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It was recently shown that a powerful beam of radio/microwave radiation sent out to space can produce
detectable backscattering via the stimulated decay of ambient axion dark matter. This echo is a faint and
narrow signal centered at an angular frequency close to half the axion mass. In this article, we provide a
detailed analytical and numerical analysis of this signal, considering the effects of the axion velocity
distribution as well as the outgoing beam shape. In agreement with the original proposal, we find that the
divergence of the outgoing beam does not affect the echo signal, which is only constrained by the axion
velocity distribution. Moreover, our findings are relevant for the optimization of the experimental
parameters in order to attain maximal signal-to-noise ratio or minimal energy consumption.
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I. INTRODUCTION

The identity of dark matter is one of the biggest puzzles
in modern science. The QCD axion [1–3] as well as
axionlike particles [4] are leading candidates for its
fundamental composition [5–8]. Under this assumption,
several experimental efforts are being carried out. See
Refs. [9,10] for recent reviews. Most of these experiments
are based on the axion to two photons vertex [11] described
by the interaction term gaFμνF̃μν, where a is the axion
field, Fμν is the photon field strength tensor, and g is the
coupling constant. One significant feature of this interac-
tion is that the axion decay rate can be dramatically
enhanced by the presence of a background of photons
with energy close to half the axion mass. This axion
stimulated decay is a Bose-enhancement effect, which is
intrinsical of Bose statistics. The topic has been thoroughly
discussed in the recent years [12–18]. One peculiarity of the
stimulated decay is that the produced photons are con-
strained to propagate along the incident photon path in the
axion rest frame. From the decay of a single axion, one
produced photon adds to the incident one, while the other is
ejected in the opposite direction. This backward radiation
was studied in Ref. [19] and baptized as the “axion dark
matter echo.” Its physical effects were estimated, getting
promising results for axion dark matter searches. To be

more specific, the authors propose to send out to space a
powerful beam of radio or microwave radiation and to
detect the echo at a spot located nearby the emitter using
current radio astronomy technology. A very similar idea
was recently implemented in the case of extragalactic radio
sources [20].
In Ref. [19], it was claimed that, in the axion rest frame,

the echo wave has the same spatial shape as the outgoing
beam. The important consequence is that in such a case the
echo returns exactly at the emission spot, implying that the
echo signal does not depend on the beam shape. On the other
hand, a realistic velocity distribution of the local axion flow
makes the echo spread in space, weakening any signal
collected by limited size detectors. Despite this, it was found
that the signal is strong enough to pursue this idea.
This paper presents an in-depth analysis of the echo

signal using the Green’s function method. This approach
allows a detailed joint examination of the role of the
outgoing beam shape and the axion velocity distribution.
As claimed in Ref. [19], we confirm that a divergent shape
of the outgoing beam does not affect the echo signal at all.
Concerning the effects of the local axion velocity distri-
bution, our findings agree with those estimated in Ref. [19]
as well.
This article is structured as follows. In Sec. II, we first

compute the total energy and power of the echo in general
terms. Then, we highlight the role of the local axion
velocity distribution by a naive estimation of the echo
intensity at the emission spot. To do so, we use the
particular case of a beam emitted by a parabolic antenna
in the far-field zone limit, where analytical expressions are
known. It also allows us to confirm the null effect from the
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divergent shape of the beam. The subsequent sections are
devoted to the computation of the echo intensity as a
function of space-time coordinates. In Sec. III, we use a
one-dimensional framework as an illustrative example,
while in Sec. IV, we establish the mechanism to address
the three-dimensional analysis using the Green’s function
method in the paraxial limit. In Sec. V, we put this
machinery at work assuming a paraxial Gaussian beam,
similar to that of a laser, which is an excellent approxi-
mation of the one produced by a parabolic antenna in its
far-field zone limit. We give an analytical description of the
effects of the axion velocity distribution on the echo
intensity. In Sec. VI, we perform numerical computations
to get the intensity map and the power spectrum of the echo
in the isothermal sphere and caustic ring models for the
dark matter halo. Finally, in Sec. VII, we estimate the
expected sensitivity of the proposed experiment, while in
Sec. VIII, we summarize and conclude.

II. MAIN FEATURES OF THE ECHO SIGNAL

The first step of our discussion is to highlight, in a simple
manner, the main properties of the echo signal. We will first
compute the energy and power stored in the echo wave.
Although the method used here has the advantage of not
requiring the knowledge of the explicit form of the out-
going beam, it only provides formulas for the total energy
and power of the echo, saying nothing about how these are
distributed in space.
In the second part, we will partially fill the deficiencies of

our first method by describing the behavior of the echo
signal at the emission spot x⃗ ≃ 0. To do so, we take, for the
outgoing beam, the explicit form of a beam emitted by a
parabolic dish antenna. Then, assuming that most of the
echo comes from the far-field zone of the beam, we
calculate the echo field and intensity for x⃗ → 0, using
the Green’s function method. Although this analysis is
limited, it gives us some idea of what the intensity looks
like. In particular, it explicitly shows the role of the axion
velocity distribution and reveals the null effect from the
beam divergence.
We would also like to remark that, even though this

section only covers a rough characterization of the echo,
much of the notation defined here will be used in the
subsequent sections.

A. Energy and power of the echo

The differential equation for the electromagnetic vector
potential A⃗ðxÞ with an axion background field aðxÞ is
given by

ð∂2
t −∇2ÞA⃗ ¼ −g∂ta∇⃗ × A⃗; ð2:1Þ

where the Coulomb gauge ∇⃗ · A⃗ ¼ 0 has been chosen. We
have also neglected terms containing gradients of a. This is

justified by the assumption of a nonrelativistic axion
background, meaning that the axion momentum p is much
smaller than its mass m. From now on, we will always
ignore this kind of contributions. For the time being, let us
just consider one axion momentum mode with energy
density ρðp⃗Þ. The axion field can be written as

apðt; x⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp⃗Þp
Ep

sinðEpt − p⃗ · x⃗Þ; ð2:2Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. As Ep ¼ mþOðp2Þ, we will use

Ep ≈m throughout this article. Let us study the first order
perturbative correction that the axion background produces
over an incident electromagnetic wave. If the incident wave

has a vector potential A⃗ð0Þ, the first order correction A⃗ð1Þ is
determined by

ð∂2
t −∇2ÞA⃗ð1Þ ¼ −g∂ta∇⃗ × A⃗ð0Þ: ð2:3Þ

Let us expand the source field A⃗ð0Þ as well as the correction
A⃗ð1Þ in Fourier modes as

A⃗ð0Þðt; x⃗Þ ¼
Z

d3k
ð2πÞ3 êA0ðk⃗Þe−iðωðkÞt−k⃗·x⃗Þ ð2:4Þ

A⃗ð1Þðt; x⃗Þ ¼
Z

d3k
ð2πÞ3 k̂ × êAð1Þðt; k⃗Þeik⃗·x⃗: ð2:5Þ

We omit the complex conjugate symbol c.c. for every
expression of the axion and electromagnetic fields. Its
contribution will be assumed by default. Above, we have
assumed an incident field linearly polarized in the direction
ê. Að1Þ is polarized necessarily in the direction k̂ × ê, except
for small corrections of the order of p. We have also
defined ωðkÞ≡ jk⃗j. Keeping only terms relevant to the
stimulated axion decay, i.e., the photon momentum modes
k⃗ and q⃗ ¼ p⃗ − k⃗, Eq. (2.3) becomes

ð∂2
t þ ωðqÞ2ÞAð1Þðt; q⃗Þ

¼ −ig

ffiffiffiffiffiffiffiffiffiffi
ρðp⃗Þ
2

r
ωðkÞA0ðk⃗Þ�e−iðm−ωðkÞÞt: ð2:6Þ

By looking at the source term of the above equation, we see
that when m > ωðkÞ, the solution describes a wave which
travels backward with respect to the incident one. We call it
the echo wave. The echo wave is excited when ωðqÞ is
equal or very close to m − ωðkÞ, i.e., when ωðkÞ ≈m=2.
Now, we look for a resonant solution using the ansatz
Að1Þðt; q⃗Þ ¼ Aðt; q⃗Þe−iωðqÞt where Aðt; q⃗Þ varies slowly in
time with respect to Að1Þðt; q⃗Þ. Neglecting second deriva-
tives in Eq. (2.6), we get
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∂tAðt; q⃗Þ ¼ g
2

ffiffiffiffiffiffiffiffiffiffi
ρðp⃗Þ
2

r
A0ðk⃗Þ�ei ϵðk⃗;p⃗Þt; ð2:7Þ

where

ϵðk⃗; p⃗Þ ¼ ωðkÞ þ ωðjp⃗ − k⃗jÞ −m: ð2:8Þ

Solving (2.7) with the initial condition Að0; q⃗Þ ¼ 0, we
obtain

Aðt;q⃗Þ¼g
2

ffiffiffiffiffiffiffiffiffiffi
ρðp⃗Þ
2

r
A0ðk⃗Þ�eiϵðk⃗;p⃗Þt

�
sinðϵðk⃗;p⃗Þt=2Þ

ϵðk⃗;p⃗Þ=2

�
: ð2:9Þ

In the limit ϵt ≫ 1, we can substitute sinðϵt=2Þ=ϵ → πδðϵÞ
in Eq. (2.9). Integrating over all axion momentum modes,
we obtain the energy of the echo as

U ¼ π

4
g2t

Z
d3p

∂3ρ

∂p3

Z
d3k

∂3U0

∂k3 δðϵðk⃗; p⃗ÞÞ; ð2:10Þ

where U0 is the energy of the outgoing beam. In our
nonrelativistic limit, ϵ ≈ 2ωðkÞ −m − pk, where pk is the

component of p⃗ in the direction of k⃗. Assuming that the
incident beam propagates mostly in a preferred direction,
the directions of k⃗ and p⃗k are fixed, so

U ¼ π

4
g2t

Z
dpk

∂ρ
∂pk

Z
dω

∂U0

∂ω δðϵðω; pkÞÞ: ð2:11Þ

Let us perform the integral (2.11) in two scenarios: when
the bandwidth of the beam δω is much bigger than the
bandwidth of the axion δp and in the opposite case. For
δω ≫ δp, the axion distribution can be considered as if it
were condensed at a single value p̄k. We then approximate
∂ρ=∂pk ¼ ρδðpk − p̄kÞ. We straightforwardly find

U ¼ π

8
g2ρ

∂U0

∂ω�
t; ð2:12Þ

where

ω� ¼
mþ p̄k

2
: ð2:13Þ

The echo energy grows linearly in time. This follows from
the assumption of an infinite extension of the axion
background. The emitted beam travels in the axion back-
ground extracting energy at a constant rate. If the energyU0

is provided from a source emitting a constant power P0

from t ¼ 0 until t ¼ toff , the energy of the beam is
U0 ¼ P0toff , and the power of the echo is

P ¼ π

8
g2ρ

∂P0

∂ω�
toff : ð2:14Þ

For δω ≪ δp, we have ∂U0=∂ω ¼ U0δðω − ω̄Þ. We find

U ¼ π

4
g2U0

∂ρ
∂pk�

t ð2:15Þ

as well as

P ¼ π

4
g2P0

∂ρ
∂pk�

toff ; ð2:16Þ

where

pk� ¼ 2ω̄ −m: ð2:17Þ

For the DFSZ [21] model of the QCD axion, an input power
of 1 kW over a bandwidth of 1 kHz working for one hour1

provides a total echo power of P ∼ 10−18 W ð m
10−4 eVÞ2,

which is in principle not too difficult to detect with current
radio astronomy technology. Unfortunately, as discussed in
Ref. [19], due to the nontrivial axion velocity distribution,
this power spreads over a surface that eventually exceeds
the detector’s size. This effect is easy to visualize if we
consider what happens for a single axion decay. If the
decaying axion moves with a velocity not perfectly aligned
with the incident photon (outgoing beam), the echo photon
is released in a direction also different from the incident
photon trajectory. In fact, if the echo photon has energy Ω,
momentum conservation impliesΩ sinðχÞ ¼ mv⊥, where χ
is the angle formed by the trajectories of both photons and
v⊥ is the component of the axion velocity perpendicular to
the incident photon momentum. From energy conservation,
Ω is equal to m=2 plus small corrections; therefore,
sinðχÞ ≃ 2v⊥. As the axion velocities are of the order of
10−3 or smaller, we can write χ ≃ 2v⊥. It follows that, for
instance assuming the isothermal sphere model for the
Galactic halo with velocity dispersion of 270 km=s, the
echo spreads over approximately 106 km after one hour.
Even in the caustic ring model of the Galactic halo, where
the minimal axion transverse velocity is about 5 km=s, and
therefore the echo method is more promising, the spread is
at least 104 km after the same amount of time. The echo
signal is thus strongly dependent on the model for the axion
phase-space distribution as well as the size of the detection
apparatus.

B. Echo of a dish antenna beam

To develop a sense of how the transverse axion velocities
affect the signal, we will perform a simple and useful
computation of the echo intensity for some particular
models of the axion velocity distribution. Moreover, as
an incident wave, we will take the beam emitted by a
parabolic dish antenna. Although the parabolic antenna

1For instance, using a klystron.
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case is the most realistic setup we can address in this work,
our findings are limited by scenarios where analytical
approximations are possible. These approximations will
be explained throughout the text.
Given the axion field aðt; x⃗Þ and outgoing beam mag-

netic field B⃗ð0Þðt; x⃗Þ, the echo vector potential field

A⃗ð1Þðt; x⃗Þ is determined by

A⃗ð1Þðt; x⃗Þ ¼ −g
Z

d3x0
Z

dt0
δðt − t0 − jx⃗ − x⃗0jÞ

4πjx⃗ − x⃗0j
× ∂t0aðt0; x⃗0ÞB⃗ð0Þðt0; x⃗0Þ: ð2:18Þ

Wewrite the axion dark matter field, in a large volume V, as
an expansion in momentum modes as

aðt; x⃗Þ ¼ a0
2
e−imt

ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s Z

d3pfaðp⃗Þeiðp⃗·x⃗þϕp⃗Þ

þ c:c:; ð2:19Þ

where p⃗ is the axion mometum in the experiment rest frame
and ϕp⃗ random phases. These phases are not known and are
usually modeled as uniformly distributed random numbers
[22–24]. In this article, we limit ourselves to considering
the ensemble average

he−iðϕp⃗−ϕp⃗0 Þiens ¼
ð2πÞ3
V

δ3ðp⃗ − p⃗0Þ; ð2:20Þ

where hiens indicates the average over a large number of
draws of the random phases. We leave a discussion of
the statistics of the signal to future work. We normalize
faðp⃗Þ as Z

d3pjfaðp⃗Þj2 ¼ 1; ð2:21Þ

such that the energy density in the volume V, averaged over
time and random phases, is

ρ ¼ 1

2
m2ja0j2: ð2:22Þ

We consider a parabolic antenna of radius R fed by a
plane wave with electric field amplitude E0ðωÞ, ω being the
wave’s frequency. The electric field emitted by the antenna
is known analytically in the far-field zone, i.e., for distances
of order ωR2 or larger from the emission spot. Assuming
that the center of the antenna is located at x⃗ ¼ 0 and that
the central component of the beam propagates along ẑ,
the antenna’s electric field can be written in spherical
coordinates as

E⃗ð0Þðt; x⃗;ωÞ ¼ x̂ i
E0ðωÞ
2

ωR2
J1ðωR sinðθÞÞ
ωR sinðθÞ

×
e−iωðt−rÞ

r
; ð2:23Þ

where J1ðxÞ is the Bessel function of the first kind of order
1. We have taken the electric field to be linearly polarized
along x̂. For Eq. (2.18) to be a good approximation, we
need most of the echo to be produced in the far-field zone.
Therefore, for an outgoing beam turned on at t ¼ 0, our
approximation is valid for t ≫ ωR2.
We perform integral (2.18) in the limit ωR ≫ 1, which is

valid for any experimental setup we are considering in this
article. We can then make two additional approximations.
First, as most of the echo comes from distances of the order
or larger thanωR2, we can assume jx⃗0j ≫ R. The field at the
emission spot can then be found using the limit x⃗ → 0.
Second, the beamwidth of the outgoing wave is of the order
ðωRÞ−1, allowing us to approximate θ ≃ 0. If the outgoing
beam is emitted continuously from t ¼ 0, the echo vector
potential at the emission spot reduces to

A⃗ð1Þðt; 0;ΩÞ ¼ ŷ
gma�0E0

4
eiΩt

R
4π

ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s Z

d3pfaðp⃗Þ�e−iϕp⃗

Z
∞

0

dt0
Z

t0

0

dr0 ei ϵr0

× δðt − t0 − r0Þ
Z

π=2

0

dθ0J1ðωRθ0Þ
Z

2π

0

dφ0e−ip⃗⊥·ρ̂ðφ0Þr0θ0 ; ð2:24Þ

where we have defined

Ω ¼ m − ω ð2:25Þ

ϵ ¼ 2ω −m − pz ð2:26Þ

p⃗⊥ ¼ x̂px þ ŷpy; ð2:27Þ

and ρ̂ðφ0Þ ¼ x̂ sinðφ0Þ þ ŷ cosðφ0Þ. After integration, we get

A⃗ð1Þðt; 0;ΩÞ ¼ ŷ
gma�0E0

8ω
eiΩt

ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s Z

d3pfaðp⃗Þ�e−iϕp⃗

×
Z

ξ=2

0

duei ϵu; ð2:28Þ

where u ¼ t − t0 and ξ ¼ minðt; mR=p⊥Þ. To obtain the
result above, we have extended the upper integration limit
dθ0 to infinity. This is justified for ωR ≫ 1 and jp⃗⊥jr0 ≫ 1,
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as then the largest contribution to the integral comes for
θ0 ≪ π=2.
To find the spectral intensity, we average the quantity

Ω2Að1Þðt; 0;ΩÞ2 over fast time oscillations and over the ran-
dom phases ϕp⃗. Assuming also that the axion momentum
distribution can be separated in a forward and transverse
component as2

faðp⃗Þ ¼ faðpzÞfaðp⃗⊥Þ; ð2:29Þ

we have

∂IðtÞ
∂Ω ¼ 1

8
g2ρ

dI0ðωÞ
dω

Z
d2p⊥jfaðp⃗⊥Þj2

Z
dpzjfaðpzÞj2

×
Z

du
Z

du0ei ϵðu−u0Þ: ð2:30Þ

Consistently with Eq. (2.21), we normalize faðpzÞ and
faðp⊥Þ as Z

dpzjfaðpzÞj2 ¼ 1 ð2:31Þ

and

Z
d2p⊥jfaðp⃗⊥Þj2 ¼ 1; ð2:32Þ

respectively. From now on, we assume for faðpzÞ the
Gaussian shape

jfaðpzÞj2 ¼
1ffiffiffiffiffiffi

2π
p

δpz

e
−ðpz−hpziÞ2

2δp2z : ð2:33Þ

In our notation, hi stands for averaging over the distribution
jfaðp⃗Þj2; i.e., the expectation value for every function
Q̂ðp⃗Þ is

hQ̂ðp⃗Þi ¼
Z

d3pQ̂ðp⃗Þjfaðp⃗Þj2: ð2:34Þ

Thus, hpzi is the average value for pz and δpz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2

zi − hpzi2
p

is the dispersion. Notice that, with the
normalization Eq. (2.21), if Q̂ does not depend on one of
the momentum components, the corresponding integration
trivially yields 1.
At resonance, i.e., when ω ¼ ðmþ hpziÞ=2≡ ω�, we

have
R
dpzjfaðpzÞj2ei ϵðu−u0Þ ¼ e−

δp2z
2
ðu−u0Þ2 . Approximating

e−
δp2z
2
ðu−u0Þ2 →

ffiffiffiffiffiffi
2π

p

δpz
δðu − u0Þ; ð2:35Þ

valid for δpzt ≫ 1, we get3

∂IðtÞ
∂Ω�

¼ 1

8

ffiffiffi
π

2

r
g2ρ
δpz

min ðt; Rhv−1⊥ iÞ dI0
dω�

; ð2:36Þ

where v⃗⊥ ¼ p⃗⊥=m is the axion transverse velocity and
Ω� ¼ ðm − hpziÞ=2.
We can see from the above result that the echo signal

depends strongly on the local axion velocity distribution.
Indeed, it scales as the inverse of the momentum dispersion
in the forward direction and as the inverse of the average
transverse velocity component. In this paper, we consider
two models for the velocity distribution in the Milky Way
(v⃗ ¼ p⃗=m), the isothermal sphere [25], and the caustic
ring model [26]. In the isothermal model, jfaðv⃗Þj2 has a
Maxwell-Boltzmann behavior with dispersion δv ¼
270 km=s and average velocity given by the velocity of
the Sun in the Galactic rest frame, i.e., jhv⃗ij ≃ 230 km=s. In
the caustic ring model, the local dark matter is dominated
by a single cold flow with velocity dispersion δv < 70 m=s
and with an average velocity of jhv⃗ij ≃ 290 km=s relative
to us. More details on both models will be given in Sec. VI.
To include both halo models in our analysis, we write the
transverse velocity distribution as

jfaðv⃗⊥Þj2 ¼
1

πδv2⊥
e
−ðv⃗⊥−v⃗pÞ2

δv2⊥ ; ð2:37Þ

where for the isothermal model we make δv⊥ ¼ ffiffiffiffiffiffiffiffi
2=3

p
δv

in order to get the Maxwell-Boltzmann distribution for
jfaðv⃗Þj2. For the caustic ring model, as δv⊥ is usually much
smaller than vp, we take the limit δv⊥ → 0, getting a delta
function centered at v⃗⊥ ¼ v⃗p, as a reasonable approxima-
tion. Of course, this approximation breaks down if the
outgoing beam points to a direction parallel to the axion
flow (or to a direction such that δv⊥ ≥ vp); however, the
direction of the big flow is determined by the position of
the IRAS [27], Planck [28], and Gaia [29] triangles with an
uncertainty of 0.01 rad. It implies that vp cannot be reduced
to values smaller than 5 km=s, clearly much larger
than δv⊥.
To compute the quantity hv−1⊥ i that appears in Eq. (2.36),

we use Eq. (2.37). We explicitly get

hv−1⊥ i ¼
ffiffiffi
π

p
δv⊥

e
−

v2p

2δv2⊥I0

�
v2p

2δv2⊥

�
; ð2:38Þ

2Although the axion phase-space distribution cannot in general
be factorized, with this simplification, we can make analytical
progress and gain useful insights in the phenomenology of the
signal.

3It is true for almost all the axion masses we are considering in
this work.
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where I0ðxÞ is the modified Bessel function of the first kind
of order 0. For vp ≫ δv⊥, compatible with the caustic ring
model, we have hv−1⊥ i ≃ v−1p , while for vp ≪ δv⊥, which is
compatible with the isothermal model when the outgoing
beam is pointed mainly in the direction of the axion wind,
we have hv−1⊥ i ≃ ffiffiffi

π
p

=δv⊥. It is also useful to compute hv⊥i;
for the limit vp ≫ δv⊥, we have hv⊥i ≃ vp, while for

vp ≪ δv⊥, we have hv⊥i ¼
ffiffi
π

p
2
δv⊥.

In this analysis, we have seen how the axion velocity
distribution influences the echo signal. Equation (2.36)
shows the effects explicitly. For t < Rhv−1⊥ i, the echo has
not yet spread beyond the emission region, leading to linear
growth of the intensity, in agreement to the results of
Sec. II A. After t ¼ Rhv−1⊥ i, the intensity saturates suddenly
to a constant value, due to the transverse velocity effects.
This abrupt change in the intensity behavior is a conse-
quence of the approximations employed, the assumption
that most of the echo is coming from the far-field zone. If
we had also taken into account the near behavior of the
outgoing beam, the transition to the saturated regime would
have been smooth. Another limitation of our result is that
Eq. (2.36) gives us an approximated value for locations
nearby the emission spot. A complete characterization of
the outgoing beam would allow us to know the local values
of the intensity in more detail. Unfortunately, there is
no simple analytical expression for the antenna emitted
field in the near zone. We then leave this task for
future work.
To gain further insights into the intensity as a function of

the position and into the transition to the saturated regime,
we will take a simplified model for the outgoing beam. The
model is based on the paraxial Gaussian beam used in laser
physics. This beam features a simple shape in the near-field
zone and matches the antenna beam’s far-field zone
behavior correctly. Given this beam, we will use the
paraxial approximation to get the local values of the echo
intensity as well as its time evolution. To warm up engines,
in Sec. III, we will show a complete one-dimensional
calculation of the echo signal, then in Secs. IV and V, we
will take care of the three-dimensional analysis.

III. ONE-DIMENSIONAL ANALYSIS

In order to gain a better understanding of how to
calculate the echo intensity, in this section, we are going
to perform a one-dimensional analysis before moving on to
the more involved three-dimensional case in the next
section. Even though it is just an illustrative example, as
in the previous section, some of the notation defined here
will be used throughout the rest of the paper. First, we
choose ẑ as the propagation direction of the outgoing beam
and set z ¼ 0 at the emission spot. We also assume that the
outgoing beam is linearly polarized in the x̂-direction,
which implies that the echo is linearly polarized in the
ŷ-direction. In this setup, Eq. (2.3) can be written as

ð∂2
t − ∂2

zÞAð1Þ ¼ −g∂taBð0Þ; ð3:1Þ

where Bð0Þ is the magnetic field of the outgoing beam. We
assume that the outgoing beam is turned on within the time
interval 0 < t < toff , and for simplicity, we assume that
during this period it is emitted with a constant amplitude.4

This means that the rhs of Eq. (3.1) is non-null in the
regions

0 < z < t; for t < toff
t − toff < z < t; for t > toff :

ð3:2Þ

Wewrite the axion field in terms of its Fourier expansion as

aðt; zÞ ¼ a0
2
e−imt

ffiffiffiffiffiffi
L
2π

r Z
dpzfaðpzÞeipzzþiϕpz ; ð3:3Þ

where faðpzÞ is normalized as in Eq. (2.31). The axion
energy density in the length L, averaged over time and
random phases,5 is related to a0 as in Eq. (2.22).
The magnetic field of the incident beam is a plane wave

given by

Bð0Þðt; z;ωÞ ¼ B0ðωÞ
2

e−iωðt−zÞ; ð3:4Þ

where the field amplitude B0 is related to the beam
intensity by

I0ðωÞ ¼
B0ðωÞ2

2
: ð3:5Þ

Plugging Eqs. (3.3) and (3.4) into Eq. (3.1) and keeping
only terms relevant to the stimulated decay, we have

ð∂2
t − ∂2

zÞAð1Þ ¼ −i
g
4
ma�0B0ðωÞ

ffiffiffiffiffiffi
L
2π

r Z
dpzfaðpzÞ�

× eiðω−pzÞzeiΩte−iϕpz : ð3:6Þ

For every ω, the echo wave is sourced by a term that has
frequency Ω, so we write the echo vector potential as

Að1Þðt; z;ΩÞ ¼ 1

2
Aðt; z;ΩÞeiΩðtþzÞ: ð3:7Þ

As we look for resonant solutions, we assume j∂zAj ≪ ΩA
and j∂tAj ≪ ΩA. Neglecting second derivatives of A,
we get

4We ignore transitions at t ¼ 0 and at t ¼ toff .
5Analogously to the three-dimensional case, here we use

the ensemble average he−iðϕpz−ϕp0z Þiens ¼ 2π
L δðpz − p0

zÞ for the
random phases ϕpz

.
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ð∂t−∂zÞA¼−
g
4Ω

ma�0B0ðωÞ
ffiffiffiffiffiffi
L
2π

r Z
dpzfaðpzÞ�eiϵze−iϕpz :

ð3:8Þ

The general solution of Eq. (3.8) is

AðΩ; t; zÞ ¼ −
g
4Ω

ma�0B0ðωÞ
ffiffiffiffiffiffi
L
2π

r Z
dpzfaðpzÞ�e−iϕpz

×
Z

dz0
Z

dt0Gðt − t0; z − z0Þei ϵz0 ; ð3:9Þ

where Gðt; zÞ is the retarded Green’s function associated to
the differential operator ∂t − ∂z. The explicit calculation
of Gðt; zÞ is found in Appendix A. Using Eq. (A5),
we have

AðΩ; t; zÞ ¼ −
g
4Ω

ma�0B0ðωÞ
ffiffiffiffiffiffi
L
2π

r Z
dpzfaðpzÞ�e−iϕpz

×
Z

dz0ei ϵz0 ; ð3:10Þ

where the integration boundaries are

�
0 < z0 < tþz

2
for t < toff − z

t−toffþz
2

< z0 < tþz
2

for t > toff − z:
ð3:11Þ

The echo spectral intensity, at z ¼ 0, averaged over fast
oscillations and random phases is

∂Iðt;ΩÞ
∂Ω ¼ 1

8
g2ρ

dI0
dω

Z
dpzjfaðpzÞj2

Z
dz0

Z
dz00ei ϵðz0−z00Þ:

ð3:12Þ

Taking Eq. (2.33) for jfaðpzÞj2 and the approximation
Eq. (2.35), Eq. (3.12), evaluated at resonance becomes

∂IðtÞ
∂Ω�

¼ 1

8

ffiffiffi
π

2

r
g2ρ
δpz

t<
dI0
dω�

; ð3:13Þ

where t< is the minimum between t and toff .

IV. THREE-DIMENSIONAL ANALYSIS

For our three-dimensional analysis, we model the
outgoing beam as a transverse wave propagating in the
z-direction with small transverse corrections. We write
the beam magnetic field as

B⃗ð0Þðt; x⃗;ωÞ ¼ ϵ̂
B0ðωÞ
2

ηðx⃗;ωÞe−iωðt−zÞ; ð4:1Þ

where ϵ̂ is a constant polarization vector. The function
ηðx⃗;ωÞ defines the spatial shape of the beam. It is

normalized as ηð0⃗;ωÞ ¼ 1, such that B0ðωÞ is related to
the beam time-averaged intensity I0ðωÞ, at x⃗ ¼ 0, by

I0ðωÞ≡ I0ð0⃗;ωÞ ¼
B0ðωÞ2

2
: ð4:2Þ

The beam is turned on at t ¼ 0. At a time t > 0, it
extends from z ¼ 0 to z ¼ t. After the beam is turned off at
t ¼ toff , it extends from z ¼ t − toff to z ¼ t. In other
words, the integration domain in the z-direction is given by
Eq. (3.11), while for the transverse directions, it is
determined by ηðx⃗;ωÞ.
We describe the local dark matter axion field as a

superposition of plane waves, in the same way as in
Sec. II B [see Eqs. (2.19)–(2.22)]. In addition, we also
assume that faðp⃗Þ can be factorized in its forward and
transverse parts [see Eqs. (2.29), (2.31), and (2.32)].
Discarding nonresonant terms, Eq. (2.3) reads

ð∂2
t −∇2ÞA⃗ð1Þ ¼ −iϵ̂

g
4
ma�0B0ðωÞeiΩðtþzÞηðx⃗;ωÞ

ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s

×
Z

d3pfaðp⃗Þ�ei ϵz−ip⃗⊥·x⃗⊥−iϕp⃗ ; ð4:3Þ

where x⃗⊥ ¼ ðx; y; 0Þ, while Ω and ϵ are defined in
Eqs. (2.25) and (2.26), respectively. We now write the
echo field as

A⃗ð1Þðt; x⃗Þ ¼ ϵ̂

2
Aðt; x⃗;ΩÞeiΩðtþzÞ: ð4:4Þ

Notice that Ω can be written as Ω ¼ ω − pz − ϵ. As at
resonance ϵ → 0, the frequencies of the echo are shifted
with respect to ω by pz. As we will discuss in Sec. VI, this
effect is relevant for the frequency spectrum of the echo
because, although pz is small compared toω, it may cause a
complete separation between the outgoing beam’s and
echo’s frequency ranges. It might have important conse-
quences from the experimental point of view. However, this
shift does not affect the amplitude of the echo.
Now, we plug Eq. (4.4) into Eq. (4.3) and use the fact

that the outgoing beam as well as the echo field satisfy the
paraxial approximation

j∂2
iAðt; x⃗;ΩÞj ≪ jΩ∂iAðt; x⃗;ΩÞj; ð4:5Þ

with i ¼ t, z. For the echo, we will check in Sec. V C that
our results are consistent with the paraxial assumption. In
this limit, Eq. (4.3) reduces to the paraxial equation with a
source term,
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ð2iΩð∂t − ∂zÞ −∇2⊥ÞA

¼ −i
g
2
ma�0B0ðωÞηðx⃗;ωÞ

ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s

×
Z

d3pfaðp⃗Þ�ei ϵz−ip⃗⊥·x⃗⊥−iϕp⃗ : ð4:6Þ

The solution is

Aðt; x⃗;ΩÞ ¼ −i
g
2
ma�0B0ðωÞJðt; x⃗;ΩÞ; ð4:7Þ

where

Jðt; x⃗;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s Z

d3pfaðp⃗Þ�e−iϕp⃗

×
Z

d4x0Gðt − t0; x⃗ − x⃗0Þηðx⃗0;ωÞei ϵz0−ip⃗⊥·x⃗0⊥ :

ð4:8Þ

As derived in Appendix B, the Green’s function for the
paraxial equation is

Gðt; x⃗Þ ¼ −
Θð−zÞ
4πz

δðtþ zÞeiΩ
2zx⃗

2⊥ : ð4:9Þ

The echo spectral intensity averaged over fast time oscil-
lations is given by

∂Iðt; x⃗Þ
∂Ω ¼ 1

2
g2ρ

dI0
dω

Ω2jJðt; x⃗;ΩÞj2: ð4:10Þ

Although Eq. (4.10) is the most general formula of this
work, its value at z ¼ 0 can be reduced notably in the limit
δpzt ≫ 1. Since our goal is the estimation of the echo
amplitude, for which corrections OðpÞ are irrelevant, we
use the approximation Ω ¼ ω − pz − ϵ ≈ ω for the follow-
ing analytical computations. With the axion momentum
distribution Eq. (2.33), and after averaging over random
phases, the spectral echo intensity, at resonance, can be
written as

∂Iðt; x⃗⊥Þ
∂Ω�

¼ 1

8

ffiffiffi
π

2

r
g2ρ
δpz

T ðt; x⃗⊥Þ
dI0
dω�

; ð4:11Þ

where

T ðt; x⃗⊥Þ ¼ 8ω2�

�Z
dz0jξðz0; x⃗⊥; p⃗⊥;ω�Þj2

�
; ð4:12Þ

and

ξðz0; x⃗⊥; p⃗⊥;ω�Þ

¼ 1

4πz0

Z
d2x0⊥ηðω�; x⃗0Þe−ip⃗⊥·x⃗0⊥e−

iω�
2z0 ðx⃗⊥−x⃗0⊥Þ2 : ð4:13Þ

The integration domain for z0 is specified in Eq. (3.11),
evaluated at z ¼ 0. For a derivation of Eqs. (4.11) and
(4.12), see Appendix C. Notice that Eq. (4.11) is the three-
dimensional analog of Eq. (3.13). It means that all the
three-dimensional effects enter through in T ðt; x⃗⊥Þ.
Finally, to compute the total power of the signal, we

should know the spectral intensity of the outgoing beam in
order to integrate over all frequencies that might contribute.
We will use for simplicity a Gaussian spectrum of the form

dI0
dω

¼ I0ffiffiffiffiffiffi
2π

p
δω

e−
ðω−ω̄Þ2
2δω2 ; ð4:14Þ

where I0 is the total intensity, ω̄ is the central value of the
distribution, and δω is the dispersion.
Thus, the power collected over a surface S (see also

Appendix C) can be computed as

Pc ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

P0

1

S0

Z
S
d2x⊥T ðt; x⃗⊥Þ; ð4:15Þ

where S0 is the effective cross sectional area of the beam at
z ¼ 0, P0 ¼ I0S0 is the power of the beam, and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2 þ δp2

z

4

r
: ð4:16Þ

V. ROLE OF THE OUTGOING BEAM’s SHAPE
AND THE AXION VELOCITY DISTRIBUTION

In this section, we are going to use all the machinery
developed in Sec. IV to analyze three-dimensional (3D)
effects assuming a particular model for the outgoing
beam shape.
We take our model incident beam as the Gaussian beam

obtained in laser physics by solving Maxwell equations in
the paraxial limit. In cylindrical coordinates, ðr;ϕ; zÞ, it is
given by

ηðω; x⃗Þ ¼ R
wðzÞ e

− r2

2wðzÞ2eiω
r2

2RðzÞ: ð5:1Þ

Here, wðzÞ is the radius at which the beam intensity is
reduced by 1=e compared to its axial value, andRðzÞ is the
radius of curvature of the beam wavefronts. Their math-
ematical expressions are

wðzÞ ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

z2R

s
; RðzÞ ¼ z2 þ z2R

z
;
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where R ¼ wð0Þ and zR ¼ ωR2. In this model, the beam
decays radially as a Gaussian function and also develops a
divergence that becomes noticeable for z > zR. Moreover,
in the limit ωR ≫ 1 (always satisfied for the parameters’
values relevant to this work), we recover the behavior of the
dish antenna beam (2.23) for z ≥ zR. It is worth mentioning
that, in Eq. (5.1), we have ignored the Guoy phase
ψðzÞ ¼ arctanðz=zRÞ, which for our purposes does not
contribute in any way.
The time-averaged power of the beam is P0 ¼ I0πR2;

then, the surface parameter entering Eq. (4.15) must be
given by S0 ¼ πR2. Thus, we can also define R as the
effective radius of the beam at z ¼ 0.
The purpose of this section is to provide analytical

expressions for T ðt; x⃗⊥Þ defined in Eq. (4.12). According
to Eq. (4.11), T contains all the properties of the echo
intensity that derive from the transverse axion velocity
distribution and the shape of the beam. Therefore, the
behavior of T ðt; x⃗⊥Þ is equivalent to the behavior of the
echo intensity.
We start our analysis, by computing ξ from Eq. (4.13)

using the beam model Eq. (5.1). We get

jξðz0; x⃗⊥; p⃗⊥;ω�Þj2 ¼
1

4ω2�
e−

ðx⃗⊥−2v⃗⊥z0Þ2
R2 : ð5:2Þ

Using Eq. (5.2), it seems that Eq. (4.12) could be very
difficult to integrate analytically in both dz0 and d2p⊥;
however, it is manageable in some regimes. Let us analyze
these regimes and see what we can learn from them. To do
so, we first define the function T ðt; x⃗⊥; v⃗⊥Þ such that
T ðt; x⃗⊥Þ ¼ < T ðt; x⃗⊥; v⃗⊥Þ >. From Eq. (4.12), it is found
to be

T ðt;x⃗⊥;v⃗⊥Þ

¼
ffiffiffi
π

p
2

R
v⊥

e−
r2

R2
sinðφÞ2

×

8>><
>>:
�
erf

�
rcosðφÞ

R

	
þerf

�
v⊥t−rcosðφÞ

R

		
for t<toff�

erf
�
v⊥t−rcosðφÞ

R

	
−erf

�
v⊥ðt−toff Þ−rcosðφÞ

R

		
for t>toff ;

ð5:3Þ

where φ is the polar angle formed by x⃗⊥ and v⃗⊥. Now, what
is left is to integrate Eq. (5.3) over the velocity distribution;
i.e., we have to find

T ðt; x⃗⊥Þ ¼
Z

d2p⊥jfaðp⃗⊥Þj2T ðt; x⃗⊥; v⃗⊥Þ; ð5:4Þ

where jfaðv⃗⊥Þj2 is given in Eq. (2.37). In the following
subsections, we will do so and reveal the transverse velocity
effects that are not present in the one-dimensional (1D)
case. The transverse velocity components cause a spread of

the echo in those directions. Not all the power can be
collected at the emission spot as in the 1D case. The lateral
spread leads to saturation of the intensity on a timescale that
we will determine below. On the other hand, as also shown
in Sec. II B, we find null effects coming from the outgoing
beam divergence. Our analysis will be split into two
cases: small dispersion (δv⊥ ≪ vp) and large dispersion
(δv⊥ ≫ vp).
Before discussing the 3D effects in detail, as a consis-

tency check, notice that when the transverse velocities are
not important, i.e., v⃗⊥ → 0, we get from Eq. (5.3) that
T ðt; 0Þ ¼ t for t < toff and T ðt; 0Þ ¼ toff for t > toff.
In other words, we recover the result from the one-
dimensional analysis of Sec. III.

A. Small dispersion

When δv⊥ ≪ vp, Eq. (2.37) can be approximated as
jfaðv⃗⊥Þj2 ¼ δ2ðv⃗⊥ − v⃗pÞ; then, the integration in Eq. (5.4)
becomes trivial. We have

T ðt;x⃗⊥Þ

¼
ffiffiffi
π

p
2

R
vp

e−
r2

R2
sinðϕÞ2

×

8>><
>>:
�
erf

�
rcosðϕÞ

R

	
þerf

�
vpt−rcosðϕÞ

R

		
for t<toff�

erf
�
vpt−rcosðϕÞ

R

	
−erf

�
vpðt−toffÞ−rcosðϕÞ

R

		
for t>toff ;

ð5:5Þ

where ϕ is the angle formed by x⃗⊥ and v⃗p. We will
analyze Eq. (5.5) in two scenarios: (a) toff < R=vp
and (b) toff > R=vp, each characterized by two regimes—
t < toff and t > toff .
In scenario a, we can Taylor expand T ðt; x⃗⊥Þ in terms of

the small quantities vpt=R for t < toff, and vptoff=R for
t > toff . We find

T ðt; x⃗⊥Þ ¼
8<
: te−

r2

R2 for t < toff

toffe
−r2

R2
sinðϕÞ2e−

ðvpt−r cosðϕÞÞ2
R2 for t > toff :

ð5:6Þ

We see that for t < toff, T ðt; x⃗⊥Þ, and therefore the
intensity, grows linearly in time, featuring a transverse
Gaussian shape with effective radius R. For t > toff, i.e.,
after the outgoing beam is turned off, the Gaussian keeps its
maximum value reached at t ¼ toff and moves rigidly with
velocity v⃗p.
In scenario b, T ðt; x⃗⊥Þ behaves exactly as the upper

formula in Eq. (5.6) for t < R=vp. Later, for R=vp<t<toff,
we observe from Eq. (5.5) that the echo spreads along the
direction of v⃗p at a speed vp, forming a “sausage” shaped
intensity profile at z ¼ 0. In this regime, we can find the
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maximum possible intensity compatible with the small
dispersion limit. The energy that in scenario a accumulates
at the emission spot now spreads laterally, leading the echo
intensity to saturate at any coordinate x⃗⊥ when t > r cosðϕÞ

vp
.

The maximum saturated value is found for locations where
ϕ ¼ 0 and R < r cosðϕÞ < vpt. The corresponding value
for T within this region is twice the value obtained at r ¼ 0.
We name it

ta ¼
ffiffiffi
π

p R
vp

: ð5:7Þ

Finally, for t > toff, the sausage shape moves rigidly at the
speed v⃗p having a length vptoff and a width 2R.

B. Large dispersion

Let us discuss now the case δv⊥ ≫ vp. As in the
previous discussion, we split the analysis in two scenarios,
(a) toff < R=δv⊥ and (b) toff > R=δv⊥, and each of them in
two time regimes—t < toff and t > toff .
In scenario a, we Taylor expand T ðt; x⃗⊥; v⃗⊥Þ, given in

Eq. (5.3), in terms of the small values v⊥t=R for t < toff and
v⊥toff=R for t > toff. The result is, of course, identical to
Eq. (5.6) after performing the substitutions vp → v⊥ and
ϕ → φ. Now, integrating over the velocity distribution, we
straightforwardly obtain the upper formula in Eq. (5.6) for
t < toff . For t > toff, the integration yields

T ðt; x⃗⊥Þ ¼ toffe
−r2

R2
1

πδv2⊥

Z
∞

0

dv⊥v⊥e
−ð t2

R2
þ 1

δv2⊥
Þv2⊥

×
Z

2π

0

dφe
2v⊥tr

R2
cosðφÞ

¼ R2toff
R2 þ δv2⊥t2

e
− r2

R2þδv2⊥t2 : ð5:8Þ

This behavior can be separated into two subregimes: toff <
t < R=δv⊥ and t > R=δv⊥. In the first one, the intensity
maximum stays constant at the value obtained at t ¼ toff ,
and also, its radial extension R does not change. In the
second one, the radial extension becomes δv⊥t; i.e., the
energy spreads radially at velocity δv⊥. On the other hand,
the value of the intensity decreases as ðδv⊥tÞ−2.
Scenario a can be summarized as follows:

T ðt; x⊥Þ ¼

8>>><
>>>:

t e−
r2

R2 for t < toff

toff e
−r2

R2 for toff < t < R=δv⊥
toffR2

δv2⊥t2
e
− r2

δv2⊥t2 for t > R=δv⊥:

ð5:9Þ

In scenario b, T ðt; x⃗⊥Þ behaves exactly as the upper
formula of Eq. (5.6) for t < R=δv⊥. After that, for
R=δv⊥ < t < toff , the energy spreads radially, leading

the intensity to saturate for all the positions satisfying
r < δv⊥t. The corresponding saturated value for T ðt; x⃗⊥Þ
can be found taking the limit erfðxÞ → 1 for the second erf
function appearing in the upper formula of Eq. (5.3). Thus,
Eq. (5.4) gives us

T ðt; x⃗⊥Þ ¼
ffiffiffi
π

p
2

R
1

πδv2⊥

Z
∞

0

dv⊥e
−

v2⊥
δv2⊥

×
Z

2π

0

dφe−
r2

R2
sinðφÞ2

�
erf

�
r cosðφÞ

R

�
þ 1

�

¼ π

2

R
δv⊥

e−
r2

2R2I0

�
r2

2R2

�
: ð5:10Þ

The maximum value of T in this saturated regime is found
at r ¼ 0 and is

tb ¼
π

2

R
δv⊥

: ð5:11Þ

We can also find analytically how the system transits to this
saturated value. Evaluating Eq. (5.3) at r ¼ 0, Eq. (5.4)
gives

T ðt; 0Þ ¼ ffiffiffi
π

p R
δv2⊥

Z
∞

0

dv⊥e
−

v2⊥
δv2⊥erf

�
v⊥t
R

�

¼ R
δv⊥

arctan

�
δv⊥t
R

�
: ð5:12Þ

With the same procedure, we find for t > toff

T ðt;0Þ¼ 1

2π

R
δv⊥

�
arctan

�
δv⊥t
R

�
−arctan

�
δv⊥ðt−toffÞ

R

��
;

ð5:13Þ

which in the limit t ≫ toff becomes

T ðt; 0Þ ¼ 1

2π

R2toff
δv2⊥t2

: ð5:14Þ

As a summary of scenario b, we can write

T ðt; x⊥Þ ¼

8>>><
>>>:

te−
r2

R2 for t < R=δv⊥
π
2

R
δv⊥ e

− r2

2R2I0
�

r2

2R2

	
for R=δv⊥ < t < toff

1
2π

R2toff
δv2⊥t2

for t > toff and r ¼ 0:

ð5:15Þ

As a general remark, we point out that ta and tb are not
only the saturated values of T in the respective scenarios
but also the timescales over which the saturation is
achieved. We can then define the saturation time
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tsat ¼
�
1

t2a
þ 1

t2b

�
−1=2

: ð5:16Þ

To conclude this discussion, we notice that, as long as
ω̄R2 ≫ Rhv−1⊥ i, saturation occurs before the outgoing beam
reaches the far-field zone. This is explained by the fact that
the intensity saturates for t≳ R=vp in the case of large
average transverse velocity and for t≳ R=δv⊥ in the case of
large transverse velocity dispersion.

C. Consistency of the paraxial approximation

To conclude this section, we discuss the consistency of
our results with the initial assumption of the paraxial limit.
The paraxial approximation works very accurately when
considering beams with divergences not larger than 1 rad
[30]. For the echo wave, the divergence angle χ is related to
the velocity vs, at which the echo spreads in the transverse
direction, by

χ ¼ arctanð2vsÞ: ð5:17Þ

On the other hand, the intensity saturates when the echo
wave leaves the cross sectional area of the outgoing beam,
i.e., vstsat ∼ R. It implies that vs is of the order of vp or δv⊥,
depending on which parameter dominates the saturation.
For any cold dark matter model, vp and δv⊥ should not
exceed 10−3. Hence, the transversal velocity effects only
contribute with small divergences, compatible with the
paraxial approximation.

VI. INTENSITY MAP FOR THE CAUSTIC RING
AND ISOTHERMAL MODELS

In this section, we compute the intensity of the echo on
the z ¼ 0 plane numerically. We consider two models for
the local dark matter distribution: the isothermal sphere
[25] and the caustic ring model [26].
We write the echo intensity as

dIðt; x⃗⊥Þ
dΩ

¼ 1

8

ffiffiffi
π

2

r
g2ρ
δpz

tsatFðt; x⃗⊥Þ
dI0
dω

; ð6:1Þ

where tsat is defined in Eq. (5.16) and Fðt; x⃗⊥Þ is a function
whose maximum is of order 1 given by

Fðt; x⃗⊥Þ ¼
1

tsat

δpzffiffiffiffiffiffi
2π

p 8Ω2jJðt; x⃗⊥;ΩÞj2: ð6:2Þ

Here, Jðt; x⃗;ΩÞ is given in Eq. (4.8) with the beam profile
(5.1). Notice that, as follows from the discussion of Sec. V,
in the limit δpzt ≫ 1, F has an asymptotic behavior. In
particular, when the echo saturation is predominantly due to
one of transverse average axion velocity or velocity
dispersion, the maximum value of F tends to 1 for times
larger than tsat.

A. Caustic ring model

The caustic ring model is a proposal for a complete
description of the dark matter phase-space distribution in
the halo of our Galaxy [26]. The model is characterized by
the presence of caustics in the galactic plane. These caustics
have the shape of closed circular tubes, approximately
centered at the Galactic Center and whose cross section is a
section of the elliptic umbilic (D−4) catastrophe. Caustics
of cold dark matter generically form after the growth of
structure becomes nonlinear. Cold, collisionless dark mat-
ter lies in six-dimensional phase space on a thin three-
dimensional hypersurface, the phase-space sheet, the
thickness of which is the primordial velocity dispersion
of the dark matter particles. As dark matter particles fall in
and out of a galactic gravitational potential well, their
phase-space sheet wraps up. Locations where the phase-
space sheet folds back onto itself are caustics. If the
velocity field of the infalling particles is dominated by

net overall rotation ð∇⃗ × v⃗ ≠ 0Þ, the caustics have the
aforementioned tube shape [31].
Based on the location of two triangular features present

in the IRAS [27], Planck [28], and Gaia [29] sky maps, it
was determined that Earth is at a location close to a caustic
ring, presumably inside the tube. In this case, the local dark
matter velocity distribution is dominated by a single flow,
called the big flow. From Table I of Ref. [29], we see that
the big flow has a velocity of about 520 km=s in the
Galactic rest frame, implying a relative velocity with
respect to us of order 290 km=s. The direction of the
big flow is determined by the position of the triangles with
an uncertainty of 0.01 rad. As a consequence, vp cannot be
reduced to values smaller than 5 km=s. The velocity
dispersion of the flow was determined in Ref. [32] to be
at most of order 70 m=s. The local dark matter density in
this model is 1 GeV=cm3 or higher.
In this section, we assume the axion phase-space dis-

tribution (2.33) and (2.37), with a velocity dispersion
δvz ¼ 70 m=s, negligible transverse velocity dispersion,
and a transverse average velocity vp ¼ 5 km=s. We neglect
daily and annual modulation effects, as they are negligible
over the timescales considered in the plots presented here.6

Although the results of this section are presented for the
caustic ring model, they are applicable to any situation in

6As will be explained in Sec. VII, the measurement time tm can
be at most of order 1 s. Earth’s revolution velocity is
vrev ∼ 30 km=s, while its rate of change is _vrev ∼ ωrevvrev, where
ωrev ¼ 2π=yr. During a time tm, vrev changes by Δvrev ∼
2 × 10−7vrev. Assuming that all Δvrev contributes to vp, during
a time tm, it makes the echo hot spot move by about 6 mm, which
is negligible compared to the receiver’s size. The same argument
applies to Earth’s rotation velocity. In conclusion, we can
consider the axion’s velocity relative to the beam as a constant
during any given data collection event.
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which a single cold flow dominates the local dark matter
density.
With the chosen parameters, saturation happens due to

transverse average velocity effects. Figure 4 shows the echo
normalized intensity (6.2) at resonance, i.e., for
ω̄ ¼ ðmþ hpziÞ=2. With the chosen radius R ¼ 4000=m,
we have δpztsat ≫ 1, so that the approximate formulas
derived in Sec. V apply and the saturated value of F is
approximately 1. In Fig. 4, we can clearly see the echo’s “hot
spot” spreading in the direction of the axion average velocity
until the beam is turned off atmtoff ¼ 1.4 × 109. Thereafter,
the hot spot stops spreading and starts traveling rigidly.
Figure 1 shows F along the line y ¼ 0 at different times.

B. Isothermal halo model

For the isothermal halo model, we also use the axion
momentum distribution, Eqs. (2.33) and (2.37). In this case,
the velocity dispersion is δvz ¼ δv⊥=

ffiffiffi
2

p ¼ 270=
ffiffiffi
3

p
km=s.

The average axion velocity is nonzero as a consequence of
Earth’s motion with respect to the Galactic rest frame and
has typical value of 230 km=s, while the local dark matter
density is approximately 0.45 GeV=cm3. Although the
isothermal model does not accurately describe cold dark
matter halos, we consider it here because the dark matter
phase-space distribution has a simple analytical form.
Moreover, using a more realistic model, such as the
Navarro–Frenk–White or Hernquist models, would not
change our analysis, as locally the axion momentum
distribution can be approximated as a Gaussian, although
the value of the parameters may change.
Figure 5 shows F at z ¼ 0 in a case of saturation due to

velocity dispersion effects. The hot spot spreads out in all

directions, while at the same time, the maximum intensity
grows. This effect is also clearly visible in Fig. 2.
Figure 3 shows Fðt; 0⃗Þ as a function of the beam

frequency ω at four different times. Fðt; 0⃗Þ has been
multiplied by the spectral intensity inherited from the beam
dĨ0=dωjω¼Ω, whose maximum value has been normalized
to 1. The beam spectral intensity (4.14) normalized to its
maximum value is shown in black. The echo peaks at
Ω̄ ¼ ðm − hpziÞ=2, while the beam is centered at
ω̄ ¼ ðmþ hpziÞ=2. The echo bandwidth is given by
δωδpz=ð2ΔÞ. It is then possible for the echo frequency
band to be completely separated from the beam frequency
band if

FIG. 1. Echo normalized intensity Fðt; x; y ¼ 0Þ in the case of
saturation due to the transverse average axion velocity. All the
parameters are the same as those of Fig. 4. We can clearly see the
length of hot spot growing in the positive x-direction until
mtoff ¼ 7 × 107. After toff, the hot spot travels rigidly.

FIG. 2. Echo normalized intensity Fðt; x; y ¼ 0Þ in the case of
saturation due to velocity dispersion effects. All the parameters
are the same as those of Fig. 5. The spreading of the hot spot is
clearly visible.

FIG. 3. Frequency profile of Fðt; 0⃗Þ times the spectral intensity
dĨ0=dωjω¼Ω (colored lines) and rescaled beam frequency profile
dĨ0=dω (black line) at resonance ω ¼ ω� in the isothermal halo
model. All the parameters are the same as those of Fig. 5, with the
addition of δω ¼ 2 × 10−5 m.
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jΩ̄ − ω̄j > δωþ δωδpz

2Δ
: ð6:3Þ

Such a configuration may be advantageous to separate
signal from noise if part of the latter comes from the
outgoing beam itself or backscattering in the atmosphere.

VII. ECHO POWER AND SENSITIVITY

In this section, we estimate the sensitivity of the echo
method assuming that the echo power is collected by a dish
antenna with radius Rc, located at the plane z ¼ 0 and
concentric with respect to the emitter. We leave an updated

analysis taking into account the effect of the axion random
phases to future work.
The signal to noise ratio is given by Dick’s radiometer

equation

s=n ¼ Pc

Tn

ffiffiffiffiffi
tm
B

r
; ð7:1Þ

where Pc is the collected power, Tn is the noise temper-
ature, B is the bandwidth of the signal given roughly by
B ≈minðδω; δpz=2Þ=ð2πÞ, and tm is the measurement time.
In a regime of constant signal power, the collected Pc can

be written in terms of the emitted power P0 as

FIG. 4. Echo normalized intensity Fðt; x⃗⊥Þ at resonance ω ¼ ω� in the case of saturation due to the transverse average axion velocity.
The beam is turned on at t ¼ 0 and turned off at mtoff ¼ 1.4 × 109. The radius of the emitter is set to mR ¼ 4000. The axion velocity
components are those of the caustic ring model, with minimum transverse velocity vx ¼ 5 km=s and vz ¼ 290 km=s. The velocity
dispersion is 70 km=s in the z-direction. The saturation time is mtsat ≈mta ¼ 4.3 × 108, so that δpztsat ¼ 99 and the approximation
discussed in Sec. V holds.
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Pc ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

teP0: ð7:2Þ

Here, te is basically the minimum between toff and κt⊥,
where κ is a parameter that depends on the ratio Rc=R and
t⊥ is defined as

t⊥ ¼ Rchv−1⊥ i: ð7:3Þ

See Appendix D for a derivation of this result and an
explicit expression for κ.
To determine tm, we have to take into account the fact

that the echo spreads laterally at velocity hv−1⊥ i−1. If
toff < t⊥, the echo will continue to be received by the dish
for times even larger than toff , and it will drop drastically for
t > t⊥. In this case, tm is given roughly by t⊥. On the other
hand, when toff > t⊥, the echo spreads all over the dish
before the outgoing beam is turned off. After turning off the
beam, the echo intensity drops abruptly. In this case, tm is
approximately toff. To summarize this reasoning, the
measurement time is given roughly by the maximum
between toff and t⊥.
To use Eqs. (7.1) and (7.2), we smooth te, tm, and B as

te¼
κt⊥toffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2⊥þ t2off

p tm¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2offþ t2⊥

q
B¼ 1

4π

δωδpz

Δ
: ð7:4Þ

We estimate the sensitivity by assuming a fixed amount
of energy E is spent to search for the axion, covering an
octave in axion mass range. For a source that shoots beam
pulses with power P0 and duration toff , the energy spent to
cover a factor of 2 in axion mass is E ≈mP0toff=ð2δωÞ. In
terms of E, Eq. (7.1) is written as

s=n ¼ π

4
ffiffiffi
2

p g2ρt⊥E
mTn

ffiffiffiffiffiffiffi
δpz

p
ffiffiffiffiffiffiffiffi
δω

Δtm

s
: ð7:5Þ

We see that the signal to noise ratio is maximized for
toff → 0. However, as toff is limited by the uncertainty
relation δωtoff ≥ 1=2, Eq. (7.5) will be evaluated at
toff ¼ ð2δωÞ−1=2.
The solid blue lines of Fig. 6 mark the parameter space

where, in this approach, the echo method is sensitive. We
used Eq. (7.5) assuming E ¼ 10 MWyear, s=n ¼ 5,
Tn ¼ 20 K, R ¼ 50 m, Rc ¼ 100 m, and δω ¼ δpz=2.
For the isothermal model (right panel), we assumed the
outgoing beam pointing approximately in the direction of
the axion average velocity, such that vp is negligible with
respect to δv⊥ ≃ 220 km=s. For the caustic ring model, we
took vp ¼ 5 km=s, in agreement with the discussion in
Sec. VI A. Figure 6 shows a range of axion masses
compatible with the working frequency of radio telescopes.
The sensitivity shown by the solid blue lines of Fig. 6

assumes a fixed amount of consumed energy and does not
specify how this energy is spent. Indeed, at this theoretical
stage of our proposal, it is not yet clear how to optimize the
efficiency of the energy delivery. For instance, one can
restrict the time spent to cover an octave in axion mass
range to a limited value tT . In such a case, the duration of
the beam pulses toff is given by toff ≃ 2δωtT=m. It is not
difficult to show that, with this constraint, the signal to

FIG. 5. Echo normalized intensity Fðt; x⃗⊥Þ at resonanceω ¼ ω�
in the case of saturation due to velocity dispersion effects. The beam
is turnedon at t ¼ 0 and turnedoff atmtoff ¼ 7 × 105. The radius of
the emitter is set tomR ¼ 100. The axion velocity components are
those of the isothermal model, with vx ¼ 10 km=s and vz ¼
230 km=s, while the velocity dispersion is 270=

ffiffiffi
3

p
km=s in each

direction. The saturation time is mtsat ≈mtb ¼ 2.1 × 105, so that
δpztsat ¼ 111 and the approximation discussed in Sec. V holds.
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noise ratio is maximized for δω ¼ m
2

ffiffiffiffiffiffiffiffi
δvzt⊥
tT

q
and toff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δvzt⊥tT
p

. To have an idea of the order of magnitude, for
Rc ¼ 100 m and tT ¼ 1 year, δω is 844 Hz ð m

10−5 eV
Þ for

the isothermal model and 89.2 Hz ð m
10−5 eV

Þ for the caustic
ring model. On the other hand, toff is about 1.12 s for the
isothermal model and about 370 ms for the caustic
ring model.

The dashed blue lines of Fig. 6 correspond to the
sensitivities using a power source of P0 ¼ 10 MWworking
for one year. The other parameters are the same as for the
solid blue lines. Although the amount of energy spent in
this time-restricted approach is the same, the sensitivity is
worse. It is likely possible, though, to achieve a better
sensitivity by setting up the experiment in a clever way.
Thus, there is much room for improvement compared to the
naive estimation used for the blue dashed lines of Fig. 6.
Finally, to give the reader an idea of the order of

magnitude of t⊥, in Fig. 7, we show the beam height at
after a time t⊥ (assuming toff > t⊥) as a function of the
radius of the receiver Rc and hv−1i−1. The radius of the
emitter is set to be Rc=2. The range of axion masses is
chosen as that for which the atmosphere is transparent. We
also mark the height of the ionospheric layers for reference.

VIII. CONCLUSIONS

In this manuscript, we have presented a detailed analysis
of the signal of the echo method for axion dark matter
detection proposed in Ref. [19]. We have found that the
echo intensity grows in time until it saturates after a
characteristic time that depends on the transverse axion
velocity distribution. We have classified this velocity
distribution effect into two cases: small and large
dispersion, depending on whether the transverse velocity
dispersion is smaller or larger than the transverse average
velocity.
Using a Gaussian beam as a model and working in the

paraxial approximation for the echo field, we have provided
approximate analytical estimates of the saturation timescale
and verified them by exact numerical integration for the
caustic ring and the isothermal halo models. Moreover, we

FIG. 6. Expected sensitivity of the echo method in the space of parameters ðm; gÞ for the caustic ring (left) and isothermal model
(right) of the Galactic halo. These plots assume that the method consumes an energy of 10 MWyear per factor of 2 in axion mass range.
The solid blue lines correspond to the scenario where this energy is spent in an efficient way, while the dashed blue lines show the
sensitivity for a fixed power source of 10 MW working for one year (see the text for more details). The green regions are current bounds
from axion dark matter haloscopes [33–46], and the gray region corresponds to bounds from the CAST experiment [47].

FIG. 7. Beam height at t⊥ for R ¼ Rc=2 as a function of Rc and
hv−1i−1. The horizontal blue lines mark the value of hv−1i−1 for
minimal axion transverse velocity, specifically for vp ¼ 0 and
vp ¼ 5 km=s for the isothermal and caustic ring models, re-
spectively. For the caustic ring model, we set δv⊥ ≃ 0, while for
the isothermal sphere model we use δv⊥ ¼ 270

ffiffiffiffiffiffiffiffi
2=3

p
km=s.

The black lines indicate the height of the lower end of the
ionosphere’s layers: the D-layer starting at a height of 60 km,
the E-layer starting at 90 km, and the F-layer starting
at 150 km.
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have shown that it is possible to achieve a separation in
frequency between the beam and the echo bandwidths
thanks to the average velocity of the axion flow along the
beam’s direction relative to the laboratory frame. This may
help reduce the noise from atmospheric backscattering and
beam leakages.
Finally, we have derived an analytical expression for

the power collected by a receiver dish concentric to the
emitter. This expression allows us to optimize the exper-
imental parameters in order to attain maximal signal to
noise or minimal energy consumption. We have provided
updated sensitivity estimates assuming a 100 m receiving
dish. These experimental parameters are attainable with
currently available technology. For instance, the receiver
could be a radio telescope such as the Green Bank,
Effelsberg, or FAST, while the power source could be a
high-power klystron, as used for radar transmitters or
particle accelerators.
Our estimates agree with those of Ref. [19] when

considering velocity distribution effects and also with the
fact that the outgoing beam divergence does not play any
role in the signal. We leave for future work a detailed
discussion of the role of the axion random phases and
atmospheric noise as well as a more practical description of
possible experimental setups.
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APPENDIX A: GREEN’S FUNCTION FOR THE
1D COMPUTATION

The retarded Green’s functionGðt; zÞ associated with the
operator ∂t − ∂z can be found by solving the equation

ð∂t − ∂zÞGðt; zÞ ¼ δðtÞδðzÞ: ðA1Þ

To solve Eq. (A1), we expand Gðt; zÞ in Fourier space as

Gðt; zÞ ¼ 1

ð2πÞ2
Z

∞

−∞

Z
∞

−∞
dkdωe−iðωt−kzÞĜðω; kÞ: ðA2Þ

Plugging (A2) into (A1), we get

Ĝðω; kÞ ¼ i
ωþ k

; ðA3Þ

and therefore

Gðt; zÞ ¼ i
ð2πÞ2

Z
∞

−∞
dkeikz

Z
∞

−∞
dω

e−iωt

ωþ k
: ðA4Þ

To find the retarded solution, we want Gðt; zÞ to vanish for
t < 0. To do that, we make the shift ω → ωþ i ϵ in the
denominator of the integrand in (A4). Using the Residue
theorem, we find Gðt; zÞ ¼ 0 for t < 0 and

Gðt; zÞ ¼ i
ð2πÞ2

Z
∞

−∞
dkeikzð−2πiÞeikt

¼ 1

2π

Z
∞

−∞
dkeikðzþtÞ

¼ δðtþ zÞ

for t > 0. So, we have

Gðt; zÞ ¼ ΘðtÞδðtþ zÞ: ðA5Þ

APPENDIX B: GREEN’s FUNCTION
FOR THE PARAXIAL EQUATION

The Green’s function Gðt; x⃗Þ satisfies the equation

ð2iΩð∂t − ∂zÞ −∇2⊥ÞGðt; x⃗Þ ¼ δ3ðx⃗ÞδðtÞ: ðB1Þ

To solve it, we write Gðt; x⃗Þ as the Fourier expansion

Gðt; x⃗Þ ¼ 1

ð2πÞ4
Z

d2k⊥eik⃗⊥·x⃗⊥
Z

dqeiqz

×
Z

dλe−iλtG̃ðk⊥; q; λÞ: ðB2Þ

Plugging (B2) into (B1), we find

G̃ðk⊥; q; λÞ ¼
1

2Ω

�
1

λþ qþ k2⊥
2Ω

�
: ðB3Þ

As we look for a solution that vanishes at t → −∞, ansatz
(4.4) suggests the shift Ω → Ω − iη. We can see easily that
(B3) has a pole at λ ¼ −q − k2⊥=ð2ΩÞ − iη̃. We perform the
integrals in (B3), getting
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Gðt; x⃗Þ ¼ 1

ð2πÞ4
1

2Ω

Z
d2k⊥eik⃗⊥·x⃗⊥

Z
dqeiqz

Z
dλ

e−iλt

λþ qþ k2⊥
2Ω þ iη̃

¼ 1

ð2πÞ4
1

2Ω
ð−2πiÞΘðtÞ

Z
d2k⊥eik⃗⊥·x⃗⊥ei

k2⊥
2Ωt

Z
dqeiqðzþtÞ

¼ 1

ð2πÞ3
1

2Ω
ð−2πiÞΘðtÞδðtþ zÞ

Z
d2k⊥eik⃗⊥·x⃗⊥ei

k2⊥
2Ωt

¼ 1

ð2πÞ3
1

2Ω
ð−2πiÞΘðtÞδðtþ zÞ

Z
∞

0

dk⊥k⊥ei
k2⊥
2Ωt

Z
2π

0

dϕeik⊥x⊥ cosðϕÞ

¼ 1

ð2πÞ2
1

2Ω
ð−2πiÞΘðtÞδðtþ zÞ

Z
∞

0

dk⊥k⊥ei
k2⊥
2ΩtJ0ðk⊥x⊥Þ

¼ −
Θð−zÞ
4πz

δðtþ zÞeiΩ
2zx

2⊥ : ðB4Þ

APPENDIX C: APPROXIMATED FORMULA
FOR δpzt ≫ 1

Defining

ξðz0; x⃗⊥; p⃗⊥;ΩÞ ¼
1

4πz0

Z
d2x0⊥ηðω; x⃗0Þe−ip⃗⊥·x⃗0⊥e−

iΩ
2z0jx⃗⊥−x⃗0⊥j2 ;

ðC1Þ

the function Jðt; x⃗;ΩÞ defined in Eq. (4.8), at z ¼ 0, can be
written as

Jðt; x⃗⊥;ΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
V

ð2πÞ3
s Z

d3pfaðp⃗Þ�e−iϕp⃗

×
Z

dz0ei ϵz0ξðz0; x⃗⊥; p⃗⊥;ΩÞ: ðC2Þ

The general formula for the spectral intensity (4.10)
averaged over random phases gives us

∂Iðt; x⃗⊥Þ
∂Ω ¼ 1

2
g2ρ

dI0
dω

Ω2

Z
dz0

Z
dz00hξðz0Þξðz00Þ�i

×
Z

dpzjfaðpzÞj2ei ϵðz0−z00Þ: ðC3Þ

Using Eq. (2.33), the integral in pz is easily evaluated; it
gives

Z
dpzjfaðpzÞj2ei ϵðz0−z00Þ ¼ eið2ω−m−hpziÞðz0−z00Þ−δp2

zðz0−z00Þ2=2:

ðC4Þ

At resonance, i.e., whenω ¼ ω�, we can use approximation
Eq. (2.35) in the limit δpzt ≫ 1, getting

∂Iðt; x⃗⊥Þ
∂Ω�

¼ 1

8

ffiffiffi
π

2

r
g2ρ
δpz

T ðt; x⃗⊥Þ
dI0
dω�

; ðC5Þ

where T ðt; x⃗⊥Þ is defined as

T ðt; x⃗⊥Þ ¼ 8ω2�

Z
d2p⊥jfaðp⃗⊥Þj2

Z
dz0jξðz0; x⃗⊥; p⃗⊥;ω�Þj2

¼ 8ω2�

�Z
dz0jξðz0; x⃗⊥; p⃗⊥;ω�Þj2

�
: ðC6Þ

To calculate the total intensity, we must integrate
Eq. (C3) also over frequency, so the knowledge of
dI0=dω is required. We will use the simple Gaussian
distribution defined in Eq. (4.14). Now, we have to
integrate Eq. (C4) as

Z
dω

dI0
dω

Z
dpzjfaðpzÞj2ei ϵðz0−z00Þ

¼ eið2ω̄−m−hpziÞðz0−z00Þ−2Δ2ðz0−z00Þ2=2; ðC7Þ

where Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω2þδp2

z=4
p

. The function Ω2hξðΩÞξðΩÞ�i
was simply evaluated at ω̄ since corrections in pz and δω
are small.
If the peaks of the momentum and frequency distribu-

tions satisfy the resonance condition for stimulated axion
decay, i.e., ω̄ ¼ ω�, then Eq. (C7) can be approximated asffiffiffiffiffiffiffiffi
π=2

p
δðz0 − z00Þ=Δ in the limit Δt ≫ 1. The total intensity

is found to be

Iðt; x⃗⊥Þ ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

T ðt; x⃗⊥ÞI0: ðC8Þ

Finally, the power Pc collected over a arbitrary surface S
can be calculated integrating Eq. (C8) over S. Defining
the outgoing beam power P0 ¼ I0S0, where S0 is the
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effective cross section of the outgoing beam at t ¼ 0,
we have

PcðtÞ ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

P0

1

S0

Z
S
d2x⊥T ðt; x⃗⊥Þ: ðC9Þ

APPENDIX D: DETAILS FOR THE POWER
COLLECTED BY A RECEIVING DISH

In this Appendix, we present the calculation of the power
collected by a dish located on the plane z ¼ 0, concentric to
the emission surface. We start writing Eq. (4.15) as

Pc ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

hT cðt; v⃗⊥ÞiP0; ðD1Þ

where

T cðt; v⃗⊥Þ ¼
1

S0

Z
S
d2x⊥T ðt; x⃗⊥; v⃗⊥Þ: ðD2Þ

Here, S0 ¼ πR2, and S is the integration domain that
corresponds to the receiving dish surface. From now on,
we will assume a circular cross sectional area with radius
Rc for the receiving dish.
We want to analyze the cases in which the dish collects a

steady-state signal. To find them, first notice that as the
echo spreads at velocity ∼v⊥, it takes a time Rc=v⊥ to
spread out of the dish. If toff < Rc=v⊥, i.e., when the
outgoing beam is turned off before the echo spreading
reaches the dish boundaries, a steady-state signal is
received for a time defined by toff ≤ t ≤ Rc=v⊥. On the
other hand, if toff > Rc=v⊥, i.e., after the echo passes
the dish boundary, a steady-state signal is found for
Rc=v⊥ ≤ t ≤ toff .
In the first case, when toff ≤ t ≤ Rc=v⊥, as all the

echo lies inside the dish, the integral Eq. (D2) can be
performed over a infinite space. Defining x ¼ r cosðφÞ
and y ¼ r sinðφÞ and taking the lower part of Eq. (5.3),
we have

T cðv⃗⊥Þ ¼
1

S

ffiffiffi
π

p
2

R
v⊥

Z
∞

−∞
dye−

y2

R2

Z
∞

−∞
dx

�
erf

�
v⊥t − x

R

�
− erf

�
v⊥ðt − toffÞ − x

R

��

¼ 1

S

ffiffiffi
π

p
2

R
v⊥

ffiffiffi
π

p
R2v⊥toff

¼ toff : ðD3Þ

This result does not contain any effect from the axion velocity because the dish is big enough to collect all the power from
the echo.
In the second case, when Rc=v⊥ ≤ t ≤ toff , we can set the second erf function that appears in Eq. (5.3) equal to 1, since its

argument is always large. For T c, we find

T cðv⃗⊥Þ ¼
1

S

ffiffiffi
π

p
2

R
v⊥

Z
Rc

0

dr r
Z

2π

0

dφe−
r2

R2
sinðφÞ2

�
erf

�
r cosðφÞ

R

�
þ 1

�
;

¼ 1

S

ffiffiffi
π

p
2

R
v⊥

Z
Rc

0

dr r2πe−
r2

2R2I0

�
r2

2R2

�

¼ 1

S

ffiffiffi
π

p
2

R
v⊥

2π
R2
c

2
e−

R2c
2R2

�
I0

�
R2
c

2R2

�
þ I1

�
R2
c

2R2

��
ðD4Þ

¼ κ
Rc

v⊥
ðD5Þ

where κ is defined as

κ ¼
ffiffiffi
π

p
2

Rc

R
e−

R2c
2R2

�
I0

�
R2
c

2R2

�
þ I1

�
R2
c

2R2

��
: ðD6Þ

Notice that κ → 1 for Rc=R → ∞.
With these results, the steady signal power can be

written as

Pc ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

teP0; ðD7Þ

where te takes the value toff for toff < Rc=v⊥ and the
value κRchv−1⊥ i for toff > Rc=v⊥. Notice that if Rc > R,
κ is of order 1, so we can write the approximate result

Pc ¼
1

16

ffiffiffi
π

2

r
g2ρ
Δ

min ðtoff ; κRchv−1⊥ iÞP0: ðD8Þ
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