KIT | KIT-Bibliothek | Impressum | Datenschutz

Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton

Dežman, M. 1; Asfour, T. 1; Ude, A.; Gams, A.
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper presents a lightweight and low-inertia cable-driven upper-limb exoskeleton powerful enough to meet the requirements for activities of daily living. It presents the mechanical design, kinematic structure,the underlying actuation system, sensors, other electronic components as well as the controller of the exoskeleton.

The extensive effect of friction on cable-driven designs, such as the one presented in this paper, requires proper mathematical modelling for controller design. Thus, we propose a current actuator model that describes the relationship between the motor current, velocity, and external load. The model relies on an underlying Stribeck+Coulomb friction representation and an additional parameter that modifies its Coulomb friction representation with an offset to represent adhesion between a cable and sheath.

The model has been validated based on experimental data collected with the exoskeleton. The results show that the proposed model better captures the non-linear behaviour of the exoskeleton’s actuation system, increasing overall descriptive performance by 15%. However, adding the adhesion offset to extend the relation of static friction, does not improve the model.


Verlagsausgabe §
DOI: 10.5445/IR/1000143255
Veröffentlicht am 03.03.2022
Originalveröffentlichung
DOI: 10.1016/j.mechmachtheory.2022.104746
Scopus
Zitationen: 17
Web of Science
Zitationen: 6
Dimensions
Zitationen: 21
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0094-114X, 1873-3999
KITopen-ID: 1000143255
Erschienen in Mechanism and Machine Theory
Verlag Elsevier
Band 171
Seiten Art.-Nr.: 104746
Schlagwörter Upper-limb exoskeleton; Mechanical designRapid-prototyping; Bowden-cable transmission; Bowden-cable adhesion; Friction modelling; Friction identification; Actuator parameter identification
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page