KIT | KIT-Bibliothek | Impressum | Datenschutz

SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss

Morel, B. 1; Schade, P. 2; Lutteropp, S.; Williams, T. A.; Szöllősi, G. J.; Stamatakis, A. ORCID iD icon 2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143273
Veröffentlicht am 03.03.2022
Originalveröffentlichung
DOI: 10.1093/molbev/msab365
Scopus
Zitationen: 23
Web of Science
Zitationen: 18
Dimensions
Zitationen: 43
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1537-1719, 0737-4038
KITopen-ID: 1000143273
Erschienen in Molecular biology and evolution
Verlag Oxford University Press (OUP)
Band 39
Heft 2
Seiten 1-18
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page