KIT | KIT-Bibliothek | Impressum | Datenschutz

Grain size analysis in permanent magnets from Kerr microscopy images using machine learning techniques

Choudhary, A. K. 1; Jansche, A. 1; Grubesa, T. 2; Trier, F.; Goll, D.; Bernthaler, T.; Schneider, G.
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Understanding the relationships between composition, structure, processing and properties helps in the development of improved materials for known applications as well as for new applications. Materials scientists, chemists and physicists have researched these relationships for many years, until the recent past, by characterizing the bulk properties of functional materials and describing them with theoretical models.

Magnets are widly used in electric vehicles (EV), hybrid electric vehicles (HEV), data storage, power generation and transmission, sensors etc. The search for novel magnetic phases requires an efficient quantitative microstructure analysis of microstructural information like phases, grain distribution and micromagnetic structural information like domain patterns, and correlating the information with intrinsic magnetic parameters of magnet samples. The information out of micromagnetic domains helps in obtaining the optimized microstructures in magnets that have good intrinsic magnetic properties.

This paper is aimed at introducing the use of a traditional machine learning (ML) model with a higher dimensional feature set and a deep learning (DL) model to classify various regions in sintered NdFeB magnets based on Kerr-microscopy images. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143257
Veröffentlicht am 02.03.2022
Originalveröffentlichung
DOI: 10.1016/j.matchar.2022.111790
Scopus
Zitationen: 15
Web of Science
Zitationen: 13
Dimensions
Zitationen: 14
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Informatik (INFORMATIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1044-5803, 1873-4189
KITopen-ID: 1000143257
Erschienen in Materials Characterization
Verlag Elsevier
Band 186
Seiten Art.-Nr.: 111790
Schlagwörter Machine learning; Kerr microscopy; Permanent magnets; Grain analysis; Semantic segmentation; Micromagnetic domains; Quantitative microstructure analysis
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page