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Abstract: Artificial neural networks are used in various
fields including spectral unmixing, which is used to de-
termine the proportions of substances involved in a mix-
ture, and achieve promising results. This is especially true
if there is a non-linear relationship between the spectra
of mixtures and the spectra of the substances involved
(pure spectra). To achieve sufficient results, neural net-
works need lots of representative training data.Wepresent
a method that extends existing training data for spectral
unmixing consisting of spectra ofmixtures by learning the
mixing characteristic using an artificial neural network.
Spectral variability is considered by random inputs. The
network structure used is a generative adversarial net that
takes the dependence on the abundances of pure sub-
stances into account by an additional term in its objective
function, which is minimized during training. After train-
ing further data for abundance vectors for which there is
no real measurement data in the original training dataset
can be generated. A neural network trained with the aug-
mented trainingdataset showsbetter performance in spec-
tral unmixing compared to being trained with the origi-
nal dataset. The presented network structure improves al-
ready existing results obtained with a generative convolu-
tional neural network, which is superior to model-based
approaches.

Keywords: Spectral unmixing, data augmentation, gener-
ative adversarial nets, spectral variability.

Zusammenfassung: Künstliche neuronale Netze werden
vielseitig eingesetzt. Auchbei der spektralenEntmischung
zur Ermittlung der Anteile der beteiligten Stoffe in einem
Stoffgemisch liefern sie vielversprechendeErgebnisse. Das
gilt vor allem dann, wenn ein nichtlinearer Zusammen-
hang zwischen den Spektren der Stoffgemische und den
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Spektren der beteiligten Stoffe (Reinspektren) besteht. Da-
zu benötigen sie viele und repräsentative Trainingsda-
ten. Ein Verfahren wird vorgestellt, welches vorhandene
Trainingsdaten für die spektrale Entmischung bestehend
aus Spektren von Stoffgemischen erweitert, indem der
Mischzusammenhang mit einem künstlichen neuronalen
Netz gelerntwird. Dabeiwird auchdie Spektrenvariabilität
durch zufällige Eingangsgrößen berücksichtigt. Als Netz-
struktur wird ein Generative Adversarial Net verwendet,
welches durch einen zusätzlichen Term in seiner Kosten-
funktion, die beim Trainingminimiert wird, die Abhängig-
keit von den Anteilen der Reinstoffe berücksichtigt. Nach
dem Training können damit weitere Daten für Mischver-
hältnisse erzeugt werden, für die es keine echten Messda-
ten im ursprünglichen Trainingsdatensatz gibt. Ein neu-
ronales Netz, das mit dem erweiterten Trainingsdatensatz
trainiert wird, zeigt bessere Ergebnisse bei der spektralen
Entmischung als wenn es mit dem usprünglichen Daten-
satz trainiert wurde. Die vorgestellte Netzstruktur verbes-
sert bereits vorhandene Ergebnisse, die mit einem genera-
tiven Faltungsnetz, das modellbasierte Ansätze übertrifft,
erzielt wurden.

Schlagwörter: Spektrale Entmischung, Augmentierung,
Generative Adversarial Nets, Spektrenvariabilität.

1 Introduction

Hyperspectral Images (HSIs) were previously used primar-
ily in remote sensing, but are gaining popularity in au-
tomatic visual inspection. There are a lot of applications
such as in food industry or the processing of bulks [13].
An important task is to monitor the correct composition
of substances, preferably without contact. Normal colour
images with three colour channels are usually not suffi-
cient to solve this task satisfactorily. In contrast, hyper-
spectral images are sampled in many narrowband wave-
length channels. With fine materials or large distances be-
tween camera and object, several materials are usually
contained in one pixel, which means that only a mixed
spectrum is available. Spectral unmixing (SU) is used to
examine the material composition of such pixels [20].
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To solve SU problems, mixing models are typically
used. The mixing models are approximations that show
a certain model inaccuracy. The accuracy of the models
depends on the application [10]. Data based methods can
also be used for SU [32]. Especially artificial neural net-
works have performed very well in many domains, includ-
ing SU [3, 28, 33], in recent years. The advantages of neu-
ral networks that apply especially to SU are as follows:
Firstly, spectral variability is taken into account when it
is included in the training data. Secondly, constraints on
the estimated proportions can be enforced by network ar-
chitecture [2, 4]. However, neural networks only succeed
without a mixing model because they learn the relation-
ships fromdata. In order to achieve good results, sufficient
labelled and representative training data must therefore
be available. Otherwise there is a risk of overfitting, where
only the training dataset is memorised but no generalisa-
tion happens. Unfortunately, large datasets are often not
available. Especially in the industrial environment, where
a certain task has to be achieved, there is a lack of data,
which must first be effortfully acquired.

One way to address this problem is to use data aug-
mentation. This is mainly used for classification prob-
lems, where data with the same label are slightly altered
to achieve desired invariances [25, 29]. For SU, it is desir-
able to estimate the proportions, also called abundances,
of the pure substances involved as accurately as possi-
ble and to achieve invariance to the spectral variability.
Therefore, it makes sense to generate additional train-
ing data during augmentation that feature spectral vari-
ability and correspond as closely as possible to the true
mixing characteristics. We have already presented an ap-
proach in which augmentation is performed using a gen-
erative convolutional neural network (CNN) [1]. There,
additional random input variables are used to generate
data that feature spectral variability and correspond to
abundances that are not contained in the original train-
ing dataset. Data generation involving spectral variabil-
ity has already been performed in [6, 7] for pure spec-
tra using variational autoencoders. In this paper, our ap-
proach is extended by a regularisation with a generative
adversarial net (GAN) [11], which aims at a more detailed
parametric-analytical modelling of the characteristic mix-
ing behaviour and spectral variability. For unsupervised
SU, regularisation with a GAN has already been imple-
mented [17]. To the best of our knowledge, it has not been
used yet for modelling of the mixing behaviour and aug-
mentation of labelled training datasets. For this approach,
a couple of spectra are needed for several abundance com-
binations. This requirement is fulfilled in an industrial en-
vironment, for example bypreparing a calibrationdataset.

In summary, the following innovations are presented in
this paper:
– The modelling of mixed spectra including spectral

variability using a GAN-based neural network.
– The use of a hybrid objective function tomodel the de-

pendence on the abundances.
– The use of the discriminator during data generation

to reject bad samples that can occur when unknown
abundances are specified.

– The investigation of the effect of the augmentation us-
ing data generated in this way on the performance of
spectral unmixing.

The rest of the paper is structured as follows. The next
section briefly introduces the basics of SU. Then, in Sec-
tion 3, the basic concept of GANs is presented, which will
later serve as the network structure for the augmentation.
Thereafter, Section 4 presents the previous work on which
the approachpresented in this paper is based. In Section 5,
the procedure for regularisation with GANs is described.
An evaluation and comparison of the methods presented
is carried out in Section 6. Both the augmented data it-
self and its effect on SU are discussed. Finally, the paper
is summarised in Section 7.

2 Spectral unmixing
This section briefly introduces the basics of spectral un-
mixing. Readers who are familiar with these may skip this
section.

Spectral unmixing is about estimating the relative
proportions (abundances) and spectra of the pure sub-
stances involved from a spectrum of a mixture of sub-
stances [20]. The term supervised SU is used if the spec-
tra of the pure substances involved are known, otherwise
it is called unsupervised SU. In this paper, a data-based
approach is used in which the spectra of the pure sub-
stances are also included in the training datasets. There-
fore, this paper only considers supervised SU fromhere on.
Thus, the goal of supervised SU is to estimate the abun-
dances a = [a1,..., aP]T ∈ ℝP, given a recorded discrete
spectrum y ∈ ℝΛ and the involved discrete pure spectra
M = [m1,...,mP] ∈ ℝ

Λ×P. In general, the non-negativity
constraint (1) and the sum-to-one constraint (2) must be
fulfilled for the abundances to ensurephysical plausibility.

ap ≥ 0 p = 1,...,P (1)
P
∑
p=1

ap = 1 (2)
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A model-based approach, in which a mixing model
describes the relationship between the variables, is often
used to solve SU problems. These mixing models approxi-
mately describe the relationship between y, a, andM. The
most commonly used mixing model is the linear mixing
model, which is a valid approximation for many applica-
tions [5, 20, 22–24]:

y =
P
∑
p=1

mp ap = Ma . (3)

The linear mixing model can be solved for a under consid-
eration of the constraints (1) and (2) usingmethods like the
Fully Constrained Least Squares algorithm [15]. Further-
more, there are also non-linear mixing models, which can
be superior to the linear mixing model depending on the
application [10]. For example, there are the generalized bi-
linear model [14] and the linear quadratic model [26]. Es-
pecially when the substances involved have small grain
sizes, the linear mixing model is not sufficient [20]. This
is the case with the datasets used for evaluation in Sec-
tion 6, where homogeneous mixtures of coloured quartz
sands and colour powders are investigated. However, it is
also muchmore difficult to determine parameter a using a
non-linear mixing model.

The approaches presented so far assume that the pure
substances involved can each be described by one spec-
trum. However, the pure substances have varying spec-
tra [30]. This is called spectral variability and has various
causes [8]. An important reason is the surface topography,
which causes a variation in the angle of the light scattered
by the substances under investigation. An example that il-
lustrates spectral variability is shown in Fig. 1. There are
also mixing models that take spectral variability into ac-
count. This is done through additional parameters. Based

Figure 1: Spectral variability example: 25 spectra of a pure sub-
stance contained in the colour-4 dataset presented in Sec. 6. Each
line corresponds to a spectrum. The colours serve to improve distin-
guishability.

on the linear mixing model, the extended linear mixing
model [31] and the generalized linear mixing model [18]
are to be mentioned. While the former introduces a scal-
ing factor per pure substance involved, the latter uses one
for each element inM.

In contrast to the methods presented in this section,
there are also data-based methods that do not require any
mixing model at all. Those are especially useful if the
mixing behaviour is non-linear, because there the model
based methods are hard to optimize. In this paper, the
training dataset for such methods is augmented using
GANs, which are introduced in the following section.

3 Generative adversarial nets

For the approach presented in this paper, we use a GAN
structure to extend our generative CNN (see Section 4
and [1]). This section briefly introduces the basics of GANs.
Readers who are familiar with these may skip this sec-
tion.

Generative adversatial nets [11] are neural networks
that are trained in an unsupervised manner and learn the
distribution of the training data, which enables them to
produce further samples from the distribution. They con-
sist of two subnetworks: a generator G and a discrimina-
torD. The input variables of the discriminator are the out-
put variables of the generator, as well as the real training
data xtr. The output of the discriminator is a scalar value
and the inputs of the generator are random values xrnd.
This setup is illustrated in Fig. 2. The aim of the genera-
tor is to produce data that are as similar as possible to the
real training data. The discriminator tries to distinguish
whether the respective input data originates from the gen-
erator or is real training data.

The parameters of the two subnetworks are updated
alternately. When training with M samples, the objective

Figure 2: Illustration of a GAN setup.
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functions are:

JD = −
M
∑
m=1
[log (D(xtr,m)) + log (1 −D(G(xrnd,m)))] , (4)

JG = −
M
∑
m=1

log (D(G(xrnd,m))) . (5)

The objective function JD is used for training the discrimi-
nator and JG for training the generator. Consequently, the
value 1 at the output of the discriminator represents the
classification as real training data, while the value 0 corre-
sponds to generated data. By training alternately, the gen-
erator and discriminator improve until, ideally, the gen-
erator’s data are that accurate that the discriminator is
no longer able to distinguish between real and generated
data.

Now the basics of GANs have been provided, the fol-
lowing section presents the preceding work, which is later
enhanced by a GAN structure.

4 Preceding work

This section summarises previous work on which the ap-
proach presented in this paper is based. Firstly, the gen-
erative CNN is presented, which is used for augmentation
and is integrated into a GAN structure in this paper. Sec-
ondly, the CNN for SU is presented, which is used to evalu-
ate the augmentation methods. Basics on artificial neural
networks are required in this section and can for example
be looked up in [12].

4.1 Generative CNN

The generative CNN is described in detail in [1]. The main
idea of this approach is not to use the training data di-
rectly for training a CNN for SU. Instead, a generative CNN
is trainedfirst in order to augment the trainingdataset. The
generative CNNuses the abundance vectorsa as input data
and the generated spectra ŷ ∈ ℝΛ as output data. Indepen-
dent random values A ∼ N (0; 1) are added as additional
input data. An illustration of the generative CNN can be
found in Fig. 3.

Each input variable of the generativeCNNcorresponds
to an 1 × 1 feature map. These input variables are first pro-
cessed with three transposed convolutional layers. These
are convolutional layers with preceded upsampling by
zeropadding.Note that in Fig. 3, for the sakeof clarity, only
one feature map per layer is shown. A final convolutional

Figure 3: Layout of the generative CNN. It consists of transposed
convolutional layers (t. conv.) and a convolutional layer (conv.). Only
one feature map is shown in each layer.

layer is used tomerge the featuremaps into a discrete spec-
trum ŷ. The logistic loss function

Jlog =
Λ
∑
λ=1

yλ ⋅ log(ŷλ) + (1 − yλ) ⋅ log(1 − ŷλ) (6)

is used for training, which is suitable because the spectra
consist of values between zero and one. Note that for sake
of clarity, the objective function is only shown for one sam-
ple. In the case of several samples, the individual objective
functions are added up like in Eq. (5). Adam is used as op-
timizer [21].

Due to spectral variability, there are many more dif-
ferent output values for the generative CNN than there are
different abundance vectors (the output values of the orig-
inal CNN). This allows the generative CNN to be trained for
many epochswithout overfitting. It can then be used to ob-
tain spectra for additional abundance vectors in order to
augment the original training dataset.

In order to be able to model the spectral variability
more accurately, additional modifications were made [1].
One that performed well will be used for comparison with
themethodpresented later. There, the covariancematrix is
calculated for all spectra that share an abundance vector.
During training, the mean squared error between the ele-
ments of these covariance matrices and those of the gen-
erated spectra was used for regularisation.

4.2 CNN for spectral unmixing

The CNN for SU was first introduced in [3] as a version
with three-dimensional convolutional kernels. Since only
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individual spectra are considered here, a versionwith one-
dimensional convolutional kernels is used, which is de-
scribed in detail in [1].

The input data of the CNN are discrete spectra and the
output data are the estimated abundance vectors â ∈ ℝP.
The layout of the CNN for SU can be found in Fig. 4.

Figure 4: Layout of the CNN for SU. It consists of three one-
dimensional convolutional (conv.) layers, a pooling layer (pool.) af-
ter each convolutional layer, two fully connected (FC) layers, batch-
normalisation (BN) [19] before each activation function (except for
the last), and the logistic function (7) as activation (act.) function.

The logistic activation function of the last layer en-
forces the non-negativity constraint (1):

flog(z) =
1

1 + e−z
. (7)

The sum-to-one constraint (2) is enforced by

âp =
a∗p
∑Pp̃=1 a∗p̃

for p = 1, 2, . . . ,P , (8)

where a∗ = [a∗1 , ..., a
∗
P]

T ∈ ℝP denotes the output of the
last activation function. This has lead to slightly better per-
formance than using a softmax layer to enforce the con-
straints in prior experiments [3]. As objective function the
mean squared error between a and â is used. Adam is used
as optimizer [21].

In the following section, the generative CNN (Fig. 3) is
extended by integrating it into a GAN structure.

5 GAN-regularized generative CNN
For augmentation as described above, it is necessary to be
able to specify abundance vectors for the neural network.
However, with standard GANs there is no way to achieve
this [11]. A conditional GAN can be used for this purpose
[27]. The conditions, in this case the abundance vectors,
are used as additional input variables for the generator
as well as for the discriminator. The conditional GAN is
intended for problems where all conditions occur during
training that are used during data generation. This is the
case, for example, when data samples for different classes
are to be generated. Here, however, we intend to specify
conditions during data sampling that lie between those of
the training dataset. A variant of the conditional GAN ex-
ists for continuous input variables [9], but there was a lot
of training data available and scalar conditions were used
in the experiments. In our experiments it turned out that
conditional GANs cannot achieve satisfactory results for
SU dataset augmentation. This is due to the rather small
training datasets, where the distances between included
abundance vectors are large.

Instead, a hybrid approach is used in which the gen-
erative CNN, that already has the abundance vectors as in-
put variables, is used as the generator of a GAN. In contrast
to a standard GAN, the reconstruction error of the output
variables of the generator is also taken into account in the
objective function. In other words, the generative CNN is
regularised by the GAN, for which reason the approach is
referred to as rGANbelow. The concept of the rGAN is illus-
trated in Fig. 5.

The generator loss ensures dependence on the abun-
dances, while the GAN loss ensures that the generated
spectra are as close as possible to the real ones.

Figure 5: Illustration of the rGAN setup. In comparison to the stan-
dard GAN, the abundances enter the generator as input variables.
In addition to the GAN loss, there is also a generator (gen.) loss
that takes into account the error between generated and real spec-
tra.
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The generator we used is exactly the same as the gen-
erative CNN from Section 4. The discriminator consists
of three fully connected layers that map the spectra to a
scalar value. All layers use the logistic function (7) as acti-
vation function. For the discriminator training step, JD ac-
cording to Eq. (4) is used as objective function with xtr = y
and xrnd = A. For the generator training step, the objective
function is

JrGAN = JG + k ⋅ Jlog , (9)

where k ∈ ℝ is used to weigh the parts differently. Adam is
used as optimizer [21].

For augmentation, the generator of the trained rGAN
can be used to generate further training data. This is
done by giving the generator abundance vectors a that
are not contained in the original training dataset. To en-
sure that the spectral variability is also taken into account
in the generated data, several spectra are generated for
each abundance vector by varying the random input vari-
ables A.

Alternatively, the discriminator can be used in addi-
tion to the generator for data generation. In this case, only
those of the generated spectra are used for augmentation
that the discriminator classifies as real spectra. During its
training, the discriminator does not see any data gener-
ated on the basis of the new abundance vectors. Therefore,
it happens that for some abundance vectors all generated
spectra are classified as generated. Because of this, after a
fixed number of unsuccessful generations ζ ∈ ℕ, the de-
cision limit, which is originally 0.5, is lowered by ϵ ∈ ℝ.
This is repeated until the desired number of spectra is gen-
erated.

In the next section, the methods presented here are
evaluated using real data. They will be compared with the
methods from Section 4.

6 Experimental results
The datasets used for the evaluation were captured in
our image processing laboratory. This makes it possible
to have real images where we know the abundances pre-
cisely. In total, three datasets are used, two of which con-
sist of differently coloured quartz sands and one of colour
powders. To produce mixed substances, the pure sub-
stances were filled into small bins in different proportions
by volume and mixed until homogeneous mixtures were
obtained. The mixtures and pure substances were then
filled into small boxes (see Fig. 6). Those were captured
by a hyperspectral imaging system. The ANDOR iXon3 897

Figure 6: RGB images of some of the boxes filled with coloured
quartz sands (left) and colour powders (right).

camera used was together with the acousto-optic tunable
filter HSi-300 fromGooch&Housego.With this setup, two-
dimensional images are taken one after the other for the
differentwavelength channels. After taking the hyperspec-
tral images, a white balance using a reflectance standard
was performed to compensate both spatial and spectral in-
homogeneities of the illumination and the measurement
setup. The hyperspectral imaging system is able to record
wavelengths from 450nm to 810 nm. This range has been
divided into 91 channels with a bandwidth of approxi-
mately 4 nm. For each substancemixture 400 spectrawere
captured.

Of the two datasets which consist of coloured quartz
sands, one contains 45mixtures of up to 3 pure substances
(quartz-3) and the other 56 mixtures of up to 4 pure sub-
stances (quartz-4). In the quartz-3 dataset the abundances
of the substances vary in steps of 1

8 , in the quartz-4 dataset
in steps of 15 . The dataset consisting of colour powders also
contains 56 mixtures of up to 4 pure substances (colour-4)
that vary in abundance steps of 1

5 . The colour-4 dataset
has a higher spectral variability and shows a higher non-
linearity in the mixing behaviour than the datasets con-
taining coloured quartz sands. This is due to the smaller
grain size and the fact that the colour powders tend to
clump together.

All datasets are divided into a test and a training
dataset depending on the abundance vectors. This ensures
that no (different) spectrawith the same abundance vector
are included in both datasets. The split is performed sys-
tematically such that the data from the test dataset lies (in
terms of abundance vectors) “between” the data from the
training dataset. It is done in thisway because the aim is to
augment an existing training dataset by adding data with
abundance vectors between the existing ones. The details
are described by the following rules:
– For the quartz-4 and colour-4 datasets, the samples

that do not have at least one abundance of 1
5 or

4
5 are
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included in the training dataset. The rest of the sam-
ples forms the test dataset. There are in total 16 abun-
dance vectors in the training dataset and 40 in the test
dataset.

– The quartz-3 test dataset includes the samples where
at least one abundance has a value of 1

8 ,
3
8 ,

5
8 or

7
8 . This

means that there are 15 abundance vectors in the train-
ing dataset and 30 in the test dataset.

6.1 Evaluation of generated spectra

For the evaluation of the artificial spectra generated by
our GAN, which are later used for augmentation of the real
spectra, they are comparedwith the real spectra in the cor-
responding test dataset. The generated spectra can there-
fore only be evaluated for those abundance vectors that
also occur in the test datasets. It is to be expected that by
using the GAN-based regularisation the generated spectra
are more similar to the real ones than when using the gen-
erative CNN alone, because spectral variability should be
modelledmore accurately. Using the discriminator also for
sampling might further improve the result, because bad
samples can be sorted out.

The structure of the generator was chosen as in Fig. 3,
with the number of feature maps equal to P + 3, 32, 32, 16,
and 1 from front to back. The additional 3 feature maps at
the input correspond to the size of the random input vec-
tor A. The size of the convolution kernels was set to 5 and
convolutions are performed along the wavelength dimen-
sion. To get 91 wavelength channels at the output, the size
of the convolution kernel in the first layer is 23. Together
with the upsampling rate 2 this results in 92 wavelength
channels (the last channel is ignored to get the desired 91
channels). For the discriminator, the number of neurons
was chosen to be 64, 16, and 1.

During training of the rGAN, the generatorwas trained
every seventh iteration, the discriminator every remain-
ing iteration. During generator training, k = 10 (see
Eq. (9)) was used. Some training parameters were cho-
sen differently for the datasets. The quartz-3 dataset was
trained for 6000 epochs with a learning rate of 0.01. For
the quartz-4 and colour-4 datasets, pre-training was per-
formed first. Only the generator was trained with Jlog for
450 epochs with a learning rate of 0.01. After the pre-
training, the entire rGAN was then trained with the com-
bined objective function for 4000 epochs with a learning
rate of 10−3. The difference in the training procedure is
due to the fact that the abundance vectors in the quartz-4
and colour-4 datasets have a greater step size than in the
quartz-3 dataset. Therefore the latter is easier to train.

For the quantitative evaluation of the generated spec-
tra, we introduce the average minimum (euclidean) norm,

ΔAMN =
1
I

I
∑
i=1

min
h
‖yi, ŷh‖2 , (10)

between a subset of I measured spectra and a subset of H
generated spectra. By using the minimum operation, the
average distance of the closest generated spectrum ŷ to
each spectrum y in the subset of the test dataset is evalu-
ated. The subsets contain all spectra corresponding to one
abundance vector. If ΔAMN is averaged over awhole dataset
we call it global average minimum norm ΔGAMN. To obtain
the results of this subsection, we generated 400 spectra
for each abundance vector to be compared with the cor-
responding 400 spectra in the test dataset.

Table 1 shows ΔGAMN for all datasets, presented meth-
ods, and comparison methods to evaluate the synthetic
mixed spectra. It can be seen that regularisation with a
GAN leads to an improvement compared to the generative
CNN alone. With covariance regularisation, the best value
for ΔGAMN is achieved. However, it must be noted that this
method is only possible if many spectra per abundance
vector are available, because the covariancematrices have
to be calculated. Generating data using the rGANwith dis-
criminator has only a minor impact here. This is because
this method is used to sort out bad samples, but due to the
minimum operator in Eq. (10) these spectra have no effect.

Within a method of generating spectra, quartz-4 al-
ways gives the best result and colour-4 always the worst.
This is because colour-4 shows themost significant degree
of non-linearity and the two quartz sand datasets have dif-
ferent abundances and are differently divided into a test
and a training part. The quartz-3 dataset does not get any
datawith abundance step size of 18 during training, but has
to generate them for the test. Thequartz-4dataset gets data
with abundance step size of 1

5 for training and has only to
generate spectra based on different abundance vectors for
the test.

Table 1: Comparison of ΔGAMN for all datasets. It is shown for the
standard rGAN as presented above and for the rGAN where the
discriminator is used for data generation, too (rGAN-DS). For com-
parison the values are also shown for the generative CNN (GCNN)
described in Section 4 and the GCNN with covariance matrix regular-
isation (GCNN-C) [1].

ΔGAMN quartz-3 quartz-4 colour-4

GCNN [1] 0.1219 0.1113 0.1242
GCNN-C [1] 0.0812 0.0787 0.0967
rGAN 0.1087 0.1058 0.1188
rGAN-DS 0.1087 0.1051 0.1196
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Thenext subsection investigateswhether these results
can also be transferred to the behaviour during SU using
augmented training datasets.

6.2 Spectral unmixing results

In this section, the SU performance of the test datasets
is compared after the CNN for SU from Section 4 has
been trained with differently augmented training data.
The test results for training with non-augmented train-
ing datasets are used as a baseline in each case (column
CNN in Figs. 7–9). A comparisonwithmethods that are not
based on neural networks but on mixing models can be
found in [1] for the datasets investigated here. The mixing
model based methods did not reach the spectral unmix-
ing performance of the CNN for SU trainedwithout dataset
augmentation.

It is to be expected that augmentation will improve
the performance of spectral unmixing. GAN-based aug-
mentation should yield better results than the generative
CNN alone, because spectral variability should be mod-
elled more accurately. Since bad samples can be sorted
out, using the discriminator also for sampling might fur-
ther improve the result. Because the real data used is the
same in all cases and no new information is added, but
only the existing data is better utilised, minor improve-
ments are to be expected for all presented methods com-
pared to directly using the CNN for SU on the real spectra.

The rGAN was configured in the same way as in the
previous subsection to perform the augmentation tasks.
Different numbers of abundance vectorswere used for aug-
mentation depending on the abundance step s ∈ [0, 1].
This means that all possible abundance combinations at
a step size of s were used for augmentation. If this scheme
produces abundance vectors that already occur in the orig-
inal training dataset, they are not used for augmenta-
tion. If the discriminator is also used for data sampling
(rGAN-DS), then ζ = 100 is used (see Section 5). The de-
cision limit is decreased by ϵ = 0.01.

The CNN for SU uses a convolution kernel size of 3 for
all convolutional layers. The pooling layers are set to per-
form downsampling by factor 2 using max pooling. The
numbers of feature maps from input to output are 1, 16,
32, 64, 64, and 1. The number of training epochs depends
on how early overfitting occurs in a dataset. Therefore,
the number of training epochs is different for the datasets.
The CNN is trained using the quartz-3 dataset for 81 (not
augmented) or respectively 251 (augmented) epochs, the
quartz-4 dataset for 21 (not augmented) or respectively 51
(augmented) epochs, and the colour-4 dataset for 21 (both)

epochs. As it can be seen, the augmentation also allows
longer training times for datasets consisting of coloured
quartz sands until overfitting becomes a problem. Adam is
used as optimizer with a learning rate of 0.01 and the other
parameters as suggested in [21].

To quantify SU performance the root-mean-square er-
ror

ΔRMSE = √
1
N

N
∑
n=1

1
P

P
∑
p=1
(âpn − apn)2 , (11)

over allN spectra of a test dataset is used. For comparison,
the generative CNN (GCNN) is used, which corresponds
to the generator of the rGAN. The variant that performs
a regularisation with the covariance matrix is also added
(GCNN-C, see Section 4).

In Figs. 7–9 the SU results are shown. Since the values
of ΔRMSE are sometimes very close to each other,

ΔCNN = ΔRMSE,CNN − ΔRMSE (12)

is used for better readability, which corresponds to the
improvement of current ΔRMSE compared to the baseline
ΔRMSE,CNN (using the non-augmented training datasets).

For the quartz-3 dataset (Fig. 7) it can be seen that aug-
mentation always improves SU performance compared to
the baseline, unless s is chosen too large. GAN-based reg-
ularisation improves the results compared to the standard
GCNN, most strongly when using the discriminator during
data generation. Regularisation with the covariance ma-
trix leads to slightly better results. However, many spec-
tra per abundance vector have to be available for that
method, because the covariance matrices have to be cal-
culated.

Figure 7: Spectral unmixing results of the quartz-3 dataset.
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Figure 8: Spectral unmixing results of the quartz-4 dataset.

Figure 9: Spectral unmixing results of the colour-4 dataset.

For the datasets quartz-4 and colour-4, there is an im-
provement over the baseline for allmethodspresented and
all s investigated. This is due to the fact that the distance
between the abundance vectors in the original training
dataset is greater and thus the baseline isworse than in the
quartz-3 dataset. In the case of the quartz-4 dataset (Fig. 8),
the regularisation with a GAN leads to an improvement
compared to the existing methods (GCNN and GCNN-C).
Again, using the discriminator for sampling is slightly bet-
ter than using the generator alone.

For the colour-4 dataset (Fig. 9), an improvement com-
pared to the GCNN can be achieved for some step sizes by
the GAN-based regularisation presented here. Also for this
dataset, the use of the discriminator while generating data
is the superior alternative. As with the quartz-3 dataset,
theGCNNwith regularisation by the covariancematrices is

slightly better. The impact of the step size s tends to be that
better results can be obtained for smaller s. However, there
are many irregularities in this observation. This could be
because the spectra of different abundance vectors over-
lap due to spectral variability. If these overlaps in a dataset
are disadvantageous, this leads to worse performance in
SU. For the blue bars (s = 1

8 and s = 1
5 , resp.), the abun-

dance vectors of the spectra artificially generated during
augmentation correspond exactly to the abundance vec-
tors in the test data. However, this does not lead to a visible
advantageof these step sizes. This confirms that overfitting
is not a problem during training of the CNN for SU.

For all three datasets an improvement in the spectral
mixing performance compared to the GCNN can be ob-
served with the GAN-based regularisation. If the discrimi-
nator is also used while generating spectra, this improve-
ment is even higher. For two datasets, the regularisation
with the covariance matrices was slightly better. However,
it must be noted that this procedure includes the calcula-
tion of the covariancematrices, which requiresmany spec-
tra per abundance vector.

7 Summary

A GAN-based approach was presented to model the mix-
ing behaviour of hyperspectral data. This approach is an
extension of the GCNNwe have presented earlier. By using
the GAN structure, the distribution of the data including
spectral variability is learned more accurately than with
GCNN. It also resulted in better SU performance when it
was used to augment the training datasets. This was fur-
ther improved if the discriminator was used to generate
data, allowing bad generated spectra to be rejected. This
shows that the GAN’s ability to learn the distribution of
the data is advantageous for the application of modelling
spectral data including spectral variability. For some of
the tested datasets, regularisation with covariance matri-
ces yields a slightly better result. However, the latter is only
possible if there are enough spectra per abundance vector
to be able to determine the covariance matrices.

In future work, this approach could also be used for
other regression problems where a variance in the output
variables is supposed to be modelled. Depending on the
nature of the data, the hyperparameters would have to be
adjusted. However, the presented approach would remain
the same. In addition, other generative neural networks
could be used to model mixing behaviour including spec-
tral variability, such as denoising diffusion probabilistic
models [16].
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