KIT | KIT-Bibliothek | Impressum | Datenschutz

Using rapid damage observations for Bayesian updating of hurricane vulnerability functions: A case study of Hurricane Dorian using social media

Bruijn, J. A. de ; Daniell, J. E. 1; Pomonis, A.; Gunasekera, R.; Macabuag, J.; Ruiter, M. C. de; Koopman, S. J.; Bloemendaal, N.; Moel, H. de; Aerts, J. C. J. H.
1 Geophysikalisches Institut (GPI), Karlsruher Institut für Technologie (KIT)

Abstract:

Rapid impact assessments immediately after disasters are crucial to enable rapid and effective mobilization of resources for response and recovery efforts. These assessments are often performed by analysing the three components of risk: hazard, exposure and vulnerability. Vulnerability curves are often constructed using historic insurance data or expert judgments, reducing their applicability for the characteristics of the specific hazard and building stock. Therefore, this paper outlines an approach to the creation of event-specific vulnerability curves, using Bayesian statistics (i.e., the zero-one inflated beta distribution) to update a pre-existing vulnerability curve (i.e., the prior) with observed impact data derived from social media. The approach is applied in a case study of Hurricane Dorian, which hit the Bahamas in September 2019. We analysed footage shot predominantly from unmanned aerial vehicles (UAVs) and other airborne vehicles posted on YouTube in the first 10 days after the disaster. Due to its Bayesian nature, the approach can be used regardless of the amount of data available as it balances the contribution of the prior and the observations.


Verlagsausgabe §
DOI: 10.5445/IR/1000143261
Veröffentlicht am 02.03.2022
Originalveröffentlichung
DOI: 10.1016/j.ijdrr.2022.102839
Scopus
Zitationen: 5
Web of Science
Zitationen: 6
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Geophysikalisches Institut (GPI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2212-4209
KITopen-ID: 1000143261
Erschienen in International Journal of Disaster Risk Reduction
Verlag Elsevier
Band 72
Seiten Art.-Nr.: 102839
Schlagwörter Vulnerability curves; Social media; Bayesian updating; Rapid damage assessment; Hurricane Dorian; UAVs
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page