KIT | KIT-Bibliothek | Impressum | Datenschutz

Disentangling land model uncertainty via Matrix-based Ensemble Model Inter-comparison Platform (MEMIP)

Liao, Cuijuan; Chen, Yizhao ; Wang, Jingmeng; Liang, Yishuang; Huang, Yansong; Lin, Zhongyi; Lu, Xingjie; Huang, Yuanyuan; Tao, Feng; Lombardozzi, Danica; Arneth, Almut 1; Goll, Daniel S.; Jain, Atul; Sitch, Stephen; Lin, Yanluan; Xue, Wei; Huang, Xiaomeng; Luo, Yiqi
1 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

Background
Large uncertainty in modeling land carbon (C) uptake heavily impedes the accurate prediction of the global C budget. Identifying the uncertainty sources among models is crucial for model improvement yet has been difficult due to multiple feedbacks within Earth System Models (ESMs). Here we present a Matrix-based Ensemble Model Inter-comparison Platform (MEMIP) under a unified model traceability framework to evaluate multiple soil organic carbon (SOC) models. Using the MEMIP, we analyzed how the vertically resolved soil biogeochemistry structure influences SOC prediction in two soil organic matter (SOM) models. By comparing the model outputs from the C-only and CN modes, the SOC differences contributed by individual processes and N feedback between vegetation and soil were explicitly disentangled.

Results
Results showed that the multi-layer models with a vertically resolved structure predicted significantly higher SOC than the single layer models over the historical simulation (1900–2000). The SOC difference between the multi-layer models was remarkably higher than between the single-layer models. Traceability analysis indicated that over 80% of the SOC increase in the multi-layer models was contributed by the incorporation of depth-related processes, while SOC differences were similarly contributed by the processes and N feedback between models with the same soil depth representation.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143233
Veröffentlicht am 22.02.2022
Originalveröffentlichung
DOI: 10.1186/s13717-021-00356-8
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2192-1709
KITopen-ID: 1000143233
HGF-Programm 12.11.21 (POF IV, LK 01) Natural ecosystems as sources and sinks of GHGs
Erschienen in Ecological Processes
Verlag SpringerOpen
Band 11
Heft 1
Seiten Art.-Nr.: 14
Vorab online veröffentlicht am 08.02.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page