymerwellenlei-
tern. Im Idealfall werden die integrierte photonische Schaltungen nebeneinander
platziert, und die Wellenleitertrajektorien werden auf der Grundlage der Positionen
der Kopplungspunkte auf dem PIC geplant. Dieses Konzept kann auch für die
Verbindung von integrierten photonischen Schaltungen mit optischen Fasern ver-
wendet werden, wodurch ein vollständiges optisches Packaging ermöglicht wird.
Die Herausforderung besteht darin, eine optimale Wellenleitertrajektorie und -form
zu finden, die zu minimalen Verlusten führt, denn die bestehenden theoretischen
Verlustmodelle sind nur für bestimmte Spezialfälle gültig, und der Rechenaufwand
der Maxwell-Gleichungslöser ist sehr groß. Darüber hinaus können 3D-gedruckte
Wellenleiter verwendet werden, um die Flexibilität beim Entwurf von PIC-Layouts
zu erhöhen, indem planare Wellenleiterkreuzungen durch 3D-gedruckte Wellen-
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Kurzfassung

leiterbrücken ersetzt werden. Das Problem der nicht-planaren PIC-Topologien
wird immer wichtiger, da die Anzahl der optischen Komponenten pro integrierter
photonischer Schaltung über ∼103 hinausgeht, was den Zahlen der elektronischen
Komponenten in integrierten elektronischen Schaltungen in den 1970er und 1980er
Jahren ähnelt. Schließlich könnte die Flexibilität der 3D-Laserlithographie als
ergänzende Technologie zur 2D-Lithographie genutzt werden, um fortschrittlichere
photonische Bauelemente als einfache Wellenleiter zu realisieren.

Diese Dissertation befasst sich mit der Modellierung und Simulation von 3D-
Freiform-Wellenleitern sowie mit Anwendungen der 3D-Laserlithographie zur
Realisierung von planaren kreuzungsfreien integrierten photonischen Schaltungen
und ultrabreitbandigen Polarisationsstrahlteilern.

Zunächst führt Kapitel 1 den Leser in das Thema der Dissertation ein und liefert
eine Motivation für die vorgestellte Forschungsarbeit.

Kapitel 2 liefert theoretische und technologische Grundlagen zu optischen Wellen-
leitern, Schaltern und polarisationsmanipulierenden Elementen in der integrierten
Optik, die für ein besseres Verständnis der nachfolgenden Kapitel notwendig sind.

Kapitel 3 präsentiert einen transformationsoptischen Ansatz bei der Modellierung
von Freiform-Lichtwellenleitern zur Beschleunigung von Simulationen im Zeit-
bereich auf einem rechteckigen Gitter. Eine Reihe von Freiform-Wellenleitern
wurde mit dem erwähnten Ansatz in 3–6 Mal kürzeren Zeit im Vergleich zum kon-
ventionellen Ansatz simuliert. Die Wellenleiter wurden anschliessend 3D-gedruckt
und experimentell charakterisiert, was eine gute Korrelation zu den Simulationen
ergab.

Kapitel 4 stellt eine Silizium-Photonik Switch-and-select-Schaltung mit einer
nichtplanaren Topologie vor, die mit 3D-gedruckten Wellenleiterbrücken realisiert
wurde, die planare Wellenleiterkreuzungen ersetzen. Dieses Kapitel enthält
auch eine graphentheoretische Analyse, die Ansätze mit Wellenleiterbrücken
und mit planaren Wellenleiterkreuzungen vergleicht, sowie Richtlinien für den
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Kurzfassung

Entwurf von Switch-and-select-Schaltungen mit einer optimalen Anzahl von
Wellenleiterbrücken.

Kapitel 5 stellt einen wellenleiterbasierten ultrabreitbandigen 3D-gedruckten
Polarisationsstrahlteiler und -Rotator vor. Designansatz, Simulationen, Herstel-
lung auf der Facette einer Monomodefaser und experimentelle Charakterisierung
einschließlich eines Dual-Polarisations-Datenübertragungsexperiments mit einer
Durchsatzrate von 640 Gbit/s werden ebenfalls vorgestellt.

Schließlich fasst Kapitel 6 die Ergebnisse zusammen und gibt einen Ausblick
auf die weitere Forschung. Die Dissertation schließt mit Anhängen und einer
Publikationsliste.
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Preface

Photonic integration enables combining different optical components into func-
tional assemblies in the form of photonic integrated circuits (PIC). These optical
analogons of electronic integrated circuits (EIC) are finding application within
different areas that include communications, signal processing, metrology, and
sensing. PIC are made using different integration platforms such as silicon-on-
insulator, silicon-nitride, III-V compounds, and each integration platform has
certain advantages and drawbacks. To fully exploit the capabilities of photonic
integration by taking the best from each integration platform, it is necessary to
combine PIC from different platforms. A straightforward way of connecting
different PIC is by employing 3D-printed polymer waveguides through 3D laser
lithography. Ideally, the PIC are coarsly placed close to each other, and the
waveguide trajectories are planned based on the positions of the coupling points on
the PIC. This concept can also be used for connecting PIC to optical fibers, thus
enabling full optical packaging. The challenge is finding an optimum waveguide
trajectory and shape that would result in minimum losses. This is because the
existing theoretical loss models are valid only for certain special cases, and the
computational effort of Maxwell’s equation solvers is immense. In addition,
3D-printed waveguides can be used in adding a flexibility in designing PIC layouts
by replacing planar waveguide crossings by 3D-printed waveguide overpasses. The
problem of non-planar PIC topologies is becoming increasingly important as the
number of optical components per PIC is going beyond ∼103, which is similar to
figures of electronic components in EIC during the 1970s and 1980s. Finally, the
flexibility of 3D laser lithography could be used as a complementary technology
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Preface

to standard 2D lithography for realizing more advanced photonic devices than just
simple waveguides.

This thesis addresses modeling and simulation of 3D freeform waveguides as well
as applications of 3D laser lithography for realizing planar crossing-free PIC, and
ultra-broadband polarization beam splitters.

First of all, Chapter 1 introduces the reader to the topic of the thesis and provides
motivation for the presented research work.

Chapter 2 provides the theoretical and technological basics of optical waveguides,
switches, and polarization manipulating elements in integrated optics that are
necessary for better understanding of subsequent chapters.

Chapter 3 presents a transformation optics approach in modeling of freeform
optical waveguides for speeding-up time-domain simulations on a rectangular grid.
A series of freeform waveguides was simulated using the mentioned approach in a
significantly shorter time compared to the conventional approach. The waveguides
were subsequently 3D-printed and experimentaly characterized, showing a good
correlation to simulations.

Chapter 4 introduces a silicon photonic switch-and-select (SAS) circuit with a
non-planar topology, realized with 3D-printed waveguide overpasses that replace
planar waveguide crossings. This chapter also includes a graph-theoretical analysis
that compares approaches with waveguide overpasses and with planar waveguide
crossings, as well as guidelines for designing switch-and-select PIC with an
optimum number of waveguide overpasses.

Chapter 5 presents a waveguide-based ultra-broadband 3D-printed polarization
beam splitter and rotator. Design approach, simulations, fabrication on the facet of
a single mode fiber, and experimental characterization including a dual-polarization
640 Gbit/s data transmission experiment are also provided.

Finally, Chapter 6 summarizes the results and gives an outlook for further research.
The thesis finishes with appendices and a list of publications.

x



Achievements of the present work

In this thesis, 3D printed freeform waveguides were investigated from a point of
view of modeling and design, as well as from a perspective of applications in
integrated optics. 3D-printed freeform waveguides may play an important role in
complementing planar photonic integrated circuits by adding additional degrees
of freedom enabled by virtue of 3D printing.

In the following, a summary of achievements that were accomplished during the
work on this thesis are provided:

Demonstration of novel transformation optics based modeling and simulations
of freeform waveguides verified by experiments

Freeform waveguide 3D models were mathematically transformed into straight
waveguide 3D models by applying a waveguide-trajectory-based coordinate trans-
formation function, enabling an optimal fitting of the transformed waveguides into
rectangular box shaped simulation volumes. Based on the coordinate transforma-
tion function, material properties of straight waveguides in the transformed space
were calculated by using principles of transformation optics. The waveguides
were simulated in the transformed and, as a reference, in the original space. Both
types of simulations provided almost identical results for transmission and electric
field distribution, with simulations in the transformed space being completed in
a significantly shorter simulation time. The waveguides were 3D printed on a
silicon photonic chip, and experimentally measured transmission values showed a
good qualitative match to simulated values. The presented transformation optics
approach is applicable to a wide range of numerical solvers [J1].

xi



Achievements of the present work

First demonstration of a photonic integrated circuit with a non-planar topology
realized with 3D printed waveguide overpasses

A silicon photonic 4 × 4 switch-and-select circuit was designed and fabricated
through a commercial fabless manufacturing process. The photonic integrated
circuit has a non-planar topology, and it was complemented by 3D-printed wave-
guide overpasses, thus completely avoiding planar waveguide crossings. A layout
designing algorithm for minimizing the number of waveguide overpasses and a
detailed graph theoretical analysis of switch-and-select circuits has been provided.
The analysis demonstrates that several orders of magnitude fewer waveguide
overpasses than planar waveguide crossings are needed for realizing high-radix
switch-and-select circuits. The experimentally tested waveguide overpasses exhibit
better than −2 dB transmission, and less than −75 dB crosstalk in the C-band [J3].
The work has been originally presented at the European Conference on Optical
Communications 2016 (ECOC 2016) [C4] where it was honored with the best
student paper award.

First demonstration of a 3D-printed ultra-broadband waveguide-based polar-
ization beam splitter and rotator

A waveguide-based polarization beam splitter and rotator has been designed and
simulated. The device has been 3D printed on the facet of a single mode fiber
and was experimentally tested. Characterization with a polarization analyzer
confirms the polarization splitting and rotation predicted by the simulations, with a
measured polarization extinction ratio of more than 11 dB in a 400 nm wavelength
range. A dual-polarization 16QAM data transmission experiment at a wavelength
of _ = 1550 nm and a symbol rate of 80 GBd corresponding to an aggregate data
rate of 640 Gbit/s demonstrates that there is no optical signal-to-noise ratio penalty
compared to a commercial fiber-based polarization beam splitter [J2]. The results
of this work have been included in patent applications [P1] and [P2]. Note that the
achievements related to the polarization beam splitter and rotator resulted from
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Achievements of the present work

equal contributions of the author of the thesis and M. Blaicher. The author’s work
was focused on design and optimization of the polarization beam splitter, while
the work of M. Blaicher was mainly focused on fabrication. The experimental
characterization was done jointly by the author and M. Blaicher. For more details
about individual contributions, see the introductory part of Chapter 5.
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1 Introduction

The advent of integrated optics [1] has marked a turning point in the way how
we understand optics and photonics. Miniaturization of optical components and
their integration into optical systems in form of photonic integrated circuits (PIC)
has numerous advantages over the traditional approach with bulky discrete optical
elements. Some of the most obvious advantages are that alignment of optical
components is redundant, the integrated systems are robust to movements and
vibrations, the footprint is several orders of magnitude smaller, and there is a
potential for a reproducible low-cost mass production through optical lithography
processes. The initial application field of integrated optics were optical commu-
nications, and one of the main reasons for that is the transparency of photonic
integrated waveguides in the infrared region that matches the transparency windows
of optical fibers [2]. Nowadays, integrated optics is pushing its way into other
application areas such as optical metrology [3, 4], optical spectroscopy [5], LIDAR
[6], optical imaging [7], all-optical signal processing [8], neural networks [9],
sensing and biophotonics [10], to name just a few. Yet, to fully unlock the potential
of integrated optics there are a few more challenges to be overcome. Some of
the most prominent are photonic packaging, restrictions of photonic integrated
devices to planar structures, and polarization sensitivity.

In analogy to electronic packaging that interconnects electronic integrated circuits
(EIC) into functional units, the task of photonic packaging is to interconnect and
bring together PIC. Photonic packaging is especially interesting for combining
different photonic integration platforms with complementary advantages. These
include, e.g., silicon-on-insulator (SOI) with a high refractive index contrast and a
high integration density, silicon nitride (Si3N4) with low loss waveguides that are
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1 Introduction

applicable for obtaining high Q-factor optical ring-resonators, and III-V platforms
such as indium-phosphide (InP) with a direct energy bandgap that is suitable
for lasers. In addition, to couple light in and out of a PIC it is necessary to
optically connect them to optical fibers, analogously to EIC whose pads need to
be electrically connected to contacts on their packaging cases or to connectors
on a printed circuit board. The concept of precise chip-to-chip or chip-to-fiber
alignment suffers from the difficulty of matching different mode sizes, and from
involving an expensive active alignment process. Electronic packaging is done
by a simple concept of interconnecting EIC with wire bonds — microscopic
metallic wires. Analogously, interconnecting different PIC and optical fibers
with relaxed alignment conditions into fully packaged photonic systems, while
at the same time adapting different mode sizes, can be done with 3D printed
polymer waveguides, also known as photonic wire bonds (PWB). This concept has
been experimentally demonstrated for chip-to-chip and chip-to-fiber packaging
scenarios [11–13]. However, to achieve an optimum coupling between devices
interconnected by photonic wire bonds, it is necessary to find an optimum photonic
wire bond shape. The optimization is typically done numerically by making a
parameterized photonic wire bond 3D model and running a simulation. However,
since PWB are freeform waveguides, simulations with a rectangular grid and a
rectangular box simulation domain (typical for most time-domain techniques) are
inefficient because the region of interest (the PWB and its close vicinity) generally
involves only a small portion of the simulation domain.

When it comes to the planar nature of the PIC, an obvious issue comes with PIC
with non-planar circuit topologies that require waveguide crossings. Over recent
years, very efficient low-loss and low-crosstalk planar waveguide crossings have
been demonstrated in SOI [14, 15] and Si3N4 [16] platforms. However, for very
complex PIC topologies, the number of planar waveguide crossing can be huge
[17], which would deteriorate the overall performance and the footprint of the PIC.
One can also think of using 3D-printed waveguide overpasses instead of planar
waveguide crossings. A clear advantage of a 3D-printed waveguide overpass is
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1 Introduction

that it can replace a multitude of planar waveguide crossings, and that in principle
it can be 3D-printed between any two points on the PIC. In addition, a waveguide
overpass would be physically separated from the planar waveguides that it crosses,
and one could expect much better crosstalk figures compared to planar waveguide
crossings.

Finally, the 3D-printing technology offers unprecedented degrees of freedom in
making photonic micro- and nano devices, far beyond photonic wire bonds that
are only used for the mere transport of light. The full potential of 3D-printing as a
complementary technology to planar PIC for making optical devices with more
advanced functionalities is yet to be unleashed. One example of such advanced
functionalities would be polarization manipulation. This is of great importance
for PIC that are generally optimized for TE polarization and suffer from high
polarization dependent losses. Design flexibility in PIC is limited to 2D, and
existing planar devices for polarization splitting and rotation in PIC typically
operate in a limited wavelength range [18–20] or involve complicated multi-layer
lithography steps [21, 22]. 3D-printing on the other hand unlocks a full 3D-design
freedom and enables fabrication of potential devices with complex shapes that
otherwise could not be fabricated with planar optical lithography processes. Such
devices could be directly printed on a wide range of PIC as well as directly
on optical fibers. In combination with photonic wire bonds, polarization-aware
photonic packaging is achievable.

This thesis focuses on the three mentioned challenges: making simulations
of 3D-printed waveguides more efficient, complementing planar PIC with 3D-
printed waveguide overpasses, and using 3D-printing technology for making
high-performance polarization manipulating devices which would be unrealizable
with standard optical lithography processes. The thesis is structured as follows:
Basic theoretical and technological concepts necessary for a better understanding
of the subsequent chapters are provided in Chapter 2. In Chapter 3 a transformation
optics based concept of modeling and simulating of freeform waveguides is
presented. Chapter 4 introduces the concept of 3D-printed waveguide overpasses

3



1 Introduction

(WOP) exemplified by a demonstrator switch-and-select (SAS) PIC in silicon
photonics, alongside with a graph-theoretical analysis of the number of required
WOP for realizing SAS circuits. Chapter 5 gives theoretical investigations and
designs as well as simulations and experimental characterizations of a 3D-printed
polarization beam splitter/polarization rotator. A summary of the thesis as well as
ideas and guidelines for future work are provided in Chapter 6, and more details on
presented concepts and devices together with a glossary of acronyms and symbols
are given in appendix. The thesis concludes with a list of cited publications and a
list of own publications.
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2 Theoretical and technological
background

This chapter provides an overview of theoretical and technological concepts that
are fundamental for the content of subsequent chapters, where novel concepts
are described in detail. First, different types of optical waveguides in integrated
optics are presented, followed by a method for generating 3D models of freeform
waveguides, and a state-of-the-art review of modeling 3D waveguides. Afterwards,
the concept of optical switching in integrated optics is introduced, and the switch-
and-select switching fabric is explained in more detail. The chapter concludes with
a review of photonic devices for polarization manipulation in integrated optics.

2.1 Optical waveguides in integrated optics

Optical waveguides are fundamental optical devices in integrated optics. They form
a basis on which many other optical components are built. Examples include phase
shifters, Mach-Zehnder interferometers, polarizers, polarization beam splitters,
wavelength filters, ring resonators, and couplers. There are different types of optical
waveguides in integrated optics, and here a review of most common waveguide
types is provided.To describe the waveguides we assume a coordinate system that
is positioned such that 𝑥 and 𝑦 axes are perpendicular to, and the coordinate 𝑧 is
parallel to the longitudinal waveguide axis (direction of light propagation).

The simplest form of a waveguide is a slab waveguide that consists of a core
layer which is infinitely extended along the 𝑥-direction and restricted along the
𝑦-direction; this layer resides on a substrate, and it is covered by a cladding material,
see Fig. 2.1(a). If the cladding and the substrate are made from the same material

5



2 Theoretical and technological background

the slab waveguide is symmetric, otherwise it is asymmetric. The mode-field
of a slab waveguide can be analytically calculated [23], and although the slab
waveguide is a fiction that assumes an infinitely extended core along 𝑥, it is a
basis for understanding more complex waveguides for which there is no analytical
solution.

(a) (b)

(c) (d)

(e) (f)

nsubstrate nsubstrate

nsubstrate nsubstrate

nsubstrate

ncladding ncladding

ncladding ncladding
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Figure 2.1: Integrated optical waveguides. (a) Slab waveguide. If 𝑛substrate = 𝑛cladding, the waveguide
is symmetric, otherwise it is asymmetric. (b) Strip waveguide. If 𝑛substrate = 𝑛cladding the waveguide
is called a channel waveguide. (c) Ridge waveguide. If 𝑛core = 𝑛ridge, the waveguide is called rib
waveguide, although the two names are often used interchangeably. (d) Slot waveguide. The core is
selectively etched, thereby forming a slot along the 𝑧 axis. The slot is filled with a low-index cladding
material. (e) Multi-layer stack waveguide. The core is formed by stacked layers of different materials.
(f) Sub-wavelength grating (SWG) waveguide. The core is selectively and periodically etched to form
a domino like structure. The gaps between the dominoes are filled with a cladding material.

The strip waveguide is a waveguide whose core is restricted along both the 𝑥- and
𝑦-axes, resides on a substrate and is covered by a cladding, see Fig. 2.1(b). This type
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2.1 Optical waveguides in integrated optics

of waveguide is common in silicon photonics (SiP), and typically has a relatively
high attenuation of ∼2 dB/cm due to light scattering on sidewall roughness. To
alleviate this problem, the waveguide core is usually made slightly multimode,
so that it is big enough to contain almost the complete field of the fundamental
mode within the core; typical cross section size in SiP is ∼ (500 × 220) µm2. If
the substrate and the cladding are made from the same material, the waveguide is
called a channel waveguide.

A ridge waveguide is formed by placing a layer with a variable thickness (ridge
layer) between the core and the cladding of a slab waveguide. More precisely, the
ridge layer features a "bump" with an increased thickness and a finite width (along
the 𝑥-axis), see Fig. 2.1(c). The mode-field in the core layer is concentrated under
the bump, and the scattering losses due to sidewall roughness are significantly
reduced compared to a strip/channel waveguide. A variant with merged core and
ridge layers is called rib waveguide. The structure of a rib waveguide is simpler
compared to the structure of a ridge waveguide, but at a price of higher scattering
losses. The terms ridge and rib waveguide are sometimes used interchangeably in
the literature.

Slot waveguides are waveguides with a slot within the core that is filled with a
lower index cladding material, see Fig. 2.1(d). These waveguides are interesting
because of the discontinuity of the 𝑥-component of the electric field, which is
perpendicular to the core-slot interface. At this interface, due to the refractive index
difference, the 𝑥-component of the electric field undergoes a jump, and has a higher
value within the slot. This is because of the continuity of the normal component
of the electric displacement vector at the interface between the slot and the core,
𝐷𝑥,core = 𝐷𝑥,slot. From here it follows that Y0Y𝑟 ,core𝐸𝑥,core = Y0Y𝑟 ,slot𝐸𝑥,slot, and
finally

𝐸𝑥,slot =
Y𝑟 ,core

Y𝑟 ,slot
𝐸𝑥,core. (2.1)

With the electric field concentrated in the slot, it is possible to fill in the slot with
low-index materials that, e.g., feature second order nonlinearities (that do not
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2 Theoretical and technological background

exist in silicon due to the point symmetry of its crystal lattice) and complement
the integrated optics platform. This concept has been extensively used in silicon-
organic hybrid (SOH) modulators [24].

In multi-layer stack waveguides, the core is made by a layered deposition of
materials with different refractive indices, and a subsequent selective removal
of the multi-layer stack by etching, see Fig 2.1(e), where a core made from two
kinds of material has been illustrated. These waveguides are used to achieve
optical anisotropy (birefringence), which can be exploited for making polarization
selective devices [22] and also active optical devices [25].

Sub-wavelength grating (SWG) waveguides are waveguides whose core is periodi-
cally (along the 𝑧-axis) etched thereby forming a domino-like core structure, with
gaps between the dominoes that are filled with a cladding material, see Fig. 2.1(f).
The name for these waveguides originates from the fact that the gap and the domino
thickness along 𝑧 are much smaller than the medium wavelength of the propagating
light. Dispersion engineering is obtained by adjusting the fill factor (ratio of the
width of a domino to the combined width of a domino and a gap), and by choosing
the cladding material. These waveguides find application in telecommunications,
signal processing, and sensing [26].

A common characteristic of integrated optical waveguides is their strong polariza-
tion dependence (loss, spectral characteristics, dispersion). This is a consequence
of the sub-wavelength size of the waveguide cores, and of a strong light confine-
ment within the core. As a result, integrated optical waveguides are typically
optimized for the polarization which is predominantly oriented along the 𝑥-axis,
quasi-TE polarization. It should be noted that a channel waveguide with a square
cross-section theoretically does not exhibit any polarization dependence, but due
to a high index contrast, already slight cross section variations which are inevitable
in the fabrication process would result in a polarization dependence [27].
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2.1 Optical waveguides in integrated optics

2.1.1 Light coupling between single-mode fibers and integrated
optical waveguides

Light is typically coupled into and out of integrated optical waveguides using
single-mode fibers (SMF). Unlike integrated optical waveguides, SMF feature a
full rotational symmetry, and they feature two degenerate polarization states of the
fundamental mode. In addition, compared to integrated optical waveguides, light
is only weakly guided in SMF, due to a low index contrast between the cladding
and the core. As a consequence, mode field diameters (MFD) of the guided modes
in optical fibers and integrated optical waveguides are very different — in optical
fibers the MFD is of the order of 9 µm, while, e.g., in SiP waveguides quasi-TE
polarized light has a sub-micrometer MFD, see Fig. 2.2. This poses a challenge
for obtaining a low-loss coupling between SMF and integrated optical waveguides,
as the mode-field sizes must be adapted. One way to do so is by using grating
couplers (GC) on the surface of the PIC [28]. Grating couplers are diffraction
gratings that collect light from an optical fiber and direct it to an integrated optical
waveguide. This approach suffers from low bandwidth and relatively high insertion
losses that can, however, be mitigated by adding a backside mirror beneath the
GC [29], at the expense of additional technological complexity. Other approaches
include lensed fibers and vertically bent waveguides by ion implantation [30], and
3D-printed vertically bent lensed couplers [31]. In all mentioned approaches the
SMF is approaching the PIC from the top, and it is aligned with the respective
coupler — this is called surface-coupling. In general, surface-coupling leads to
non-planar packages, and it is hard to interface surface-coupled chips with other
edge-emitting chips such as InP-based lasers. The coupling can also be done by
routing an integrated optical waveguide to the edge of a PIC, and by bringing a
SMF facet next to the facet of the integrated optical waveguide — this is called
facet or edge coupling. The coupling efficiency in this case can be improved by
using lensed fibers, various mode field adapters on the PIC side [32], or 3D-printed
lenses either on the SMF and/or on the PIC side [33].

All mentioned approaches, however, require alignment of individual SMF or SMF
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(1)

(a) (b)

d  = 8.2 µmcore
w  = 0.5 µmSi,core

h  = 0.22 µmSi,coren  = 1.4388 cladding

n  = 1.444core  n  = 3.48core  

n  = 1.44cladding  

Figure 2.2: Comparison of the mode-field sizes in SMF and SiP waveguides at a wavelength of
_ = 1550 nm. (a) Mode-field of the fundamental mode in a SMF. The white circle outlines the interface
between the core and the cladding. Inset (1): Mode-field of the fundamental quasi-TE mode in a SiP
channel waveguide, displayed at the same scale as the SMF. (b) Close-up of the mode-field of the SiP
waveguide. The white rectangle outlines the waveguide core.

arrays to couplers on the PIC side. A way to avoid alignment, while at the same
time having broadband coupling is to use 3D-printed freeform waveguides, so
called photonic wire bonds. Furthermore, the shape and the cross-section of
freeform waveguides can be made such that it includes mode-field adapters that
adapt the mode sizes between the different integration platforms. This concept
has been successfully used for demonstrating optical coupling between two PIC
[11], between an optical fiber and a PIC [12], and a combination of both types of
coupling for obtaining fully packaged multi-chip modules [13, 34]. One of the
biggest challenges of this approach is finding an optimum waveguide trajectory
and shape for obtaining a maximum coupling between the connected devices. The
optimization of freeform waveguides is a subject of intensive research.

2.1.2 Mathematical description of 3D freeform waveguides and 3D
model generation

The input data for generating a 3D freeform waveguide trajectory are coordinates of
its starting and ending point in (𝑥, 𝑦, 𝑧)-space, as well as two vectors that represent
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2.1 Optical waveguides in integrated optics

the trajectory tangents in these two points. The trajectory is then generated as a
parameterized curve, e.g. a B-spline. This curve is then subject to a systematic
optimization with respect to the insertion losses of the corresponding freeform
waveguide. However, if there is a time constraint for generating the trajectory, a
simplified and fast optimization can be done such that only certain factors like
minimum bend radius and maximum absolute value of the first derivative of the
trajectory equation need to be observed. The trajectory is then discretized with
sample points in (𝑥, 𝑦, 𝑧)-space.

To generate a 3D model of the freeform waveguide, a cross-section shape in
each trajectory sample is needed. In case the cross-section is circular, the only
additional thing that is needed to generate the 3D model is the tangent vector T
in all trajectory points, and it can be easily calculated. The circular cross section
is approximated by a regular 𝑛-sided polygon, and the shape of the waveguide
3D model is obtained by centering the corresponding circle in each trajectory
sample point such that T is always perpendicular to the plane of the circle. In case
the cross section does not feature a full rotational symmetry, e. g., in case of an
ellipse or a rectangle, generation of the 3D model requires additional thoughts.
Imagining the cross-section shape as an aircraft that flies along the trajectory curve,
one may define roll, pitch, and yaw angles with respect to a global coordinate
system. The tangent vector T defines pitch and yaw angles, and to describe how
the cross-section shape rolls in each trajectory point it is necessary to define the
roll angle. For this purpose, a 2D coordinate frame consisting of vectors U and
V that are mutually perpendicular and perpendicular to T needs to be defined,
and one can use the rotation minimizing frame (RMF) [35, 36], which is often
used in computer graphics and 3D modeling [37]. In contrast to the better known
Frenet-Serret frame, which is not defined in inflection points and straight parts of
the trajectory, and which rotates by 180◦ after each inflection point, the RMF is
defined in all trajectory points, and does not rotate at inflection points. Defining
the roll angle of 0◦ in the first trajectory point, the RMF will be rotated by a roll
angle of 𝑅1 in the last trajectory point. If the desired roll angle in the last point is
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𝑅2 ≠ 𝑅1, then the difference between the desired angle and the obtained roll angle
is Δ𝑅 = 𝑅2 − 𝑅1. If the trajectory consists of 𝑚 samples, then the cross-section
shape in the 𝑖th sample needs to be additionaly rotated (rolled) by 𝑖−1

𝑚−1Δ𝑅. In
this way, the cross-section shape in the last sample will be rotated by Δ𝑅, the
cross-section shape in the second last sample slightly less, and so on until the
cross-section shape in the first sample that will not undergo any rotation.

2.1.3 Modeling of optical waveguides

Finding an optimum freeform waveguide for connecting two spatially fixed
optical devices and achieving maximum possible optical transmission requires
an accurate loss estimation method. The problem is to find an optimum freeform
waveguide trajectory between two points in 3D Cartesian space, as well as the
corresponding freeform waveguide shape, i. e., a freeform waveguide cross-section
along the trajectory that need not necessarily be constant. The loss mechanisms in
freeform waveguides include material absorption, multi-mode excitation, radiation,
scattering, and modal field mismatch. The influence of these mechanisms depends
on the freeform waveguide material properties, the light polarization, as well as the
freeform waveguide geometrical parameters such as trajectory length, trajectory
curvature and its first derivative, freeform waveguide cross-section evolution along
the trajectory, and freeform waveguide surface roughness. Although there are
analytical models that tackle different loss mechanisms in optical waveguides
[38–43], these models are limited to special cases by certain assumptions and
simplifications, and neither one of them takes into account all loss mechanisms
at the same time. Thus far, there is no universal accurate analytical model for
calculating transmission losses of true freeform waveguides, and most of the
research effort has been dedicated to optimizing a limited number of scenarios
such as connections of a straight and a curved waveguide, S-, 90◦-, and 180◦-bends
[41, 44–50].

Since the light propagation in freeform waveguides is governed by Maxwell’s equa-
tions, the freeform waveguides can be alternatively described by numerical solvers
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2.1 Optical waveguides in integrated optics

of Maxwell’s equations. However, the freeform waveguide length is typically
much larger than the wavelength of light, which leads to very large computational
domains that require an immense computational effort. Consequently, the beam
propagation method (BPM) has been introduced as a fast approximation technique
for simulating and optimizing optical waveguides [51–55]. However, the BPM
as a rule assumes slowly varying waveguides (along the propagation direction)
and ignores back reflection, which renders the BPM inadequate for describing
general waveguide-based optical devices that might, e. g., contain a Bragg grating
or photonic crystals. In principle, it is possible to expand the BPM by taking
into account back reflection and rapid spatial variations, but at the cost of the
computational complexity that would become comparable to those of the rigorous
solvers. Recently, the fundamental mode approximation (FMA) method for a fast
transmission loss estimation and a real-time optimization of single-mode freeform
waveguide was reported [56]. The FMA relies on a look-up table consisting of
pre-calculated eigenmodes (propagation constants and modal field distributions) of
waveguide segments with constant radii of curvature, their bending losses as well as
transition losses due to modal field mismatch between two adjacent segments with
different radii of curvature. The FMA discretizes freeform waveguide to segments
with constant radii of curvature and calculates the transmission losses based on
the look-up table. While exceptionally fast (optimization times of the order of ms
with pre-calculation done), this method disregards the existence of higher-order
modes, and does not provide accurate results for multi-mode waveguides.

This review shows that it is necessary to come up with new concepts for estimation
of freeform waveguide losses. A possible candidate which is a compromise between
loss estimation time and accuracy is the transformation optics concept [57–60].
This concept enables conversion from a freeform waveguide that has simple
material properties and a complicated geometry to an equivalent transformed
freeform waveguide that has a simple geometry, i. e. straight trajectory, but
complicated material properties. The key advantage of the straight trajectory is
that the waveguide can be optimally fit to a rectangular box computational domain,
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(which is a standard for most time-domain Maxwell’s equations solvers), thus
reducing the overall simulation time. The details of this concept as are provided in
Chapter 3.

2.2 Photonic integrated switches

3D printed waveguides can also open new perspectives in integrated optics by
replacing a multitude of waveguide crossings in PIC with a single 3D-printed
overpass. An example of PIC that require a large number of waveguide crossings
are switching fabrics. A switching fabric is a network of switches that interconnects
multiple inputs and multiple outputs. Traditionally, switching fabrics were used
in telephone exchanges to establish telephone calls between subscribers, and
nowadays the switching fabrics have scaled down to photonic integrated devices
that interconnect optical inputs and outputs on a single photonic chip [61]. Over
the last century, the mathematical theory of switching and optimizing switching
fabrics has been well developed [62]. However, these optimizations were done with
a view to electronics. Some aspects of switching fabrics that are not perceived as
a problem in electronics can pose a challenge in integrated optics — an example is
the number of crossings required for realizing the switching fabric. Comprehensive
review on switch fabrics in integrated optics can be found in [63] and [64]. The
focus in this thesis is on switch-and-select (SAS) fabrics, since they feature a huge
number of waveguide crossings that can be replaced by 3D-printed waveguide
overpasses. This is because in SAS fabrics each input must be connected with each
output with a dedicated waveguide. The graph-theoretical representation of an
𝑛 × 𝑛 SAS fabric (𝑛 inputs and 𝑛 outputs) is a complete bipartite graph 𝐾𝑛,𝑛 with
a number of crossings that is proportional to 𝑛4/16 according to a still unproven
conjecture [65, 66]. This directly maps to the number of required waveguide
crossing on the PIC layout.
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2.2.1 2 × 2 cross-bar switch

The basic building block of switching fabrics in integrated optics is a 2×2 cross-bar
switch. The term cross-bar switch originates from electric switches that were
historically applied in telephone exchanges. These switches were equipped with
metal bars that were placed crossed or parallel to each other to achieve the two
possible switch states that were accordingly named cross and bar state. A 2 × 2
cross-bar switch consists of two inputs, 𝐼1 and 𝐼2, and two outputs, 𝑂1 and 𝑂2.
This device has two possible states: 𝐼1 is connected to 𝑂2 while 𝐼2 is connected to
𝑂1 (cross-state), and 𝐼1 is connected to 𝑂1 while 𝐼2 is connected to 𝑂2 (bar-state),
see Fig. 2.3(a). An optical analog of a mechanical 2 × 2 cross-bar switch can
be obtained by combining two multi-mode-interference couplers (MMI) and two
phase shifters into a Mach-Zehnder interferometer (MZI) [61], see Fig. 2.3(b).
The working principle of such a 2 × 2 cross-bar switch can be explained by using
transfer matrices. The electric field at the 2× 2 cross-bar switch inputs is described

by a vector E𝐼 =
[
𝐸 𝐼1 𝐸 𝐼2

]T
, and at the outputs by a vector E𝑂 =

[
𝐸𝑂1

𝐸𝑂2

]T
.

An MMI is described by a transfer matrix

TMMI =
1
√

2

[
1 −j
−j 1

]
, (2.2)

and the middle part with the two phase shifters is described by a transfer matrix

TPS =

[
𝐴1ej𝜑1 0

0 𝐴2ej𝜑2

]
, (2.3)

where 𝐴1, 𝐴2 ∈ [0, 1] are amplitude transmission factors of the two phase shifters,
and where 𝜑1, 𝜑2 are the phase shifts induced by the phase shifters in the two arms.
We can then write the following equation:

E𝑂 = TMMI TPS TMMI E𝐼 , (2.4)
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which when expanded reads[
𝐸𝑂1

𝐸𝑂2

]
=

1
√

2

[
1 −j
−j 1

] [
𝐴1ej𝜑1 0

0 𝐴2ej𝜑2

]
1
√

2

[
1 −j
−j 1

] [
𝐸 𝐼1
𝐸 𝐼2

]
. (2.5)

In case of lossless phase shifters, 𝐴1 = 𝐴2 = 1, the last equation reduces to

MMI MMI

Phase shifter 1

Phase shifter 2

I1

I2

O1

O2

I1

I2

O1

O2

Cross
(a) (b)

I1

I2

O1

O2

Bar

Figure 2.3: 2 × 2 cross-bar switch with two inputs (𝐼1 and 𝐼2) and two outputs (𝑂1 and𝑂2) . (a) A
sketch of the cross and the bar state. (b) Realization of a 2 × 2 cross-bar switch in integrated optics in
the form of a Mach-Zehnder interferometer. The two switch states can be achieved by adjusting the
phase shifts induced by the phase shifters in the two arms, see Eqs. (2.5)–(2.8).

[
𝐸𝑂1

𝐸𝑂2

]
=

ej𝜑1

2


(
1 − ej(𝜑2−𝜑1)

)
−j

(
1 + ej(𝜑2−𝜑1)

)
−j

(
1 + ej(𝜑2−𝜑1)

)
−

(
1 − ej(𝜑2−𝜑1)

) 
[
𝐸 𝐼1
𝐸 𝐼2

]
. (2.6)

If 𝜑2 − 𝜑1 = 2𝑛𝜋, where where 𝑛 is an integer, the switch is in cross state:[
𝐸𝑂1

𝐸𝑂2

]
= −jej𝜑1

[
0 1
1 0

] [
𝐸 𝐼1
𝐸 𝐼2

]
. (2.7)

If 𝜑2 − 𝜑1 = 𝑛𝜋, the switch is in bar state:[
𝐸𝑂1

𝐸𝑂2

]
= ej𝜑1

[
1 0
0 1

] [
𝐸 𝐼1
𝐸 𝐼2

]
. (2.8)

Both factors −jej𝜑1 and 𝑒j𝜑1 from Eqs. (2.7) and (2.8) have a magnitude of 1 and
represent phase shifts induced by the phase shifters.
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2.2.2 Switch-and-select (SAS) switching fabric based on the 2 × 2
cross-bar switch

Switch-and-select (SAS) is a type of switching fabric where each input is connected
to each output by a separate waveguide. If a SAS connects 𝑚 inputs to 𝑛 outputs,
there is a total of𝑚𝑛 connecting waveguides, higher than in other switching fabrics,
which requires a higher number of waveguide crossings than any other switching
fabric. In SAS, each of the 𝑚 inputs is equipped with a 1 × 𝑛 switch, and each
of the 𝑛 outputs is equipped with an 𝑚 × 1 selector. The name of the fabric is
derived from the fact that for establishing a connection between an input and an
output, the corresponding switch at the input and the corresponding selector at the
output must be set in the desired state. The switches and selectors at the inputs
and the outputs can be made as cascades of 1 × 2, 2 × 1, and 2 × 2 cross-bar
switches, see also Chapter 4 and Appendix B — 1× 2 and 2× 1 cross-bar switches
are simply obtained from 2 × 2 cross-bar switches by using only one input or
only one output, see Fig. 2.4(a). The switching algorithm is simple since each
switch at each input only needs to know to which of the 𝑛 waveguides it needs to
switch, and each selector at each output only needs to know from which of the
𝑚 waveguides it needs to select. An additional advantage is good isolation of
the connections between the inputs and the outputs, since no two signals can at
the same time pass through any of the cross-bar switches. It should be said that
there exist switching fabrics that do not require waveguide crossings [67], and
such fabrics are also called crossing-free fabrics. However, such a terminology is
not completely true since in this case individual 2 × 2 cross-bar switches serve
as waveguide crossings in the cross state. Fig. 2.4(b) shows a 2 × 2 SAS realized
with four 2 × 2 cross-bar switches. Obviously, one can use only one single 2 × 2
cross-bar switch to interconnect two inputs and two outputs, however, the isolation
would be worse since both connection would be established by the same switch.
The price for using the SAS fabric is an increased number of 2 × 2 cross-bar
switches, and an increased number of waveguide crossings that scales with the
fourth power of the number of inputs and outputs, see Chapter 4 and Appendix B,
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where a detailed analysis of SAS circuit topologies has been presented, and where
it has been shown that the number of waveguide overpasses required to realize
the same circuit without waveguide crossings scales with the power of 2. This
illustrates the potential of using 3D-printed waveguide overpasses in replacing
planar waveguide crossings in PIC with a high topological complexity.

2 × 22 × 2
2 × 2

2 × 2
2 × 2

2 × 22 × 22 × 2
2 × 2

2 × 2

(a) (b)

Figure 2.4: Switch-and-select (SAS) switching fabric. (a) By cascading 2 × 2 cross-bar switches 1 × 𝑛
switches at the SAS inputs and 𝑛 × 1 selestors at SAS outputs can be realized. Here 𝑚 = 𝑛 = 4. (b)
2 × 2 SAS circuit. Although a simple 2 × 2 cross-bar switch is sufficient to connect two inputs to two
outputs, the isolation between the connection is non-optimum since both connections are established
with the same 2 × 2 cross-bar switch. SAS improves the isolation by forbidding that two different
connections at the same time use one 2 × 2 cross-bar switch. The price one has to pay is an increased
number of 2 × 2 cross-bar switches in the SAS topology, and a complicated circuit layout with an
increased number of waveguide crossings.

2.3 Polarization of light

Polarization of light is the geometrical orientation of the oscillations of the
electric field component that is perpendicular to the propagation direction of
the light. Referring the polarization to the direction of the oscillating electric
field is a convention — besides the electric field, the magnetic field is also
oscillating perpendicularly to the propagation direction and to the electric field.
The polarization state can be described by the pattern that the real part of the
electric field vector draws in the 𝑥𝑦-plane, which is perpendicular to the direction
of light propagation. These patterns are called Lissajous figures, and in general,
the Lissajous figures drawn by the electric field vectors are ellipses, so called
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polarization ellipses. Assuming propagation in free space, the wave equation for
the 𝑥- and 𝑦- components of the electric field can be written as

𝐸𝑥 = 𝐸0𝑥ej(𝜔𝑡−𝑘𝑧) and

𝐸𝑦 = 𝐸0𝑦ej(𝜔𝑡−𝑘𝑧+Δ𝜑) ,
(2.9)

where 𝑘 = 2𝜋/_ is a wave number, and Δ𝜑 is a phase difference between the two
components of the electric field. At a fixed position 𝑧, the real parts of the two
components read:

𝐸𝑥 = 𝐸0𝑥 cos (𝜔𝑡 − 𝑘𝑧) and

𝐸𝑦 = 𝐸0𝑦 cos (𝜔𝑡 − 𝑘𝑧 + Δ𝜑).
(2.10)

Equations (2.10) define the polarization ellipse [68, 69], see Fig. 2.5

𝐸2
𝑥

𝐸2
0𝑥

+
𝐸2
𝑦

𝐸2
0𝑦

− 2 cos (Δ𝜑)
𝐸𝑥𝐸𝑦

𝐸0𝑥𝐸0𝑦
= sin2 (Δ𝜑) . (2.11)

The shape and the orientation of the polarization ellipse depends on the phase
difference and on the magnitudes of the two field components. The dependence is
given by the following equations [69] (pg. 200, Eqs. (6.1-6) and (6.1-7))

tan 2\ =
2𝐸0𝑦
𝐸0𝑥

1 −
(
𝐸0𝑦
𝐸0𝑥

)2 cos (Δ𝜑)

sin 2𝜒 =
2𝐸0𝑦
𝐸0𝑥

1 +
(
𝐸0𝑦
𝐸0𝑥

)2 sin (Δ𝜑) .

(2.12)

In Eqs. (2.12), \ denotes the angle that the major axis of the ellipse make with
the 𝑥-axis, while |tan (𝜒) | = 𝑏/𝑎 denotes the ratio of the minor to the major
axis of the ellipse, see Fig. 2.5. In case of Δ𝜑 = 0 ± 𝑛𝜋, where 𝑛 is an integer,
the polarization ellipse reduces to a line segment, and the light is called linearly
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polarized. In case the phase difference is 𝜋/2 ± 𝑛𝜋, 𝑛 = 0, 1, 2, ..., the polarization
ellipse becomes a circle, and the light is called circularly polarized. In all other
cases the Lissajous figure described by the electric field vector is an ellipse, and
the light is said to be elliptically polarized. Linear and circular polarizations can
be understood as special cases of elliptical polarization. In case of the circular
polarization, depending on whether the circle is described by the electric field in
clockwise or counterclockwise direction (when looking towards the light source),
the light is said to be right or left circularly polarized [69].

x

y

E0x

E0y
a

b
θ

χ

Figure 2.5: Polarization ellipse. The tip of the electric-field vector describes an elliptical Lissajous
figure in the (𝑥, 𝑦)-plane, which is perpendicular to the direction of light propagation. The state of
polarization is described by the parameters \ and 𝜒, where \ represent the direction of the major axis
of the polarization ellipse, and |tan (𝜒) | is the ellipticity. These parameters depend on the magnitudes
𝐸0𝑥 and 𝐸0𝑦 of the 𝑥- and 𝑦-components of the electric field as well as on the phase difference Δ𝜙

between them, as given by Eqs. (2.12). In case of linear polarization, the polarization ellipse reduces to
a line segment, while for circular polarization it becomes a circle.

2.3.1 Mathematical representation of polarization

To mathematically describe the polarization of fully polarized light, a formalism
called Jones calculus is used. In this formalism, the state of polarization is
described by a 2D vector called Jones vector, and optical elements that modify the
state of polarization are represented by (2 × 2) matrices, so called Jones matrices.
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2.3 Polarization of light

The change of light polarization when passing through an optical element is then
mathematically described by a matrix-vector multiplication. The mathematical
treatment is named after Robert Clark Jones who first described it [70]. Jones
vectors consist of complex amplitudes of the electric field along the 𝑥 and 𝑦 axes
of the plane perpendicular to light propagation. For simplicity, Jones vectors are
usually normalized, and the 𝑥-component is a real number. The information that a
Jones vector contains are amplitudes of the 𝑥 and 𝑦 components of the electric
field and the phase difference between them. The Jones vector is:

J =
[
𝐸0𝑥 𝐸0𝑦ejΔ𝜑 ]T

. (2.13)

Jones calculus is applicable only to fully polarized light. To more generally
describe the polarization state of light that is not necessarily fully polarized, Stokes
vectors are used. Stokes vectors consist of four elements S = [𝑆0 𝑆1 𝑆2 𝑆3]T that
are called Stokes parameters. The parameter 𝑆0 = 𝐸2

0𝑥 + 𝐸
2
0𝑦 is proportional to the

light intensity, and the remaining three parameters are given by [69]

𝑆1 = 𝑆0 cos (2𝜒) cos (2\)

𝑆2 = 𝑆0 cos (2𝜒) sin (2\)

𝑆3 = 𝑆0 sin (2𝜒),

(2.14)

where 𝜒 and \ were defined in Fig. 2.5. For simplicity, Stokes vectors can be
normalized to such that

S = [1 𝑆1/𝑆0 𝑆2/𝑆0 𝑆3/𝑆0]T = [1 𝑠1 𝑠2 𝑠3]T . (2.15)

The remaining three elements of a normalized Stokes vector define Stokes three-
vector s = [𝑠1 𝑠2 𝑠3] [68]. The components of this vector can then be used as
parameters for representing the polarization state of fully polarized light on the
surface of the Poincaré sphere, see also Appendix C.3.
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2 Theoretical and technological background

2.3.2 Polarization manipulation in integrated optics

A big challenge in integrated optics is polarization control and manipulation. While
a standard single mode fiber can carry two independent signals in two degenerate
orthogonal polarization states of the fundamental mode, optical waveguides in
PIC have a strong polarization dependence. Integrated optical waveguides have
hybrid modes, which are, according to the dominant component of the electric
field, called quasi-TE and quasi-TM. As already mentioned, PIC typically exploit
only one preferable polarization direction that is generally parallel to the PIC
surface. This polarization direction corresponds to the quasi-TE mode. The most
obvious benefit of making use of the polarization component that is perpendicular
to the PIC surface (quasi-TM) is for doubling the data transmission capacity
in telecommunications. Other application scenarios such as optical coherence
tomography, spectroscopy, lidar, or sensing can also benefit from dual polarization
schemes in terms of increased sensitivity or by polarization resolved imaging. In
order to employ dual polarization schemes in integrated optics it is necessary to
split the two orthogonal polarizations coming from an optical fiber, to align them
to the preferable polarization direction (quasi-TE), and to couple the two (now
equally polarized) signals into two distinct optical waveguides on the PIC. The
key components for this operation are the polarization beam splitter (PBS) and the
polarization rotator (PR). In addition, polarizing filters can be used after PBS/PR
assemblies for removing unwanted spurious quasi-TM polarization components
and therefore increasing the polarization extinction ratio (PER).

Polarization beam splitters

PBS can be realized in integrated optics in different ways and exploiting different
principles. A straightforward approach that at the same time performs optical
coupling, polarization splitting, and polarization rotation is the approach with a 2D
grating coupler (2D-GC). A 2D-GC consists of two identical GC that are rotated
in the PIC plane by 90◦ with respect to each other and spatially overlapped [71]. If
a SMF with two orthogonal polarization states is aligned to such a 2D-GC, each of
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2.3 Polarization of light

the two polarization states will be picked up by a different partial GC and launched
to the corresponding optical waveguide attached to it. The 2D-GC launches
the two orthogonal fiber polarization states as identical polarizations in the PIC
waveguides. Another advantage of this approach is a relatively small footprint, and
the most serious drawback is, as it is the case with all grating-based devices, their
intrinsically narrow bandwidth. The insertion loss is also not negligible, although
it can be improved by adding back reflection mirrors beneath the device [18]. For
edge coupled PIC, where an optical fiber is aligned to an optical waveguide at the
PIC edge, both polarizations are simultaneously coupled to the PIC. In this case
the polarizations need to be split and the quasi-TM component needs to be rotated
by 90◦. The quasi-TE and quasi-TM modes can be split by exploiting their different
effective refractive indices and multimode-interference (MMI) effects [72]. An
MMI-based PBS consists of a single-mode input waveguide carrying quasi-TE
and quasi-TM modes. This single-mode waveguide is attached to a multi-mode
waveguide section. In this section, both quasi-TE and quasi-TM higher-order
modes are excited, and due to different effective refractive indices, there are
two different MMI patterns for two polarizations. After a certain propagation
length (beat length) through the multi-mode waveguide, the two polarizations
are spatially separated, and by placing two single-mode waveguides at these two
positions (where the two polarizations are separated), polarization splitting is
achieved. A similar effect can be obtained by using directional couplers [73]. The
difference is that the input waveguide is not connected to a multi-mode section,
but another waveguide is placed in close vicinity of the input waveguide, such
that mode coupling between the waveguides occurs. Since the quasi-TE and
the quasi-TM fundamental modes have different effective refractive indices, the
coupling coefficients and therefore the beat lengths of the modes are different. By
optimizing the directional coupler it can be achieved that after a certain coupling
length one of the two modes (quasi-TE and quasi-TM) remains in the original
waveguide, while the other mode is coupled to the other waveguide.
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2 Theoretical and technological background

MMI and directional coupler based PBS are fairly simple, however they suffer from
a limited bandwidth and are sensitive to fabrication tolerances. In addition, for
these two PBS types, an additional polarization rotator for rotating the quasi-TM
mode is needed. Another approach for realizing a PBS with a polarization rotation
function is a PBS based on mode conversion. In this approach, both quasi-TE and
quasi-TM modes pass through a mode converter that converts the fundamental
quasi-TM mode into the next higher order quasi-TE mode, while the fundamental
quasi-TE mode goes through the mode converter unchanged. Subsequently, the
TE0 and the TE1 modes are separated either using an MMI or a directional coupler
approach, and finally the TE1 mode is converted to TE0 [20, 74]. This approach
typically requires a complex design, suffers from a low bandwidth and has a fairly
large footprint, which is especially an issue in InP [74], where the index contrast is
smaller, and the footprint is by far more expensive than in the case of silicon based
PIC.

A PBS can be also realized by using a mode-evolution approach. In this approach,
the optical waveguide that carries the quasi-TE and the quasi-TM mode is split
into two partial waveguides. The partial waveguides are designed such that for one
of them, the quasi-TE mode is strongly guided, and the quasi-TM mode is weakly
guided — for the other waveguide, it is the other way round. Then each of the
two modes follows the partial waveguide for which it is strongly guided [21, 22].
This approach, although conceptually simple, suffers from the technological
complexity, and includes multiple lithography steps with high precision mask
alignment involved, and typically only very simplified structures can be made.
Another issue related to this approach is the asymmetry of the split modes. This is
a consequence of the technological limitations — because of the 2D lithography,
it is practically impossible to realize a geometrically symmetrical PBS based on
the mode-evolution approach. Consequently, the mode splitting is asymmetrical
(different transmission spectra and PER at the two PBS outputs).

Finally, PBS structures designed by inverse-design method have been reported.
This method involves an optimization of a spatial 2D distribution of the refractive
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2.3 Polarization of light

index such that the desired effect (in this case polarization splitting) is achieved [19].
The optimization is typically done by performing a large number of simulations
and iterating the refractive index distribution. With this approach ultra-compact
PBS have been achieved, however, these devices are wavelength selective and
sensitive to fabrication tolerances.

Polarization rotators

As already mentioned, polarization rotators in some cases can be integrated
into the PBS design while in other cases they need to be realized as separate
devices. Besides the mentioned approach with the conversion of TM0 to TE1,
and subsequent conversion of TE1 to TE0, a conceptually simple approach of
structural chirality can be exploited for realizing broadband polarization rotators
[75, 76]. If the cross-section of a geometrically birefringent optical waveguide is
twisted along the trajectory, the slow and the fast guided polarization will follow
the rotation of the cross-section. Similar to mode-evolution based PBS, only
simplified structures can be realized using several layer-by-layer lithography steps.
Such twisted waveguides can be more precisely realized by 3D laser lithography
as a complementary technology to CMOS processing.

Polarization filters

For removing the unwanted polarization components and/or increasing the PER,
additional polarization filters can be used. The simplest way of doing this is by
cascading the PBS devices such that the desired polarization component is guided
to the desired output waveguide, while the other unwanted polarization is guided
to another output waveguide that serves as a beam dump. An interesting concept of
filtering an unwanted quasi-TM mode is based on so called magic widths [77, 78].
This concept is based on finding the width of an optical ridge waveguide for which
the quasi-TM mode experiences much higher propagation losses than the quasi-TE
mode — such a waveguide width is called a magic width. This happens because
for certain ridge widths phase matching is achieved between the TE slab field
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component generated by the quasi-TM propagating mode at the ridge boundary,
and a laterally propagating TE slab mode [77]. This approach is, however, very
much wavelength selective, since the magic width depends on the wavelength, and
it is applicable only to ridge waveguides. Other approaches such as selective mode
absorption have been proposed [79], however, practical realization of such devices
involves complicated technological steps.
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3 Transformation-optics modeling of
3D-printed freeform waveguides

This chapter reports on transformation-optics based modeling of optical waveguides
for the purpose of speeding-up time-domain simulations. The chapter is based on
a manuscript [J1], that has been submitted for a publication in Optics Express, and
it has been formatted in accordance to the formatting of this thesis. Supplementary
information related to this chapter is provided in Appendix A, which is also based
on the manuscript [J1].

The scope of the manuscript was developed by the author of this thesis together
with C. Koos, and further discussed with P. Kraft, M. Sukhova, C. Rockstuhl,
and W. Dörfler. The author developed transformation optics (TO) algorithms and
implemented them in MATLAB code, with the support of E. Orlandini and T.
Olariu. M. Blaicher provided 3D models of 3D waveguides. The author did all
TO-based and reference simulations in CST Microwave Studio. M. Paszkiewicz
and F. Negredo developed the fundamental mode approximation (FMA) method,
and did the FMA simulations, supervised by C. Rockstuhl. M. Blaicher fabricated
all 3D waveguides and performed experimental measurements. A. Hoffman did
the overcladding of the fabricated 3D waveguides. The author made all figures
and wrote the manuscript, supported by W. Freude and C. Koos. The work was
supervised by W. Freude and C. Koos.

[start of the content based on the main part of manuscript [J1]]
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Transformation-optics modeling of 3D-printed freeform wave-
guides

Submitted for publication to Optics Express

Aleksandar Nesic,1 Matthias Blaicher,1,2 Emilio Orlandini,1 Tudor Olariu,1 Maria
Paszkiewicz,3 Fernando Negredo,3 Pascal Kraft,4 Mariia Sukhova,4 Andreas
Hofmann,5 Willy Dörfler,4 Carsten Rockstuhl,3,6 Wolfgang Freude,1 and Christian
Koos1,2

1Karlsruhe Institute of Technology (KIT), Institute of Photonics and Quantum Electronics
(IPQ), Engesserstrasse 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
3Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics (TFP),
Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe Germany
4Karlsruhe Institute of Technology (KIT), Institute for Applied and Numerical Mathematics
(IANA), Englerstrasse 2, 76131 Karlsruhe Germany
5Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics
(IAI), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
6Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-
Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Freeform optical waveguides are key components for hybrid 2D/3D photonic
integration based on the photonic wire bonding technique, which includes die-level
packaging of photonic chips and fabrication of on-chip waveguide interconnects.
For achieving the best device performance, the trajectories and the shapes of
freeform waveguides must be optimized. However, accurate theoretical models of
freeform waveguides are missing, and the computational effort of conventional
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time-domain differential equation solvers is prohibitive due to large freeform
waveguide simulation volumes. We present a transformation-optics (TO) modeling
method to reduce freeform waveguide simulation volumes, and we set up time-
domain simulations that can be completed in a significantly reduced time compared
to standard methods. We checked our method by computing and fabricating a series
of freeform waveguides with plane trajectories, bridging the gap between two
in-line silicon-photonic waveguides, and we simulate and measure the freeform
waveguide losses at _ = 1550 nm. We find an excellent agreement between the
measured loss figures and those predicted by the simulations. Our TO modeling
method is applicable to a wide range of waveguide-based photonic devices.

3.1 Introduction

Photonic integration has evolved into a key technology for a wide variety of
applications that range from high-speed communications [80], ultra-fast signal
processing [81, 82] and artificial intelligence [9] to optical metrology and sensing
[4, 83–85] and to biophotonics and life sciences [10, 86]. On the technological
level, photonic integrated circuits (PIC) predominantly rely on planar structures that
can be fabricated with well-established microfabrication techniques based on layer
deposition and 2D patterning using electron-beam or deep-UV lithography. More
recently, these techniques have been complemented by multi-photon lithography
that allows for in-situ fabrication of functional 3D freeform structures that can
greatly enhance the functionality and versatility of planar PIC. Examples are
3D-printed chip-chip connections, so-called photonic wire bonds [12, 34] that
open an attractive path towards high-performance hybrid multi-chip modules [13],
3D-printed waveguide overpasses [87], reconfigurable photonic circuits [88, 89],
3D-printed power splitters [90], or 3D-printed polarization splitters and rotators
[J1]. However, while simulation tools for planar lightwave structures are available
through commercial software packages [91–94], efficient modeling and design of
3D freeform waveguides still represents a challenge. This applies in particular to
numerical solvers that rely on rectilinear grids within cuboid-shaped computational
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domains, which is, e.g., the case for most time-domain techniques. Applying such
solvers to 3D freeform waveguides with strongly curved non-plane trajectories
requires comparatively large computational volumes, within which the structure
of interest only occupies a small fraction and thus leads to poor computational
efficiency.

Here, we present a transformation-optics (TO) method for reducing the com-
putational domain of freeform waveguide simulations. We employ rigorous
time-domain Maxwell’s equations solvers defined on a rectilinear grid by trans-
forming a curved freeform waveguide in the original 3D space into a straight
waveguide in a virtual 3D space. In this way, the transformed waveguide in the
virtual space can be confined in a rectangular simulation box, whose volume is
comparable to the actual freeform waveguide volume. The rigorous simulations
are performed in the virtual space at a much higher speed, and the obtained
field distributions are then spatially back transformed to the original space. We
investigate our method using a commercially available time-domain solver of CST
Microwave Studio® (CST MWS), which is based on the finite integration technique
(FIT) [95, 96]. We simulate in the virtual space a series of freeform waveguides
with plane trajectories and with a rectangular cross section in a significantly shorter
time compared to the corresponding reference freeform waveguide simulations in
the original space. In addition, we fabricate the simulated freeform waveguides
on a silicon photonic (SiP) chip and measure the transmission losses at a vacuum
wavelength of _ = 1550 nm. We get an excellent agreement between the reference
and TO based simulations, and the simulated transmission losses exhibit a good
qualitative match to the experimentally measured values. Although primarily
aimed for use with time-domain solvers on a rectilinear grid, our method is a
general technique of transforming freeform waveguide-based devices into straight
structures, and it is independent of the solver.
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3.2 TO based concept of freeform waveguide modeling

3.2 TO based concept of freeform waveguide modeling

The TO concept relies on the fact that Maxwell’s equations are form-invariant
with respect to coordinate transformations. In particular, if we map an original
domain from an (𝑥, 𝑦, 𝑧) coordinate system, to a virtual domain in a (𝑢, 𝑣, 𝑠)
coordinate system, we only need to adapt the material properties in the virtual
domain, while the form of Maxwell’s equations remains unchanged [57–60].
In case of a coordinate transformation described by a differentiable function
(𝑢, 𝑣, 𝑠)T = f (𝑥, 𝑦, 𝑧), where (𝑥, 𝑦, 𝑧) , (𝑢, 𝑣, 𝑠) ∈ R3, the relationship between the
material properties in the original and in the virtual space reads:

𝛆′ (𝑢, 𝑣, 𝑠) = J (𝑥, 𝑦, 𝑧) · 𝛆 (𝑥, 𝑦, 𝑧) · JT (𝑥, 𝑦, 𝑧)
det (J (𝑥, 𝑦, 𝑧)) ,

𝛍′ (𝑢, 𝑣, 𝑠) = J (𝑥, 𝑦, 𝑧) · 𝛍 (𝑥, 𝑦, 𝑧) · JT (𝑥, 𝑦, 𝑧)
det (J (𝑥, 𝑦, 𝑧)) .

(3.1)

In these relations, the quantities 𝛆 and 𝛆′ denote the dielectric permittivity tensors,
𝛍 and 𝛍′ are the magnetic permeability tensors, and J is the Jacobian matrix of
the coordinate transformation function f,

J =


𝜕𝑢/𝜕𝑥 𝜕𝑢/𝜕𝑦 𝜕𝑢/𝜕𝑧
𝜕𝑣/𝜕𝑥 𝜕𝑣/𝜕𝑦 𝜕𝑣/𝜕𝑧
𝜕𝑠/𝜕𝑥 𝜕𝑠/𝜕𝑦 𝜕𝑠/𝜕𝑧

 . (3.2)

Note that the transformed media in virtual space are generally anisotropic and
magnetic, even if the structure in real space is made from isotropic material. The
TO concept has previously been used for analysis and design of various devices,
such as electromagnetic cloaks for hiding of objects [97, 98] or for reshaping the
perception of cloaked objects [99], as well as for beam deflectors and expanders
[100], polarization splitters and rotators [101], flat lenses [102], or multimode
waveguide bends [103], to name just a few.

In our approach, we exploit transformation optics for efficient numerical modeling
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of 3D freeform waveguides using well-established time-domain solvers, see Fig. 3.1
for an illustration of the concept. Generally, time-domain solvers relying, e.g., on
finite-difference-time-domain (FDTD) techniques, are perfectly suited for large-
scale simulations, offering a numerical complexity that scales linearly with problem
size while being amenable for efficient parallelization. Moreover, time-domain
techniques are robust, lend themselves to broadband or transient simulations, and
even offer a natural path to handling of nonlinear behavior [104]. On the other
hand, time-domain techniques usually rely on rather inflexible rectilinear grids
and cuboid-shaped computational domains, which severely limits the performance
when applied to 3D freeform waveguides. Specifically, the rectilinear grid does
not allow for efficient representation of curved surfaces, while the cuboid-shaped
computational domain leads to poor computational efficiency with comparatively
large computational volumes within which the structure of interest only occupies a
small fraction, see Fig. 3.1a.

To overcome these problems, we use transformation optics to map the freeform
waveguide with a curved trajectory in the original (𝑥, 𝑦, 𝑧)-space to an equivalent
waveguide with a straight trajectory and modified permittivity and permeability
tensors in a virtual (𝑢, 𝑣, 𝑠)-space, see Fig. 3.1b. In the virtual space, we may
then use a rectangular computational domain that only encompasses the straight
waveguide and its direct vicinity, along with a rectilinear grid that is oriented
along the direction of the waveguide. The virtual waveguide can thus be efficiently
modeled by a conventional time-domain solver, and the results are then transformed
back to the (𝑥, 𝑦, 𝑧) coordinate system to obtain the field distributions in real space.
To implement the technique, we need to define a function (𝑢, 𝑣, 𝑠)T = f (𝑥, 𝑦, 𝑧)
that transforms the curved waveguide in real space into a straight path in virtual
space. It is actually easier and more intuitive to analytically express the inverse
function (𝑥, 𝑦, 𝑧)T = f−1 (𝑢, 𝑣, 𝑠) that maps a point (𝑢, 𝑣, 𝑠) in transformed space
back to real space. To arrive at a mathematical formulation of f−1, we assign the
coordinate 𝑠 to the arc length of the waveguide trajectory in real space, while 𝑢 and
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Figure 3.1: Transformation of a freeform optical waveguide from the original (𝑥, 𝑦, 𝑧)-space to
a virtual (𝑢, 𝑣, 𝑠)-space. (a) Sample freeform waveguide in the original (𝑥, 𝑦, 𝑧)-space. The
computational domain necessary to simulate this freeform waveguide with a time-domain solver on a
rectilinear grid is determined by the rectangular red box. The region of interest, i.e., the relevant part
of the computational domain is in the close vicinity of the freeform waveguide – this part and its edges
are depicted in blue. The rest of the computational domain is unimportant and unnecessarily consumes
computing resources. Moreover, a fine discretization would be needed to correctly represent the curved
surfaces of the freeform waveguide by a rectilinear computational grid. The coordinate transformation
described in Eq. (3.3) is defined by the unit vectors U, V, and T, where T is the local tangent unit vector
dr/d𝑠 of the trajectory, while U and V span the transverse plane in the respective trajectory point. The
vectors are chosen such that (U,V, T) is a right-handed trihedron. (b) Transformed waveguide in
virtual (𝑢, 𝑣, 𝑠)-space. The freeform waveguide trajectory in real space has been mapped to a straight
line, and the relevant part of the computational domain that was "twisted" in the original (𝑥, 𝑦, 𝑧)-space
is now represented by a rectangular blue box. The computational domain can now be reduced to the
region of interest, see red dashed rectangular box. The coordinate transformation significantly reduces
the computational domain at the cost of pre-calculating the spatial distributions of tensors of dielectric
permittivity and magnetic permeability in (𝑢, 𝑣, 𝑠)-space. Moreover, the rectilinear computational
grid may be better adapted to the shape of the waveguide, in particular for rectangular cross sections.

𝑣 are associated with the transverse position relative to the waveguide trajectory,
where the direction is defined by unit vectors U and V. This leads to the relation
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f−1 (𝑢, 𝑣, 𝑠) =

𝑥 (𝑢, 𝑣, 𝑠)
𝑦 (𝑢, 𝑣, 𝑠)
𝑧 (𝑢, 𝑣, 𝑠)

 =


𝑥0 (𝑠)
𝑦0 (𝑠)
𝑧0 (𝑠)

 + 𝑢U (𝑠) + 𝑣V (𝑠) . (3.3)

The 𝑠-coordinate, i.e., the arc length of the waveguide trajectory is defined such
that 𝑠 = 0 in its starting point, and the unit vectors U and V are chosen such

that they form a right-handed trihedron (U,V,T) with the tangent vector T =
dr
d𝑠

,
where r = (𝑥, 𝑦, 𝑧). Note that the trajectory is generally not parametrized with
respect to its arc length 𝑠, but with respect to some other parameter 𝑡, with
r (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)). The two parameterizations are connected by the
relation 𝑠 =

∫ 𝜏
0

�� dr
d𝑡

�� d𝑡.
Equation (3.3) still leaves the freedom of choosing the orientation of the unit
vectors U and V within the transverse plane in the respective trajectory point. One
obvious choice for the (U,V,T) frame could be the natural Frenet-Serret frame,
where U could be chosen as the binormal vector, and V could be chosen as the
normal vector of the trajectory r (𝑡). However, the Frenet-Serret frame is not the
best choice because the binormal and the normal vectors are neither defined in
points where the trajectory is straight, nor in its inflection points. Furthermore, the
frames immediately before and immediately after an inflection point are rotated
against each other by 180◦ about the tangent vector. We therefore use the rotation
minimizing frame (RMF) [35, 36], which minimizes the frame spinning along the
trajectory, and which is commonly used in computer graphics and 3D modeling
[37]. To calculate the RMF, we use a simple and fast approximation method called
double reflection method [105]. This method requires the trajectory sample points,
the tangent vectors T in all sample points, and a coordinate frame in the first
sample point (U1,V1,T1) as an input. The coordinate frames in the remaining
sample points along the trajectory are calculated recursively [105]. The coordinate
frame (U1,V1,T1) in the first sample point is chosen such that T1 is the tangent,
and the two remaining mutually perpendicular vectors U1 and V1 we can choose
arbitrarily in the plane that is perpendicular to T1.
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Note that the coordinate transformation described in Eq. 3.3 is generally not
bijective. A trivial example is the case of self-intersecting trajectories, which must
be excluded. Another obvious problem might arise if two waveguide segments
pass by each other or overpass each other within a close distance, e. g., in spirals,
helices, and loops. In this case, care must be taken to avoid mapping the same
sub-domain of the (𝑥, 𝑦, 𝑧)-space being in the vicinity of both waveguide segments
twice into two distinct sub-domains of the (𝑢, 𝑣, 𝑠)-space. Finally, bijectivity might
be violated if the local curvature of the trajectory is too strong, such that the center
of curvature falls into the transformed domain. Specifically, for a given trajectory
point, the ranges for 𝑢 and 𝑣, 𝑢 ∈ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] and 𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] should be
chosen not to include the center of curvature for this specific trajectory point. In
other words: If in this trajectory point, the center of the curvature in transformed
space would be represented by (𝑢𝑐, 𝑣𝑐), then the range of 𝑢 and 𝑣 for this trajectory
point must be limited not to include the center of curvature, which is ensured by
the condition (𝑢𝑐, 𝑣𝑐) ∉ {(𝑢, 𝑣) | 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥}. For
more details, see Appendix A.1.

3.3 Implementation of TO modeling of freeform
waveguides

As a proof of principle, we implemented the TO concept for simulating freeform
waveguides with an invariant rectangular cross section of the core. For the coordi-
nate transform, we use MATLAB®, and the resulting waveguide in virtual space
is then treated with CST MWS, which relies on a time-domain finite-integration
technique (FIT). We restricted the implementation to freeform waveguides that
are made from isotropic material and that feature plane trajectories, such that
the tensors 𝛆′ and 𝛍′ are diagonal in the transformed space (see Appendix A.2).
Anisotropic materials and/or non-plane trajectory would have lead to non-diagonal
tensors 𝛆′ and 𝛍′, which cannot be treated by the FIT solver of CST MWS (CST
Studio Suite version 2019).
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3 Transformation-optics modeling of 3D-printed freeform waveguides

The input data for our MATLAB® code consist of the trajectory samples (𝑥0, 𝑦0, 𝑧0)
in the original (𝑥, 𝑦, 𝑧)-space, the orientation of the RMF in the initial point, and
the cross-sectional shape of the waveguide along with the material properties
of the core and the cladding (Ycore, `core, Ycladding, and `cladding), and the ranges
of 𝑢- and 𝑣-coordinates that define the space to be transformed. For simplicity,
we chose the right-handed RMF (U,V,T) in the first trajectory point such that
U is parallel to the 𝑥-axis and V is perpendicular to U and to the tangent vector
T. We further assume a rectangular waveguide cross section with width 𝑤 and
height ℎ, measured along the U- and V-direction of the RMF. Without loss of
generality, we can assume that the plane trajectory lies in the (𝑦, 𝑧)-plane, i.e.,
that the 𝑥-coordinates of all trajectory points are equal to zero. In a first step of
the transformation, we numerically calculate the 𝑠-coordinate samples from the
trajectory samples. The RMF in the remaining trajectory points is then calculated
numerically by the aforementioned double reflection method [105]. In the special
case of a plane trajectory in the (𝑦, 𝑧)-plane, U (𝑠) will always be parallel to the
𝑥-axis. Having calculated the 𝑠-coordinates with given 𝑢- and 𝑣-coordinate ranges,
we have the rectangular box defining the computational domain in (𝑢, 𝑣, 𝑠)-space.
The ranges of 𝑢 and 𝑣 determine how much space around the trajectory will be
taken into account for the TO-based simulations. These ranges should be large
enough to include a sufficient portion of the cladding material around the core,
but not too large, to ensure bijectivity of the function (𝑢, 𝑣, 𝑠)T = f (𝑥, 𝑦, 𝑧), see
Appendix A.1.

In the next step, the transformed material properties in virtual space need to be
calculated and fed to the numerical solver. Generally, this can be done by adapting
𝛆′ and 𝛍′ in each point is space according to Eq. (3.1). For commercially available
simulation programs with CAD-type user interfaces, however, setting the spatial
variations of the materials properties on the level of individual mesh cells is not
very efficient. We therefore approximate transformed structure with continuously
varying material properties by a multitude of small bricks with constant material
properties, which can be fed to the solver by a standard scripting interface. We
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Figure 3.2: Representation of a waveguide section with a trajectory lying in the (𝑦, 𝑧)-plane by
rectangular bricks with constant material properties in virtual (𝑢, 𝑣, 𝑠)-space. The freeform waveguide
is discretized into sections with approximately constant curvature of the waveguide trajectory (slices)
along 𝑠, defined by coordinates 𝑠𝑖 and 𝑠 𝑗 . Green: Core region of the transformed freeform waveguide.
Blue: Cladding region of the transformed freeform waveguide. For a freeform waveguide with a plane
trajectory in the (𝑦, 𝑧)-plane, the axis U of the RMF is parallel to the 𝑥-axis in all trajectory samples,
which allows us to completely omit the discretization along 𝑢 above and below the freeform waveguide
core and to reduce the representation along 𝑢 to three segments in the region of the waveguide core.
The illustrated freeform waveguide slice may hence be represented by an overall of 28 bricks – 5 above
and below the core, 6 on the each right and the left of the core, and 6 within the core, see Eq. 3.6.

partition the range of 𝑢-coordinates into 𝑁u steps, the range of 𝑣-coordinates into
𝑁v steps, and the range of 𝑠-coordinates into 𝑁s steps. Then the total number of
bricks is given by

𝑁bricks = 𝑁u𝑁v𝑁s . (3.4)

Regarding the choice of the brick size, there is obviously a trade-off – too fine a
discretization will require more time to calculate the material properties and more
memory to store them, while too coarse a discretization might cause inaccurate
simulation results. For better orientation, we provide a few rules of thumb that
might help to select appropriate brick sizes. Note that these rules of thumb
cannot replace a systematic convergence study for the respective waveguide cross
section and for the curvature range of interest. In the following, we refer to the
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discretization along 𝑠 as slicing. Slicing the freeform waveguide in each sample
point of the trajectory would result in a large number of slices 𝑁s. We can reduce
this number by exploiting the fact that each slice represents a section of the original
waveguide having a constant bend radius. In a first step, we therefore calculate
the bend radii in each trajectory sample 𝑅 (𝑠), which is done numerically. We
then step through the trajectory points and calculate the change Δ𝑅 of the radius
of curvature with respect to the first trajectory point. When the relative change
Δ𝑅/𝑅 exceeds a given threshold of, e.g., 0.1, we merge all preceding points into
the first slice. We then repeat the procedure by using the last sample of the first
slice as a new reference for calculating the relative change Δ𝑅/𝑅. The last slice is
terminated by the last trajectory point of the waveguide. For proper choice of the
brick size 𝛿𝑢 and 𝛿𝑣 along the transverse 𝑢 and 𝑣 direction, we need to make sure
that the associated discretization of the dielectric and magnetic material properties
does not introduce excessive perturbations of the optical wavefronts. As a rule of
thumb we may require that, within the core and within the cladding, the difference
𝛿Y′
𝑖 𝑗

and 𝛿`′
𝑖 𝑗

of any two corresponding transformed 𝛆′- and 𝛍′-tensor elements
in any two neighboring bricks along 𝑢 and 𝑣 should be small compared to the
difference of ΔY between the core and the cladding of the original waveguide,(

𝛿Y′𝑖 𝑗 ≪ ΔY ∧ 𝛿`′𝑖 𝑗 ≪ ΔY

)
∀ 𝑖, 𝑗 ∈ {1, 2, 3} . (3.5)

Note that, for waveguides with strong variations of the curvature along the trajectory,
it might be difficult to fulfill the inequality according to Eq. 3.5 in all grid points
that are contained in a rectangular bounding box in transformed space. It should
the be ensured that Eq. 3.5 applies at least to the regions that bear significant
electric fields. A systematic convergence study for the respective case of interest
might be unavoidable to ensure proper representation of the waveguide structure.
Our proof-of-principle demonstration of the TO concept relies on a simplified
waveguide structure with a plane trajectory that entirely lies in the (𝑦, 𝑧)-plane,
which allows to greatly simplify the Jacobian according to Eq. (3.2), see Eq. (A.1)
of Appendix B. In this case, regions for which the material properties of the
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original waveguide in real space do not change along 𝑥 do not need to be subdivided
into bricks along 𝑢. Since we consider a waveguide with homogeneous core and
cladding region, we may reduce the transformed structure to 𝑁core

u = 3 bricks
along 𝑢 in the core and 𝑁cladding

u = 1 brick along 𝑢 in the cladding region, see
Fig. 3.2. The range of 𝑣-coordinates is divided into 𝑁v = 𝑁core

v + 𝑁cladding
v steps,

which comprises 𝑁core
v steps in the core region, and 𝑁cladding

𝑣 steps in the cladding
region below and above the core. Therefore, the number of bricks per slice in this
case is 𝑁core

u 𝑁core
v + 𝑁cladding

u 𝑁
cladding
v , and Eq. 3.4 becomes

𝑁bricks =
(
𝑁core

u 𝑁core
v + 𝑁cladding

u 𝑁
cladding
v

)
𝑁s . (3.6)

The example shown in Fig. 3.2 corresponds to the discretization that we did to
perform simulations in the (𝑢, 𝑣, 𝑠)-space and it features 𝑁u = 3, 𝑁core

v = 6, and
𝑁

cladding
v = 5 + 5 = 10 steps. This corresponds to 3 · 6 + 1 · 10 = 28 bricks per slice.

The total number of bricks is therefore 28𝑁s.

Finally, to calculate material properties of the various bricks, we first find the center
point of each brick in (𝑢, 𝑣, 𝑠)-space. We then determine the corresponding point
in the original (𝑥, 𝑦, 𝑧)-space by using Eq. 3.3, from which we derive the material
properties in the original space as well as the associated Jacobian matrix given by
Eq. 3.2. The material properties for the brick in the virtual (𝑢, 𝑣, 𝑠)-space is then
calculated by Eqs. 3.1. After calculating the material properties of all bricks, the
MATLAB® code then generates a simulation script, which is loaded and run in
the time-domain solver of CST MWS. After the simulation is done, S-parameters
of the freeform waveguide can be read directly, while the field distribution must
additionally undergo the inverse coordinate transformation given by Eq. 3.3, in
order to be represented in the original (𝑥, 𝑦, 𝑧)-space. This is done by exporting
the field distribution from the CST MWS simulation, and performing the inverse
transformation by an additional MATLAB® script.
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3 Transformation-optics modeling of 3D-printed freeform waveguides

3.4 Freeform waveguide simulations, fabrication and
experimental benchmarking

To verify our TO approach, we apply it to a series of freeform waveguide structures
that connect two silicon photonic waveguides, see Fig. 3.3(a). We calculate the
transmission of these structures at a wavelength of _ = 1550 nm using the TO
concept with CST MWS as a FIT time-domain solver for the waveguide in the
virtual (𝑢, 𝑣, 𝑠)-space, and we compare the results to a full simulation of the
original structure in (𝑥, 𝑦, 𝑧)-space. Moreover, we experimentally realized and
characterized the structures, and we calculated the transmission with our previously
reported fundamental mode approximation (FMA) method [56]. The FMA is
based on a look-up table of pre-calculated eigenmodes (propagation constants and
modal field distributions) of waveguide segments with constant radii of curvature,
on their tabulated bending losses and on transition losses due to modal field
mismatch between two adjacent segments with different radii of curvature. The
FMA subdivides FOW in segments with constant radii of curvature and calculates
the transmission losses based on the look-up table. While exceptionally fast
(optimization times of the order of ms with pre-calculation done), this method
disregards the existence of higher-order modes. Figure 3.3 shows the experimental
setup, some freeform waveguide illustrations, scanning electron microscopy (SEM)
pictures of the fabricated structures, as well as a comparison of the simulated and
measured transmission for different waveguide trajectories, that are described by
the height ℎ of the apex above the substrate.

For the experimental benchmark, the freeform waveguides were 3D-printed on a
SiP chip that was fabricated through a commercial foundry using standard CMOS
process and 248 nm deep-UV lithography. The waveguides are normally covered
by a SiO2 top cladding layer, which was removed to make the SiP waveguides
accessible to the 3D printing system. For fabrication of the 3D freeform waveguides,
a negative-tone photoresist is deposited on the chip and structures are then 3D-
printed by two-photon polymerization [106]. Subsequently, the unexposed resist is
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Figure 3.3: Benchmarking of the TO approach with respect to different simulation techniques and
measurements. (a) Experimental setup: Continuous wave (CW) light emitted by a laser source at a
wavelength of _ = 1550 nm is launched to test structures consisting of 3D freeform waveguides that
are connected to on-chip access waveguides. The light is coupled to the chip by single-mode fibers
(SMF) and grating couplers. The power of the transmitted signal is measured by an optical power
meter (OPM). The 3D freeform waveguides feature trajectories, leading to different apex heights ℎ. (b)
Artist’s impression of the test structures on silicon photonic (SiP) chip: Light from an SMF enters
a freeform waveguide via a grating coupler (GC) and an SiP waveguide. (c) Side view and (d) top
view of the tapered transition between a freeform waveguide and an SiP waveguide. (e) Scanning
electron microscopy (SEM) image of a series of freeform waveguides fabricated on an SiP chip. The
apex height ℎmin ≤ ℎ ≤ ℎmax of the trajectory is swept between ℎmin = 6.2 µm and ℎmax = 16.2 µm.
Bottom inset: Close-up of a freeform waveguide. The central part is 55 µm long (red) and has a variable
apex height ℎ. Coupling and the adjacent sections (blue) are kept the same for all freeform waveguides.
(f) Simulated and measured freeform waveguide transmission vs. its trajectory height ℎ. Methods: TO
transformation optics, FMA fundamental mode approximation, Ref. reference simulation in original
space, Exp. experimental. (g) Freeform waveguide trajectories with indicated various curvature radii.
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removed in a separate development step, and the freeform waveguides are covered
by a low-index polymer (not shown in Fig. 3.3) that serves as a cladding and a
protection against environmental influences. The refractive index of the freeform
waveguide core at_ = 1550 nm amounts to 𝑛core ≈ 1.53, and the cladding refractive
index is 𝑛cladding ≈ 1.36. Both materials are assumed to be lossless dielectrics
(relative magnetic permeability `𝑟 = 1 in the original (𝑥, 𝑦, 𝑧)-space), and the
corresponding values of the dielectric permittivity are calculated by squaring the
refractive indices. Each freeform waveguide has a 𝑤WG × ℎWG = 2 µm × 1.8 µm
rectangular cross-section and bridges a 𝑙g = 100 µm gap between a pair of SiP
strip waveguides (width 𝑤Si = 500 nm, height ℎSi = 220 nm) that lie on a buried
oxide (BOX) SiO2 layer with a height of ℎBOX = 3 µm. Each SiP waveguide is
connected to a grating coupler (GC) on one side and to a freeform waveguide on
the other side. The connections between SiP waveguides and freeform waveguides
are made through linear inverse tapers with a length of 𝑙taper = 60 µm on both
connected waveguides. The chosen length ensures an adiabatic transition between
the different modes fields in the two waveguides and thus improves the coupling
(see Fig. 3.3(b)–(d)). On the SiP waveguide side, the linear taper converts the initial
𝑤Si × ℎSi = 500 nm × 220 nm cross section to a 𝑤Si,taper × ℎSi = 130 nm × 220 nm
cross section at the taper tip, see Fig. 3.3(c) and (d). On the freeform waveguide
side, the initial 𝑤WG × ℎWG = 2 µm × 1.8 µm cross section is linearly tapered to a
𝑤WG,taper × ℎWG,taper = 0.76 µm × 1.8 µm cross section. All freeform waveguide
trajectories are plane curves with an apex height ℎ swept between ℎmin = 6.2 µm
and ℎmax = 16.2 µm with a step of about 670 nm. For these experiments, we
designed the beginning and the ending of each freeform waveguide trajectory
(length of 22.5 µm on each side) as a circular arc, bending upwards with a radius of
𝑅0 = 55 µm, while the central freeform waveguide trajectory part (55 µm length)
is variable, generated by a parameterized B-spline, see Fig. 3.3(e) and (g). For
small values of ℎ, there are two sharp bends with radius 𝑅1 at the two connections
between the central freeform waveguide section and the two parts with the constant
bend radius, see Fig. 3.3(g). This bend radius 𝑅1 becomes larger with increasing
height ℎ, such that the loss contribution of these bends decreases. For large values
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of ℎ , there is a sharp bend with a radius 𝑅2 at the trajectory apex, which again
increases the overall loss. It is therefore expected that the transmission increases
with ℎ near ℎmin and decreases with ℎ near ℎmax, with a maximum between the
two extreme values of ℎ.

The experimental setup is illustrated in Figs. 3.3(a)–(d). To measure the transmis-
sion loss of a 3D printed freeform waveguide, continuous-wave (CW) light from a
laser source at a vacuum wavelength of _ = 1550 nm is launched to the SiP input
waveguides through a standard single-mode fiber (SMF) and a GC, Fig. 3.3(b).
The light propagates through the 3D-printed freeform waveguide, and is finally
coupled out through another SiP waveguide and probed by another SMF through
the corresponding GC. The transmitted optical power is measured by an optical
power meter (OPM). In order to exclude the coupling losses between the chip and
the fibers, we measure the transmission loss of a reference structure (not shown)
comprising two GC connected by a short SiP waveguide, and we refer all other
transmission measurements to this value. The corresponding result is plotted on
a logarithmic scale in Fig. 3.3(f) (marked Exp., black). The small variations in
transmissions for adjacent heights demonstrate the precision of the 3D printing
system and the reproducibility of the overall fabrication process. Note that the cross
section of 3D-printed freeform waveguide (2 µm×1.8 µm) in combination with the
index difference between the core (𝑛core ≈ 1.53) and the cladding (𝑛cladding ≈ 1.36)
permits propagation not only of the fundamental mode, but also some higher-order
modes. The local transmission minimum at an apex height of ℎ ≈ 10 µm, see
Fig. 3.3(f), stems from the excitation of higher-order modes in the 3D freeform
waveguide and from the resulting multimode interference at the transition to the
single-mode SiP waveguide, see also Fig. 3.4.

We then simulate the freeform waveguide transmission losses with the FIT time
domain solver of CST MWS using the TO approach (in the virtual (𝑢, 𝑣, 𝑠)-
space as described in Section 3.3), and with the conventional approach (in the
original (𝑥, 𝑦, 𝑧)-space) as a reference. We set up the ranges of 𝑢 and 𝑣 as
𝑢 ∈ [−2.5 µm, 2.5 µm] and 𝑣 ∈ [−4 µm, 4 µm] in the TO-based simulations, while
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Figure 3.4: Simulated normalized magnitude |E | of the complex electric-field vectors E for the freeform
waveguide with ℎ = 9.54 µm. The complex electric field E is obtained from the time-domain simulation
results through a Fourier transform at the target frequency, corresponding to a vacuum wavelength of
_ = 1550 nm. We compare results in the virtual (𝑢, 𝑣, 𝑠)-space and in the original (𝑥, 𝑦, 𝑧)-space for
a TE polarized light, having a dominant electric-field oriented along 𝑥 in (𝑥, 𝑦, 𝑧)-space and along 𝑢 in
(𝑢, 𝑣, 𝑠)-space). The freeform waveguide has a plane trajectory in the (𝑦, 𝑧)-plane (𝑥 = 0). The white
contour lines in (a)–(d) are added for a better visualization of the freeform waveguide core. (a) Field
distribution in (𝑢, 𝑣, 𝑠)-space in plane 𝑢 = 0, which corresponds to plane 𝑥 = 0 in (𝑥, 𝑦, 𝑧)-space.
The freeform waveguide in (𝑢, 𝑣, 𝑠)-space is straight, which enables a minimum-size rectangular
computational volume. (b) Field distribution in (𝑥, 𝑦, 𝑧)-space in the plane 𝑥 = 0 obtained by applying
the inverse space transformation 𝑓 −1 (𝑢, 𝑣, 𝑠) = (𝑥, 𝑦, 𝑧) to the distribution shown in (a). (c) Field
distribution in (𝑥, 𝑦, 𝑧)-space in plane 𝑥 = 0, as obtained from a direct simulation in (𝑥, 𝑦, 𝑧)-space.
The rectangular simulation volume in (𝑥, 𝑦, 𝑧)-space is not optimal since it encompasses much space
far away from the freeform waveguide, where the field is close to zero. The field distribution shows a
good match to the distribution from (b). (d) Relative deviation between the field distributions obtained
from the TO simulation in (b) and the direct simulation in (c), obtained by calculating the magnitude
of the difference of the respective electric-field magnitudes and by normalizing it to the maximum of
the field found for the direct simulation. Referring to Fig. 3.3(f) and the field in (a)–(c), we see that a
multimode interference could explain the experimentally observed minimum transmission for apex
heights around 10 µm.
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in the reference simulations these ranges correspond to 𝑥 ∈ [−2.5 µm, 2.5 µm]
and 𝑦 ∈ [−4 µm, ℎ + 4 µm]. Since we are predominantly interested in the impact
of the waveguide trajectory on the transmission behaviour, these simulations
do not take into account the coupling of the SiP waveguide to the 3D-printed
freeform waveguide as detailed in Fig. 3.3(c). Instead, we assume to freeform
waveguide to be embedded into a homogeneous cladding material, and we cut it
at the end of linear taper of the SiP waveguide, as indicated by a dotted red line
in Fig. 3.3(c). The tapered structure to the right of this line is then replaced by
a straight waveguide section of length 𝑙s = 1 µm-long , in which we define the
ports for the CST MWS simulation. Since a straight waveguide in (𝑥, 𝑦, 𝑧)-space
maps to an identical straight waveguide in (𝑢, 𝑣, 𝑠)-space without any change
of material properties, the modes of the straight waveguides in both spaces are
identical. The length of the computational domain in the virtual (𝑢, 𝑣, 𝑠)-space
is thus 𝑠tot + 2𝑙s, where 𝑠tot denotes the total length of the freeform waveguide
trajectory. For the simulation in the real (𝑥, 𝑦, 𝑧)-space, we choose a computational
domain of length it is only

(
𝑙g + 2𝑙s

)
. All simulations were done with the same

settings and on the same simulation machine. The discretization of the freeform
waveguide into bricks for performing the TO simulations was done as explained in
Section 3.3, with 28 bricks per slice as illustrated in Fig. 3.2. The total number
of bricks for different freeform waveguides ranges from 1 288 to 3 080. We also
simulate the transmission losses using the FMA method [56], which subdivides
the waveguide into sections of constant curvature and calculates the transmission
losses based on the propagation of the fundamental modes in these waveguide
segments. TO-simulated transmission values in Fig. 3.3(f) are displayed in red,
the results of the reference simulations by the conventional approach are displayed
in blue, and the values obtained by the FMA algorithm are displayed in green. The
curves obtained by TO and the reference simulations are nearly identical, with
minimal differences that can be explained by the discretization of the freeform
waveguide model into finite bricks with constant material properties. Both curves,
similarly to the experimentally obtained curve, exhibit a local minimum near
ℎ = 10 µm, and agree qualitatively very well with the measurement. The deviations
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between measurements and simulations can be explained by the fact that the latter
do not account for the coupling of the SiP waveguide to the 3D-printed freeform
waveguide as detailed in Fig. 3(c). In addition, the higher measured transmission
for ℎ ≈ 6 µm can be explained by a possible shrinking of the freeform waveguides
during the development process, which smoothens the two sharp bends designed
to have a curvature radius 𝑅1 ≈ 4.3 µm, at the connections of the center freeform
waveguide section to the initial and the final sections having a constant bend radius
𝑅0 = 55 µm, see Fig 3.3(f). The transmission obtained by the FMA method, does
not show this local minimum. This is because the FMA method only considers
the fundamental mode and disregards possible excitation of higher-order modes,
such that it cannot take into account any multi-mode interference effects. Still,
the optimum configurations with the least losses around a height of 13 µm are
well reproduced. Within certain limits, the FMA can therefore be used for a
real-time trajectory optimization, which is important for, e. g., photonic wire bonds
[12, 13, 34, 88] or waveguide overpass fabrication [87] in an industrial setting.

For comparing the electric-field distribution obtained by the TO and by the
conventional approach, we plot the magnitude of the complex electric-field vectors
in the plane 𝑢 = 0 of the virtual (𝑢, 𝑣, 𝑠)-space, Fig. 3.4(a), and in the corresponding
plane 𝑥 = 0 of the real (𝑥, 𝑦, 𝑧)-space after back-transformation, Fig. 3.4(b). The
apex height of the depicted waveguide amounts to ℎ = 9.54 µm, which corresponds
to the local minimum of the simulated transmission as a consequence of multi-mode
excitation. Figure 3.4(c) depicts the results of a direct CST MWS simulation in
(𝑥, 𝑦, 𝑧)-space, and Figure 3.4(d) displays the magnitude of the relative deviation
between the field distributions obtained from the TO simulation, Fig. 3.4(b) and
the direct simulation, Fig. 3.4(c), normalized to the maximum of the field found
for the direct simulation. It can be seen that the two field distributions match well,
with a maximum difference of 22.6 %. The biggest differences occur in the regions
with a small bend radius — these differences are contributed to the discretization
of the waveguide into bricks in the transformed space, see Section 3.3.

From the field plots shown in Fig. 3.4(a)–(c), we can can confirm the notion that
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3.4 Freeform waveguide simulations, fabrication and experimental benchmarking

the dip in transmission of apex heights of approximately 10 µm, see Fig. 3(f),
is caused by excitation of higher-order modes and by the resulting multi-mode
interference.
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Figure 3.5: Simulations of freeform waveguides with different apex heights ℎ of the trajectories.
Comparison of number of mesh cells, computational volume, time steps and simulation times for the
direct reference simulation in (𝑥, 𝑦, 𝑧)-space (Ref.) and the TO simulation (TO). (a) Mesh cells (ratio
mesh) and computational domain volumes (ratio compv̇ol.) of the reference simulation related to the
corresponding values for the TO simulation. Both curves follow a (nearly) straight line when ℎ and
therefore the computational volume is linearly increased. (b) Comparison of time steps, determined
by the smallest mesh cell size and by the material properties. The smaller mesh cells in reference
simulations needed to represent fine features cause smaller time steps. Large differences in TO-based
simulations originate from different material properties. In case of freeform waveguides with sharp
bends the tensors of material properties in the virtual (𝑢, 𝑣, 𝑠)-space have entries with values close to
zero, which cause a large maximum phase velocity in the TO-based model – see Appendix A.3. (c)
Comparison of total simulation times. Both different numbers of mesh cells (different computational
domain volumes) and different time steps contribute to different simulation times.
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3 Transformation-optics modeling of 3D-printed freeform waveguides

3.5 Computational complexity

To quantify the advantages of the TO approach, we compare the associated
computational effort to that of the conventional approach. The results are displayed
in Fig 3.5. Figure 3.5(a) shows the ratios of the volumes of the computational
domains for different apex heights ℎ of the freeform waveguide, see Fig. 3.3(b),
as well as ratio of the numbers of mesh cells. Both ratios indicate a reduction
of the computational effort by more than a factor of two when using the TO
technique. This ratio increases nearly linearly with the apex height ℎ, because
the computational volume of the conventional approach increases more strongly
with ℎ than the one of the TO approach. Note that, for the TO-based simulations,
the volume depends predominantly on the total arc length 𝑠tot of the freeform
waveguide, which increases only slightly with ℎ as long as ℎ ≪ 𝑠tot. The ratio of the
number of mesh cells for the reference simulation and the TO-simulation follows
about the same proportionality as the ratio of the volumes of the computational
domains.

Another parameter that influences the total simulation time is the time step used in
the FIT simulation, for which the Courant-Friedrichs-Lewy stability criterion for
solving partial differential equations [96, 107] dictates an upper limit,

Δ𝑡𝑥𝑦𝑧 ≤
(
𝑐𝑥𝑦𝑧

√︄
1

Δ𝑥2 + 1
Δ𝑦2 + 1

Δ𝑧2

)−1

, Δ𝑡𝑢𝑣𝑠 ≤
(
𝑐𝑢𝑣𝑠

√︂
1

Δ𝑢2 + 1
Δ𝑣2 + 1

Δ𝑠2

)−1

.

(3.7)
In these relations, Δ𝑡𝑥𝑦𝑧 is the maximal time step and 𝑐𝑥𝑦𝑧 the maximum phase
velocity in any direction in (𝑥, 𝑦, 𝑧)-space, which is discretized by spatial step
sizes Δ𝑥, Δ𝑦, and Δ𝑧. For the TO approach, Δ𝑡𝑢𝑣𝑠, 𝑐𝑢𝑣𝑠 and Δ𝑢, Δ𝑣, Δ𝑠 are
the equivalent quantities in (𝑢, 𝑣, 𝑠)-space. Since Eq. (3.7) must hold for all
mesh cells in the computational domain, the maximum time step is eventually
dictated by the smallest mesh cell. In this context, the TO technique offers the
additional advantage that the geometrically straight waveguide in the transformed
(𝑢, 𝑣, 𝑠)-space can be well represented by a rather simple rectilinear grid. In
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3.5 Computational complexity

contrast to that, correct representation of the surfaces of the freeform waveguide
in the original (𝑥, 𝑦, 𝑧)-space may require local refinements of the mesh sizes Δ𝑥,
Δ𝑦, and Δ𝑧, and thus leads to smaller time steps according to Eq. (3.7). For most
cases of practical interest, this advantage of the TO approach overcompensates the
impact of the transformed material tensors, see Fig. 3.5(b). Note, however, that
the transformed material tensors `′ and 𝜖 ′ in (𝑢, 𝑣, 𝑠)-space can have elements
with values close to zero, which strongly increases the associated maximum
phase velocity 𝑐𝑢𝑣𝑠 and thus reduces the maximum permitted time step Δ𝑡𝑢𝑣𝑠

in the TO simulation. This effect occurs, e.g., towards the inner sides of strong
waveguide bends, where the boundary of the computational domain may be close
to a local center of curvature; see Appendix C for details. This effect can be
indirectly observed from Fig. 3.5(b), where the shortest time step was required for
the freeform waveguide with the smallest height and thus the smallest radius of
curvature 𝑅1 ≈ 4.3 µm at the transitions between the fixed and the variable part
of the trajectory, see Fig. 3.3(g). In this simulation, the range of 𝑣-coordinates in
all simulations was 𝑣 ∈ [−4 µm, 4 µm], and the boundary of the computational
domain was thus just 0.3 µm away from the center of curvature associated with the
most strongly curved waveguide section. This effect could be mitigated by limiting
the values of the entries of the tensors to a chosen lower bound, which will not
have significant impact on the simulation results — the field is always dragged to
the outer side of the bend such that the magnitude at the inner side is small. Finally,
we compare the total simulation times for the TO approach and the reference
simulation, see Fig. 3.5(c). Both results are influenced by the total number of mesh
cells and the time step. In all cases, the TO-based simulations were completed
significantly faster than the conventional reference simulations. It should be
mentioned that the additional computational overhead of the TO-based simulations,
given by the time necessary to discretize the freeform waveguides into bricks,
to calculate the material properties, to generate the required CST scripts, and to
perform the spatial back transform after the simulation, was around 100 s, which
is negligible compared to the total simulation time of several thousand seconds
and was therefore not included in the results shown in Fig. 3.5(c). Overall, for the
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3 Transformation-optics modeling of 3D-printed freeform waveguides

structures simulated here, the TO approach is 3–6 times more efficient than the
conventional simulation, with significant potential for further improvement. The

waveguide trajectories in the presented examples are still rather simple, consisting
of plane curves in the (𝑦, 𝑧)-plane that start and end at the same height in 𝑦. For
waveguides with non-plane trajectories, see, e.g., Fig. 3.1, the reduction of the
computational volume through the TO approach will be even more pronounced,
but the numerical treatment also becomes more complicated. Specifically, for
plane waveguide trajectories, the tensors 𝛆′ and 𝛍′ maintain their diagonal shape
in (𝑢, 𝑣, 𝑠)-space, see Appendix B, while waveguides with non-plane trajectories
require the consideration of off-diagonal elements in the transformed material
tensors 𝛆′ and 𝛍′. For commonly used leap-frog schemes, the FDTD update
equations for the electric and the magnetic field in generally anisotropic media can
be written as

H′(𝑡𝑛+1) = H′(𝑡𝑛) − Δ𝑡 · (𝛍′ (𝑢, 𝑣, 𝑠))−1 ·
(
E′(𝑡𝑛)

)
,

E′(𝑡𝑛+1) = E′(𝑡𝑛) + Δ𝑡 · (𝛆′ (𝑢, 𝑣, 𝑠))−1 ·
(
H′(𝑡𝑛)

)
.

(3.8)

In this relation, 𝑡𝑛 and 𝑡𝑛+1, 𝑛 = 0, 1, 2, ..., denote the staggered discrete time
steps at which the electric and the magnetic field are calculated by the leapfrog
scheme. For isotropic materials or media with diagonal 𝛆′- and 𝛍′-tensors in
(𝑢, 𝑣, 𝑠)-space, the evaluation of each of these constitutive relations simply involves
multiplication of a (3,1)-vector with a scalar. Taking into account off-diagonal
elements would require a multiplication of a (3,3)-matrix with a (3,1)-vector and
thus increase the computational effort for the evaluation of each constitutive relation
by approximately a factor of three, considering only the number of multiplications.
In addition, FDTD modeling of materials with non-diagonal 𝛆′ and 𝛍′-tensors is
complicated by the coupling of non-parallel components of H′ and E′ and of E′ and
H′, which are not collocated on the standard Yee grid [108]. Numerical modeling
of such materials thus requires spatial interpolation [108, 109], or alternative
approaches based on Lebedev grids [110, 111]. Still, the TO approach should
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offer significant performance advantages also for non-plane trajectories, for which
an even more significant reduction of the computational volume can be expected.

Note that the simulations shown in the previous sections refer to waveguides
with rectangular cross sections that are invariant along the waveguide trajectory,
which can be accurately represented by a rather simple rectilinear grid. In case of
arbitrary cross sections that vary along the waveguide trajectory, this advantage of
the TO approach might be maintained by adapting the transformation to not only
map the curve trajectory into a straight one, but to also map an arbitrary waveguide
cross section into a rectangular one [112] that is invariant along the propagation
direction.

3.6 Summary

We introduced a transformation optics (TO) based concept for simulating freeform
optical waveguides applicable to commercially available time-domain Maxwell’s
equations solvers. The method reduces the freeform waveguide simulation
volume by transforming the freeform waveguide into a number of connected
rectangular boxes through a spatial transformation that is related to the local
coordinate system of the freeform waveguide trajectory. The price to pay is that
fictitious material properties in the transformed space have to be calculated. Our
time-domain simulations of freeform waveguides with plane trajectories show a
significant reduction in the simulation time compared to a conventional approach,
while the simulation results agree very well with the outcome of conventional
simulators. For benchmarking our TO concept experimentally, we realized a series
of freeform waveguides and measured their transmission losses. The measured
and the simulated results show a very good qualitative agreement. We believe
that our approach has the potential to facilitate the design and the prototyping of
waveguide-based optical devices.

[end of the content based on the main part of manuscript [J1]]
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4 Photonic-integrated circuits with
non-planar topologies realized by
3D-printed waveguide overpasses

This chapter reports on 3D-printed waveguide ovepasses on a silicon photonic
integrated circuit, that may overcome the challenges of highly non-planar PIC with
a large number of waveguide crossings. The chapter was taken from publication
[J3], and the format of the publication was adapted to fit the structure of this thesis.
Supplementary information related to this chapter can be found in Appendix B,
which is also taken from the publication [J3].

The scope of this publication was developed by the author of the thesis together
with C. Koos. The graph-theoretical analysis described in this chapter and in
Appendix B was developed by the author, supervised by C. Koos and verified by
M. Nöllenburg. The photonic integrated circuit design was done by the author and
supervised and verified by M. Lauermann. M. Blaicher and T. Hoose fabricated
3D printed waveguide overpasses, and A. Hofmann and Y. Kutuvantavida applied
selective overcladding to the fabricated waveguide overpasses. The experiments
were conceived by the author and C. Koos. The author conducted the experiments
and analyzed experimental results. All figures were composed and the publication
was written by the author, supported by W. Freude and C. Koos. The work was
jointly supervised by S. Randel, W. Freude, and C. Koos.

[start of publication [J3]]
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Complex photonic-integrated circuits (PIC) may have strongly non-planar topolo-
gies that require waveguide crossings (WGX) when realized in single-layer
integration platforms. The number of WGX increases rapidly with the complexity
of the circuit, in particular when it comes to highly interconnected optical switch
topologies. Here, we present a concept for WGX-free PIC that relies on 3D-printed
freeform waveguide overpasses (WOP). We experimentally demonstrate the via-
bility of our approach using the example of a 4× 4 switch-and-select (SAS) circuit

54

https://doi.org/10.1364/OE.27.017402


4.1 Introduction

realized on the silicon photonic platform. We further present a comprehensive
graph-theoretical analysis of different 𝑛 × 𝑛 SAS circuit topologies. We find that
for increasing port counts 𝑛 of the SAS circuit, the number of WGX increases with
𝑛4, whereas the number of WOP increases only in proportion to 𝑛2.

4.1 Introduction

Photonic integrated circuits (PIC) are becoming increasingly complex, incorporat-
ing thousands of photonic devices on a single chip [16, 84]. The silicon photonic
(SiP) platform, in particular, stands out to high integration density and offers
high-yield fabrication on large-area substrates using mature CMOS processes
[113, 114]. However, as the complexity of PIC increases, non-planar circuit
topologies with hundreds or even thousands of waveguide crossings (WGX) are
unavoidable, and the number of WGX often increases in a strongly nonlinear way
with the complexity of the circuit. As a consequence, compact WGX have evolved
into key building blocks, and substantial research effort has been dedicated to
optimizing their performance. This has led to remarkably low insertion loss (IL)
of 0.017 dB and crosstalk as small as −55 dB at _ = 1550 nm, demonstrated for
partially etched multi-mode interference (MMI) structures that feature a relatively
large footprint of approximately 30 × 30 µm2 [16]. Fully etched MMI structures
allow to reduce the footprint to, e.g., 9×9 µm2, but losses and crosstalk increase to,
e.g., 0.028 dB and −37 dB, respectively [14]. Arrays of WGX can be compactly
realized by exploiting Bloch modes in multi-mode waveguides: For SiP structures
fabricated by electron-beam lithography, values of IL = 0.019 dB and crosstalk of
less than −40 dB per WGX were demonstrated for a 101 × 101 WGX array with a
3 µm waveguide pitch [15]. For optical lithography, the best reported values for
Bloch mode WGX are IL = 0.04 dB and crosstalk less than −35 dB for a 1 × 10
array of crossings with a 3.25 µm waveguide pitch [115].

However, while these demonstrations are impressive, even IL of the order of a
few hundredths of dB and crosstalk of the order of −40 dB per WGX may have
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a substantial impact on the performance of large-scale PIC that may comprise
tens of thousands of crossings. A prime example in this context are high-radix
switches that rely on the so-called switch-and-select (SAS) architecture [17]. The
SAS scheme offers low crosstalk and simple control but requires a complex and
highly non-planar interconnect network that provides a dedicated waveguide from
each input to each output port. In fact, finding a layout that gives the minimum
number [𝑛,𝑛 of WGX in an 𝑛 × 𝑛 SAS circuit, and generally in any circuit, is
an NP-complete problem [116], and [𝑛,𝑛 scales with 𝑛4/16 according to a still
unproven conjecture [65, 66]. This leads to tens of thousands of WGX for 𝑛 = 32
and to approximately one million WGX for 𝑛 = 64. To illustrate the associated
performance penalty by WGX crosstalk, let us consider an example of a waveguide
that crosses an array of 100 other waveguides with a crosstalk of −40 dB in each
of the crossings. Assuming incoherent superposition of the various crosstalk
contributions and interpreting them as random noise that deteriorates the signal,
the signal-to-noise power ratio (SNR) would amount to 20 dB. For a 32QAM
signals, this would lead to a bit-error ratio (BER) of 6 × 10−4 [117], which is
only slightly below the 4.5 × 10−3 limit for hard-decision forward-error correction
(HD-FEC) with 7% overhead [118]. This represents a significant deterioration of
the signal quality. For 64QAM, which is envisaged for high-speed transmission
systems with data rates beyond 500 Gbit/s per wavelength, an SNR of 20 dB
would even be insuffcient to reach the HD-FEC limit. Such crosstalk levels hence
represent a significant deterioration of the signal quality. The situation may become
even worse in case the crosstalk signals are superimposed coherently. Moreover, a
few hundredths dB of IL per WGX would result in several dB of overall IL that
is accumulated over the 100 crossings. This example illustrates that large-scale
PIC with highly non-planar topologies may face performance limitations when
realized by WGX in single-layer integration platforms.

To overcome the limitations of conventional WGX, multi-layer PIC have been
proposed exploiting multiple stacked waveguide layers, realized from silicon
[119, 120], silicon nitride (Si3N4) [121, 122] or as a combination of both waveguide
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technologies [123–128]. The deposition of the upper layers is typically done by
chemical vapor deposition (CVD) and involves chemical mechanical planarization
(CMP) of intermediate SiO2 cladding layers that separate the waveguide layers.
While simple two-layer implementations offer decent performance [125, 127],
three-layer structures have been shown to greatly reduce inter-layer crosstalk while
maintaining effcient interlayer coupling [120, 126, 128]. This allows to reduce the
crosstalk to less than −56 dB with remarkably low interlayer coupling losses of less
than 0.15 dB from the bottom to the top layer using a pair of vertical directional
couplers of approximately 190 µm length per side [126, 128]. However, while
this approach offers utmost scalability and the ability to cross entire groups of
waveguides, the integration of silicon or silicon nitride waveguides into back-
end metal layer stacks introduces additional technological complexity and is not
yet established as part of the technology portfolios offered by silicon photonic
foundries. In addition, all multi-layer PIC demonstrations so far are limited to
silicon photonics.

In this chapter we demonstrate hybrid 2D/3D photonic integration based on direct-
write laser lithography as an alternative approach for realizing non-planar circuit
topologies. Our approach is based on 3D-printed freeform polymer structures
[129], which we refer to as optical waveguide overpasses (WOP). WOP are realized
in situ by two-photon polymerization [106], which has previously been used for
fabrication of so-called photonic wire bonds that enable low-loss single-mode
connections across chip boundaries [11, 12, 34, 130]. The devices offer low
crosstalk of less than −75 dB and allow to bridge series of parallel waveguides,
thereby replacing a multitude of WGX. We demonstrate the viability of our
approach by realizing a 4 × 4 SAS circuit. Based on a graph-theoretical analysis,
we estimate that the number of WOP needed to realize a WGX-free 𝑛 × 𝑛 SAS
PIC scales in proportion to 𝑛2/2. A 64 × 64 SAS circuit would hence require only
approximately 2000 WOP as opposed to the estimated one million conventional
WGX. Fabrication of WOP may be effciently combined with 3D-printing for die-
level packaging [11, 12, 34, 130], and offers the opportunity to locally incorporate
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multi-layer elements into standard SiP circuits, fabricated through readily available
foundry services. The concept of 3D-printed WOP is not limited only to silicon
photonics but may be transferred to a wide range of alternative photonic integration
platforms.

The paper is structured as follows: In Section 4.2 we introduce the concept of
3D-printed WOP. A graph-theoretical analysis of the number of necessary WOP
and WGX for realizing surface-coupled 𝑛 × 𝑛 SAS devices is provided in Section
4.3. Design and experimental testing of the demonstrator device are explained in
Section 4.4. Appendix A provides definitions of graph theory terms. Appendix B.2
gives further details of the graph-theoretical approach used for the analysis in
Section 4.3. Appendix C gives a detailed graph-theoretical analysis of the number
of necessary WOP and WGX for realizing facet-coupled SAS devices.

Silicon 
substrate

SiO2

 
cladding

(b)
High NA 
objective

Focused 
laser beam

Voxel

400 nm

80
0 

nm

(a)

SiP 
waveguide

Negative-tone 
photoresist

BOX
SiP 
waveguides

50 µm WOP2

(d) (e)

 

Position 
markers

1 µm5 µm 5 µm

(c)

WOP

(1)

(2) WOP1

lt d w

dtip

Figure 4.1: Concept and implementation of waveguide overpasses (WOP) on the silicon photonic
(SiP) platform. (a) The WOP is written into a liquid negative-tone photoresist that is deposited onto the
PIC. For better coupling to the SiP on-chip waveguides, the SiO2 cladding is locally removed down
to the buried oxide (BOX) layer. Inset (1): The spatial resolution of the two-photon lithography is
determined by the size of the volumetric pixel (voxel) that results from two-photon polymerization.
Inset (2): Tapers in the WOP and in the SiP waveguide improve the coupling effciency. (b) Scanning
electron microscope (SEM) image of the WOP (colors were added by image processing). (c)–(e)
Close-ups of different parts of the WOP. Position markers indicate the positions of the SiP waveguide
ends that need to be interconnected. During fabrication of our chip, the SiO2 cladding layer has been
unintentionally over-etched, and part of the BOX has been unintentionally removed, see Subfigure (e).
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4.2 Concept of waveguide overpasses (WOP)

The concept of a 3D-printed freeform optical WOP is illustrated in Fig. 4.1 for the
example of a SiP circuit. The PIC may be fabricated through standard processes
offered by a commercial SiP foundry, including selective removal of SiO2 cladding
layer to access the tapers of the SiP waveguides that need to be interconnected
[131]. For fabrication of the WOP, a negative-tone photoresist is locally deposited
onto the chip, and the WOP is then 3D-printed into the resist by direct laser writing
based on two-photon polymerization. After exposure, the resist is removed, and
the free-standing WOP structures are clad by a low-index polymer that acts as
cladding and humidity protection (not shown in Fig. 4.1). Depending on the length,
WOP may bridge tens or even hundreds of planar waveguides in the SiP device
layer. Figure 4.1(b) displays scanning electron microscope (SEM) images of the
two WOP on our demonstrator device before the cladding was applied, with colors
added by image processing for better visualization. Figures 4.1(c)–4.1(e) show
close-ups of different parts of the lower WOP and demonstrate the accuracy of
the direct laser writing method. The two-photon lithography system uses CMOS
patterned silicon markers for automated detection of the SiP waveguides that
need to be interconnected. The 3D-printing time of one WOP is about 30 s with
a significant potential for further reduction. The refractive index of the WOP
core material amounts to 𝑛WOP ≈ 1.53, and the cladding has a refractive index of
𝑛cladding ≈ 1.36 at 1550 nm. Note that the concept has been illustrated for the SiP
platform here but can generally be applied to a wide range of PIC technologies.
As an example, 3D-printed photonic wire bonds can be efficiently coupled to
surface-coupled [34] and edge-coupled InP-waveguides [130].

4.3 Theoretical analysis of non-planar
switch-and-select (SAS) circuit topologies

To experimentally demonstrate the viability of our approach, we use an 𝑚 × 𝑛
SAS circuit as an example of a PIC requiring many WGX. In the 𝑚 × 𝑛 SAS
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architecture, each of the m input ports feeds a 1 × 𝑛 switch distributing the light
to one of the 𝑛 output ports, and each of the 𝑛 output ports is fed by an 𝑚 × 1
switch, which selects light from one of the 𝑚 input ports. An illustration of a basic
non-optimized implementation of a 4 × 4 SAS architecture is shown in Fig. 4.2(a),
featuring a total number of 36 WGX in the depicted case, which would scale up to
a total number of

[
(basic)
𝑛,𝑛 =

(
𝑛 (𝑛 − 1)

2

)2
(4.1)

for the case of an 𝑛 × 𝑛 SAS circuit. In the following, we show that these circuits
can be realized with a significantly smaller number of WOP than the number of
WGX, even if the layout of the circuit is optimized to reduce the number of WGX.
To this end, we exploit graph theory to investigate the scaling of WGX and WOP
number for increasing port counts 𝑛. For the remainder of this section, we consider
the case where input and output ports are accessible from the top surface of the
PIC and can hence be positioned anywhere on the chip. This case is referred
to as surface coupling. Surface-coupled PIC may, e.g., rely on grating couplers,
SiP waveguides that are bent upwards by ion implantation [30], or on 3D-printed
lensed couplers [31]. We only give a summary of the results here; mathematical
details can be found in Appendix B.2. In Appendix B.3, we also discuss the case
of facet coupling, for which light is coupled to and from the PIC via waveguide
facets along the chip boundary.

As a first step of the layout optimization, we exploit the fact that surface coupling
allows to route waveguides around the couplers. This is illustrated in Fig. 4.2(b)
for the example of a 4 × 4 SAS. In this implementation, we consider the 1 × 𝑛
and 𝑚 × 1 switches at the input and output ports as discrete entities that cannot be
subdivided and that may hence be considered as lumped elements (LE). This leads
to representation of the SAS circuit by a complete bipartite graph 𝐾𝑚,𝑛 having two
sets 𝑀 and 𝑁 of 𝑚 and 𝑛 vertices, respectively. Each vertex of set 𝑀 represents
an input port of the SAS and its corresponding 1 × 𝑛 switch, and each vertex of
set 𝑁 represents an output port and the associated 𝑚 × 1 switch. Each vertex of
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Figure 4.2: Comparison of layouts of a 4 × 4 optical switch-and-select (SAS) circuit for surface
coupling. (a) Basic layout for single-layer waveguide technology without any optimization for reduced
numbers of waveguide crossings (WGX). (b) Optimal layout for single-layer waveguide technology,
minimizing the number of WGX by routing of waveguides around the coupling elements. The formula
for [(surf)

𝑛,𝑛 is a conjecture for the minimum possible number of WGX for an 𝑛 × 𝑛 SAS, if the 1 × 𝑛
and 𝑛 × 1 switches at the input and output ports are lumped elements (LE) [65, 66]. For large port
counts 𝑛, the number of WGX is conjectured to scale with 𝑛4/16. (c) Best found, but not necessarily
optimal layout for a single-layer 4 × 4 SAS circuit, in which the 1 × 4 and 4 × 1 switches have been
realized as binary trees (BT) of 1 × 2 and 2 × 1 switches. A general analysis of this circuit topology for
arbitrary 𝑛 is subject to ongoing investigations. (d) Best found, but not necessarily optimal WGX-free
layout for hybrid 2D/3D circuits, minimizing the number of WOP. The switches are realized as BT in
the same way as in (c). The formula for `(surf, BT)

𝑛,𝑛 is an upper bound for the minimum number of WOP.
The optical paths that were used for the crosstalk measurement in Section 4.4 are marked in green
(Path 1) and in blue (Path 2). The arrows indicate the direction of light propagation for the crosstalk
measurement. The drive current of MZI1 is modulated by a sinusoidal signal for highly sensitive
lock-in detection of the weak crosstalk signals.
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one set is connected to each vertex of the other set by a total of 𝑚𝑛 edges that
represent optical waveguides. In the following, we restrict our consideration to the
particularly relevant cases of 𝐾𝑛,𝑛, for which the number 𝑚 of input ports equals
the number 𝑛 of output ports. A generalization to the case of 𝐾𝑚,𝑛 can be found in
Appendix B.2.

For conventional SAS implementations in single-layer waveguide technology, a
layout with the smallest possible number of WGX can be achieved by optimizing
the drawing of the corresponding graph model for finding the minimum number of
edge crossings (or just crossings), which is an NP-complete problem [116]. Up to
now [65], there is only a conjectured formula for the minimum possible number of
crossings (crossing number), based on a straightforward graph drawing algorithm,
only proven to give an upper bound [66],

[
(surf)
𝑛,𝑛 =

⌊
𝑛

2

⌋2 ⌊
𝑛 − 1

2

⌋2
(4.2)

In this relation, ⌊𝑥⌋ denotes the floor function. For large 𝑛, the conjectured crossing
number scales with 𝑛4/16, thereby reducing the number of WGX by a factor of 4
compared to the simplistic non-optimized waveguide routing shown in Fig. 4.2(a).
Note that the best published result for the lower bound of the crossing number in
complete bipartite graphs 𝐾𝑛,𝑛 states that for large 𝑛 the crossing number scales at
least with 0.83 · 𝑛4/16 ≈ 𝑛4/19.28 [132]. However, this is a theoretical result for
the case of large 𝑛, which has not been supported by drawings of the corresponding
graphs. In fact, for complete bipartite graphs, no drawings are known that lead to
lower number of crossings than conjectured by Eq. (4.2). We therefore use the
conjectured formula and its corresponding drawing as a basis for our analysis of
the scaling of WGX for increasing port counts 𝑛. For an 𝑛 × 𝑛 SAS circuit with
𝑛 = 16, this would lead to a total number of 3136 WGX.

Regarding hybrid 2D/3D SAS circuit implementations based on WOP, we again
start from the complete bipartite graph 𝐾𝑛,𝑛 and determine the number of WOP by
subtracting the maximum number of edges that can be realized without crossings
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(the number of edges in the spanning maximum planar subgraph) from the total
number of edges. The total number of edges in 𝐾𝑛,𝑛 is 𝑛2, and 4𝑛 − 4 edges can be
realized without crossings [133]. The number of missing edges hence amounts to

`
(surf, BT)
𝑛,𝑛 = 𝑛2 − (4𝑛 − 4) = (𝑛 − 2)2 (4.3)

and equals the number of WOP necessary to complete the SAS circuit, assuming
that each WOP can cross an arbitrary number of planar waveguides, and that
crossings of 3D WOP can be avoided, see Appendix B.2 for more details. Note
that the length of a WOP is only limited by the write field size of the two-photon
lithography system, which currently amounts to approximately 500 µm × 500 µm.
In the future, these limitations may be overcome by high-precision stitching of
structures that extend across several write fields. Using Eq. (4.3), we calculate a
total number of 196 WOP for an SAS circuit with 𝑛 = 16, which is considerably
smaller than the corresponding number of WGX. A comparison of the scaling of
WGX and WOP numbers for increasing port count 𝑛 is given in the second and
third column of Table 4.1.

Table 4.1: Quantitative comparison of surface-coupled n × n switch-and-select (SAS) circuit
implementations based on WGX in single-layer circuits and on WOP in hybrid 2D/3D photonic
integration. The total number of WGX increases approximately in proportion to 𝑛4/16, whereas
the number of WOP scales with 𝑛2 for the case of lumped-element (LE) switches, and with 𝑛2/2 in
case the switches are decomposed into binary trees (BT) of 1 × 2 and 2 × 1 switches. The maximum
number of WGX along any optical path increases approximately in proportion to 𝑛2/4 for the case of
LE switches, whereas the maximum number of WOP along any optical path amounts to 1 in both cases
of LE and BT switches.

Total number Maximum number
along any optical path

SAS
(𝑛 × 𝑛)

WGX
(LE)

WOP
(LE)

WOP
(BT)

WGX
(LE)

WOP
(LE & BT)

4 × 4 4 4 2 1 1
8 × 8 144 36 18 9 1

16 × 16 3 136 196 98 49 1
32 × 32 57 600 900 450 225 1
64 × 64 984 064 3 844 1 922 961 1
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As a further step of the circuit layout optimization, we may split up the 1 × 𝑛 and
the 𝑛 × 1 switches at the input and the output into binary trees (BT) of 1 × 2 and
2 × 1 switches, see Fig. 4.2(d). This allows to reduce the number of WOP to

`
(surf, BT)
𝑛,𝑛 =

⌈
(𝑛 − 2)2

2

⌉
, (4.4)

see Appendix B.2 for an explanation. In the last relation, ⌈𝑥⌉ denotes the ceiling
function. The associated WOP numbers for increasing port counts 𝑛 are indicated
in the fourth column of Table 4.1. Note that the same technique with BT switches
may also be applied to the single-layer SAS circuit architecture as illustrated in
Fig. 4.2(c). For 𝑛 = 4, we could not find a layout that reduces the number of WGX
as compared to the implementation with LE switches. Note that the SAS circuit
with BT switches is not any more a complete bipartite graph 𝐾𝑛,𝑛 — an analysis
of such circuit topologies has recently been published in [64]. Note further that for
increasing port counts 𝑛 of the SAS circuit with LE switches, the number of WGX
increases with 𝑛4/16, whereas the number of WOP of the SAS circuit with BT
switches increases only in proportion to 𝑛2/2. As a consequence, the number of
WOP in a 16 × 16 SAS circuit with BT switches is nearly two orders of magnitude
smaller than the number of WGX with LE switches, and for a 64 × 64 SAS, the
numbers differ by nearly four orders of magnitude, see Table 4.1.

Besides the total number of WGX or WOP in the circuit, the maximum number of
such elements along any optical path through the circuit is an important figure of
merit. For the single-layer implementation of the SAS circuit with LE switches,
the biggest number of WGX along an optical path amounts to

b
(surf)
𝑛,𝑛 =

(⌈
𝑛

2

⌉
− 1

)2
, (4.5)

which scales with 𝑛2/4 for large 𝑛, see Appendix B.2 for details. The corresponding
numbers for increasing port counts 𝑛 are given in the fifth column of Table 4.1.
For an SAS circuit with 𝑛 = 16, this leads to up to 49 WGX along a single optical

64



4.4 Device design, fabrication and experimental characterization

path. In contrast to that, the number of WOP can be kept to at most one along each
path, see last column of Table 4.1.

Note that these discussions are independent of 3D-printed structures as a specific
way to realize waveguide overpasses, and that the findings can be broadly applied
to other kinds of overpasses, e.g., in multilayer circuits [120, 126, 128]. 3D-printed
WOP are particularly attractive for use cases in which the number of devices and/or
the number of WOP per device are limited, while ultra-low cross-talk and/or the
inherent flexibility of 3D printing are important. In contrast to that, the technique
might suffer from limited throughput when applied to very complex circuits with
thousands of WOP required on a single chip. In this case, monolithically integrated
multi-layer circuits [120, 126, 128], might offer better scalability.

4.4 Device design, fabrication and experimental
characterization

To demonstrate the viability of the WOP concept, we realized a 4 × 4 SAS device,
similar to the one illustrated in Fig. 4.2(d), featuring two WOP. The device was
realized on a silicon-on-insulator (SOI) wafer having a 220 nm-thick device and a
2 µm-thick buried oxide layer. All waveguides are realized as oxide-covered strip
waveguides with standard width of 500 nm. The SAS circuit consists of four 1 × 4
switches at the input and four 4×1 switches at the output. Each of the 1×4 switches
is realized as a BT of three 1 × 2 switches, and the same technique is applied
to the 4 × 1 switches. In general, for realizing a 1 × 𝑛 switch as a BT, we need
(𝑛 − 1) 1 × 2 switches, each of which consists of a Mach-Zehnder interferometer
(MZI) comprising two multi-mode interference (MMI) couplers and a pair of
thermal phase shifters in the MZI arms. In total, there are 2𝑛(𝑛 − 1) = 24 MZI
and 24 · 2 = 48 phase shifters, leading to 48 signal pads and a common ground for
the electrical control signals. Note that activating one of the two phase shifters
of each MZI is suffcient for switching — the second phase shifter has only been
implemented for better balancing of the MZI arms. We use surface coupling by
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grating couplers (GC). One of the WOP bridges three, and the other bridges four
SiP waveguides spaced by 3.5 µm, see Figs. 4.2(d) and 4.3(c). The footprint of a
single WOP amounts to approximately 15 × 160 µm2, including two 50 µm-long
tapers for coupling the WOP to the SiP waveguides. This is more than an order
of magnitude smaller than previously demonstrated overpasses realized by direct
laser inscription of low-index contrast 3D-waveguides into glass matrices [134].

For switching, each of the possible input-output connections can be established by
activating four phase shifters: Two phase shifters at the BT at the input are used to
switch to the targeted output, and another two phase shifters are needed at the BT
at the output to select the input. For an 𝑛 × 𝑛 SAS circuit with 𝑛 = 4, accessing the
full set of 𝑛! = 24 switch states would require to operate one phase shifter in each
of the 24 MZI. To establish a specific switch state, i.e., a specific set of connections
between input and output ports, it is suffcient to simultaneously operate a maximum
of 2𝑛⌈log2 𝑛⌉ = 16 phase shifters, while the remaining phase shifters along unused
optical paths are idle. In the experiment, we use a multi-channel current source
that we can flexibly connect to the 16 relevant pads out of the overall set of 48
phase shifters. The electrical connection to the chip is established through two
multi-contact probe wedges (MCW), see Figs. 4.3(a) and 4.3(b), each one with 15
DC probes. For each of these wedges, twelve probes connect to the phase shifters,
two probes are used for the common ground connection pads on the chip, and one
probe is left idle. From the 𝑛2 = 16 optical paths connecting the various inputs
and outputs of the switch, four paths contain one of the two WOP, see Fig. 4.2(d).

To characterize the performance of our SAS PIC, we measured the transmission
spectra of all 16 optical paths, see Fig. 4.3(d). To eliminate the fiber-chip coupling
losses, we use a reference structure composed of two GC that are connected
by a short on-chip waveguide. The GC are not optimized and show maximum
transmission at a wavelength of 1560 nm with a fiber-chip coupling loss of
approximately 6.3 dB per coupling interface. For each path, we measure the
transmission as a function of wavelength, and we correct the data to eliminate the
fiber-chip coupling losses. In Fig. 4.3(d), the transmission spectra of the 12 optical
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paths without WOP is displayed in pale blue, and the bright blue trace corresponds
to the average insertion loss of the 12 paths. At 1550 nm, the average on-chip loss
of the paths without WOP amounts to approximately 7 dB and originates from 8
MMI splitters, 4 phase shifters and up to 6.2 mm of on-chip SiP waveguide for
each optical path. Using optimized devices on the SiP platform, namely MZI with
insertion loss of 0.33 dB [17], waveguides with propagation losses of 0.2 dB/mm,
and waveguide lengths of up to only 3 mm, the losses can be reduced to below
2 dB. We also measure the remaining two sets of two paths, each set containing
the same WOP — the results are depicted in pale red, and the average for each
set is given by a bright red solid line. The insertion losses of the two WOP,
indicated as black curves in Fig. 4.3(d), are extracted from the difference of the
bright blue and the two bright red curves by additionally taking into account
the different lengths of the on-chip SiP waveguides along the various optical
paths. At a wavelength of 1550 nm, we measured insertion losses of 1.6 dB and
1.9 dB for the two WOP. These comparatively high losses are mainly caused by a
non-optimum design of the on-chip coupling structures for the WOP and may be
reduced to well below 1 dB by optimizing the design of the PIC and of the freeform
WOP. This expectation is supported by [34], in which 3D-printed waveguides
with a minimum curvature radius of 40 µm and with losses of (0.4 ± 0.3)dB
have been demonstrated. These numbers are comparable to the loss of 0.3 dB
that has been reported for a three-layer evanescently coupled photonic circuit
overpass [126, 128]. Note that surface roughness of the 3D-printed WOP, visible
in Figs. 4.1(c) and 4.1(e), has only minor impact on the insertion loss. This is
mainly due to the relatively small refractive index contrast of the overclad WOP
(𝑛core = 1.53, 𝑛cladding = 1.36), which reduces the roughness-induced scattering
compared to high-index-contrast silicon-photonic waveguides. Moreover, the
roughness is mainly induced by horizontal slicing of the 3D structure during the
writing process, which makes the horizontal WOP sections essentially invariant
along the propagation direction.

The high losses in the current structures arise from the fact that the WOP bridges
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Figure 4.3: Experimental demonstration of the 4 × 4 SAS with WOP. The layout of the SAS circuit
is similar to the one depicted in Fig. 4.2(d). (a) Experimental setup. A multi-channel current source
(CS) is used to drive different subsets of 16 out of the overall 24 optical 1 × 2 and 2 × 1 MZI switches
via two multi-contact probe wedges (MCW). This allows testing of all 16 possible optical paths that
connect the various input and output ports of the 4 × 4 SAS PIC. A tunable laser source (TLS) and a
polarization controller (PC) are used to generate continuous-wave (CW) test signals that are launched
to the various ports of the SAS PIC via a single-mode fiber (SMF) and grating couplers (GC). Each of
the four optical outputs can be probed by another SMF, and the output signal is analyzed with an optical
power meter (OPM) and an optical spectrum analyzer (OSA) that allows to perform a wavelength sweep
that is synchronized with the TLS. (b) Microscope image of the SAS PIC with electrical and optical
connections. (c) Microscope image of two waveguide overpasses (WOP), which bridge three and
four SiP strip waveguides, respectively. A low-index cladding material is locally deposited with high
precision to cover the printed WOP without blocking the nearby grating couplers. (d) Transmission
spectra of various optical paths through the switch. Pale blue: Transmission spectra of 12 optical paths
through the SAS PIC that do not contain any WOP (w/o WOP). Bright blue: Average transmission of
the 12 paths w/oWOP. Pale red: Transmission spectra of two sets of two optical paths each, each set
containing the same WOP (w/WOP1; w/WOP2). Bright red: Average transmission of each of the two
sets w/WOP. Black: Transmission spectra of WOP1 and WOP2.

only four or less SiP waveguides, leading to a small width 𝑤 = 17 µm of the oxide-
overcladding rib underneath the WOP, see Fig. 4.1(b). Moreover, the distance of
𝑑 = 20 µm between the tips of the tapered on-chip SiP waveguides and the edge
of the oxide opening was rather small. In combination, these efects resulted in a
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trajectory with a relatively strong curvature with local bending radii 𝑟 down to
20 µm along the WOP trajectory to maintain a distance of at least 2 µm between the
WOP and the 2.3 µm-high oxide-overcladding rib. This problem can be avoided
by either bridging more SiP waveguides or by choosing a slightly larger distance 𝑑
in case only a few waveguides are to be bridged. Specifically, for seven or more
SiP waveguides with spacings of 3.5 µm, the width of the overcladding-oxide
rib increases to 𝑤 ≥ 25 µm, which allows to maintain a radius of curvature of
more than 40 µm along the WOP trajectory even for 𝑑 = 20 µm. Taking into
account the tapered transition between the SiP on-chip waveguide (𝑙𝑡 = 50 µm)
and the WOP, the overall space occupied to each side of the overcladding-oxide
rib amounts to 𝑑 + 𝑙𝑡 = 70 µm. This compares favorably to the 190 µm-long
transitions between the bottom and the top layer of a SiN-based multilayer photonic
circuit [126, 128]. When bridging less than seven in-plane SiP waveguides, we
should still maintain a minimum spacing of 𝑑𝑡𝑖 𝑝 ≈ 65 µm between the tips of the
coupling structures to avoid a strongly bent WOP trajectory. In this case, the space
occupied by the WOP to either side of the bridged waveguides is still less than
𝑙𝑡 + 𝑑𝑡𝑖 𝑝/2 ≈ 83 µm. Note that WOP can also be coupled to vertical waveguide
facets [130], e.g., in deep-etched trenches, thereby greatly reducing the footprint
by omitting the 50 µm-long tapered transitions.

Regarding scalability of the WOP to large numbers of crossed waveguides, we
have performed simulations of 3D polymer waveguides comparable to WOP in
our previous work [34], finding that for an optimized waveguide trajectory the
insertion loss is dominated by the coupling to the SiP waveguide rather than by
the length of the polymer waveguide section. Therefore, assuming an optimized
WOP trajectory, increasing the WOP length should not lead to significantly higher
losses. Each additionally crossed SiP waveguide increases the WOP length by
approximately 3.5 µm, which is dictated by the minimum spacing between the
SiP waveguides that is needed to avoid crosstalk between them. Further reduction
of the spacing can be achieved by using different SiP waveguide widths to avoid
crosstalk [135]. Regarding very complex circuit topologies, the WOP footprint
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may hence scale very well. The overall footprint of our current SAS circuit amounts
to approximately 1.8 × 1.4 mm2, mainly dictated by the rather bulky 500 µm-long
thermo-optic phase shifters and the associated electric contact pads. This footprint
can be reduced by using MZI switch modules based on ultra-compact liquid-crystal
phase shifters, which can provide phase shifts in excess of 𝜋 for a length of less
than 500 µm [136, 137].

We also measured the crosstalk from a WOP to one of the SiP waveguides
underneath. To this end, we first maximized the optical transmission of two paths
through the SAS PIC, where the first path (“Path 1”) contains the WOP while
the second path (“Path 2”) contains one of the SiP waveguides underneath. We
then launch a strong CW signal into the input of Path 1, and we connect highly
sensitive power detectors to the output of both Path 1 and Path 2. Path 1 and Path
2 are marked in green and in blue, respectively, in Fig. 4.2(d), and the arrows
indicate the direction of light propagation for the crosstalk measurement. To
isolate the crosstalk contribution of spurious substrate modes excited at the input
grating coupler from the impact of the WOP, we modulated the drive current of
MZI right before the WOP (“MZI1”, marked in green) with a sinusoidal signal
at a distinct lock-in frequency of 𝑓LI = 10 kHz. We then used a lock-in amplifier
to measure the RMS values of the optical power fluctuations at this modulation
frequency both at the output of Path 1 and at the output of Path 2. The crosstalk is
obtained by calculating the ratio of the two lock-in signals and amounts to −75 dB
at a wavelength of 1550 nm. This number compares favorably with the crosstalk
of −56 dB reported for SiN-based multi-layer circuits [126, 128]. Note that our
crosstalk figure does not account for differences in on-chip loss between the point
where the crosstalk is generated and the output GC of Path 1 and Path 2. Also note
that this value very likely represents an upper limit for the WOP crosstalk, since it
also contains contributions of other on-chip elements such as waveguide bends
and lossy MMI couplers that follow MZI1.
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4.5 Summary

We introduced a concept for realizing PIC with non-planar topologies. Planar
waveguide crossings (WGX) are replaced by 3D-printed freeform waveguide
overpasses (WOP). We demonstrate the viability of the approach using a silicon
photonic 4 × 4 switch-and-select (SAS) structure. Our theoretical analysis shows
that the number of crossings for an 𝑛 × 𝑛 SAS device realized using surface
couplers scales with 𝑛4/16, while the number of required WOP scales with 𝑛2/2.
We believe that the results may offer an attractive path towards highly complex
PIC with non-planar topologies.

[end of main part of publication [J3]]
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5 Polarization beam splitter and rotator
based on photonic wire bonds

This chapter reports on a design and experimental realization of a 3D-printed
polarization beam splitter / polarization rotator assembly. The chapter is based
on the manuscript [J2], that will be submitted for publication to Light: Science
& Application, and it has been formatted in accordance to the formatting of this
document. Methods and Supplementary Information related to this chapter, that
are also based on the aforementioned manuscript, can be found in Appendix C.

Note that the author of this thesis and M. Blaicher contributed equally to this
manuscript. The author proposed the polarization beam splitter (PBS) concept,
and developed the PBS design. M. Blaicher developed the design of polarization
rotators, mode-field adapters, connecting waveguides, the fanout, and the structures
for mechanical support. M. Blaicher developed and built the 3D printing system
and fabricated all structures. The experiments were jointly conceived by the author,
M. Blaicher, and C. Koos. The author and M. Blaicher jointly characterized
the fabricated devices. The author and P. Marin-Palomo performed the data
transmission experiment with support of C. Füllner and S. Randel, who conceived
and implemented the signal processing tools. P. Marin-Palomo analyzed the
results of the data-transmission experiment. The figures were jointly made, and
the manuscript was jointly written by the author and M. Blaicher, supported by C.
Koos. The work was jointly supervised by W. Freude and C. Koos.

[start of the content based on the main part of manuscript [J2]]
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Ultra-broadband polarization beam splitter and rotator based
on 3D-printed waveguides

To be submitted for publication to Light: Science & Applications

Aleksandar Nesic,1† Matthias Blaicher,1,2† Pablo Marin-Palomo,1 Christoph
Füllner,1 Sebastian Randel,1 Wolfgang Freude,1 and Christian Koos1,2

1Karlsruhe Institute of Technology (KIT), Institute of Photonics and Quantum Electronics
(IPQ), Engesserstrasse 5, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
†These authors contributed equally to this work.

Multi-photon lithography has emerged as a powerful tool for photonic integration,
allowing to complement planar photonic circuits by 3D freeform structures such
as waveguides or micro-optical elements. These structures facilitate light transport
and can be fabricated with high precision on the facets of optical devices. However,
plain light transport is far from exploiting the full geometrical design freedom
that is offered by 3D laser lithography. Here, we extend the functionality of
3D-printed optical structures towards manipulation of optical polarization states.
We demonstrate compact and ultra-broadband polarization beam splitters (PBS)
combined with polarization rotators (PR) and mode-field adapters into a monolithic
structure that can be directly printedon facets of optical devices. Ourfirst-generation
devices exhibit measured polarization extinction ratios beyond 11 dB over a 360 nm
wavelength range. We demonstrate a 640 Gb/s dual-polarization data-transmission
at a wavelength of _ = 1550 nm using 16-state quadrature amplitude modulation
(16QAM) at a symbol rate of 80 GBd, without optical signal-to-noise ratio (OSNR)
penalty compared to a commercial PBS.
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5.1 Introduction

Polarization manipulation is of great importance for integrated optical systems, in
particular when it comes to interfacing rotationally symmetric optical fibers with
degenerate polarization states to highly polarization-sensitive on-chip waveguides.
In conventional optical systems, polarization manipulation usually relies on discrete
optical elements such as polarization beam splitters (PBS) or waveplates made
from birefringent materials. These devices offer high polarization purity and
low insertion loss over a large spectral range. When used in integrated photonic
systems, however, the viability of discrete polarization-manipulating elements is
limited, e.g., by the required footprint or by the need for high-precision alignment
of these elements with respect to on-chip optical circuits [138]. Alternatively,
polarization-manipulating functionalities can be integrated into waveguide-based
planar photonic circuits, exploiting, e.g., mode-selective directional or multimode
interference couplers [72, 73, 139–142], polarization mode converters [20, 74],
waveguide gratings [143], waveguide structures with multi-layer cores [21, 22], or
more complicated structures obtained by inverse design techniques [19]. These
devices can be efficiently realized in large quantities, but often require special
fabrication steps [21, 22] and are subject to limitations of the device geometry,
dictated by conventional layer-by-layer microstructuring through 2D lithography
and dry etching. Moreover, polarization manipulation in on-chip structures often
relies on efficient coupling of light to the associated waveguides in the first place.
In silicon photonics, grating-based polarization beam splitters can be directly
integrated into the fiber-chip interface [18]. However, these structures are subject
to limited bandwidth and still rely on high-precision active alignment of the single-
mode fiber with respect to the on-chip grating coupler. A PBS based on a prism
and a diffraction grating 3D printed on the facet of a single-mode fiber (SMF) has
been recently reported [144]. However, the device is intrinsically narrow-banded,
and the split polarizations are coupled into free space and unsuitable for photonic
integration with other components.
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In this chapter, we demonstrate ultra-broadband 3D-printed waveguide-based po-
larization beam splitters and rotators, as an alternative to conventional polarization-
manipulating elements in integrated optics. In our structures, polarization splitting
is accomplished through adiabatic Y-branches of geometrically birefringent poly-
mer waveguides with high-aspect-ratio cross sections and complemented by
polarization rotation in waveguides that are twisted along the propagation direction.
The structures can be directly incorporated into freeform chip-chip and fiber-chip
connections [13, 34], so-called photonic wire bonds. In our proof-of-concept
experiments, we show monolithic structures that are 3D-printed on facets of SMF
comprising ultra-broadband polarization beam splitters, polarization rotators,
and mode-field adapters. Our prototypes feature more than 11 dB polarization
extinction ratios in a wavelength range (1260–1620) nm, with vast potential for
further improvement. We demonstrate the viability of the structures by deploying
them in a dual-polarization data-transmission experiment and benchmarking their
performance with a commercially available fiber-based PBS as a reference. By
using 16-state quadrature amplitude modulation (16QAM) at a symbol rate of
80 GBd, we transmit data at an aggregate data rate of 640 Gb/s at a wavelength
of _ = 1550 nm, with virtually the same optical signal-to-noise ratio as with the
reference PBS. We believe that 3D-printed optical structures for polarization
manipulation can replace costly assemblies of discrete micro-optical elements,
thereby paving the path towards optical systems with unprecedented compactness
and scalability.

5.2 Device concept and design

The concept of a 3D-printed PBS and polarization rotator (PR) in an integrated
optical assembly is illustrated in Fig. 5.1. The device connects a rotationally
symmetric single-mode fiber (SMF) with degenerate polarization states to highly
polarization-sensitive photonic integrated circuit (PIC). The illustrated assembly
acts as a dual-polarization receiver for coherent communications, in which data
signals in orthogonal polarization states are split and independently detected using
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a pair of coherent optical receivers (Coh. Rx) fed by a joint local oscillator (LO).
The PBS/PR can be merged with additional 3D freeform waveguide elements such
as mode-field adapters into a single monolithic structure. This structure can be
fabricated in a single exposure step by high-resolution 3D-laser lithography that
exploits multi-photon polymerization in the focus of a pulsed femtosecond laser
beam [106]. This offers the freedom to adapt the geometry of the 3D-printed
structure to the positions of the adjacent optical device facets, thereby overcoming
the need for high-precision mechanical alignment [13, 34]. Note that the assembly
illustrated in Fig. 5.1 represents only one example of 3D-printed polarization-
manipulating elements. In general, the structures can be printed on a wide range
of optical devices, covering applications from optical communications and signal
processing [80, 145] to optical metrology [4, 84], imaging [7], and quantum optics
[146, 147].

The working principle of our 3D freeform waveguide-based PBS is illustrated in
Fig. 5.2. Figure 5.2(a) depicts a 3D rendering of the three-port device, comprising
an input waveguide port with a circular cross section and a pair of output waveguide
ports with rectangular cross sections of high aspect ratio. In the following, the
input port is denoted by a superscript (𝐼), whereas superscripts (𝐻) and (𝑉) refer
to the output ports with horizontally and vertically oriented rectangular cross
section, see Fig. 5.2(a). Note that the device is fully bidirectional and can also be
used as a polarization beam combiner, where the two rectangular waveguide ports
𝐻 and 𝑉 are used as inputs, whereas the circular port 𝐼 acts as output.

The PBS consists of three segments denoted by A, B, and C, where Segment
A is directly adjacent to the input port. Due to its circular cross section, the
input port has two degenerate fundamental modes of orthogonal polarizations
with identical effective refractive indices 𝑛eff. We select the two basis modes at
the input with the dominant transverse component of electric field aligned in the
vertical and horizontal direction as defined by the two output ports, and we denote
them by 𝐸 (𝐼)

𝐻
and 𝐸 (𝐼)

𝑉
respectively, see first row of Fig. 5.2(b) for the associated

mode-field distributions. Within Segment A, the circular cross section at the input

77



5 Polarization beam splitter and rotator based on photonic wire bonds
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Figure 5.1: Vision of a 3D-printed polarization beam splitter and rotator in an integrated optical
assembly (not drawn to scale). The device connects a rotationally symmetric single-mode fiber (SMF)
with degenerate polarization states (red and blue arrows) to a photonic integrated circuit (PIC) with
highly polarization-sensitive waveguides. As an example of high practical interest, we illustrate a
dual-polarization receiver for coherent communications, in which data signals in orthogonal polarization
states are split and independently detected using a pair of coherent optical receivers (Coh. Rx) which
are fed by a joint local oscillator (LO). The polarization beam splitter (PBS) and the polarization
rotator (PR) can be merged with additional 3D freeform waveguide elements such as mode-field
adapters into a single monolithic structure. This structure can be fabricated in a single exposure step
by high-resolution 3D-laser lithography, thereby offering the freedom to adapt the geometry of the
3D-printed structure to the positions of various optical device facets.

port is adiabatically morphed into a cross-shaped cross section at the transition to
Segment B. At the transition between Section A and Section B the waveguide can
be represented by two spatially overlapping partial waveguides WGH and WGV

with high-aspect-ratio rectangular cross-sections. Due to the adiabatic transition
from a circular cross section to a cross-shaped one in Section A, the degenerate
basis modes denoted as 𝐸 (𝐼)

𝐻
and 𝐸 (𝐼)

𝑉
are transformed to the strongly guided modes

of these rectangular partial waveguides. In this context, the term strongly guided
denotes a mode of a rectangular waveguide which is polarized along the long
side of the rectangle with a homogeneous cladding. This mode exhibits a higher
effective refractive index than its weakly guided counterpart that is polarized along
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the short side of the rectangle. In Section B, the partial waveguides WGH and
WGV are gradually separated, thereby dragging the corresponding strongly guided
eigenmodes into the two distinct waveguides at the input of Segment C.

Within Segment C, the two distinct output waveguides can be adiabatically tapered
and bent to suppress unwanted higher-order modes and to route the waveguides to
the two output ports 𝑉 and 𝐻. Further 3D-printed freeform waveguide structures
can be directly connected to these output ports, e.g., for polarization rotation, see
Fig. 5.1. The second and the third row of Fig. 5.2(b) show the various mode-field
profiles at the output, where 𝐸 (𝑉)

𝐻
refers to the horizontally and 𝐸 (𝑉)

𝑉
to the

vertically polarized mode at the vertical output 𝑉 , whereas 𝐸 (𝐻)
𝑉

denotes the
vertically and 𝐸 (𝐻)

𝐻
the horizontally polarized mode at horizontal output 𝐻. In

an ideal device, the power of the degenerate 𝐸 (𝐼)
𝐻

and 𝐸 (𝐼)
𝑉

is completely coupled
to the strongly guided modes 𝐸 (𝐻)

𝐻
and 𝐸 (𝑉)

𝑉
, whereas the weakly guided modes

𝐸
(𝑉)
𝐻

and 𝐸 (𝐻)
𝑉

are not excited.

To estimate the performance of the proposed PBS, we perform numerical simula-
tions of the full 3D structure, see Appendix C.1 for details. For good performance,
the aspect ratio of the rectangular waveguide cross sections should be as high as
possible while staying compatible with the resolution of the 3D printing system. In
the simulated structure, the short side of the rectangle was chosen to 𝑤sh = 400 nm,
whereas the long side varied in the range 𝑤lo = (1.2–2.2) μ𝑚. The length of the
structure amounts to 𝐿 = 21 µm. The PBS features full geometrical symmetry, see
Inset 1 of Fig. 5.2(a), which results in symmetrical relationships between the port
modes. Fig. 5.2(a), we illustrate the magnitude of the 𝐸-field plot at a wavelength
of 1550 nm for the horizontal input polarization — the 𝐸-field distribution for
vertical input polarization is obtained by reflection about the symmetry plane. To
describe the coupling between the various modes at the input and the output ports,
we use scattering parameters (S-parameters) 𝑆

𝐴𝐵
. In this description, 𝑆

𝐴𝐵
refers to

the transmission from 𝐵 to 𝐴 where 𝐴, 𝐵 ∈
{
𝐸

(𝐼)
𝐻
, 𝐸

(𝐼)
𝑉
, 𝐸

(𝐻)
𝐻

, 𝐸
(𝐻)
𝑉

, 𝐸
(𝑉)
𝐻
, 𝐸

(𝑉)
𝑉

}
denote the various modes at the ports of the device. The results for the various sim-
ulated coupling coefficients are shown in Fig. 5.2(c). Evaluating the transmission
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Figure 5.2: Concept and design of 3D-printed waveguide-based PBS. (a) 3D model of the PBS,
comprising an input waveguide port with a circular cross section and a pair of output waveguide
ports with rectangular cross sections of high aspect ratio. The two orthogonally polarized modes at
the input port are denoted by 𝐸 (𝐼)

𝐻
and 𝐸 (𝐼)

𝑉
, whereas 𝐸 (𝑉 )

𝐻
refers to the horizontally and 𝐸 (𝑉 )

𝑉
to

the vertically polarized mode at the vertical output 𝑉 , while 𝐸 (𝐻)
𝑉

denotes the vertically and 𝐸 (𝐻)
𝐻

the horizontally polarized mode at the horizontal output 𝐻. The PBS consists of three segments
denoted by A, B, and C. Within Segment A, the circular cross section at the input port is adiabatically
morphed into a cross-shaped cross-section. Within Segment B, the structure can be represented
by two spatially overlapping partial waveguides WGH and WGV with high-aspect-ratio rectangular
cross-sections, which are gradually separated to drag the strongly guided eigenmodes into the two
distinct waveguides at the input of Segment C. The 3D rendering of the structure also depicts the
simulated electric field distribution for a horizontally polarized excitation 𝐸 (𝐼)

𝐻
at the input port. The

PBS exhibits full geometrical symmetry, see Inset 1, i.e., a vertically polarized excitation at the input
would cause a symmetrical response with respect to the symmetry plane. The refractive index of the
PBS is equal to 𝑛PBS = 1.53, and the cladding material is air, 𝑛cladding = 1. (b) Electric field plots of
the fundamental modes for both polarizations at all ports. The strongly guided target modes 𝐸 (𝐻)

𝐻
and

𝐸
(𝑉 )
𝑉

at the horizontal and vertical output exhibit a higher effective index and a stronger confinement to
the rectangular core than the undesired modes 𝐸 (𝐻)

𝑉
and 𝐸 (𝑉 )

𝐻
. (c) Simulated wavelength dependence

of the squared magnitudes of complex scattering parameters (S-parameters) and the reciprocal of
the polarization extinction ratio (PER) of the PBS on a logarithmic scale. The transmission is better
than −2.0 dB with a maximum of approximately −1.6 dB near _ = 1550 nm. The reciprocal of the
polarization extinction ratio (PER), and spurious coupling between input and output modes are below
−16 dB over the 400 nm wide wavelength range. These parameters can be further reduced for smaller
wavelength ranges. Details on extracting the PER can be found in Appendix C.2.
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𝑆
𝐸

(𝐻)
𝐻

𝐸
(𝐼)
𝐻

= 𝑆
𝐸

(𝑉 )
𝑉

𝐸
(𝐼)
𝑉

from the input to the desired mode of the respective output
port, we find an insertion loss of less than 2 dB over the entire wavelength range
between 1250 nm and 1650 nm, with a minimum of 1.6 dB near 1550 nm, see green
line in Fig. 5.2(c). For each polarization at the input port, we further extract the
power that is coupled to the undesired mode at the corresponding "correct" output
port, which is quantified by the crosstalk 𝑆

𝐸
(𝐻)
𝑉

𝐸
(𝐼)
𝐻

= 𝑆
𝐸

(𝑉 )
𝐻

𝐸
(𝐼)
𝑉

, and which is below
−22 dB throughout the simulated wavelength range, see blue line in Fig. 5.2(c).
Note that this crosstalk can be suppressed by subsequent polarization filtering.
We further calculate the power that is coupled to the desired output modes 𝐸 (𝐻)

𝐻

and 𝐸 (𝑉)
𝑉

, from the "wrong" input modes 𝐸 (𝐼)
𝑉

and 𝐸 (𝐼)
𝐻

, respectively, and that
cannot be suppressed by subsequent polarization filters. This unfilterable crosstalk
𝑆
𝐸

(𝐻)
𝐻

𝐸
(𝐼)
𝑉

= 𝑆
𝐸

(𝑉 )
𝑉

𝐸
(𝐼)
𝐻

is represented by the red line in Fig. 5.2(c) and is below
−25 dB throughout the 400 nm-wide wavelength range of interest. We also extract
the polarization leakage 𝑆

𝐸
(𝑉 )
𝐻

𝐸
(𝐼)
𝐻

= 𝑆
𝐸

(𝐻)
𝑉

𝐸
(𝐼)
𝑉

, which, for a given polarization at
the input port quantifies the power coupled to undesired polarization at the "wrong"
output port, thereby maintain its polarization. For our structure, the polarization
leakage is below −17 dB throughout the simulated wavelength range, see orange
line in Fig. 5.2(c), and can be further suppressed by subsequent polarization filters.
Finally, we extract the polarization extinction ratio (PER), i.e., the ratio of the
maximum and the minimum power observed in both modes of an output port when
varying the excitation at the input over all possible polarization states. For each of
the output ports, the PER can be obtained from a singular-value decomposition
of the corresponding Jones matrix, see Appendix C.2 for details. We find that
the PER is better than 16 dB within the investigated wavelength range and shows
a strong increase towards longer wavelengths. Note that PER and polarization
leakage are better than 30 dB over the wavelength range between 1250 nm and
1365 nm, and that this wavelength range of high performance can be shifted by
adapting the design of the structure.
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5.3 Experimental verification

To experimentally prove the viability of our concept, we fabricate a series of
3D-printed PBS that are directly connected to the cores of single-mode fibers
(SMF). We characterize the performance of these devices and finally use them as
part of a receiver in polarization-division multiplexing (PDM) data transmission
experiment.

5.3.1 Characterization of basic performance parameters

In a first experiment, we fabricate a series of freestanding PBS on the facets
of an SMF array and measure the performance through an infra-red-sensitive
microscope (IR microscope), see Fig. 3a. To ensure low-loss coupling to the
SMF core, the structures are equipped with adiabatic mode-field adapters that
are attached to Section A of the PBS. A scanning-electron microscope (SEM)
image of the PBS and the mode-field adapter are shown in Fig. 5.3(b). Light is fed
to the SMF by a laser emitting at a wavelength of _ = 1550 nm, and subsequent
polarization controller. At the two PBS outputs, the light is radiated into free
space and picked up by the IR microscope. The centers of the white circles in the
images of Fig. 5.3(c) match the centers of corresponding PBS output ports, and
the areas of the circles denote the areas that have been considered in calculating
the corresponding power levels.

In a first set of measurements we show that radiated light can be switched between
the two output ports of the PBS by varying the polarization at the input, see Column
1 of Fig. 5.3(c). Specifically, Subfigures 1.1 and 2.1 refer to the cases where
the polarization controller was adjusted for maximum radiation from output Port
𝑉 and 𝐻, having vertically and horizontally oriented waveguide cross-sections,
respectively. In both cases, we measure the ratio Γ of the optical power at the
targeted output port to the residual power emitted at the respective other port, which
amounts to 9.8 dB and 9.7 dB, respectively. We also adjust the input polarization
to yield equal power at both ports, see Subfigure 3.1 in Fig. 5.3(c). In order to
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Figure 5.3: Characterization of 3D-printed PBS using an infra-red-sensitive (IR) microscope. (a)
Experimental setup: As test structures, we use a series of PBS that are 3D-printed on the facets of a
single-mode fiber (SMF) array. Light at a wavelength of 1550 nm is fed to the device by a laser and a
subsequent polarization controller. Light emitted from the PBS is characterized by an IR microscope
equipped with polarization filter (PF). (b) Scanning-electron microscopy (SEM) images of a fabricated
structure on the fiber array. A linear taper structure, shaded in red, is used at the input of the PBS
to adapt the mode-field diameter of the SMF to the one of the PBS input. Within the PBS, which is
illustrated in green, the light is split into two orthogonal polarizations and emitted from the outputs
(𝑉 and 𝐻) towards the IR microscope. Colors were added by image processing. (c) Recordings on
the IR microscope for different combinations of input polarization states, indicated by the different
rows: Row 1 – vertical input polarization only, Row 2 – horizontal input polarization only, and Row
3 – both vertical and horizontal input polarizations. The columns correspond to the measurement
of the radiated power without (Column 1) and with vertically and horizontally oriented polarization
filter (Columns 2 and 3, respectively) in the imaging path of the IR microscope. The output power of
each port is estimated by integrating the measured intensity over the areas within the white circles,
and a power ratio Γ in dB is calculated by dividing the larger by the smaller power. A top view of
the PBS structure and the respective "active" output port for each row is additionally illustrated in
Column 1. The orientation of the polarization axis of the PF is illustrated by the double arrows in the
lower right-hand corner of the displays in Columns 2 and 3.
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check the polarization states of the light radiated from the two outputs, we repeat
the experiment with a vertically and horizontally oriented polarization filter (PF)
between the microscope objective and the IR camera, see Columns 2 and 3 of
Fig. 5.3(c). The PF has an extinction ratio of more than 34 dB. Assuming an
excitation with pure vertical polarization in Row 1 of Fig. 5.3(c), the vertically
oriented PF in Subfigure 1.2 suppresses the spurious horizontal polarization at Port
𝑉 , which corresponds to the crosstalk 𝑆

𝐸
(𝑉 )
𝐻

𝐸
(𝐼)
𝑉

, as well the spurious horizontal
polarization at Port 𝐻, which represents the unfilterable crosstalk 𝑆

𝐸
(𝐻)
𝐻

𝐸
(𝐼)
𝑉

. The
measured power ratio Γ of the emitted light after the PF amounts to 12.1 dB

and corresponds to the ratio
���𝑆
𝐸

(𝑉 )
𝑉

𝐸
(𝐼)
𝑉

���2 of the power transmission at Port 𝑉 and
the leakage at Port 𝐻. The measured ratio is smaller than the approximately
18 dB that would be expected from the simulation results, see Fig. 5.2(c). We
attribute the deviations to geometrical inaccuracies of the fabricated structure. In
Subfigure 2.2, the PF is oriented horizontally, such that only spurious horizontal

polarizations at both outputs,
���𝑆
𝐸

(𝐻)
𝐻

𝐸
(𝐼)
𝑉

���2 and
���𝑆
𝐸

(𝑉 )
𝐻

𝐸
(𝐼)
𝑉

���2 can be seen on the IR
camera. As expected, the camera image does not show any significant power. In
Subfigure 3.2, where light exits both output arms of the PBS, the light radiated
from Port 𝐻 is completely suppressed by the vertically oriented PF, whereas the
light radiated from Port 𝑉 does not experience a significant attenuation. The same
experiment is repeated with a horizontally oriented PF, see Column 3 of Fig. 5.3(c),
thereby essentially reproducing the findings described for the data in the second
column. This simple experiment demonstrates that the device qualitatively works
as expected.

5.3.2 Measurement of polarization extinction ratio (PER)

We further test our PBS structures by measuring the PER over a broad range of
wavelengths. To this end, the polarization at the input of the structure is varied
randomly by a polarization scrambler, while the Stokes vector and the power at
the device output are continuously recorded by a polarimeter, see Fig. 5.4(a) for a
sketch of the associated setup. The measurement is repeated for each of the output
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ports, thereby revealing the output polarization state of maximum and minimum
transmission as well as the associated PER. The PBS test structure used in this
experiment is again 3D-printed on the facet of an SMF array which is connected
to the polarization scrambler. At the output, the structure is equipped with a
pair of polarization rotators (PR), realized by rectangular waveguides that are
twisted by 45◦ along the propagation direction [75, 76], thus providing identical
polarizations at both ports, see Fig. 5.4(b). For better probing of the output, the
structure is equipped with adiabatic mode-field adapters that are held by a table-like
mechanical support structure and that can be individually probed by moving an
SMF to the respective port. Note that, due to the unknown polarization rotation in
the SMF, our measurement only allows to determine the exact polarization state
at the input of the polarimeter, but not at the output ports of the PBS/PR. This
needs to be considered when evaluating the measurement data, see Appendix C.3
for details. Note also that the two output ports of our structure are only separated
by 25 µm, and we may hence assume that the polarization rotation in the SMF
does not change significantly when moving the SMF between the ports. For an
ideal device, the two ports should thus exhibit transmission at identical output
polarization states.

The measurement results obtained from our test structure at wavelength of _ =

1460 nm are depicted in Fig. 5.4(c). For this measurement, the input polarization
state was scanned across 20 000 points uniformly distributed on the Poincaré sphere.
The plot shows the measured Stokes states on the Poincaré sphere in Mollweide
projection, colored by normalized transmitted power. For each of the two device
outputs, we find a predominant polarization state, which we mark by sout,pass,1 and
sout,pass,2 in Fig. 5.4(c). These states correspond to the polarization that would
be transmitted to the respective output of a perfect PBS. For a real device with
finite PER, the output polarization states sout,pass,1 and sout,pass,2 exhibit the highest
power transmission. At the same time, the measured output polarization states
are concentrated around sout,pass,1 and sout,pass,2 in case the input polarization is
randomly varied. Note that, for simplicity, we rotated all measured Stokes vectors
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Figure 5.4: Measurement of the polarization extinction ratio (PER) of the PBS with attached
polarization rotators (PR). (a) Experimental setup: The PBS is 3D-printed on the facet of an SMF
through which light is coupled-in from a polarization scrambler. The two output ports are probed
by a movable SMF, which is attached to a polarization analyzer. The polarization at the input is
scrambled randomly, and the Stokes vector of the output polarization state is measured for both outputs.
(b) Schematic rendering of the PBS with attached PR and mode-field adapters, which are attached
to a table-like mechanical support structure. Orthogonal polarization states (blue, red) at the input
port are separated to identical polarization states at the output of the structure. (c) Measured output
Stokes states on the Poincaré sphere in Mollweide projection, colored by normalized transmitted power.
For simplicity, we rotate all measured Stokes vectors such that the predominant polarization state at
Output I, sout,pass,1, is oriented along the 𝑠1-direction of the Poincaré sphere (0◦ longitude and 0◦
latitude in Mollweide projection), which corresponds to a linear polarization in horizontal direction,
while the predominant polarization state at Output II, sout,pass,2, is on the equator of the Poincaré sphere,
corresponding to a linear polarization at a certain angle 𝜓 with respect to the horizontal direction.
We extract only a slight angle deviation of 𝜓 = −8.4◦ of the two equivalent linear polarization states,
indicating correct operation of the PR. (d) Measurement of the PER for both outputs showing very
broadband operation over 360 nm with PER in excess of 11 dB.

such that sout,pass,1 is oriented along the 𝑠1-direction (latitude 0◦ and longitude 0◦),
which corresponds to a linear polarization in horizontal direction, while sout,pass,2

is on the equator of the Poincaré sphere, corresponding to a linear polarization
at a certain angle 𝜓 with respect to the horizontal direction. Note also that the
transformation of the measured output polarizations to linear polarization states
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is somewhat arbitrary since the true polarization transformation in the output
fiber is unknown. Still, we extract only a slight angle deviation of 𝜓 = −8.4◦ of
the two equivalent linear polarization states, indicating correct operation of the
polarization rotators.

For each of the output ports, we then extract the polarization extinction ratio
(PER), which is here defined as the ratio of the maximum transmitted power at the
target output polarization state to the minimum power at the antipodal point on the
Poincaré sphere. For better reliability of the extracted results, we implemented a
PER evaluation technique that considers all power levels recorded for the various
input polarization states rather than just the maximum and the minimum power, see
Appendix C.3 for details. The experiment was repeated for different wavelengths
over a broad range from 1260 nm to 1620 nm, see Fig. 5.4(d) for a plot of the
extracted PER, which is better than 11 dB over the whole wavelength range. This
is slightly worse than the performance expected by simulations, see Fig. 5.2(c).
We also measured the insertion loss of the device using the polarization state of
maximum transmission at each output port. At a wavelength of 1500 nm, we find
losses of 4.4 dB and 3.8 dB for Output I and Output II, respectively. Note that
these values include the loss of the PBS, of the subsequent PR, and of the adiabatic
mode-size converters at the input and the output of the device. Still, there is
room for improvement considering the sub-2 dB losses expected from simulations
of the PBS structure only, see Fig. 5.2(c). We attribute the deviations between
measurements and simulations to imperfections of the 3D-printed structure, caused
by limited resolution and shrinkage of the resist structure upon development.
Exploiting super-resolution 3D-lithography inspired by the concept of stimulated-
emission-depletion (STED) [148] microscopy might allow to better resolve fine
details of the PBS structure and to further enhance the performance of the devices
in the future.
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5.3.3 Data transmission experiment

Finally, in order to demonstrate the technical viability of 3D-printed PBS, we
perform a polarization division multiplexing (PDM) data-transmission experiment
that emulates the application scenario displayed in Fig. 5.1. The experimental
setup and the results are shown in Fig. 5.5. The experiment relies on a PBS/PR
combination as used in the previous experiments, complemented by an additional
fan-out structure. This fan-out structure is 3D-printed on a second fiber array and
allows to simultaneously couple both PBS outputs to a pair of outgoing SMF with
a standard pitch of 127 µm, see Fig. 5.5(a). The fan-out structure is equipped with
two lenses with a pitch of 25 µm that pick up light from the two PBS outputs,
followed by a pair of total-internal-reflection (TIR) mirrors in each path to adjust
the lateral offset of the beams at the output. At _ = 1550 nm, the measured
insertion losses of the two channels of the fan-out are 1.2 dB and 1.9 dB, with a
crosstalk between channels below −46 dB.

In the transmission experiment, we launch a 16QAM PDM signal at a symbol rate
of 80 GBd and a center wavelength of _ = 1550 nm to the PBS, and we feed the
two output signals of the PBS/PR assembly to a pair of coherent receivers, see
Appendix C.4 for details. We perform the experiment with our 3D-printed PBS
assembly and with a commercially available fiber-based PBS having a PER in excess
of 30 dB. In both cases, we sweep the optical signal-to-noise ratio (OSNR) at the
input of the PBS and we record the constellation diagrams along with the bit error
ratios (BER), see Figs. 5.5(b) and 5.5(c). At a BER of 1 × 10−2, our transmission
setup exhibits an OSNR penalty of approximately 3 dB, see Fig. 5.5(c), which is
in accordance with values in literature for similar modulation formats and symbol
rates [149]. We find that the 3D-printed PBS/PR assembly does not introduce any
additional OSNR penalty with respect to the commercial PBS, although the PER
differ vastly. We attribute this to the fact that the polarization-sensitive mixing
of the data signals with the local oscillator of the coherent optical receiver in
combination with the digital polarization demultiplexing can easily compensate
for the finite PER of our 3D-printed PBS. Hence, even though there is still room
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Figure 5.5: Experimental setup and results of proof-of-concept data transmission experiment. (a)
Simplified experimental setup: The polarization-division-multiplexed (PDM) 16QAM signal is fed to
an SMF having a 3D-printed polarization beam splitter (PBS) on its facet. The PBS is additionally
equipped with 3D-printed polarization rotators in the form of twisted waveguides, which rotate both
polarizations to an identical direction, similar to the structure in Fig. 5.4(b). We simultaneously probe
the two output signals by a fan-out structure that is 3D-printed on a single-mode fiber array. The fan-out
adapts the 25 µm pitch of the PBS/PR outputs to the 127 µm pitch of the fibers in the fiber array and
features two lenses and two pairs of total-internal-reflection (TIR) mirrors. The signals are subsequently
decoded by a pair of commercial coherent receivers (Coh. Rx). To benchmark our device, we repeat the
experiment by replacing the PBS/PR assembly and the fan-out by a commercial fiber-based PBS. (b)
Constellation diagrams of received 80 GBd 16QAM signals. Upper row: experiment with our device.
Lower row: experiment with the commercial PBS. (c) Bit-error-ratio (BER) vs. optical signal-to-noise
ratio (OSNR). Black: Theoretical curve for an ideal transmission system. Blue: Experiment with
our 3D-printed PBS/PR assembly. Red: Experiment with the commercial PBS. Our device does not
introduce an OSNR penalty with respect to the commercial PBS.

for improving the performance of our 3D-printed PBS/PR assemblies, the current
devices already offer an attractive route towards highly scalable ultra-compact
dual-polarization receivers as shown in Fig. 5.1.
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5 Polarization beam splitter and rotator based on photonic wire bonds

5.4 Summary

We demonstrate 3D-printed waveguide-based polarization beam splitters (PBS)
that can be efficiently integrated into chip-chip and fiber-chip interfaces of optical
assemblies. The devices rely on adiabatic Y-branches of geometrically birefringent
waveguides with high-aspect-ratio cross sections and can be complemented by
polarization rotators (PR) that exploit twisted 3D freeform waveguides. The
PBS/PR can be efficiently fabricated by direct-write two-photon lithography
together with other 3D-printed elements such as photonic wire bonds [13, 34],
3D-printed microlenses [33], or 3D-printed waveguide overpasses [87]. In our
proof-of-concept experiments, we demonstrate broadband operation in the range
between (1260–1620) nm, limited only by the available equipment. We further
prove the practical viability of the concept in a high-speed data transmission
experiment, where our 3D-printed PBS/PR assemblies are used for separating
polarization-multiplexed data signals at the receiver. We find that the quality of the
received signals is on par with that obtained by a conventional high-performance
fiber-based PBS. While the concept leaves room for further optimization, we
believe that 3D-printed PBS/PR can pave the path towards efficient polarization
manipulation in integrated optical systems with unprecedented compactness and
scalability.

[end of the content based on the main part of manuscript [J2]]
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6.1 Summary

3D-printing through direct laser lithography is a promising technology for photonic
integration. The range of optical devices that can be 3D-printed spans from freeform
lenses and freeform waveguides for light transport and optical coupling, to photonic
devices with advanced functionalities such as polarization beam splitters and to
advanced circuits with non-planar topologies. In this work the following results
were presented:

Transformation-optics based modeling of freeform waveguides: A method of
accelerating time-domain simulations of 3D waveguides has been demonstrated by
exploiting the concept of transformation optics. This concept enables mapping of
bent waveguides from the original (𝑥, 𝑦, 𝑧)-space into straight ones in a transformed
(𝑢, 𝑣, 𝑠)-space. A series of freeform waveguides with plane trajectories has been
modeled using transformation optics, such that the trajectories of the waveguides
were straightened in the transformed space. This enabled reduction of the simulation
volume and reduction of the simulation time at a cost of calculating material
properties of the waveguide in the transformed space. The net gain of using the
transformation optics concept was 3–6 times shorter simulation times compared to
reference simulations in the original space. The simulated transmission obtained
by reference simulations in the original space show an excellent match to the
transformation-optics based simulations. Experimentally measured transmission
of 3D printed waveguides show a good qualitative match to simulated values.

Demonstration of a PIC with a non-planar topology realized without planar
waveguide crossings with the help of 3D-printed waveguide overpasses: A
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4 × 4 switch-and-select (SAS) PIC has been realized on a silicon photonic chip.
The topology of the PIC requires at least four waveguide crossings when realizing
the PIC in one plane. The required waveguide crossings were replaced by two
3D-printed waveguide overpasses (WOP). A graph theory analysis and a WOP
minimizing PIC layout design algorithm for SAS circuits has been provided. It
has been shown that the number of required WOP scales with the square root of
the number of required waveguide crossing when realizing the PIC in one plane.
The 3D-printed WOP bring flexibility in designing PIC layouts, and demonstrate
superb crosstalk figures.

Demonstration of a 3D-printed waveguide based ultra broadband polarization
beam splitter/polarization rotator assembly: A compact and ultra-broadband
waveguide-based polarization beam splitter has been designed and simulated. The
PBS is based on spatially overlapping geometrically birefringent waveguides that
are adiabatically separated, thereby separating the two orthogonal polarization
modes. The PBS has been experimentally realized on the facet of a single-mode
fiber and complemented by two polarization rotators based on twisted waveguides.
The PBS/PR assembly has been successfully used in a dual-polarization data
transmission experimentwithno optical signal-to-noise power ratio (OSNR) penalty
compared to a commercially available PBS. Note that the achievements related
to the polarization beam splitter and rotator resulted from equal contributions
of the author of the thesis and M. Blaicher. The author’s work was focused on
design and optimization of the polarization beam splitter, while the work of M.
Blaicher was mainly focused on fabrication. The experimental characterization
was done jointly by the author and M. Blaicher. For more details about individual
contributions, see the introductory part of Chapter 5.
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6.2 Outlook and future work

The results presented in this thesis represent to a great extent proof-of-concept
demonstrations. Therefore, there is potential for further improvements, for possible
derivation of new concepts, and for an expansion of the application scenarios.

Transformation-optics based modeling of freeform waveguides: The results
presented in Chapter 3 are obtained by applying the TO modeling principle to a
commercially available FIT numerical solver of CST Microwave Studio. Due to
limitations of the used solver, certain compromises needed to be done, such as
using plane waveguide trajectories, and discretization of the waveguide model
into bricks with constant material properties, rather than directly modifying the
material properties on the mesh-cell level. To overcome these limitations, and
to fully unlock the potential of the method, a dedicated numerical solver may be
implemented. In addition, since the material properties (dielectric permittivity and
magnetic permeability) in the transformed space are in general described not by
two scalars but by two 3 × 3 tensors, the number of multiplications and additions
in the constitutive relations that are performed in in each time-step is consequently
increased. Therefore, a comprehensive computational complexity study is needed
to classify the cases in which it is beneficial to use the TO modeling for simulating
waveguide based structures.

3D-printed waveguide overpasses: The demonstrator PIC presented in Chapter 4
is a simple example with a small number of required planar waveguide crossings
that were replaced by two WOP. The full potential of the approach can become
prominent only in PIC with a higher topological complexity requiring much higher
number of planar waveguide crossings. Next, the demonstrated WOP exhibited a
relatively high insertion loss as a consequence of a non-optimum PIC layout design,
which needs to be improved as explained in Section 4.4. Finally, the presented
layout design algorithm for minimizing the WOP has been made for SAS circuits
whose graph model is a complete bipartite graph, and there is no proof that this
approach results in the minimum possible number of WOP. It would be interesting
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to further expand the algorithm to account for more general PIC topologies, and
to perform an additional graph-theory analysis for finding the minimum possible
WOP number for realizing the corresponding PIC layouts.

3D-printed polarization manipulating devices The PBS design presented in
Chapter 5 is based on a manual optimization. Although the obtained results are
satisfactory, there is still room for improvements through a systematic optimization,
especially concerning the insertion loss. For the purpose of demonstration, the
data transmission experiment was done with a 3D-printed PBS/PR assembly on a
single mode-fiber, while the outcoupling of the separated polarizations was done
with an additional fan-out structure. One of the goals of future work is to directly
connect the outputs of the PBS/PR assembly to waveguides on a PIC, as illustrated
in Fig. 5.1. Next, the PBS can be used as a building block for a whole new class
of 3D printed polarization manipulating assemblies/devices. Examples include
polarization analyzers, polarization swappers, polarization sensitive cameras, etc.
— see also patent disclosure [P1]. Finally, the PBS requires a high index-contrast
between the core and the cladding regions to work properly, while the 3D-printed
waveguides generally require index-matching cladding material that at the same
time serves as humidity protection. In order to reconcile both requirements, it
is necessary to devise a way for selective overcladding of the assembly by e.g.
3D-printing of protective enclosures around the PBS — see also patent application
[P2].
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A Transformation optics and freeform
waveguide trajectories

The content of Appendix A is based on Appendices of paper [J1], and it has been
modified to fit the formatting rules of this thesis.

Aleksandar Nesic, Matthias Blaicher, Emilio Orlandini, Tudor Olariu, Maria
Paszkiewicz, Fernando Negredo, Pascal Kraft, Mariia Sukhova, Andreas Hofmann,
Willy Dörfler, Carsten Rockstuhl, Wolfgang Freude, and Christian Koos

[start of the content based on appendices of manuscript [J1]]

Submitted for publication to Optics Express

A.1 Necessary condition for bijectivity of (x, y, z)T =
f(u, v, s)

As mentioned at the end of Section 3.2, a necessary condition for the bijectivity of
the coordinate transformation function is, that no local center of curvature of the
freeform waveguide trajectory is within the computational domain. We can keep
the local center of curvature out of the computational domain by appropriately
choosing the ranges of 𝑢- and 𝑣-coordinates. As an illustrative example, and
for the sake of simplicity, we may think of a freeform waveguide with a plane
trajectory (in the (𝑦, 𝑧)-plane) consisting of two straight sections connected by
a 90◦ bend with a constant bend radius 𝑟. The local center of curvature is point
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Figure A.1: Waveguide bends for illustrating of bijectivity condition for transfomation function
𝑓 (𝑥, 𝑦, 𝑧) = (𝑢, 𝑣, 𝑠) . The different computational domains are limited by the outer boundaries of the
hatched areas. We consider a plane freeform waveguide trajectory (dashed lines) in the (𝑦, 𝑧)-plane.
Two straight line segments are connected by a 90◦ circular bend with a bend radius 𝑟 . Plane (𝑦, 𝑧)
in (𝑥, 𝑦, 𝑧)-space (left drawings) corresponds to (𝑢, 𝑣)-plane in (𝑢, 𝑣, 𝑠)-space (right drawings).
The local center of curvature is point 𝐶 (the center of curvature of the 90◦ bend). The range of
𝑣-coordinates considered is 𝑣 ∈ [−𝑑, +𝑑 ]. The RMF is shown only in case (a). (a) If 𝑑 < 𝑟 , the
point 𝐶 is outside the computational domain, and there is a bijective mapping between the two spaces.
(b) If 𝑑 = 𝑟 , the point 𝐶 is on the border of the computational domain. In this critical case, the space
transformation function is not anymore a bijection, since the point 𝐶 is mapped onto the line segment
𝐶1𝐶2 in (𝑢, 𝑣, 𝑠)-space. (c) If 𝑑 > 𝑟 , the subdomains 𝐴 and 𝐵 from (𝑥, 𝑦, 𝑧)-space are mapped to
multiple sub-domains 𝐴1, 𝐴2, 𝐴3 and 𝐵1, 𝐵2 in (𝑢, 𝑣, 𝑠)-space, and the one-to-one correspondence
between the two spaces is violated.

𝐶 in the (𝑦, 𝑧)-plane, see Fig. A.1(a). As explained in Section 3.3, the RMF in
all trajectory points is such that vector B′ (pointing out of the drawing plane) is
parallel to the 𝑥-axis and perpendicular to the (𝑦, 𝑧)-plane. As a consequence,
vector N′ is always parallel to the (𝑦, 𝑧)-plane. Since the vector N′ is parallel to
the 𝑣-axis in (𝑢, 𝑣, 𝑠)-space, the range 𝑣 ∈ [−𝑑, 𝑑] determines whether the point
𝐶 is inside or outside the computational domain.

Without going into mathematical details (see the spatial transformation of 90◦

bends in Appendix A.3), we give a qualitative analysis of three cases: 𝑑 < 𝑟,
𝑑 = 𝑟, and 𝑑 > 𝑟, Fig. A.1(a)–(c). Dashed lines represent waveguide trajectories,
the white part in the middle represents the waveguide core, and the hatched parts
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represent the cladding that is included in the computational domain. For all three
cases we provide two drawings: One for the freeform waveguide in (𝑦, 𝑧)-plane
of (𝑥, 𝑦, 𝑧)-space, and one for the same freeform waveguide in the (𝑣, 𝑠)-plane
of (𝑢, 𝑣, 𝑠)-space. If 𝑑 < 𝑟, the computational domain does not include point 𝐶,
and the mapping between the two spaces is a bijection, see Fig. A.1(a). In case
𝑑 = 𝑟, point 𝐶 is on the border of the computational domain and is mapped to a
line segment 𝐶1𝐶2 in (𝑢, 𝑣, 𝑠)-space, the length of which is equal to the arc-length
of the 90◦ bend of the trajectory, 𝐶1𝐶2 = 𝑟𝜋/2, see Fig. A.1(b). This is the critical
case when the spatial transformation function is not a bijection anymore. In case
𝑑 > 𝑟 , the one-to-one correspondence between the two spaces is further violated.
Not only the point 𝐶 is again mapped to the line segment 𝐶1𝐶2, but also areas
marked with 𝐴 and 𝐵 in the (𝑦, 𝑧)-plane are mapped into multiple areas in the
(𝑣, 𝑠)-plane — see Fig. A.1(c). In particular, area 𝐴 is mapped to areas 𝐴1, 𝐴2,
and 𝐴3, while area 𝐵 is mapped to areas 𝐵1 and 𝐵2. It should be noted that in our
example we took a symmetrical range of 𝑣-coordinates, which is not mandatory.
A necessary condition is that 𝐶 in Fig. A.1 is outside of the computational domain.
For a physically correct description the essential part of the evanescent fields at
the outside of the bend must be inside the computational domain.

This simple example is also very illustrative for the general case of freeform
waveguides. Bends need not necessarily be 90◦ bends, and the bend radius can
be continuously changing along the trajectory. In case of true 3D (non-plane)
trajectories, the center of the bend radius lies in the oscullating plane, and the
same reasoning provided in this Appendix can be applied. As a matter of fact, the
oscullating plane for our example is the (𝑦, 𝑧)-plane; the only difference to 3D
trajectories would be that the vectors of the RMF are not necessarily perpendicular
and parallel to the oscullating plane for each point on the trajectory.
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A.2 Tensors of dielectric permittivity and magnetic
permeability in (u, v, s)-space for freeform
waveguides with plane trajectories

In case of freeform waveguides with plane trajectories and isotropic material
properties Y and ` in the original (𝑥, 𝑦, 𝑧)-space, the material properties 𝛆′ and
𝛍′ in the virtual (𝑢, 𝑣, 𝑠)-space are diagonal tensors. This can be shown by
assuming that, without loss of generality, the plane trajectory lies in (𝑦, 𝑧)-plane,
as explained in Section 3.3 and Appendix A.1, such that the vector U of the RMF
in each trajectory point is oriented parallel to the 𝑥-axis, while the remaining two
vectors V and T of the RMF lie in the (𝑦, 𝑧)-plane, with the vector T forming an
angle \ with the positive 𝑧-axis, see Fig. (A.2). Since the vectors V and T are
parallel to the 𝑣- and 𝑠-axes in the (𝑢, 𝑣, 𝑠)-space, respectively, the axes of the
2D (𝑣, 𝑠)-coordinate system are rotated by the same angle \ with respect to the
axes of the 2D (𝑦, 𝑧)-coordinate system. This allows us to simplify the calculation
of the Jacobian matrix given by Eq. (3.2). Since the vector U and the 𝑥-axis are
parallel to each other, it follows that 𝜕𝑢/𝜕𝑥 = 1. This also implies that the partial
derivatives of 𝑢 with respect to 𝑦 and 𝑧 must be zero, 𝜕𝑢/𝜕𝑦 = 0, and 𝜕𝑢/𝜕𝑧 = 0.
Furthermore, the vectors V and T are perpendicular to the 𝑥-axis, which implies
that the derivatives of 𝑣 and 𝑠 with respect to 𝑥 must be zero, too: 𝜕𝑣/𝜕𝑥 = 0 and
𝜕𝑠/𝜕𝑥 = 0. The Jacobian matrix of the coordinate transformation function thus
reads

J =


1 0 0
0 𝜕𝑣

𝜕𝑦
𝜕𝑣
𝜕𝑧

0 𝜕𝑠
𝜕𝑦

𝜕𝑠
𝜕𝑧

 . (A.1)
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Figure A.2: Relationship between coordinates in (𝑥, 𝑦, 𝑧)- and (𝑢, 𝑣, 𝑠)-space in a point 𝐴 with
coordinates (𝑦0 (𝑠) , 𝑧0 (𝑠)) on the trajectory for the case of a freeform waveguide with a plane
trajectory. The trajectory lies in the (𝑦, 𝑧)-plane, and the RMF is oriented such that the vector U
and the associated 𝑢-axis are parallel to the 𝑥-axis in all points of the trajectory. The remaining
two axes V and T of the RMF define a 2D frame that lies in the (𝑦, 𝑧)-plane. The axes of the local
(𝑣, 𝑠)-coordinate system are parallel to the (V, T) frame and rotated by an angle \ with respect to the
axes of the (𝑦, 𝑧)-coordinate system.

Assuming the material properties are isotropic in (𝑥, 𝑦, 𝑧)-space, Eq. (3.1) can be
simplified,

𝛆′ (𝑢, 𝑣, 𝑠) = Y (𝑥, 𝑦, 𝑧) J · JT

det (J) ,

𝛍′ (𝑢, 𝑣, 𝑠) = ` (𝑥, 𝑦, 𝑧) J · JT

det (J) ,
(A.2)

where the product of the Jacobian matrix and its transposed reads

J · JT =


1 0 0

0
(
𝜕𝑣
𝜕𝑦

)2
+

(
𝜕𝑣
𝜕𝑧

)2 (
𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑠

)−1
+

(
𝜕𝑧
𝜕𝑣

𝜕𝑧
𝜕𝑠

)−1

0
(
𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑠

)−1
+

(
𝜕𝑧
𝜕𝑣

𝜕𝑧
𝜕𝑠

)−1 (
𝜕𝑠
𝜕𝑦

)2
+

(
𝜕𝑠
𝜕𝑧

)2


. (A.3)

Equation (A.3) is a diagonal matrix if its two off-diagonal elements are equal to
zero, which reduces to

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑠
+ 𝜕𝑧

𝜕𝑣

𝜕𝑧

𝜕𝑠
= 0 . (A.4)

Since Y (𝑥, 𝑦, 𝑧), ` (𝑥, 𝑦, 𝑧), and det (J) are scalars, it follows from Eqs. (A.2)
and (A.3) that Eq. (A.4) is a sufficient condition that ensures that 𝛆′ (𝑢, 𝑣, 𝑠) and
𝛍′ (𝑢, 𝑣, 𝑠) are diagonal tensors.
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The coordinate transformation from the (𝑣, 𝑠)-coordinate system to the (𝑦, 𝑧)-
coordinate system can be extracted from the sketches in Fig. (A.2),[

𝑦 (𝑠, 𝑣)
𝑧 (𝑠, 𝑣)

]
=

[
𝑦0 (𝑠)
𝑧0 (𝑠)

]
+

[
𝑣 cos \ (𝑠)
𝑣 sin \ (𝑠)

]
, (A.5)

where (𝑦0 (𝑠) , (𝑧0 (𝑠)) are coordinates of the point 𝐴 on the trajectory that is
defined by arc-length coordinate 𝑠. Equation (A.4) can be expressed as a dot-
product of two (2, 1)-vectors,

𝜕

𝜕𝑣

[
𝑦 (𝑠, 𝑣)
𝑧 (𝑠, 𝑣)

]
· 𝜕
𝜕𝑠

[
𝑦 (𝑠, 𝑣)
𝑧 (𝑠, 𝑣)

]
= 0 . (A.6)

Inserting Eq. (A.5) into Eq. (A.6), we obtain[
cos \ (𝑠)
sin \ (𝑠)

]
·
(
T (𝑠) +

[
−𝑣 sin \ (𝑠) 𝜕\ (𝑠)

𝜕𝑠

𝑣 cos \ (𝑠) 𝜕\ (𝑠)
𝜕𝑠

])
= N (𝑠) · T (𝑠)

(
1 + 𝑣 𝜕\ (𝑠)

𝜕𝑠

)
= 0,

(A.7)
where N (𝑠) denotes the unit normal vector in point 𝐴 on the trajectory, which in
case of plane trajectories is parallel to vector V (𝑠). Since the dot product of the
normal and the tangent vector is always equal to zero, Eq. (A.7) is always fulfilled,
and 𝛍′ (𝑢, 𝑣, 𝑠) are thus diagonal tensors.

A.3 Time-stepping

We have already shown in Appendix A.1 that no local center of curvature of the
trajectory is allowed to be in the computational domain in order to maintain the
bijectivity of the space transformation defined by Eq. 3.3 — this is ensured by
limiting the ranges of 𝑢- and 𝑣-coordinates. In addition, if the computational
domain border is too close to a local center of curvature, another problem might
arise because some entries of the material property tensors can get values close to
zero. This results in small time steps of the corresponding time-domain simulation
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A.3 Time-stepping

and extends the overall simulation time greatly. For illustration and similarly
to Appendix A.1, we discuss a 90◦-bend in the (𝑦, 𝑧)-plane, see Fig. A.3. The
trajectory with a bend radius 𝑟 is given by

𝑥0 = 0, 𝑦0 = 𝑟 cos (𝑡), 𝑧0 = 𝑟 sin (𝑡) , 𝑡 ∈ [0, 𝜋/2] . (A.8)

The coordinate 𝑠 = 𝑟𝑡 is the arc-length of the trajectory. Since the 𝑢-axis is parallel
to the 𝑥-axis and the 𝑣-axis is always in the plane of the trajectory, we can write
the one-to-one correspondence between the (𝑥, 𝑦, 𝑧)- and (𝑢, 𝑣, 𝑠)-spaces, see
Fig. A.3(b),

𝑥 (𝑢, 𝑣, 𝑠) = 𝑢,

𝑦 (𝑢, 𝑣, 𝑠) = − (𝑟 − 𝑣) cos (𝑠/𝑟),

𝑧 (𝑢, 𝑣, 𝑠) = (𝑟 − 𝑣) sin (𝑠/𝑟).

(A.9)

The Jacobian J of the function 𝑓 (𝑥, 𝑦, 𝑧) = (𝑢, 𝑣, 𝑠) can be found as the inverse of
the Jacobian of the function 𝑓 −1 (𝑢, 𝑣, 𝑠) = (𝑥, 𝑦, 𝑧),

J =


𝜕𝑥/𝜕𝑢 𝜕𝑥/𝜕𝑣 𝜕𝑥/𝜕𝑠
𝜕𝑦/𝜕𝑢 𝜕𝑦/𝜕𝑣 𝜕𝑦/𝜕𝑠
𝜕𝑧/𝜕𝑢 𝜕𝑧/𝜕𝑣 𝜕𝑧/𝜕𝑠


−1

=


1 0 0
0 cos

(
𝑠
𝑟

)
− sin

(
𝑠
𝑟

)
0 𝑟

𝑟−𝑣 sin
(
𝑠
𝑟

)
𝑟
𝑟−𝑣 cos

(
𝑠
𝑟

)

−1

(A.10)

=


−1 0 0
0 − cos

(
𝑠
𝑟

)
− sin

(
𝑠
𝑟

)
0 − 𝑟

𝑟−𝑣 sin
(
𝑠
𝑟

)
𝑟
𝑟−𝑣 cos

(
𝑠
𝑟

)
 . (A.11)

Plugging-in the this result into Eq. A.2, we get

𝛆′ (𝑢, 𝑣, 𝑠) = Y (𝑥, 𝑦, 𝑧)

𝑟−𝑣
𝑟

0 0
0 𝑟−𝑣

𝑟
0

0 0 𝑟
𝑟−𝑣

 =


Y1,1 0 0
0 Y2,2 0
0 0 Y3,3

 . (A.12)
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Figure A.3: Illustration of the space transformation for a 90◦-bend. (a) The freeform waveguides
in the (𝑦, 𝑧)-plane of (𝑥, 𝑦, 𝑧)-space. (b) The same freeform waveguide in the (𝑣, 𝑠)-plane of
(𝑢, 𝑣, 𝑠)-space. In (𝑢, 𝑣, 𝑠)-space, the 90◦-bend is straightened. It is divided into squares by taking
equidistant divisions along the 𝑠-axis (slicing) and along the 𝑣-axis. The squares in (𝑢, 𝑣, 𝑠)-space
correspond to sections bounded by two line segments and two concentric arcs in (𝑥, 𝑦, 𝑧)-space. The
areas of these sections differ along the radial coordinate and are smaller on the inner side and larger on
the outer side of the bend. Areas close to the origin tend to zero, and mapping these sections to finite
size squares in (𝑢, 𝑣, 𝑠)-space causes two entries of tensors of material properties to tend to zero,
see Eq. A.12. This leads to a small time step of the corresponding FDTD simulation and to a long
simulation time. Areas of sections far from the origin tend to infinity, and mapping infinite sections to
finite size squares in (𝑢, 𝑣, 𝑠)-space also causes one of the tensor entries of material properties to tend
to zero. These cases are however not critical, since the space far away from the trajectory is not of
interest in the TO approach.

A similar result holds for 𝛍′. When 𝑣 approaches 𝑟, Y1,1 and Y2,2 (`1,1 and `2,2)
tend to 0, causing the maximum phase velocity to tend to infinity. According to
the Courant-Friedrichs-Lewy stability condition Eq. 3.7, the maximal time step
tends to zero, and the total simulation time approaches infinity. On the outer side
of the bend, for 𝑣 < 0, tensor entries Y3,3 and `3,3 are more problematic. However,
they only tend to zero if |−𝑣 | ≫ 𝑟 . This is, however, not of practical interest.

[end of the content based on appendices of manuscript [J1]]
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B Graph theory and switch-and-select
circuits

The content of Appendix B was taken from Appendices of paper [J3], and it has
been modified to fit the formatting rules of this thesis.

Aleksandar Nesic, Matthias Blaicher, Tobias Hoose, Andreas Hofmann, Matthias
Lauermann, Yasar Kutuvantavida, Martin Nöllenburg, Sebastian Randel, Wolfgang
Freude, and Christian Koos

[start of appendices of publication [J3]]
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Optics Express, Vol. 27, Issue 12, pp. 17402–17425 (2019)
https://doi.org/10.1364/OE.27.017402

B.1 Graph theory

In this section, we shortly summarize a few definitions from graph theory that
are used in the graph-theoretical analysis of SAS circuits in Section 4.3 and
Appendices B.2 and B.3.

1. A graph𝐺 (𝑁, 𝐸) is defined as an ordered pair consisting of a set of vertices
𝑁 and a set of edges 𝐸 , which are two-element subsets of 𝑁 (one edge
connects two vertices). The number of vertices and edges is |𝑁 | and |𝐸 |,
respectively. The notation |𝑋 | denotes the cardinality (number of elements)
of a set 𝑋 .
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B Graph theory and switch-and-select circuits

2. A bipartite graph 𝐺 (𝑀, 𝑁, 𝐸) consists of two sets of vertices 𝑀 and 𝑁 and
a set of edges 𝐸 , such that there are no edges between two vertices that are
in the same set.

3. In a complete graph 𝐺 (𝑁, 𝐸), each vertex of set 𝑁 is connected by an edge
to all other vertices of the same set. The number of vertices is |𝑁 | = 𝑛, and
the number of edges is |𝐸 | = 𝑛 (𝑛 − 1) /2. Such a graph is denoted by 𝐾𝑛.

4. In a complete bipartite graph𝐺 (𝑀, 𝑁, 𝐸), each vertex of set𝑀 is connected
by an edge to each vertex of the second vertex set 𝑁 . The number of vertices
is |𝑀 | + |𝑁 | = 𝑚 + 𝑛, and the number of edges is |𝐸 | = 𝑚𝑛. Such a graph is
denoted by 𝐾𝑚,𝑛.

5. A planar graph can be drawn in a plane without edge crossings. From
Kuratowski’s theorem [150], it follows that a complete graph 𝐾𝑛 is planar if
𝑛 ≤ 4, and a complete bipartite graph 𝐾𝑚,𝑛 is planar if 𝑚 ≤ 2 or 𝑛 ≤ 2.

6. A maximum planar graph would become a non-planar graph by adding one
additional edge.

7. A plane embedding is a drawing of a planar graph in a plane without edge
crossings.

8. A plane embedding divides the plane into distinct regions called faces. All
faces are bounded by edges except for the single outer face which extends to
infinity. In a maximum planar graph plane embedding, each face is defined
by three edges. In a bipartite maximum planar graph plane embedding,
each face is defined by four edges.

9. The crossing number cr (𝐺) of a graph 𝐺 counts the minimum number of
edge crossings, taking into account all possible drawings of 𝐺 in a plane.
The crossing number of a planar graph is zero.

10. The outerplanar crossing number cr∗ (𝐺) of a graph G counts the minimum
number of edge crossings, taking into account all possible drawings of 𝐺 in
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B.2 Graph-theoretical analysis of surface-coupled 𝑚 × 𝑛 SAS circuits

a plane, such that all vertices of 𝐺 lie on a closed boundary curve, and all
edges of 𝐺 are drawn inside the area bounded by the boundary curve.

11. The local crossing number lcr (𝐺) of a graph 𝐺 is the minimum of the
maximum number of crossings along any edge of 𝐺, taking into account all
possible drawings of 𝐺 in a plane.

12. The local crossing number of a graph drawing counts the maximum number
of edge crossings along any edge for that particular drawing.

13. A subgraph of a graph 𝐺 is a graph consisting of sets of vertices and edges
that are subsets of sets of vertices and edges of 𝐺.

14. A spanning maximum planar subgraph of a graph 𝐺 is a maximum planar
subgraph of 𝐺 that contains all vertices of 𝐺.

For more information on general graph theory, please refer to [151]. Crossing
number problems are discussed in more detail in [152].

B.2 Graph-theoretical analysis of surface-coupled 𝑚 × 𝑛
SAS circuits

As previously mentioned, a surface-coupled 𝑚 × 𝑛 circuit with 1× 𝑛 and 𝑚 × 1 LE
switches at the input and output ports can be represented by a complete bipartite
graph 𝐾𝑚,𝑛. The conjectured crossing number of 𝐾𝑚,𝑛 is given by [66]

crconj.
(
𝐾𝑚,𝑛

)
= [

(surf)
𝑚,𝑛 =

⌊
𝑚

2

⌋ ⌊
𝑛

2

⌋ ⌊
𝑚 − 1

2

⌋ ⌊
𝑛 − 1

2

⌋
, (B.1)

which in case 𝑚 = 𝑛 reduces to Eq. (4.2). For a complete bipartite graph 𝐾𝑚,𝑛,
the construction of a drawing that results in the conjectured minimum number
of crossings given by Eq. B.1 is proposed in [66] and illustrated in Fig. B.1(a)
for the case of 𝐾5,5. In a first step, all vertices of set 𝑀 are placed on the 𝑥-
axis, whereas the vertices of set 𝑁 are placed on the y-axis of the 2D Cartesian
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coordinate system. This placement is done such that the number of vertices
on both positive and negative parts of the 𝑥 and 𝑦-axes is as much equal as
possible. Achieving exactly equal numbers is possible only if 𝑚 and 𝑛 are even
— if any of them is odd, we will put one vertex more on the positive side of
the corresponding axis. Therefore, the 𝑥-coordinates of the vertices of set 𝑀
are, −⌊𝑚/2⌋,−⌊𝑚/2⌋ + 1, ...,−1,1, ..., ⌈𝑚/2⌉ and the corresponding vertices are
labelled with 𝑣𝑀,−⌊𝑚/2⌋ , 𝑣𝑀,−⌊𝑚/2⌋+1, ..., 𝑣𝑀,−1,𝑣𝑀,1, ..., 𝑣𝑀, ⌈𝑚/2⌉ . Similarly, the
𝑦-coordinates of the vertices of set 𝑁 are, −⌊𝑛/2⌋, −⌊𝑛/2⌋ + 1, ...,−1,1, ..., ⌈𝑛/2⌉,
and the corresponding vertices are labelled with 𝑣𝑁,−⌊𝑛/2⌋ ,𝑣𝑁,−⌊𝑛/2⌋+1, ..., 𝑣𝑁,−1,
𝑣𝑁,1, ..., 𝑣𝑁, ⌈𝑛/2⌉ . Finally, all vertices of set 𝑀 are connected by 𝑚𝑛 line segments
to all vertices of set 𝑁 .

In order to find the local crossing number of such drawing it is enough to ana-
lyze the 1st quadrant of the 2D Cartesian system, since it contains the largest
number of vertices and edges, and since all edges are completely drawn in
single quadrants. The two edges that cross the largest number of other edges,
{𝑣𝑁, ⌈𝑛/2⌉ , 𝑣𝑀,1} and {𝑣𝑁,1, 𝑣𝑀, ⌈𝑚/2⌉}, are drawn in blue in Fig. B.1(a). It
can be easily seen that edge {𝑣𝑁, ⌈𝑛/2⌉ , 𝑣𝑀,1} must cross all edges that connect
⌈𝑛/2⌉ − 1 vertices 𝑣𝑁,1, ..., 𝑣𝑁, ⌈𝑛/2⌉−1 to ⌈𝑚/2⌉ − 1 vertices 𝑣𝑀,2, ..., 𝑣𝑀, ⌈𝑚/2⌉ .
Similarly, edge {𝑣𝑁,1, 𝑣𝑀, ⌈𝑚/2⌉} must cross all edges that connect ⌈𝑛/2⌉ − 1
vertices 𝑣𝑁,2, ..., 𝑣𝑁, ⌈𝑛/2⌉ to ⌈𝑚/2⌉ − 1 vertices 𝑣𝑀,1, ..., 𝑣𝑀, ⌈𝑚/2⌉−1 Therefore,
the local crossing number of this drawing amounts to

lcrconj. drawing
(
𝐾𝑚,𝑛

)
= b

(surf)
𝑚,𝑛 =

(⌈
𝑚

2

⌉
− 1

) (⌈
𝑛

2

⌉
− 1

)
. (B.2)

For 𝑚 = 𝑛, this reduces to Eq. (4.5).

To analyze the number of necessary WOP, we introduce a term 3D edge, which
is an edge that is not restricted to the plane but can be routed in 3D, and we will
use it to model a WOP. A WOP does not directly connect two optical devices
on the PIC, but rather links two ends of two planar waveguides, each of which
is connected to an optical device at its respective other end. The connections of
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Figure B.1: Different graph drawings of a surface-coupled 5 × 5 and 4 × 4 SAS circuit: (a) Graph
drawing of a 5× 5 SAS circuit where 1× 5 and 5× 1 switches at the input and output ports are realized
as LE. The circuit is modeled by a complete bipartite graph 𝐾5,5, and the arrangement of vertices
of sets 𝑀 and 𝑁 is such that the drawing results in the number of crossings equal to the conjectured
crossing number given by Eq. (B.1). The two edges depicted in blue are the edges with the maximum
number of crossings, which determine the local crossing number of this particular graph drawing, as
given by Eq. (B.2). (b) Planar-edge-crossing-free graph representation of the same circuit. The edges
depicted in blue represent a spanning maximum planar subgraph of 𝐾5,5. The remaining edges are
realized with help of 3D edges (representing WOP) depicted as dashed red lines, which are routed
outside the plane of the drawing and avoid crossings with the planar edges. Each 3D edge connects to
a pair of planar edges depicted in black, that are linked to vertices at the respective other end. (c) If the
1× 5 and 5× 1 switches at the input and output ports are realized as BT of 1× 2 and 2× 1 switches, the
number of necessary 3D edges can be reduced by splitting the vertices of the original 𝐾5,5 and placing
them into appropriate faces of the spanning maximum planar subgraph depicted in blue. The white
dashed squares represent 1 × 2 switches, while the dashed circle with gray filling represents a 2 × 1
switch. This approach allows to replace a pair of 3D edges by a single one. In case where both𝑚 and 𝑛
are odd, the number of missing edges is also odd, and one missing edge (in this case {𝑣𝑁,−2, 𝑣𝑀,−2 })
must be realized with help of one single 3D edge. (d) Graph drawing of a 4 × 4 SAS circuit, analogous
to the case described in (c). In case at least one of the numbers 𝑚 or 𝑛 is even, the number of 3D edges
can be reduced by a factor of 2 compared to the case when 1 × 𝑛 and 𝑚 × 1 switches are realized as
LE. For our experimental demonstration, we used the PIC layout displayed in Fig. 4.2(d), which was
obtained in a similar way as Fig. B.1(d), with the difference that the auxiliary vertices (1 × 2 switches)
in Fig. 4.2(d) were placed in the outer face of the spanning maximum planar subgraph rather than in its
inner face, as displayed here.
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WOP and planar waveguides are an analog to metallic vias that connect metallic
wires in different layers of an electric printed circuits board (PCB). In the graph
representation, a WOP is modelled by a 3D edge that does not directly connect to
two vertices on the plane, but links two planar edges, each of which is connected
to another vertex at its respective other end. In order to estimate the number of
necessary 3D edges, we first construct a spanning maximum planar subgraph of
𝐾𝑚,𝑛, which has 2𝑚 + 2𝑛 − 4 edges [133]. We do it by connecting each of the
vertices 𝑣𝑀,−⌊𝑚/2⌋ ,𝑣𝑀, ⌊𝑚/2⌋ ,𝑣𝑁,−1, and 𝑣𝑁,1 to each vertex of the opposite set,
see Fig. B.1(b). The remaining

`
(surf)
𝑚,𝑛 = 𝑚𝑛 − (2𝑚 + 2𝑛 − 4) = (𝑚 − 2) (𝑛 − 2) (B.3)

edges can be realized using 3D edges. For 𝑚 = 𝑛, Eq. (B.3) reduces to Eq. (4.3).
The concept is illustrated in Fig. B.1(b) for the case of 𝐾5,5. The edges of the
spanning maximum planar subgraph are depicted in blue, the 3D edges in red
(dashed), while the planar edges that connect the 3D edges to the vertices are
depicted in black. The red dashed lines are, in fact, vertical projections of 3D
edges on the 2D drawing plane.

Note that the planar projections of the 3D edges on the drawing plane may cross
each other. This, however, does not mean that the two 3D edges cross in 3D space
— two freeform WOP can always be 3D-printed such that one passes over the
other, and the corresponding 3D edges can be routed analogously. Furthermore, by
appropriate routing of the planar and 3D edges, the crossings of projections of 3D
edges on the drawing plane can be avoided. Figure B.1(b) shows how a possible
crossing of projections of two 3D edges between pairs of vertices {𝑣𝑁,2, 𝑣𝑀,2} and
{𝑣𝑁,3, 𝑣𝑀,1} has been avoided by making the planar waveguide that connects 𝑣𝑁,2
to the corresponding 3D edge sufficiently long such that it passes underneath the
3D edge between the pair of vertices {𝑣𝑁,3, 𝑣𝑀,1}. We believe that this approach
might be generalized to avoid crossings of projections of 3D edges for general
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complete bipartite graphs 𝐾𝑚,𝑛 — a general proof would need further investigation
and is beyond the scope of this paper.

If the 1 × 𝑛 and 𝑚 × 1 switches at the input and output ports are realized as BT of
1 × 2 and 2 × 1 switches rather than as LE, we can further reduce the number of
3D edges. We will split the analysis into two cases: when both 𝑚 and 𝑛 are odd,
and when at least one of them is even. Furthermore, we will only analyze cases
where both 𝑚 and 𝑛 are ≥ 3 since otherwise, according to Kuratowski’s theorem
[150], the complete bipartite graph 𝐾𝑚,𝑛 is planar. If both 𝑚 and 𝑛 are odd, we do
the following steps:

Step 1: Construct the spanning maximum planar subgraph of 𝐾𝑚,𝑛 as described
above. The edges of this subgraph are depicted in blue in Fig. B.1(c) for
the case of 𝐾5,5 (𝑚 = 𝑛 = 5). This subgraph has all faces determined by
four vertices (two from set 𝑀 and two from set 𝑁) and four edges. There
are (𝑚 − 3) vertices of set 𝑀 whose 𝑥-coordinates lie between −⌊𝑚/2⌋ + 1
and ⌈𝑚/2⌉ − 2 inclusive, and they can be divided into (𝑚 − 3) /2 distinct two-
element subsets of vertices (because 𝑚 − 3 is even, and therefore divisible by
two): {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑀,−⌊𝑚/2⌋+2},{𝑣𝑀,−⌊𝑚/2⌋+3, 𝑣𝑀,−⌊𝑚/2⌋+4},...,{𝑣𝑀, ⌈𝑚/2⌉−3,

𝑣𝑀, ⌈𝑚/2⌉−2}. Each of these (𝑚 − 3) /2 pairs of vertices of set 𝑀 together with the
pair of vertices 𝑣𝑁,−1, 𝑣𝑁,1 of set 𝑁 , define (𝑚 − 3) /2 faces: {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,−1,

𝑣𝑀,−⌊𝑚/2⌋+2, 𝑣𝑁,1}, {𝑣𝑀,−⌊𝑚/2⌋+3, 𝑣𝑁,−1, 𝑣𝑀,−⌊𝑚/2⌋+4, 𝑣𝑁,1}, ..., {𝑣𝑀, ⌈𝑚/2⌉−3,

𝑣𝑁,−1, 𝑣𝑀, ⌈𝑚/2⌉−2, 𝑣𝑁,1}. For 𝑚 = 3 there are no such faces. For 𝑚 = 5, there is
only one such face {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,−1, 𝑣𝑀, ⌈𝑚/2⌉−2, 𝑣𝑁,1} = {𝑣𝑀,−1, 𝑣𝑁,−1, 𝑣𝑀,1,

𝑣𝑁,1}, see Fig. B.1(c). Note that the results of the expressions −⌊𝑚/2⌋ + 𝑖 and
−⌈𝑚/2⌉− 𝑗 in the subscripts of labels of vertices of set𝑀 indicate the 𝑥-coordinates
of the vertices. Since there is no vertex at 𝑥 = 0, not a single expression is al-
lowed to result in zero. Therefore, we restrict the values of integers 𝑖 and 𝑗

to 𝑖 = 1, 2, ..., ⌊𝑚/2⌋ − 1 and 𝑗 = ⌈𝑚/2⌉ − 1, ⌈𝑚/2⌉ − 2, ..., 2 (the expression
−⌊𝑚/2⌋ + 𝑖 is used for vertices on the negative side of the 𝑥-axis, while the
expression ⌈𝑚/2⌉ − 𝑗 is used for vertices on the positive side of the 𝑥-axis).
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Step 2: Let us put an auxiliary vertex 𝑣′
𝑁, ⌈𝑛/2⌉ inside the face defined by vertices

{𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,−1, 𝑣𝑀,−⌊𝑚/2⌋+2, 𝑣𝑁,1}. We can connect the auxiliary vertex
𝑣′
𝑁, ⌈𝑛/2⌉ to vertex 𝑣𝑁, ⌈𝑛/2⌉ with a 3D edge, and the same auxiliary vertex to vertices
𝑣𝑀,−⌊𝑚/2⌋+1 and 𝑣𝑀,−⌊𝑚/2⌋+2 with two planar edges. The auxiliary vertex is the
place where we put a 2×1 switch, which is a part of the BT𝑚×1 switch at the vertex
𝑣𝑁, ⌈𝑛/2⌉ . In this way, we can replace two 3D edges that would otherwise separately
connect vertex 𝑣𝑁, ⌈𝑛/2⌉ to vertices 𝑣𝑀,−⌊𝑚/2⌋+1 and 𝑣𝑀,−⌊𝑚/2⌋+2. The auxiliary
vertex 𝑣′

𝑁, ⌈𝑛/2⌉ and the two planar edges that connect it to vertices 𝑣𝑀,−⌊𝑚/2⌋+1 and
𝑣𝑀,−⌊𝑚/2⌋+2 split the original face {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,−1, 𝑣𝑀,−⌊𝑚/2⌋+2, 𝑣𝑁,1} into
two faces {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,−1, 𝑣𝑀,−⌊𝑚/2⌋+2, 𝑣

′
𝑁, ⌈𝑛/2⌉} and {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑁,1,

𝑣𝑀,−⌊𝑚/2⌋+2, 𝑣
′
𝑁, ⌈𝑛/2⌉}. We put an additional auxiliary vertex 𝑣′

𝑁, ⌈𝑛/2⌉−1 to any
of the two new faces, and we connect it to vertex 𝑣𝑁, ⌈𝑛/2⌉−1 with a 3D edge and
to vertices 𝑣𝑀,−⌊𝑚/2⌋+1 and 𝑣𝑀,−⌊𝑚/2⌋+2 with two planar edges. We repeat the
procedure for all vertices of set 𝑁 , except for vertices 𝑣𝑁,−1 and 𝑣𝑁, 1, which are
already connected to all vertices of set 𝑀 . In this way, we connect both vertices
of the pair {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑀,−⌊𝑚/2⌋+2} to all vertices of set 𝑁 . We apply the
same algorithm to connect the pairs of vertices {𝑣𝑀,−⌊𝑚/2⌋+3, 𝑣𝑀,−⌊𝑚/2⌋+4}, ...,
{𝑣𝑀,−⌈𝑚/2⌉−3, 𝑣𝑀,−⌈𝑚/2⌉−2} to all vertices of set 𝑁 . This step has been illustrated
in Fig. B.1(c) where auxiliary vertices 𝑣′

𝑁,3, 𝑣′
𝑁,2, and 𝑣′

𝑁,−2 have been placed
inside the face {𝑣𝑀,−1, 𝑣𝑁,−1, 𝑣𝑀,1, 𝑣𝑁,1}, connected to vertices 𝑣𝑁,3, 𝑣𝑁,2, and
𝑣𝑁,−2 by 3D edges, respectively, and to 𝑣𝑀,1 and 𝑣𝑀,−1 by planar edges. For
𝑚 = 3, Step 2 is skipped.

Step 3: So far, we connected all vertices of set 𝑀 to all vertices of set 𝑁 , except for
vertex 𝑣𝑀, ⌈𝑚/2⌉−1 that is connected only to 𝑣𝑁,−1 and 𝑣𝑁,1 and still needs to be con-
nected to the remaining (𝑛 − 2) vertices of set 𝑁 . There are ⌈𝑛/2⌉ −1 such vertices
on the positive side of the 𝑦-axis: 𝑣𝑁, ⌈𝑛/2⌉ , 𝑣𝑁, ⌈𝑛/2⌉−1, ..., 𝑣𝑁,2 and ⌊𝑛/2⌋−1 on the
negative side of the 𝑦-axis: 𝑣𝑁,−2, 𝑣𝑁,−3, ..., 𝑣𝑁, ⌊𝑛/2⌋ . Depending on 𝑛, one of these
two numbers is even, and the other is odd. If ⌈𝑛/2⌉ −1 is even and ⌊𝑛/2⌋ −1 is odd,
then each of the following pairs of vertices {𝑣𝑁, ⌈𝑛/2⌉ , 𝑣𝑁, ⌈𝑛/2⌉−1}, ..., {𝑣𝑁,3, 𝑣𝑁,2},
{𝑣𝑁,−2, 𝑣𝑁,−3}, ..., {𝑣𝑁,−⌊𝑛/2⌋+2, 𝑣𝑁,−⌊𝑛/2⌋+1} together with the pair of vertices
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{𝑣𝑀,−⌊𝑚/2⌋ , 𝑣𝑀, ⌈𝑚/2⌉} define one face. In each of these faces, we can place one
auxiliary vertex 𝑣′

𝑀, ⌈𝑚/2⌉−1, 𝑣
′′
𝑀, ⌈𝑚/2⌉−1, 𝑣

′′′
𝑀, ⌈𝑚/2⌉−1, ..., see Fig. B.1(c), where

there is only one such auxiliary vertex 𝑣′
𝑀, ⌈𝑚/2⌉−1 = 𝑣′

𝑀,2. Each of these auxiliary
vertices can be connected to 𝑣𝑀, ⌈𝑚/2⌉−1 by a 3D edge and to the respective pair of
vertices of set 𝑁 (that define the face in which the auxiliary vertex is placed) by two
planar edges. After this step, there will be only one missing edge between vertices
𝑣𝑀, ⌈𝑚/2⌉−1 and 𝑣𝑁,−⌊𝑛/2⌋ , and we directly connect these two vertices by a single
3D edge, see Fig. B.1(c). Similarly, if ⌈𝑛/2⌉ −1 is odd and ⌊𝑛/2⌋ −1 is even, we can
group the vertices of set 𝑁 into pairs as {𝑣𝑁, ⌈𝑛/2⌉−1, 𝑣𝑁, ⌈𝑛/2⌉−2}, ..., {𝑣𝑁,3, 𝑣𝑁,2},
{𝑣𝑁,−2, 𝑣𝑁,−3}, ..., {𝑣𝑁,−⌊𝑛/2⌋+1, 𝑣𝑁,−⌊𝑛/2⌋}, which would define faces together
with the pair of vertices {𝑣𝑀,−⌊𝑚/2⌋ , 𝑣𝑀, ⌈𝑚/2⌉}. After placing and connecting
auxiliary vertices as described, the only missing edge would be between 𝑣𝑀, ⌈𝑚/2⌉−1

and 𝑣𝑁,−⌈𝑛/2⌉ , and we would connect them by one 3D edge.

The case when at least one of the numbers𝑚 and 𝑛 is even is simpler. We can assume
without loss of generality that𝑚 is even and 𝑛 is odd. By constructing the spanning
maximum planar subgraphof𝐾𝑚,𝑛 as described above, we will get a subgraphwhere
each of the following (𝑚 − 2) /2 pairs of vertices {𝑣𝑀,−⌊𝑚/2⌋+1, 𝑣𝑀,−⌊𝑚/2⌋+2},
{𝑣𝑀,−⌊𝑚/2⌋+3, 𝑣𝑀,−⌊𝑚/2⌋+4}, ..., {𝑣𝑀, ⌈𝑚/2⌉−2, 𝑣𝑀, ⌈𝑚/2⌉−1} together with the pair
of vertices {𝑣𝑁,−1, 𝑣𝑁,1} define one face. After performing Step 2 as described
above, we will connect all vertices of set 𝑀 to all vertices of set 𝑁 . Figure B.1(d)
shows an example of the result of the algorithm for the case of 𝐾4,4.
The described algorithm allows to replace two missing planar edges by one 3D
edge. The number of necessary 3D edges hence amounts to

`
(surf, BT)
𝑚,𝑛 =

⌈
(𝑚 − 2) (𝑛 − 2)

2

⌉
, (B.4)

which reduces to Eq. (4.4) for 𝑚 = 𝑛. The ceiling function in Eq. (B.4) is used
to include the case when the number of missing edges is odd (both 𝑚 and 𝑛 are
odd) and not divisible by two (one single missing edge needs to be realized with
one single 3D edge). This algorithm is just an example and not the unique way of
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constructing a layout that results in the number of 3D edges given by Eq. (B.4):
For example, in Step 1 we could construct the spanning maximum planar subgraph
in a different way and then modify Steps 2 and 3 accordingly.

It should be pointed out that Eq. (B.4) does not necessarily give the minimum
number of necessary 3D edges, but an upper bound. In our construction we started
from the spanning maximum planar subgraph, and we split some vertices in two
by introducing auxiliary vertices. We did, however, not show that the spanning
maximum planar subgraph of 𝐾𝑚,𝑛 is the optimal way to start with. We could
have also started with a non-maximum planar subgraph and could have used larger
split ratio switches 1 × 𝑛′, 𝑛′ < 𝑛 and 1 × 𝑚′, 𝑚′ < 𝑚, and place them in the
auxiliary vertices. Furthermore, the graph model of the device where 1 × 𝑛 and
𝑚 × 1 switches at the input and output ports are realized as BT of 1 × 2 and 2 × 1
switches, is not a complete bipartite graph 𝐾𝑚,𝑛. The crossing number of the SAS
circuit realized with such an approach is subject to ongoing investigations.

B.3 Facet-coupled SAS circuits

B.3.1 Facet-coupled SAS realized in single-layer and hybrid 2D/3D
photonic integration

For facet-coupled SAS circuits, all input and output ports are implemented by
waveguide facets arranged along the chip boundaries, making it impossible to
route waveguides “behind” the ports, i.e., between the ports and the chip boundary.
In the graph drawing of the circuit, all vertices representing input and output
ports must hence be placed on a closed curve that represents the boundary of the
chip surface, and no waveguide (graph edge) routing outside the area enclosed
by the curve is allowed. In addition, in contrast to surface coupling, the graph of
a facet-coupled SAS is not anymore a complete bipartite graph: For the case of
surface coupling, a port and the associated 1 × 𝑛 or 𝑚 × 1 switch can be combined
into a single vertex, whereas facet-coupled circuits must be represented by a first
kind of vertices for the switches and a second kind of vertices for the ports, which
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must be placed onto the boundary curve. Every port vertex must be connected to
the associated switch by a graph edge that represents the access waveguide. This
results in a 3-partite graph, which comprises three parties of vertices represented
by the ports, the 1× 𝑛 switches, and the 𝑚 × 1 switches, and which is not complete.
For a general description of facet-coupled SAS circuits, we can hence not resort any
more to the existing theory of complete bipartite graphs. This renders theoretical
assessment of the topologies more diffcult and requires simplifying assumptions
for quantifying the numbers of WGX or WOP. Nevertheless, we believe that
non-planar facet-coupled SAS circuits can also greatly benefit from replacing
WGX by WOP.

To support this claim, we first consider the basic non-optimized representation of a
4× 4 SAS circuit, see Fig. B.2(a). This representation relies on the same simplistic
approach as the surface-coupled SAS circuit that is sketched in Fig. 4.2(a). In
this approach, each pair of vertices of set 𝑀 is connected by four edges to each
pair of vertices of set 𝑁 , and the four edges make exactly one crossing. The
number of crossings is therefore equal to the product of numbers of ways to choose
two-element subsets of 𝑀 and 𝑁 and amounts to

[
(facet, basic)
𝑚,𝑛 =

(
𝑚

2

) (
𝑛

2

)
=

(
𝑚 (𝑚 − 1)

2

) (
𝑛 (𝑛 − 1)

2

)
, (B.5)

which reduces to Eq. (4.1) for the case of 𝑚 = 𝑛. Interleaving the input and output
ports along the boundary line allows to reduce this number, see Fig. B.2(b). In
this case, we can simplify the theoretical assessment to finding the outerplanar
crossing number of a complete bipartite graph. This can be seen if we look at
the blue dashed line in Fig. B.2(b): All vertices representing 1 × 𝑛 and 𝑚 × 1
switches are placed on it, and all edges are routed inside the area bounded by
it. Note that this implementation is not yet optimal since it does not exploit the
possibility to reduce the number of WGX by routing waveguides between the ports
and the corresponding 1 × 𝑛 or 𝑚 × 1 switches. For the case of 𝑛 being an integer
multiple of 𝑚, the outerplanar crossing number of a complete bipartite graph 𝐾𝑚,𝑛
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(a) (b)

(c) (d)

Figure B.2: Different graph drawings of a facet-coupled 4 × 4 SAS circuit: A first set of vertices
(rectangles and half circles) is used to represent facet-coupled optical input and output ports, and a
second kind of vertices (squares and full circles) represents the 1 × 𝑛 or 𝑚 × 1 switches. Each port
vertex is connected to the associated switch vertex by a graph edge that represents the access waveguide
(a) Simplistic non-optimum graph representation based on the same approach as the surface-coupled
SAS circuit shown in Fig. 4.2(a). Input and output ports are clustered into two groups of neighboring
vertices along the chip boundary. For a 4 × 4 SAS circuit, 36 WGX are required. (b) By interleaving
the input and output ports along the chip boundary, the number of crossings can be reduced, leading to
a total number of 16 WGX for a 4 × 4 SAS circuit. (c) The number of crossings can also be reduced by
allowing routing of waveguides between the ports and the corresponding 1 × 𝑛 and 𝑛 × 1 switches,
leading to a total number of 20 WGX for the depicted graph drawing. (d) Circuit layout obtained by
combining interleaving of input and output ports with routing of waveguides between the ports and the
corresponding switches, leading to a total number of 12 WGX.
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is obtained when the vertices of set 𝑀 are evenly interleaved between the vertices
of set 𝑁 and amounts to [153]

[
(facet)
𝑚,𝑛 =

1
12
𝑛 (𝑚 − 1) (2𝑚𝑛 − 3𝑚 − 𝑛) . (B.6)

For the case 𝑚 = 𝑛, this reduces to

[
(facet)
𝑛,𝑛 =

1
6
𝑛2 (𝑛 − 1) (𝑛 − 2) , (B.7)

Which scales with 𝑛4/6 for large 𝑛. The associated numbers of WGX for switches
implemented as LE are listed in the second column of Table B.1. Further layout
optimization steps may involve routing of waveguides between the ports and the
corresponding switches, possibly in combination with interleaving of the ports
along the chip boundary, see Figs. B.2(c) and B.2(d). Even though we are not aware
of any relations specifying the exact crossing numbers of these graphs, we may still
use the number of WGX in the associated surface-coupled SAS as a lower bound.
This can be understood by observing that both implementations in Figs. B.2(c)
and B.2(d). contain a maximum bipartite subgraph (indicated in blue) which is
equivalent to that of the corresponding surface-coupled circuit, Fig. 4.2(b), and
which is complemented by additional crossings caused by the access waveguides.
The number of WGX still scales with at least 𝑛4/16, see Eq. (4.2). Similarly to
the case of surface-coupled SAS, disaggregating the 1 × 𝑛 and 𝑚 × 1 switches
into BT of 1 × 2 switches might reduce the number of WGX — this aspect is still
under investigation. For the remainder of this section, we rely on Eq. (B.7) for
determining the number of WGX in the facet-coupled 𝑛 × 𝑛 SAS circuit.

For 2D/3D hybrid implementations, the number of WOP in facet-coupled SAS
circuits was analyzed based on the simplistic layout shown in Fig. B.2(a) for cases
of LE switches and BT cascaded 1 × 2 switches, see Figs. B.3(a) and B.3(b).
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Table B.1: Quantitative comparison of n × n facet-coupled switch-and-select (SAS) circuit
implementations based on WGX in single-layer circuits and on WOP in hybrid 2D/3D photonic
integration. The total number of WGX (second column) increases approximately in proportion to
𝑛4/6, whereas the number of WOP scales with 𝑛2 for the case of LE switches (third column) and with
𝑛2/2 in case the switches are decomposed into BT of 1 × 2 and 2 × 1 switches (fourth column). The
maximum number of WGX along an optical path increases approximately in proportion to 𝑛2/2 for the
case of LE switches (fifth column), whereas the maximum number of WOP along an optical path is
one in both cases of LE and BT switches (sixth column).

Total number Maximum number
along any optical path

SAS
(𝑛 × 𝑛)

WGX
(LE)

WOP
(LE)

WOP
(BT)

WGX
(LE)

WOP
(LE & BT)

4 × 4 16 9 5 4 1
8 × 8 448 49 25 24 1

16 × 16 8 960 225 113 112 1
32 × 32 158 720 961 481 480 1
64 × 64 2 666 496 3 969 1 985 1 984 1

Mathematical details can be found in Appendix B.3.2. For LE switches, this leads
to a total WOP number of

`
(facet)
𝑛,𝑛 = (𝑚 − 1) (𝑛 − 1) , (B.8)

which reduces to (𝑛 − 1) /2 for 𝑚 = 𝑛. For BT switches, the number of WOP
amounts to

`
(facet, BT)
𝑛,𝑛 =

⌈
(𝑚 − 1) (𝑛 − 1)

2

⌉
, (B.9)

i.e., ⌈(𝑛 − 1)2 /2⌉ for 𝑚 = 𝑛. Hence, in both cases, the number of WOP in the
facet-coupled hybrid 2D/3D implementation scales much more favorably than
the number of WGX in the corresponding single-layer SAS circuit, see third and
fourth column of Table B.1. Note that this number represents an upper bound
for the number of WOP, which might be further reduced by interleaving of ports
and by rerouting of connections across the access waveguides, similarly to the
case of the surface-coupled planar circuits shown in Figs. 4.2(b)–4.2(d). As in the
case of surface coupling, the number of WOP along any optical path through the
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1 × 2

(a) (b)
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Figure B.3: Circuit layouts for facet-coupled 2D/3D hybrid 4 × 4 SAS. (a) Simple, but not optimal
layout, where the 1× 4 and 4× 1 switches have been realized as LE. The relation for ` (facet)

𝑛,𝑛 represents
the exact number of WOP in this simplistic implementation. (b) Best found, but not necessarily optimal
layout for the case in which the 1 × 4 and 4 × 1 switches have been realized as BT of 1 × 2 and 2 × 1
switches. The relation for ` (facet, BT)

𝑛,𝑛 is an upper bound for the minimum number of WOP.

facet-coupled hybrid 2D/3D circuit is at most 1, whereas the maximum number of
WGX along an optical path in a single-layer implementation shown in Fig. B.2(b)
increases in proportion to 𝑛2/2. The exact result for the maximum number of
WGX along any optical path for this implementation is

b
(facet)
𝑛,𝑛 = 2

⌊
𝑛 − 1

2

⌋⌈
𝑛 − 1

2

⌉
, (B.10)

see Section B.3.2. The corresponding numbers for 𝑛 = 4, 8, 16, 32, and 64 are
indicated in the fifth and sixth column of Table B.1. For the implementations
shown in Figs. B.2(c) and B.2(d), we cannot provide a formula that describes the
minimum number of WGX along an optical path.
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B.3.2 Graph-theoretical models and analysis of facet-coupled m × n
SAS circuits

Let us first explain Eq. (B.10) which is obtained in case of a drawing of the complete
bipartite subgraph 𝐾𝑛,𝑛 that results in the outerplanar crossing number — the
vertices belonging to different vertex sets 𝑀 and 𝑁 (𝑚 = 𝑛) are interleaved along
the boundary curve. This subgraph is depicted in blue in Fig. B.2(b) for 𝑛 = 5. The
concept of this layout is illustrated in Fig. B.4, which shows graph drawings of a
complete bipartite graph 𝐾𝑛,𝑛 with interleaved vertices of two different vertex sets
along the boundary (dashed circular line). Each edge divides the bounded area
in two parts, and the largest number of crossings will be on an edge {𝑣𝑀,𝑖 , 𝑣𝑁,𝑖}
that divides the area such that the numbers of vertices in both parts are as much
equal as possible. If 𝑛 is odd, it is possible to find an edge that divides the bounded
area such that both parts have exactly the same number of vertices; on the other
hand, if 𝑛 is even, one part will have one more vertex of each vertex set than
the other part. Both cases are illustrated in Fig. B.4 — the edge {𝑣𝑀,𝑖 , 𝑣𝑁,𝑖} is
depicted in blue. For both cases, edge {𝑣𝑀,𝑖 , 𝑣𝑁,𝑖} divides the area such that one
part contains ⌊(𝑛 − 1/2)⌋ and the other ⌈(𝑛 − 1/2)⌉ vertices of each vertex set.
That means that edge {𝑣𝑀,𝑖 , 𝑣𝑁,𝑖} is crossed by ⌊(𝑛 − 1/2)⌋ ⌈(𝑛 − 1/2)⌉ edges
connecting ⌊(𝑛 − 1/2)⌋ ⌈ vertices of set 𝑀 in the first part to ⌈(𝑛 − 1/2)⌉ vertices
of set 𝑁 the second part, and the same number of edges connecting ⌊(𝑛 − 1/2)⌋
vertices of set 𝑁 in the first part to d⌈(𝑛 − 1/2)⌉ vertices of set 𝑀 in the second
part. From here follows the result of Eq. (B.10).

In order to estimate the number of necessary WOP (3D edges), we will use the
simplistic layout shown in Fig. B.2(a). It is suffcient to consider a drawing of 𝐾𝑚,𝑛
with all vertices placed on a closed boundary curve, since access waveguides do
not have any crossings. We construct a corresponding graph drawing by placing
all 𝑚 vertices of set 𝑀: 𝑣𝑀,1, 𝑣𝑀,2, ...𝑣𝑀,𝑚 on the 𝑥-axis of the 2D Cartesian
coordinate system in points 𝑥 = 1, 2, ..., 𝑚, see Fig. B.5(a) for an illustration of
the case of 𝐾4,4. Similarly, we place all 𝑛 vertices of set 𝑁: 𝑣𝑁,1, 𝑣𝑁,2, ...𝑣𝑁,𝑛
on the 𝑦-axis in points 𝑦 = 1, 2, ..., 𝑛. Finally, we connect all vertices of set 𝑀
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(b)(a) ,M iv

,N iv
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Figure B.4: Drawings of complete bipartite graphs 𝐾𝑛,𝑛 with all vertices placed on the closed
boundary curve (dashed circular line), and the vertices of two different sets being interleaved along the
boundary. Equation (B.10) gives the local crossing number of such drawing, which occurs along the
blue edges that divide the boundary area in two parts such that the number of vertices in both parts is
as much balanced as possible. (a) In case 𝑛 is odd (here: 𝑛 = 5), both parts contain the same number
of vertices. (b) In case 𝑛 is even (here: 𝑛 = 6), there is one more vertex of each vertex set in one part.

to all vertices of set 𝑁 by 𝑚𝑛 line segments. The boundary curve can be for
example a rectangle that is oriented along the 𝑥 and the 𝑦 axis, as depicted in green
in Fig. B.5(a). The total number of crossings is equivalent to the one given by
Eq. (B.5) — it takes four edges and one crossing to connect each possible pair of
vertices of set 𝑀 to each possible pair of vertices of set 𝑁 . In order to estimate the
number of necessary 3D edges, we first construct a spanning planar subgraph of
𝐾𝑚,𝑛, by connecting vertices 𝑣𝑀,1 and 𝑣𝑁,𝑛 to all vertices of the opposite vertex
sets, see Fig. B.5(b). This subgraph evidently has 𝑚 + 𝑛 − 1 edges, and the number
of missing edges is therefore equal to 𝑚𝑛 − (𝑚 + 𝑛 − 1) = (𝑚 − 1) (𝑛 − 1), which
leads to Eq. (B.8). These edges can be realized with help of 3D edges, illustrated
by dashed red lines in Fig. B.5(b).

Similarly to the case of surface coupled SAS described in Appendix B.2, if the
1 × 𝑛 and 𝑚 × 1 switches at the input and output ports are BT of 1 × 2 and 2 × 1
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Figure B.5: Different graph drawings of a simplistic model of a facet-coupled 4 × 4 and 5 × 4 SAS
circuit: (a) Graph drawing of a 4 × 4 SAS circuit where 1 × 4 and 4 × 1 switches at the input and
output ports are LE. (b) Planar-edge-crossing-free graph representation of the same circuit. The edges
depicted in blue represent a spanning planar subgraph of 𝐾4,4. The remaining edges are realized with
help of 3D edges (representing WOP) depicted as dashed red lines. The 3D edges connect to planar
edges depicted in black that connect to the vertices in the drawing plane. (c) If the 1 × 5 and 5 × 1
switches at the input and output ports are realized as BT of 1 × 2 and 2 × 1 switches, the number of
necessary 3D edges can be reduced by splitting the vertices of the original 𝐾4,4 and by placing them
into appropriate areas which are defined by the edges of the spanning planar subgraph (blue) and by the
𝑥 or 𝑦 coordinate axes. The white dashed squares represent 1 × 2 switches, while the filled gray circle
represents a 2 × 1 switch. This approach allows to replace two 3D edges by one. In case where both 𝑚
and 𝑛 are even, the number of missing edges is odd, therefore, one missing edge (here: {𝑣𝑁,3, 𝑣𝑀,4 })
must be realized with help of one single 3D edge. (d) Graph drawing of a 5 × 4 SAS circuit, analogous
to the case described in (c). In case at least one of the numbers 𝑚 or 𝑛 is odd, the number of 3D edges
can be reduced exactly 2 times compared to the case when 1× 𝑛 and𝑚× 1 switches are realized as LE.
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B.3 Facet-coupled SAS circuits

switches, the number of necessary 3D edges reduces. We will split the analysis
into two cases: when both 𝑚 and 𝑛 are even, and when at least one of them is odd.
If both are even, the analysis comprises the following steps:

Step 1: Construct a spanning planar subgraph of 𝐾𝑚,𝑛 as described above. Each
pair of vertices {𝑣𝑀,2, 𝑣𝑀,3}, {𝑣𝑀,4, 𝑣𝑀,5, ..., {𝑣𝑀,𝑚−2, 𝑣𝑀,𝑚−1}}, together with
vertex 𝑣𝑁,𝑛 defines one area, which is bounded by two edges between 𝑣𝑁,𝑛 and
the two vertices of set 𝑀 and a portion of the 𝑥-axis between the two vertices of
set 𝑀 . This is illustrated on an example of 𝐾4,4 in Fig. B.5(c).

Step 2: Put an auxiliary vertex 𝑣′
𝑁,1 inside the area defined by vertices {𝑣𝑀,2, 𝑣𝑀,3,

𝑣𝑁,𝑛}, see Fig. B.5(c). We can connect the auxiliary vertex 𝑣′
𝑁,1 and vertex 𝑣𝑁,1

by a 3D edge, and the same auxiliary vertex and vertices 𝑣𝑀,2 and 𝑣𝑀,2 by
planar edges. Similarly to the case of surface coupled SAS, we continue adding
auxiliary vertices 𝑣′

𝑁,2, 𝑣
′
𝑁,3, ..., 𝑣

′
𝑁,𝑛−1, to the same area until we connect all

vertices of set 𝑁 to 𝑣𝑀,2 and 𝑣𝑀,3. We then continue with the same procedure for
the following areas defined by groups of three vertices: {𝑣𝑀,4, 𝑣𝑀,5, 𝑣𝑁,𝑛}, ...,
{𝑣𝑀,𝑛−2, 𝑣𝑀,𝑛−1, 𝑣𝑁,𝑛}.

Step 3: In this fashion, we will connect all vertices of set 𝑀 to all vertices of set
𝑁 , except for vertex 𝑣𝑀,𝑚 that is connected only to 𝑣𝑁,𝑛. However, each of the
following pairs of vertices {𝑣𝑁,1, 𝑣𝑁,2, ..., {𝑣𝑁,𝑛−3, 𝑣𝑁,𝑛−2} ,together with vertex
𝑣𝑀,1 define one area bounded by two edges (between 𝑣𝑀,1 and the two vertices
of set 𝑁) and a portion of the 𝑦-axis between the two vertices of set 𝑁 . In each
of these areas, we can place one auxiliary vertex: 𝑣′

𝑀,𝑚
, 𝑣′′
𝑀,𝑚

, 𝑣′′′
𝑀,𝑚

, ... Each
of these auxiliary vertices can be connected to 𝑣𝑀,𝑚 by a 3D edge, and to the
respective pair of vertices of set 𝑁 that define the area in which the auxiliary vertex
is placed by two planar edges. After this step, there will be only one missing edge
between vertices 𝑣𝑀,𝑚 and 𝑣𝑁,𝑛−1, and we directly connect these two vertices by
a single 3D edge, see Fig. B.5(c).

In case when at least one of the numbers 𝑚 and 𝑛 is odd, we can assume without
loss of generality that 𝑚 is odd, and 𝑛 is even. By executing Step 1 as described
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B Graph theory and switch-and-select circuits

above, we will get a subgraph where each of the pairs of vertices {𝑣𝑀,2, 𝑣𝑀,3},
{𝑣𝑀,4, 𝑣𝑀,5}, ..., {𝑣𝑀,𝑚−1, 𝑣𝑀,𝑚}, together with vertex 𝑣𝑁,𝑛 defines one area
bounded by two edges (between 𝑣𝑁,𝑛 and the two vertices of set 𝑀) and a portion
of the 𝑥-axis between the two vertices of set 𝑀. After performing Step 2 as
described above, we will connect all vertices of set 𝑀 to all vertices of set 𝑁 . This
case is illustrated on an example of 𝐾5,4 in Fig. B.5(d). For at least one of the
numbers 𝑚 and 𝑛 being odd, the number of missing edges is even, and we can
replace two missing planar edges by one 3D edge. Combining the two cases leads
to Eq. (B.9).

[end of appendices of publication [J3]]
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C.1 Methods

Simulations
For the simulations shown in Fig. 5.2, the 3D structure of the PBS was modeled
using a commercially available 3D numerical time-domain solver (CST Microwave
Studio [154]), which is based on the finite integration technique [95]. The final
design of the PBS was the result of a manual optimization based on several
parameter sweeps.
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C 3D-printed PBS: Details on polarization extinction ratio (PER) and data transmission experiment

Fabrication
All 3D-printed structures were fabricated using a home-built two-photon lithogra-
phy system equipped with a 63× microscope objective lens (numerical aperture
1.4, field number 25 mm) and galvanometer mirrors for rapid beam movement
in the lateral directions. As a lithography light source, we use a fs-laser with a
pulse length of less than 80 fs (C-Fiber 780 Femtosecond Fiber Laser, Menlo)
and a repetition rate of 100 MHz. The lithography system is equipped with a
dedicated control software that allows for precise localization of the optical fiber
core as well as for automated fabrication of the PBS with high shape fidelity. The
system is equipped with a confocal imaging unit using the lithography laser and
its beam deflectors for the acquisition of 3D images that are perfectly aligned to
the lithography coordinate system and hence to any lithographically fabricated
structures. For confocal imaging, the laser power is reduced to avoid any unwanted
polymerization in the photoresist. In our current experiments, we use standard
writing techniques without taking any measures for process acceleration, leading to
fabrication times of typically 5 min per PBS/PR, including the massive mechanical
support structures. The fabrication time of the PBS/PR (including mode-field
adapters) is below 1 min. Currently, the exposure time is dominated by the slow
exposure speed, chosen to achieve the best shape accuracy. In the lithography
process, the liquid negative-tone photoresist (Nanoscribe IP-Dip, refractive index
𝑛 = 1.52 at 780 nm, unexposed; see also [155]) simultaneously acts as an immer-
sion medium for the objective lens. Unexposed photoresist is removed in a two-step
development process using propylene-glycol-methyl-ether-acetate (PGMEA) as a
developer for 20 min, followed by rinsing in isopropyl alcohol (2-propanol).

Trajectory planning and fiber-to-PBS interface
For the polarization rotators and the output waveguides, careful planning of the
3D trajectory is important to ensure efficient coupling between the PBS and other
optical structures. To this end, we use a parametrized trajectory and optimize
it for low curvature and hence low radiation loss. Along this trajectory, the
waveguide cross-section is extruded to form a 3D model of the structure that is
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then lithographically fabricated. Low-loss coupling between PBS and the standard
single-mode fiber (Corning SMF-28) at its input is achieved by a taper-like mode-
field adapter, designed for a mode-field diameter (MFD) of (10.3 ± 0.4) μm at
1550 nm at the fiber side. The MFD is defined as the diameter at which the intensity
has dropped to 1/𝑒2 of its maximum value measured in the center of the fiber
core. The methods are derived from the photonic wire bonding process, details on
which can be found in [13].

Characterization using an IR microscope
For characterization of the 3D-printed PBS in Fig. 5.3, we use an IR camera
(Goldeye G-032 SWIR, Allied Vision) attached to a microscope (DMRXA with
a variable zoom unit DMRD, Leica/Leitz) that is equipped with an IR objective
(LMPlan IR 100 × /0.80NA, Olympus). An optional rotatable linear polarizer
(LPIREA100-C, Thorlabs, PER > 34 dB at 1550 nm) can be inserted into the
infinity-optical beam path of the microscope. Laser light generated by a tunable
external-cavity laser (IQS-2600B, EXFO) is injected into the SMF, and the
polarization is adjusted by a standard fiber-based polarization controller. Each
acquired image is corrected for the background signal that is seen with the laser
turned off.

Polarization extinction ratio measurement
The Stokes vector response shown in Fig.5.4(c) is measuredby an optical component
analyzer (Keysight N7788B), which comprises an integrated fast polarization
controller and a polarimeter. The polarization controller randomly scrambles
the state of polarization, thereby uniformly covering the whole Poincaré sphere.
The polarization state and the power at the output of the PBS structure are
measured simultaneously by the polarimeter. The PER can be extracted from
these measurements, see Appendix C.3 for details. The PER is measured at seven
discrete wavelengths between 1270 nm and 1620 nm, using three different tunable
laser sources (Ando AQ321D, TUNICS-T1005HP, Agilent 81600B).
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Data transmission experiment
In our data transmission experiments, we used four output channels from an AWG
(Keysight M8196A) to generate the drive signals for the dual-polarization IQ
modulator, see Appendix C.4 for a sketch of the underlying experimental setup.
The signals are derived from random bit patterns with different seeds, such that
each polarization carries uncorrelated data, and are pre-distorted to compensate
for the measured frequency response of the transmitter. After transmitter, band-
limited amplified spontaneous-emission (ASE) noise is generated by an ASE
source (Orion Laser Technology ASE-C/CL) and added to the signal to vary its
optical signal-to-noise ratio (OSNR). The signal is then fed to the receiver, which
comprises an erbium-doped fiber amplifier (EDFA) followed by a bandpass filter
(full width at half maximum 1 nm) to suppress out-of-band amplified spontaneous
emission (ASE) noise. After the preamplifier, the signal is fed to the 3D-printed
PBS/PR, where the two orthogonal polarization states are split and rotated to an
identical direction. The two partial signals are then detected using a coherent
heterodyne scheme, where the optical local oscillator tone (LO, Keysight N7714A)
is placed at the edge of the signal spectrum and where two balanced photodiodes
(Finisar BPDV2150RQ) remove both signal-signal and LO-LO interference, see
Appendix C.4 for details. The outputs of the photodiodes are digitized by a
256 GSa/s real-time oscilloscope (Keysight UXR1004A) and recorded for offline
digital signal processing (DSP). In a first DSP step, the signals are shifted in
frequency by the difference between the carrier and the LO tone. This is followed
by timing recovery, equalization, and carrier recovery. Finally, the signals go
through a least-mean-square equalizer and are finally decoded.

C.2 Scattering parameters, Jones matrix, and PER

Figure 5.2(c) of Chapter 5 gives quantitative information on the PBS performance
in terms of transmission, crosstalk, leakage, unfilterable crosstalk, and PER. The
first four parameters are directly extracted from the corresponding elements of the
scattering matrix, as indicated in Fig. 5.2(c) and in Chapter 5. For calculating the
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PER, we use the ratio of the squares of the singular values of the simulated Jones
matrices of the PBS [156]. The Jones matrix associated with a certain output port
describes the propagation of light from the PBS input port to this output ports.
In the following, the Jones matrix associated with output port 𝐻 is denoted as
TPBS,𝐻 , while TPBS,𝑉 refers to output port 𝑉 . The Jones vectors at the input port

is J𝐼 =
[
𝐸

(𝐼)
𝐻

𝐸
(𝐼)
𝑉

]T
, while the Jones vectors at the output ports 𝐻 and 𝑉 are

J𝐻 =

[
𝐸

(𝐻)
𝐻

𝐸
(𝐻)
𝑉

]T
and J𝑉 =

[
𝐸

(𝑉)
𝐻

𝐸
(𝑉)
𝑉

]T
. The Jones-matrix elements can

be directly taken from the scattering matrix, such that the relations J𝐻 = TPBS,𝐻J𝐼
and J𝑉 = TPBS,𝑉J𝐼 between the Jones vectors and the input and at the output can
be written as [
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The PER is then calculated as the ratio of the squares of the singular values 𝑠1 and
𝑠2 of the corresponding Jones matrices [156],

PER =
𝑠21

(
TPBS,𝐻

)
𝑠22

(
TPBS,𝐻

) =
𝑠21

(
TPBS,𝑉

)
𝑠22

(
TPBS,𝑉

) , (C.3)

where 𝑠1 ≥ 𝑠2 without loss of generality.

C.3 Measurement of the PER

The PER of an optical device is generally defined as the ratio of maximum to
minimum output power 𝑃out that can be found when varying the input polarization
over all possible states. In our experiments, the input polarization states were
sampled randomly, and a straightforward way of calculating the PER is taking
the ratio of the maximum to the minimum recorded output power. However, this
approach takes into account only two measured power levels, which bears the
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risk that the result is subject to noise and could lead to an overestimated PER. In
addition, there is no guarantee that the sampled input states will fall close enough
to the states of minimum and maximum transmitted power.

We therefore implemented a PER evaluation technique that considers all power
levels recorded for the various input polarization states and relies on fitting a
theoretical curve to the full set of measurement data. The experimental setup is
described in more detail in, Fig. C.1(a). To explain this technique, we consider only
one output port of the 3D-printed polarization-beam- splitter/polarization-rotator
combination (PBS/PR) — the other output port can be treated in an analogous
way. For simplicity, we further assume that the maximum power transmission for
the considered port occurs for a perfectly horizontal (𝑥-polarized) polarization
at both the input and the output of the PBS/PR, characterized by Stokes vectors
sin,pass = sout,pass = [1 0 0]T. Note, however, that the input port can only be
accessed through an optical fiber that is connected to the polarization scrambler,
and that the measurement of the power and the polarization state at the PBS/PR
output requires a second optical fiber leading to the polarization analyzer. In the
following, we assume fully polarized light such that we can use either Stokes or
Jones calculus, as appropriate. We describe the input fiber between the polarization
scrambler and the PBS/PR by a Jones matrix U, whereas the output fiber is
described by a Jones matrix U, see Fig. C.1(a). For a given polarization state with
Jones vector Jscr emitted by the polarization scrambler, the Jones vector of the
polarization state Jan received by the polarization analyzer can then be written as

Jan = VTPBSUJscr, (C.4)

where TPBS corresponds to the Jones matrix of the non-ideal PBS/PR, and where
the Jones matrices U and V of the input fiber and the output fiber can be assumed
to be unitary, see Fig. C.1(a). The light at the PBS/PR input can be expressed
by an input Jones vector Jin = UJscr, which is characterized by an angle 𝛼in that
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Figure C.1: Measurement and evaluation of the polarization extinction ratio (PER) of the 3D-printed
polarization-beam-splitter/polarization-rotator combination (PBS/PR), taking into account the full set
of measured output powers and polarization states. (a) Experimental setup: The 3D-printed PBS/PR is
fed through a standard single-mode fiber (SMF) by light emitted from a polarization scrambler, and the
output power and the output polarization state are measured by a polarization analyzer connected to
the PBS/PR by a second SMF. Jscr, Jin, Jout, and Jan denote the Jones vectors and the output of the
polarization scrambler, the input and the output of the PBS/PR, and at the input of the polarization
analyzer, while sscr, sin, sout, and san denote the corresponding Stokes vectors. The non-ideal PBS/PR
is modeled by a Jones matrix TPBS, while the two SMF at the input and the output side of the PBS/PR
are represented by two unitary Jones matrices𝑈 and 𝑉 , respectively. (b) Illustration of the Stokes
vectors recorded by the polarization analyzer. Since we assume fully polarized light, all Stokes vectors
are on the surface of the Poincaré sphere. The output power should be the same for all polarization
states that are located on a circle which is centered about the state of maximum transmission. The
radius of this circle is quantified by the opening angle 𝛿 of the associated cone. (c) Normalized output
power 𝑃out vs. angle 𝛿, as recorded for the data point for Output I at a wavelength of 1460 nm, see
Fig. 5.4(d) of the main manuscript. By fitting a model function (red) to the measurement data (blue),
we extract a field leakage of Y = 0.1635, corresponding to a PER of 15.7 dB.

defines the ratio of the field amplitudes in the two polarizations and by a phase
difference 𝜑 between the 𝑥- and the 𝑦-component,

Jin = |𝐸in |
[
cos (𝛼in)𝑒−j𝜑/2 sin (𝛼in)𝑒+j𝜑/2

]
. (C.5)
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In this relation, |𝐸in | denotes the magnitude of the electric field that is associated
with the signal at the input of the 3D-printed PBS/PR — the corresponding power
is denoted by 𝑃in ∼ |𝐸in |2. For the PBS/PR, we assume a simplified Jones matrix
TPBS that corresponds to that of a non-ideal linear polarizer oriented along the
𝑥-direction,

TPBS =

[
1 0
0 Y

]
, (C.6)

where Y, 0 ≤ Y ≤ 1, is the magnitude of the polarization leakage. The corre-
sponding PER is then found as the ratio of the squares of the singular values of
TPBS [156]

PER =
1
Y2 . (C.7)

Note that the model for the Jones matrix according to Eq. C.6 represents an
approximation: The Jones matrices TPBS,𝐻 and TPBS,𝑉 that are obtained from
our simulations, Eqs. C.1 and C.2, do have non-zero off-diagonal elements and
are generally not Hermitian. As a consequence, transformation into a diagonal
matrix as assumed in Eq. C.6 is not generally possible. Still, the magnitudes of the
off-diagonal elements are small such that the associated error should not be severe,
see discussion below.

Using the Jones-matrix model according to Eq. C.6, the relation between a given
polarization state, Jin at the input of the PBS/PR and the corresponding output
state Jout can be written as

Jout = TPBSJin =

[
1 0
0 Y

]
·
[
cos (𝛼in) 𝑒−j𝜑/2

sin (𝛼in) 𝑒+j𝜑/2

]
. (C.8)

We can now express the ratio of the power 𝑃out at the output of the PBS/PR to the
input power 𝑃out in terms of the magnitude of the polarization leakage Y and the
angle 𝛼in,

𝑃out
𝑃in

=
|𝐸out |2

|𝐸in |2
= |Jout |2 = cos2 (𝛼in) + Y2 sin (𝛼in)2, (C.9)
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where |𝐸out | is the magnitude of the electric field at the PBS/PR output. As
expected, Eq. C.9 does not depend on the phase difference 𝜑.

Note that the angle 𝛼in and thus the expression for the output power are related
to the Jones vector at the output of the PBS/PR, which cannot be accessed in
the measurement. To establish a relationship to the known polarization state
Jan at the input of the polarization analyzer, we proceed in two steps. First,
we switch to Stokes space and we find a relationship that connects the angle
𝛼in and the magnitude of the polarization leakage 𝜖 in Eq. C.8 to the angle 𝛿
between the actual Stokes vector sout at the PBS/PR output and the stokes vector
sout,pass = [1 0 0]T that corresponds to maximum transmission. To this end, we
first calculate sout =

[
𝑠out,1 𝑠out,2 𝑠out,3

]T from the components of vector Jout using
Eqs. (6.1–9a)–(6.1–9d) in [69]. The angle 𝛿 ∈ [0, 𝜋] between the measured Stokes
vector 𝑠out and output Stokes vector 𝑠out,pass = [1 0 0] of maximum transmission
can then be calculated as

cos (𝛿) = sout · sref = 𝑠𝑜𝑢𝑡,1 =
cos2 (𝛼in) − Y2 sin (𝛼in)2

cos2 (𝛼in) + Y2 sin (𝛼in)2 , (C.10)

which can be simplified to

tan
(
𝛿

2

)
= Y tan (𝛼in) . (C.11)

In a second step, we account for the propagation of the signal from the PBS/PR
output to the polarization analyzer. To this end, we exploit the fact that the
corresponding Jones vectors Jout and Jan are related by a unitary transformation
that is described by the Jones matrix V. In Stokes space, this transformation
simply corresponds to a rotation about the origin, which leaves the relative angle 𝛿
between the measured Stokes vectors sout and sout,pass unchanged. In other words:
For a given polarization leakage magnitude Y, the output power 𝑃out should be the
same for all polarization states that are located on a circle on the surface of the
Poincaré sphere which is centered about sout,pass, see Fig. C.1(b). We may thus
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extract this angle directly from the polarization states recorded at the polarization
analyzer, where sout,pass corresponds to polarization state for which the highest
output power was measured. We then use Eq. C.11 with Y as a parameter to extract
𝛼in and predict the dependence of the power 𝑃out on 𝛿 via Eq. C.9, assuming
constant 𝑃in. We finally vary the magnitude of the polarization leakage Y to find
best coincidence between the measured 𝛿-dependence of 𝑃out and the associated
model prediction, see Fig. C.1(c). Equation C.7 then allows us to calculate the
PER for this value of Y.

We show the results of this technique in Fig. C.1(c) for the highest PER that we
measured in the context of the wavelength sweep, i.e., for Output I at a wavelength
of 1460 nm, see Fig. 5.4(d). From the least-squares model fit shown in Fig. C.1(c),
we estimate a field leakage Y of 0.1635, corresponding to a PER of 15.7 dB. To
check the validity of the approach, we also extract the PER by simply taking the
ratio of the maximum and the minimum transmitted power, which leads to value of
16.1 dB. This confirms the validity of our approach, in particular with respect to the
simplified model for the Jones matrix according to Eq. C.6. The result is also in line
with the expectation that the PER extracted from the ratio of the maximum and the
minimum transmitted power might be slightly overestimated due to measurement
noise. We further checked the impact of neglecting the off-diagonal Jones-matrix
elements in Eq. C.6 by simulations. To this end, we omit the elements 𝑆

𝐸
(𝐻)
𝐻

𝐸
(𝐼)
𝑉

,
𝑆
𝐸

(𝐻)
𝑉

𝐸
(𝐼)
𝐻

, 𝑆
𝐸

(𝑉 )
𝐻

𝐸
(𝐼)
𝑉

, and 𝑆
𝐸

(𝑉 )
𝑉

𝐸
(𝐼)
𝐻

of the simulated Jones matrices according to
Eq. C.1 and C.2 and then extract the PER via Eq. C.7. The resulting PER is then
compared to the one extracted from the singular values of the full Jones matrices,
see Fig. C.3. We find that omitting the off-diagonal Jones-matrix elements leads
to a slight reduction of the extracted PER, and we conclude that the simplification
related to Eq. C.6 does not bear the risk to overestimate the PER in our experiments.
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Figure C.2: Comparison of PER extracted from the simulated Jones matrices without any off-diagonal
elements according to the simplified model in Eq. (S6) (dashed black lines) and the PER extracted
from the full Jones matrix (solid black line). The device is the same as the one described by Fig. 5.2(c)
of Chapter 5. For better comparison, we also give the transmission, the crosstalk, the leakage, and the
unfilterable crosstalk of the device — they are identical to the curves in Fig. 5.2(c) of Chapter 5.

C.4 Data transmission experiment

The setup used for data transmission experiment is depicted in Fig. C.3. A dual-
polarization (DP) IQ modulator is driven by 16QAM signals at a symbol rate
of 80 GBd. The drive signals are generated by a high-speed arbitrary waveform
generator (AWG, Keysight M8194A 120 GSa/s) using random bit sequences
with different seeds for each polarization. The optical carrier at a wavelength
of 1550 nm is extracted from an external-cavity laser (ECL, Keysight N7714A).
Root-raised-cosine pulse shaping at a roll-off factor of 𝛽 = 0.1 is used for improved
spectral efficiency. The signal is then sent to the receiver setup. For the OSNR
sweep, band-limited amplified-stimulated emission (ASE, Orion Laser Technology
ASE-C/CL) noise is added to the optical signal (ASE noise loading). The signal
is then amplified by an EDFA, filtered by a bandpass filter (BPF, full width at
half maximum 1 nm) to suppress out-of-band amplified ASE noise, and sent to
the PBS, which may be either a 3D-printed PBS/PR assembly or a commercial
fiber-based PBS that we use as a reference. After the PBS, each polarization
is detected using a coherent heterodyne scheme, where the local oscillator (LO,
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Keysight N7714A)) is placed at the edge of the signal, see Inset 1 of Fig. C.3. Two
balanced photodetectors (BPD, Finisar BPDV2150RQ) are used to suppress both
signal-signal and LO-LO mixing products. The outputs of the BPD are digitized
by a 256 GSa/s real-time oscilloscope (Keysight UXR1004A) and recorded for
offline digital signal processing (DSP). In a first DSP step, the signals are made
analytic and are shifted in frequency by the difference between the carrier and
the LO. This is followed by timing recovery, equalization, and carrier recovery.
Finally, the signals go through a least-mean-square equalizer and are decoded.
To benchmark the performance of the PBS/PR assembly, the experiment is also
performed with a commercially available PBS (AFW Technologies POBS-15).
Since the commercially available PBS exhibits less insertion loss than the PBS/PR-
fanout assembly, we adjust the amplification of the EDFA to obtain equal powers
at the inputs of the BPD in both cases.

DP-IQ

AWG

50/50

EDFA

ASE

VOA 50/50

PC

PBS

LO laser

Tx laser 

50/50

50/50

Transmitter

ASE noise loading

Receiver

BPF

BPF

PC

BPD

BPD

Oscilloscope

fc

(f )c

(f )LO

1

fLO

Figure C.3: Data transmission setup: The carrier at _ = 1550 nm is modulated by a dual polarization
IQ (DP-IQ) modulator that is driven by an arbitrary waveform generator (AWG) to generate a 16QAM
PDM signal at 80 GBd. The band-limited amplified spontaneous emission (ASE) source generates a
noise signal, whose power is varied by the variable optical attenuator (VOA), and added to the 16QAM
signal. This sum of two signals is amplified by an EDFA, filtered by a bandpass filter (BPF). and guided
to the PBS input in the receiver block. A local oscillator (LO) signal is split, and the two split signals
are polarization controlled by two polarization controllers (PC) and added to the two split signals from
the two outputs of the PBS. The two interfered signals are led to two balanced photodetectors (BPD)
and detected by a high-speed oscilloscope. Inset 1 illustrates the spectrum at the BPD inputs, with the
LO placed at the edge of the signal spectrum.

[end of the content based on methods and supplementary information of manuscript
[J2]]
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D Glossary

D.1 List of abbreviations

16QAM 16-state quadrature amplitude modulation

32QAM 32-state quadrature amplitude modulation

64QAM 64-state quadrature amplitude modulation

ASE Amplified spontaneous emission

AWG Arbitrary waveform generator

BER Bit-error ratio

BOX Buried oxide

BPD Balanced photodetector

BPF Bandpass filter

BPM Beam propagation method

BT Binary tree

CMOS Complementary metal-oxide-semiconductor

CMP Chemical mechanical planarization

CST MWS® Computer Simulation Technology Microwave Studio [154]

CVD Chemical vapor deposition

CS Current source

CW Continuous wave

DSP Digital signal processing

ECL External-cavity laser
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EIC Electronic integrated circuit

EDFA Erbium-doped fiber amplifier

FDTD Finite-difference-time-domain

FIT Finite integration technique

FMA Fundamental mode approximation

GC Grating coupler

HD-FEC Hard-decision forward-error correction

IL Insertion loss

IQ In-phase and quadrature

IR Infra-red(-sensitive)

LE Lumped element

LO Local oscillator

MCW Multi-contact probe wedge

MFD Mode-field diameter

MMI Multi-mode-interference (coupler)

MZI Mach-Zehnder interferometer

NP Nondeterministic polynomial

OPM Optical power meter

OSA Optical spectrum analyzer

OSNR Optical signal-to-noise (power) ratio

PBS Polarization beam splitter

PC Polarization controller

PCB Printed circuit board

PDM Polarization-division multiplexing

PER Polarization extinction ratio

PF Polarizing filter
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D.1 List of abbreviations

PGMEA Propylene-glycol-methyl-ether-acetate

PIC Photonic integrated circuit

PR Polarization rotator

PWB Photonic wire bond

RMF Rotation minimizing frame

RMS Root mean square

S Scattering

SAS Switch-and-select

SEM Scanning electron microscopy

SiN Silicon-nitride

SiP Silicon photonic(s)

SMF Single-mode fiber

SNR Signal-to-noise (power) ratio

SOH Silicon-organic hybrid

SOI Silicon-on-insulator

SWG Sub-wavelength grating

STED Stimulated-emission-depletion

TE Transverse-electric

TIR Total internal reflection

TLS Tunable laser source

TM Transverse-magnetic

TO Transformation-optics

UV Ultraviolet

WG Waveguide

WGX Waveguide crossing

WOP Waveguide overpass
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D Glossary

D.2 List of symbols

D.2.1 Greek symbols

𝛽 Roll-off factor

[ Maximum number of crossings along any optical path

Δ Difference

𝛿 Angle to the preferable polarization on the Poincaré sphere

Y Dielectric permittivity

𝛆 Dielectric permittivity tensor

_ Wavelength

` (1) Minimum number of WOP; (2) Magnetic permeability

𝛍 Magnetic permeability tensor

b Minimum number of waveguide crossings required to realize a PIC

𝜋 Archimedes’ constant

𝜑 (1) Phase shift; (2) Phase difference

𝜒 Direction of the polarization ellipse

𝜔 Angular frequency

D.2.2 Latin symbols

𝐴 Transmission of a phase shifter

cr (𝐺) Crossing number of a graph

cr∗ (𝐺) Outerplanar crossing number of a graph

𝐸 Set of edges of a graph

𝐸 Complex electric field
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e The base of the natural logarithm

𝑓 Frequency

𝐺 Graph

ℎ Height

𝑖 Integer

J (1) Jacobian matrix; (2) Jones vector

j Imaginary unit

𝑗 Integer

𝐾𝑚,𝑛 Complete bipartite graph

𝐾𝑛 Complete graph

lcr (𝐺) Local crossing number of a graph drawing

𝑚 Integer

𝑀 Set of vertices of a graph

𝑛 (1) Refractive index; (2) Integer

𝑁 Set of vertices of a graph

𝑃 Power

𝑄 Quality factor

𝑅 Roll angle

𝑟 Position (radius) vector

𝑠 Singular value of a Jones matrix

s Stokes three-vector

S Stokes vector

T Tangent vector (of the RMF)

T (1) Transfer matrix; (2) Jones matrix

U Vector of the RMF

𝑣 Vertex of a graph
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V Vector of the RMF

𝑤 Width
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