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Abstract 

While facing environmental challenges due to climate change, the need for optimization and 

automation of agricultural tasks is increasing. Furthermore, costs and the lack of qualified 

personnel require efficient and highly automated control systems for agricultural machinery. 

Therefore, this work addresses these challenges by optimizing the working speed of a tractor 

and soil tillage implement combination to maintain efficient operating points during high power 

demands.  

A system was developed that predicts a suitable working speed based on a draft force and 

traction model in combination with the usage of a neural network for fuel rate prediction. The 

machine operator is able to customize optimization parameters such as fuel efficiency, 

performance or total costs depending on the individual needs and situation. These parameters 

lead to a reward function to value the machines state. Based on these objectives the network 

is able to predict the system state for various potential target speeds and evaluate their 

optimization parameters to select the most promising target speed. This target speed gets 

received by the tractor and leads to a new machine state.  

The fuel rate prediction network is trained on previously collected training data. Using different 

methods, for example transfer learning, the network can be adapted easily to different sizes 

and types of tractors. As the draft force models are based on equations, they can be changed 

to adapt to turning and no-turning soil tillage.  

To maintain a sufficient working quality and simplify online parametrization of draft force 

requirements, the implement working depth is automatically adjusted based on active Lidar 



measurements. The adjustments take the working conditions and agricultural requirements 

into account.  

The system was validated during field measurements on different locations with various 

customized optimization parameters. The results show a suitable reaction to changing 

operating conditions. 

Introduction 

The need for process optimization and automation in agricultural tasks increases due to 

environmental challenges and cost pressure. To handle these complex and multidimensional 

tasks, advanced control architectures are required. The deployment of artificial neural 

networks allows the development of advanced control systems without the previously 

necessary modeling work. However, obtaining insights in the specific decision making of such 

systems is difficult and limits the usability due to safety concerns. 

This paper presents a method based on traditional traction and draft force modeling combined 

with an artificial neural network for fuel rate predictions to combine the positive aspects of both 

approaches. 

Furthermore, the functioning of the system is evaluated during experiments in field tests. 

Related Work 

Kautzmann and Geimer developed an approach for holistic efficiency optimization in 

agricultural processes. Their approach is based on an System under Observation and Control 

(SuOC) algorithm, observing the current state of the vehicle and suggesting new state 

transitions based on an evolutionary algorithm. [1; 2] 

Becker et al. proposed a Reinforcement Learning Approach for speed optimization during the 

ploughing process. Hereby an agent is trained in optimizing different reward functions such as 

the fuel efficiency. [3]  Schreiber developed a modeling approach for fuel optimization that 

requires precise knowledge on the functioning of the machine but is able to compute the 

energy requirements in different agricultural processes. [4] 

Li et al. draft force model based on ASAE D497 and measured real-time data to optimize and 

automate the gear shifting process in agricultural tasks. [5]   

Working Depth Control 

During measurement data collection a wide variation in working depths was detected even 

though the rear linkage position remained static during data collection. This occurred due to 

the change in draft force requirements during soil composition changes.  



There are systems available that change the position of 

the implement dependent on draft measurements or 

slippage measurements, but to guarantee a constant 

working depth, additional measurements must be taken. 

To guarantee an adequate cultivation quality and to 

counteract depth changes during speed adaptations, an 

automated working depth control system was used 

based on lidar measurements. The lidar sensor thereby 

creates a point cloud of the surface structure which is used to calculate the surface plane with 

the RANSAC algorithm. [6]  

A PID-controller uses the measured depth and regulates the lift arms to keep the working 

depth at a specified level. 

System Modeling and Control Strategy 

The model requires access to internal machine measurement data such as theoretical speed 

(𝑣𝑡ℎ𝑒𝑜) which is calculated from engine revolutions and gear ratio, the real speed (𝑣𝑔𝑛𝑠𝑠) which 

is derived from GNSS-measurements, and the pitch angle (𝜃) which is used together with a 

static offset in order to approximate the slope angle (𝛿). The slippage (𝜎) can then be 

calculated using the speed measurements. 

Furthermore, the model requires either draft force (𝐹𝐷) or traction force (𝐹𝑇) measurements. 

The first can be measured using force sensors at the lower links to the implement, the latter 

can be calculated from gear box pressures if the tractor features a hydraulic continuous 

various transmission. One of both values is sufficient, since both values are dependent on 

each other which is described in the following. 

There is a wide variety of models that describe soil-tire interactions. [7] 

The traction model developed by Schreiber and Kutzbach, which was improved by Meiners; 

Böttinger and Regazzi is one of the most commonly used ones. [8; 9] 

However, this model as well as other models focus on accurately describing these interactions 

rather than being easily adaptable for online parameterization. 

Therefore our model uses the traction model described by Jacke and Drewes, which was 

developed for forestry machines. [10] 

This allows an online parametrization with minor simplifications, because the model features 

less degrees of freedom. 

𝐹𝑇(𝜎) = 𝑎𝑇 + 𝑏𝑇 ⋅ 𝜎 + 𝑐𝑇 ⋅ 𝜎2 

Fig. 1: Plane Detection 



Based on the shape of usual traction-slippage curves, the following simplifications are used in 

order to reduce the degrees of freedom for online parameterization. 

𝜅(𝜎 = 0) ≈ 0 

𝜅̇(𝜎 = 0.6) ≈ 0 

This eliminates the variables 𝑎𝑇 and 𝑏𝑇. 

𝐹𝑇(𝜎) = 1.2 ⋅ 𝑐𝑇 ⋅ 𝜎 − 𝑐𝑇 ⋅ 𝜎2 

Online-parametrizable models for draft force relationships already exist. 

Harrigan and Rotz developed the draft force model which is used in this work. [11] 

The model includes machine-specific parameters (𝑎𝐷 , 𝑏𝐷 , 𝑐𝐷), the width of the implement (𝑤), 

the working depth (𝑡), and a soil specific parameter (𝑠𝐷). Their findings were later captured in 

the ASAE D497.4 standard. [12]  

Rößler; Kautzmann and Geimer proposed the usability of an adaption of the formula for online 

parametrization. [13] 

However, this work uses the original formula to avoid the necessary simplification.  

𝐹𝐷 = 𝑠𝐷 ⋅ (𝑎𝐷 + 𝑏𝐷 ⋅ 𝑣𝑔𝑛𝑠𝑠 + 𝑐𝐷 ⋅ 𝑣𝑔𝑛𝑠𝑠
2 ) ⋅ 𝑤 ⋅ 𝑡 

The implement-specific parameters are derived by the conclusion of extensive experiments 

by Harrigan and Rotz, who elaborated these parameters for a wide variety of implements. [11] 

Because the working width is constant, it is possible to parametrize the only remaining soil 

specific parameter based on online measurements of the speed and draft force of the tractor. 

Since the horizontal weight force 𝐹𝑊,ℎ can also be calculated using measurements of the slope 

angle and the previously measured weight of the machine combination, traction and draft 

relationships are combined. 

𝐹𝑇 = 𝐹𝐷 + 𝐹𝑊,ℎ + 𝐹𝑅 + 𝐹𝑎𝑖𝑟 + 𝐹𝑎𝑐𝑐 

Air resistance 𝐹𝑎𝑖𝑟 as well as accelerating force 𝐹𝑎𝑐𝑐 are neglected due to the constant 

operating conditions and low working speeds. Rolling resistance 𝐹𝑅 can be considered with a 

static friction coefficient 𝜇. 

This results in a single formula that only leaves unknown variables: theoretical and real speed 

of the vehicle. 

1.2 ⋅ 𝑐𝑇 ⋅ (
𝑣𝑡ℎ𝑒𝑜 − 𝑣𝑔𝑛𝑠𝑠

𝑣𝑡ℎ𝑒𝑜
) − 𝑐𝑇 ⋅ (

𝑣𝑡ℎ𝑒𝑜 − 𝑣𝑔𝑛𝑠𝑠

𝑣𝑡ℎ𝑒𝑜
)

2

= 𝑠𝐷 ⋅ (𝑎𝐷 + 𝑏𝐷 ⋅ 𝑣𝑔𝑛𝑠𝑠 + 𝑐𝐷 ⋅ 𝑣𝑔𝑛𝑠𝑠
2 ) ⋅ 𝑤 ⋅ 𝑡 + 𝐹𝑊,ℎ + 𝜇 ⋅ 𝐹𝑊,𝑣  



On this basis, traction and draft forces can be elaborated for different hypothetical working 

speeds (𝑣𝑡ℎ𝑒𝑜) and the obtained relationships are the input variables for the neural network 

that is used for fuel rate prediction. The calculation of these variables is illustrated in Figure 2. 

The artificial neural network described in Figure 3 uses the complete input parameter set to 

predict the fuel rate (𝐵~). This network is trained on previously collected measurement data 

and does not require online learning. 

A total of 72,493 full parameter sets from approximately 5 hours of recorded cultivation time 

were used to train the artificial neural network. These data sets were filtered to clear turning 

maneuvers as well as to smooth out sensor fluctuations using a moving average filter. After 

the filtering process 53,773 parameters remained. 

The network structure is optimized using a Hyperparameter Search based on the Hyperband 

algorithm resulting in the final structure of nine densely connected hidden layers each 

containing 256 neurons with a ReLu-Activation function. [14] 

 

 

  

This network then computes the fuel rate (𝐵~) for the specified parameter set and thereby 

allows a comparison between the different sets. 

This comparison is conducted using different reward functions (𝑅) such as to optimize fuel 

efficiency 𝑅𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 

Fig. 3: Neural Network Structure Fig. 2: Dataset Generation 



𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑣𝑔𝑛𝑠𝑠 ⋅ 𝑤

𝐵
 

or to maximize the working speed with the reward function 𝑅𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑡 

𝑅𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑡 = 𝑣𝑔𝑛𝑠𝑠 ⋅ 𝑤 

Other options include the minimization of the total working cost.  

After comparing the different generated parameter sets, the one with the highest reward is 

chosen and set as an updated target speed since the continuous various transmission of the 

tractor does not require choosing gears. 

These optimization cycles run approximately one time per second, allowing for a fast 

adaptation to changing ambient or soil conditions. Only the current speed and a 0.5 km/h 

slower as well as a 0.5 km/h faster speed setting were elaborated in order to reduce 

computational effort. 

 

Evaluation 

To validate and test the developed system, a 

Fendt 516 Vario tractor was used together with 

a Horsch Terrano 4 FX cultivator as implement. 

The test machine was equipped with an ubuntu 

based computer with CAN-Bus interfaces to run 

a ROS node receiving sensor signals from the 

tractor an sending parameters back. 

Furthermore this computer is connected to a local 

LAN network to receive additional sensor data, for 

example lidar scans for working depth estimation, as explained before. 

To perform the test runs on the field, tractor and cultivator were adjusted manually to work 

within the desired ranges of working speed and working depth. This applies to the top link 

position, levelling discs and packer roller. After these set up, parallel rows were driven on the 

same field for evaluation. Every row begins with an ascent to the hill top in the center of the 

field, followed by a descent to the end of the field. The first row was driven by a human driver 

as reference measurement, which is represented by the green line in Figure 5 and 6. The 

orange and blue line belong to the rows driven with activated control system. As demonstrated 

in the graphs, the control system was able to perform soil tillage with both reward functions. 

Fig. 4: System Testing 



The evaluation in the following section will start at a driven distance of 30 m in each row to 

allow every algorithm to settle at a stable point. 

  

 

With a closer look, both reward functions and the reference show a similar efficiency for the 

first half of the field. This can be explained by similar working speeds and therefore similar 

motor loads. After reaching the top position of the field, the performance reward function keeps 

accelerating the tractor, while the reference driver stays with 8 km/h. The efficient reward 

determines lower velocities to be the most efficient working speed and stays at 4 km/h in the 

uphill section and about 5 km/h within the downhill section. 

Compared to the reference, the control system with activated efficient reward function was 

able to reduce the fuel consumption by 19 %, whereby it has to be noted that the working 

depth variations for the human reference driver could have influenced these results. 

Comparing reference and performance reward function, an increase of the mean velocity of 9 

% can be achieved. 

Table 1 shows a summary of all results. 

 

 Mean Velocity in km/h Mean Fuel Rate in l/ha 

Reference 6.74 11.30 

Efficient 4.20 9.16 

Performant 7.32 11.10 

 

Table 1: Evaluation Results 

  

Fig. 5: Efficiency Results Fig. 6: Performance Results 



Conclusion 

The proposed system presents a new method for speed control automation during agricultural 

tillage processes. Traditional system modeling techniques are used to describe the vehicles 

state and a neural network predicts the fuel rate in each state. With this combination, operating 

security and easy adaption to other processes can be combined. 

In conclusion, the system was able to improve the cultivation process depending on the targets 

of the driver while maintaining an adequate tillage quality. 

The results show that the method can be used to reduce fuel consumption as an economic 

advantage as well as to reduce exhaust emissions to protect the environment.  

In the future, the option to improve the equations used for traction and draft modeling should 

be elaborated to optimize the method.  

The speed control system can also be combined with a flexible implement position control to 

lift the implement during difficult operating procedures. This prevents the vehicle from getting 

stuck due to excessive traction force requirements which cannot be supplied with low traction 

coefficients. Additionally, the system can be extended with process sensor systems to monitor 

and optimize the process quality. Without such additional features, a human driver is still 

necessary. 

Furthermore, there are already experiments to transfer the trained fuel rate prediction model 

on other tractors with different engines and transmissions while minimizing the effort of new 

training data collection. If successful, this method would reduce the necessity of cost-intensive 

measurement data collection. 

Further research is required to extend the choice of working speed to an additional gear shift 

parameter to allow adaptation on vehicles without a continuous various transmission.   



Literature 
[1] Kautzmann, T. et al.: Holistic Optimization of Tractor Management – Organic Computing 

in Off-highway Machines. LAND.TECHNIK AgEng (2011), S. 275-280. 

[2] Kautzmann, T. und Geimer, M.: A novel approach for holistic optimization of mobile 

machine managements. Proceedings of the 12th Scandinavian International 

Conference on Fluid Power (SICFP'11), Tampere, Finland, May 18-20 (2011), S. 15. 

[3] Becker, S. et al.: Machine Learning for Process Automation of Mobile Machines in Field 

Applications. LAND.TECHNIK (2019), S. 187-197. 

[4] Schreiber, M.: Kraftstoffverbrauch beim Einsatz von Ackerschleppern im besonderen 

Hinblick auf die CO2-Emissionen. (2012). 

[5] Li, B. et al.: Automatic gear-shifting strategy for fuel saving by tractors based on real-

time identification of draught force characteristics. Biosystems Engineering 193 (2020), 

S. 46-61. 

[6] Fischler, M. A. und Bolles, R. C.: Random sample consensus: a paradigm for model 

fitting with applications to image analysis and automated cartography. Communications 

of the ACM 24 (1981) H. 6, S. 381-395. 

[7] Geimer, M.: Mobile working machines. Warrendale, Pennsylvania (USA): SAE 

International 2020, DOI: 10.4271/9780768094329. 

[8] Schreiber, M. und Kutzbach, H.: Influence of soil and tire parameters on traction. 

Research in Agricultural Engineering 54 (2008). 

[9] Meiners, A.; Böttinger, S. und Regazzi, N.: Triebkraft/Schlupf-Verhalten von 

Ackerschlepperreifen – praxisnahe Messung und Simulation mit dem Hohenheimer 

Maschinenmodell. LANDTECHNIK (2020), Bd-75 Nr. 1. 

[10] Jacke, H. und Drewes, D.: Kräfte, Schlupf und Neigungen - ein Beitrag zur 

Terramechanik forstlicher Arbeitsmaschinen. Forst und Holz (2004). 

[11] Harrigan, T. und Rotz, C. A.: Draft Relationships for Tillage and Seeding Equipment. 

Applied engineering in agriculture 11 (1995), S. 773-783. 

[12] N.N.: ASAE D497.4 Agricultural Machinery Management Data. (2003), S. 9. 

[13] Rößler, P.; Kautzmann, T. und Geimer, M.: Online parametrierbare Traktor-

Gerätemodelle. LANDTECHNIK 67 (2012) H. 4, 247-250. 

[14] Li, L. et al.: Hyperband: A Novel Bandit-Based Approach to Hyperparameter 

Optimization. Journal of Machine Learning Research 18 (2018) H. 185, S. 1-52. 

 


