

1    **Combining Two Types of Data to Analyze the Effects of Covid-19 on Car Usage**

2

3    **Jan Vallee (corresponding author)**

4    Institute for Transport Studies  
5    Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131  
6    Email: jan.vallee@student.kit.edu

7

8    **Lisa Ecke**

9    Institute for Transport Studies  
10   Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131  
11   Email: lisa.ecke@kit.edu

12

13    **Miriam Magdolen**

14   Institute for Transport Studies  
15   Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131  
16   Email: miriam.magdolen@kit.edu

17

18    **Bastian Chlond**

19   Institute for Transport Studies  
20   Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131  
21   Email: bastian.chlond@kit.edu

22

23    **Peter Vortisch**

24   Institute for Transport Studies  
25   Karlsruhe Institute of Technology, Karlsruhe, Germany, 76131  
26   Email: peter.vortisch@kit.edu

27

28   Word Count: 5758 words + 2 tables (250 words per table) = 6258 words

29

30

31   *Submitted [August 1<sup>st</sup>, 2021]*

32

1 **ABSTRACT**

2 The COVID-19 pandemic shows a major impact on the travel behavior of individuals. Both the fear of  
3 infection and political measures lead to a significant decline in the overall travel demand and a modal shift  
4 from public transport to individual means of transport. Thus, the car plays a more significant role since the  
5 outbreak of the pandemic. To understand the effects on car usage, this study analyzes the car usage before  
6 and during the COVID-19 pandemic in spring 2020 in Germany. To identify changes in car mileage, we  
7 combine two surveys of the German Mobility Panel: The survey on everyday mobility and the survey on  
8 fuel consumption and odometer reading. We develop a method to combine both data sources and explain  
9 the mileage differences between them consistently. Based on this, we compare the mileage captured in 2019  
10 and 2020 and identify which types of households in- or decreased their car usage. The results show that  
11 most households reduced their mileage. However, differences were found primarily among commuters and  
12 urban residents. While many commuters reduced their mileage due to working from home, some urban  
13 residents increased their mileage. This can be attributed to mode shifts towards individual means of  
14 transport. Overall, it becomes evident that examining identical households and cars before and during the  
15 pandemic allows for a deeper understanding of the impacts of the COVID -19 pandemic.

16 **Keywords:** COVID-19, car usage, longitudinal data, Germany, German Mobility Panel

1 **INTRODUCTION**

2 Since the spread of the infectious disease with the COVID-19 virus was classified as a pandemic by the  
3 World Health Organization (1), people in Germany live in an exceptional situation. In order to limit the  
4 spread of the virus, federal and regional authorities promoted social distancing and mandated preventive  
5 measures (2). At different times and with varying scopes of the measures taken, countries worldwide  
6 announced mandates to wear masks in public, stay-at-home requirements, social distancing, closing shops  
7 and restaurants, school closing, or even workplace closing. The most severe measure was a lockdown  
8 enforced in Germany in spring 2020 to restrict public life to bare essentials. After the first lockdown period,  
9 a period of cautious easing followed at the beginning of summer 2020.

10 The COVID-19 pandemic has major effects on the travel behavior of individuals. Since the disease  
11 outbreak, people behave differently partly because they are afraid of the infection and partly because they  
12 are subject to political measures. Studies show that two effects are primarily evident: On the one hand, a  
13 generally lower level of travel and, on the other hand, a change in the choice of means of transport (3–6).  
14 Eisenmann et al. (7) show a growing significance of individual means of transport and especially of the  
15 private car compared to public transport. Shamshiripour et al. (8) found a shift from public transport to  
16 means of transport with less contact, such as the private car as well as walking and cycling. Molloy et al.  
17 (9) describe similar effects. It was found that the use of public transport has strongly decreased. The study  
18 of de Haas et al. (4) indicates that the already negative attitude towards public transport increased during  
19 the pandemic while the car was positively perceived. Furthermore, the study suggests that with a higher  
20 share of walking, the radius of action of individuals decreased. This is in line with the results of Axhausen  
21 et al. (3). As the radius of action returned to normal in the course of looser measures in summer 2020, it  
22 can be assumed that the changes in travel behavior triggered by the pandemic will not necessarily remain  
23 in the future. However, some changes induced by the pandemic, such as a higher level of working from  
24 home, are considered to have long-term effects on the transport demand and thus on the transport system  
25 (8).

26 The car is a flexible means of transport. In Germany, it has already played a significant role before  
27 the pandemic. In 2019, people in Germany traveled 54% of their traffic volume by car (10). Eisenmann et  
28 al. (11) used data from the German Mobility Panel (MOP) to determine the annual vehicle kilometers  
29 traveled (VKT), which was on average 12,624 VKT in 2014. The data of the MOP was also used in the  
30 study of Weiss et al. (12). In this study, two types of data sets of the MOP, namely a trip diary on everyday  
31 mobility (EM) and data from a fuel consumption and odometer reading survey (FCOR), are combined to  
32 explain car usage in Germany. Based on the combination of these two data sets and data of other surveys,  
33 such as the survey on long-distance travel in Germany INVERMO (13), car usage within German  
34 households for a whole year was modeled. This allowed the description of car usage in a longitudinal  
35 perspective. For example, it was found that, on average, 33% of VKT is traveled on freeways.

36 As discussed above, car usage was affected in two directions during the COVID-19 pandemic.  
37 During the pandemic, the passenger car has taken on a unique role. However, the overall travel demand has  
38 declined during the pandemic because of implemented measures to stop the spread of the disease (6).  
39 Several studies describe a shift from public transport to private cars (7; 8; 14–16). From official statistics,  
40 we can indicate a severe decline in car travel during the COVID-19 pandemic. The collected travel volume  
41 on German Highways serves as an indicator for describing the decline of car usage and the decline in the  
42 long-distance travel demand. Data from permanent counting stations of the Federal Highway Research  
43 Institute in Germany show a reduction of 40 to 47% of the number of cars on German Highways in the  
44 second half of March compared to February 2020 (17). During the Easter holidays in 2020, a reduction by  
45 58% of the number of cars at the measurement points on German highways compared to pre-pandemic  
46 conditions was measured. Until mid-July in 2020, the traffic volume was slowly recovering. The official  
47 statistics on mineral oil sales in Germany are another data source for roughly describing the decline in car  
48 usage. While gasoline sales dropped significantly in April 2020 to just 66% of previous years, gasoline  
49 sales recovered quickly and were back to last years' levels by July 2020.

The outcomes of the presented literature lead to two consequences that will be explored in this study: First, increased car usage induced by the pandemic is assumed because other means of transport with a higher risk of infection were less used. In addition, destination choice was affected. For example, holiday trips abroad by plane were replaced by domestic trips by car increasing car usage. Second, less car usage is expected, since the overall activity space of individuals has been reduced in the course of the pandemic, e.g. by working from home or by canceling long-distance travel. Our study looks at these two effects and examines what type of cars and households are affected by each. By analyzing car usage in pre-pandemic conditions, we also aim to identify the changes during the spring 2020 lockdown depending on usage patterns. For our analyses, we use data from the MOP. Following the approach of Weiß et al (12), a combination of the EM survey and the FCOR allows for a more detailed description of car usage in German households. We build on this finding and also use these data sets of the MOP for our study. Our study pursues two goals:

1. The combination of the two unique data sets (EM and FCOR) from the MOP, considering everyday mobility and occasional events included in the VKT of cars.
2. Tracing the effects of the COVID-19 pandemic on car usage by comparing the FCOR of 2019 and 2020 in combination with the reported car usage in the EM 2019

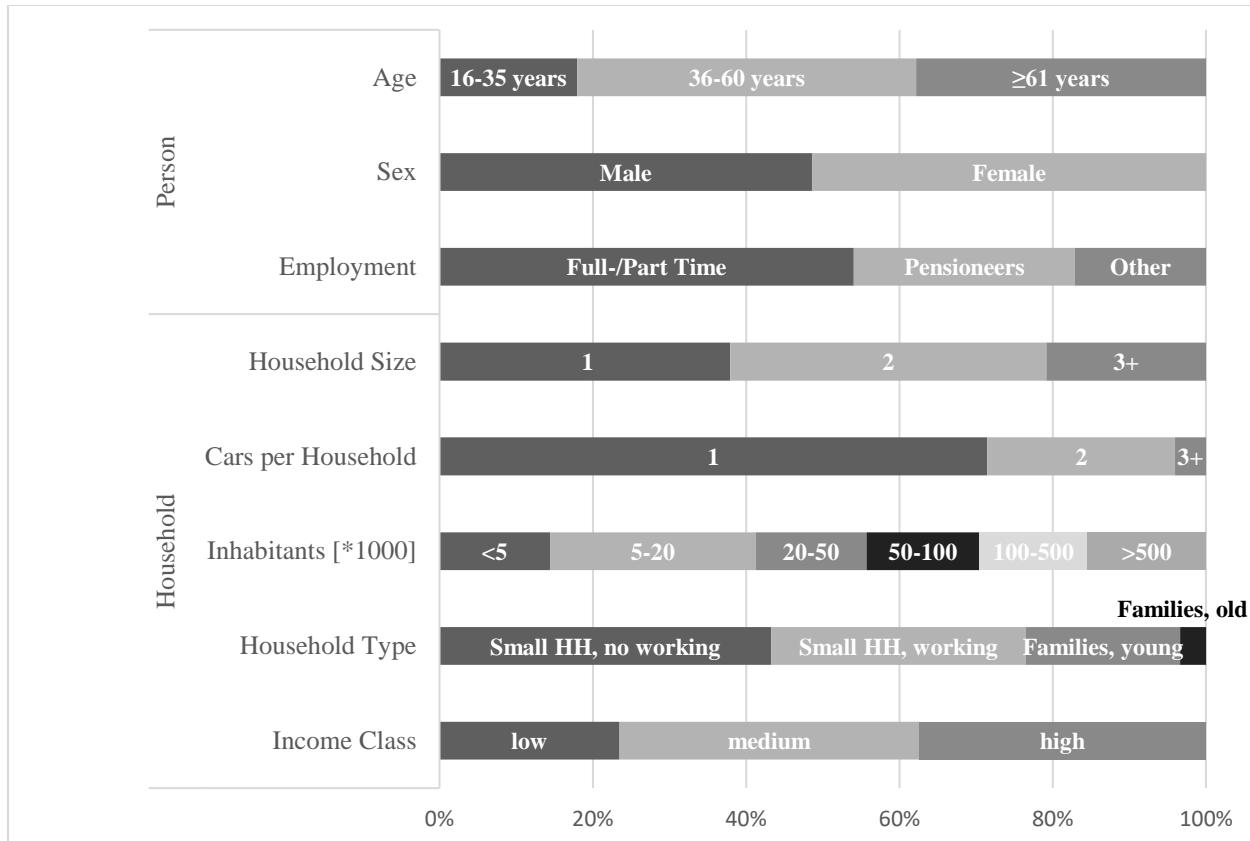
The paper is structured as follows: First, we describe the MOP survey in detail and the collected information in both parts of the survey. Second, we present our method to combine both datasets of 2019 (FCOR and EM) to describe car usage in more detail, including trip purposes. Based on this, we use the FCOR data of 2020 to analyze the effects of COVID-19 on car usage. We use the characteristics of households and cars to identify changes in car usage during the pandemic. This is followed by a discussion of the results and our method. Finally, we give a conclusion and refer to further research.


## DATA

Our study is based on the German Mobility Panel (MOP) data, which provides a yearly account of the everyday mobility of the German population. Since 1994, the survey is carried out on behalf of and funded by the German Federal Ministry of Transport and Digital Infrastructure. The Institute for Transport Studies of the Karlsruhe Institute of Technology (KIT) is responsible for the design and scientific supervision of the survey (10; 18). The MOP is designed as a rotating panel. People participate for a maximum of three consecutive years. The study allows insights in longitudinal perspectives for everyday mobility, car mileage and fuel consumption of private households. To this aim, the survey consists of two parts: A survey about everyday mobility (EM) (yearly in autumn) and a survey about fuel consumption and odometer reading (FCOR) (about five months later, in late spring/early summer the following year). The EM provides information about all trips during seven consecutive days (one week) and sociodemographic data on household and individual levels.

Furthermore, the survey participants report on illness, vacation, days their car was in the shop and other abnormalities within the survey period. Around 1,800-2,000 households with 3,000-3,400 respondents aged ten years and older contribute to the MOP. The yearly survey period excludes any holidays to best capture everyday mobility. In addition, a subsample that consists of households owning at least one car is asked to report the refueling of their cars and the respective odometer readings. The FCOR survey covers a survey period of eight weeks (April to June). This period represents a typical period for car usage observation because standard workweeks and periods with public holidays (e.g. Whitsun, Ascension Day) are included. About 1,600 cars of 1,200 different households contribute to this part of the survey every year. The participants are asked to fill in a diary reporting all refueling events (date, odometer reading, amount of gasoline dispensed, refueling cost). Furthermore, information on car characteristics and car usage patterns are reported.

Data collection during the pandemic was conducted in the planned survey process. We use three years of data (2018-2020) for the analyses. The data sets of FCOR of 2019 and 2018 and EM of 2019 serve as pre- COVID-19 references. The FCOR data set of 2020 was collected in spring 2020 during the


1 pandemic. The survey periods in 2019 and 2020 are displayed in Figure 1. The 2019 MOP survey data were  
 2 collected before the declaration of the pandemic. In January and February 2020, hardly any infections were  
 3 reported in Germany. The FCOR survey in spring 2020 was conducted during the first lockdown period of  
 4 the COVID-19 pandemic. During this period, the infection rates decreased after the implementation of  
 5 preventive measures. It was followed by a period of cautious easing of the restrictions.



6  
 7 **Figure 1 Survey periods of the MOP and development of COVID-19 infections in Germany (2019-  
 8 2020)**

9 Analyzing longitudinal data of the MOP allows quantifying changes in travel behavior in times of  
 10 a pandemic. To this aim, we identify consecutive participating households participating in FCOR19, EM  
 11 and FCOR20. Our study uses a subsample to focus on households where we rely on all trip diaries of  
 12 driver's license owners and all refueling reports of all household cars. In total, the data we use contains  
 13 information from 298 different households with 399 cars.

14 Figure 2 displays the socio-demographics of the sample used. 37% of the households have a high  
 15 household income. The majority of people in the households is full-/ or part-time working. Furthermore,  
 16 the share of men to women is nearly balanced. In addition, 71% of households own one car. This is because  
 17 our sample primarily consists of households with one or two persons.

2 **Figure 2 Characteristics of the subsample (N=298)**3 **METHOD**

4 In this section, we describe the methodological approach. Since the two surveys have a different focus and  
 5 data structure, linking FCOR and EM is challenging. While EM provides information on trips made by each  
 6 household member within seven days, FCOR exclusively focuses on car travel and monitors fuel  
 7 consumption and monthly vehicle kilometers traveled (VKT). The report in FCOR and EM is voluntary.  
 8 Consequently, the data sets partly contain incomplete information. Further, differences and variations on  
 9 the household level between years occur. Since we know the number of cars that are held in the household,  
 10 we know how many cars are missing. The analysis on the household level for multi-car households is only  
 11 reliable for complete household fleets' subsample. We opted for a household-based approach instead of a  
 12 person-based or car-based approach. Since the FCOR is limited solely to car usage, it is impossible to make  
 13 any conclusions about other means of transport. Consequently, we cannot assess how overall mobility  
 14 changed during the lockdown in spring 2020, but only car mobility.

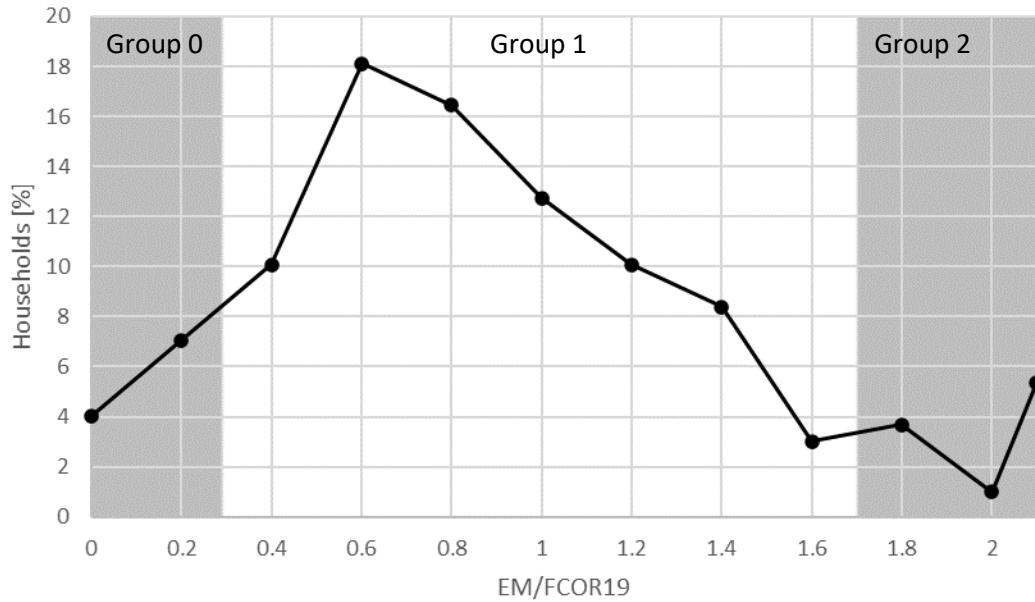
15 To narrow the differences in VKT between EM and FCOR, we introduce *ordinary days* when  
 16 reporting individuals do not have mobility constraints such as illness, vacations, or other limitations. In  
 17 addition to these constraints, we also examine the effects of long-distance travel events and weekend travel.  
 18 However, the best fit between EM and FCOR was found for *ordinary days*, which also allow for long-  
 19 distance travel. To minimize the effects of rare occasions, an *ordinary week* consists of at least three  
 20 *ordinary days*. This measure aims to minimize the differences between the FCOR and EM in terms of VKT.

21 For combining EM and FCOR, it has to be considered that EM and FCOR survey household car  
 22 usage differently. First, the different reporting periods need to be mentioned. The FCOR is surveyed in  
 23 spring (Figure 1). This period is reasonably used for short vacation trips because of the convenient timing  
 24 of public holidays. Therefore, an increase in long-distance travel is more likely due to vacations than in

1 autumn. Second, non-everyday travel events such as vacation trips or business trips are more likely to be  
 2 captured in FCOR due to the longer reporting period. However, Eisenmann and Kuhnlimhof (11) show that  
 3 the annual VKT calculated from FCOR represents the average annual VKT in Germany reasonably well  
 4 and seasonality is not a big concern. Domestic sales of gasoline in Germany confirm the representativeness  
 5 of the survey period of the FCOR (20).

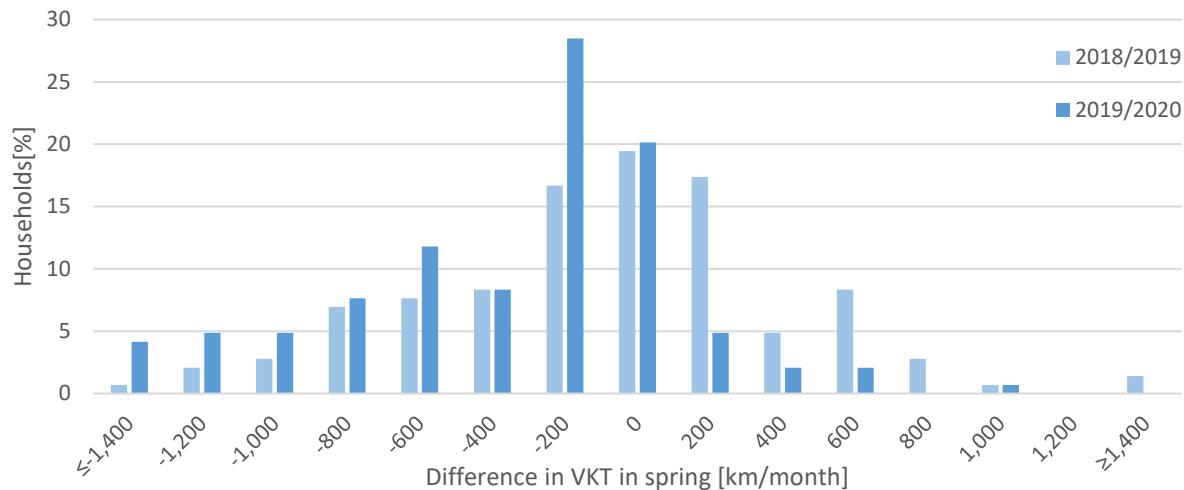
6

7 **Table 1 Mileage of all passenger cars in households for various purposes in the fall of 2019**


| Variable            | Mean/HH<br>[km]        |       |       | Mean/Pers<br>[km] |     |     | Standard<br>Deviation |     |     | CV    |      |       |      |
|---------------------|------------------------|-------|-------|-------------------|-----|-----|-----------------------|-----|-----|-------|------|-------|------|
|                     | Group                  | 0     | 1     | 2                 | 0   | 1   | 2                     | 0   | 1   | 2     | 0    | 1     | 2    |
| FCOR monthly by car |                        | 1,152 | 1,427 | 1,104             | 613 | 718 | 561                   | 840 | 900 | 985   | 0.73 | 0.63  | 0.89 |
| EM monthly by car   |                        | 178   | 1,247 | 2,646             | 95  | 627 | 1,345                 | 156 | 937 | 2,067 | 0.88 | 0.75  | 0.78 |
| total               |                        | 250   | 492   | 970               | 133 | 248 | 493                   | 277 | 390 | 884   | 1.11 | 0.79  | 0.91 |
| thereof by car      |                        | 41    | 291   | 617               | 22  | 146 | 314                   | 37  | 219 | 482   | 0.88 | 0.75  | 0.78 |
| work                |                        | 6     | 109   | 125               | 3   | 55  | 63                    | 17  | 148 | 174   | 2.95 | 1.36  | 1.4  |
| EM, weekly          | business               | -     | 23    | 151               | -   | 11  | 77                    | -   | 91  | 376   | -    | 4.00  | 2.50 |
|                     | leisure short-distance | 15    | 40    | 51                | 8   | 20  | 26                    | 24  | 48  | 79    | 1.62 | 1.18  | 1.54 |
|                     | leisure long-distance  | -     | 16    | 54                | -   | 8   | 28                    | -   | 50  | 130   | -    | 3.06  | 2.40 |
|                     | private                | 21    | 102   | 221               | 11  | 51  | 113                   | 27  | 98  | 252   | 1.27 | 0.97  | 1.14 |
|                     | Secondary residence    | -     | 1     | 15                | -   | 0   | 8                     | -   | 11  | 60    | -    | 12.41 | 3.88 |

HH = Household, Pers = Person, CV = Coefficient of variation

EM = Survey on everyday mobility, FCOR = Survey on fuel consumption and odometer reading  
group 0 (n=33), group 1 (n=235), group 2 (n=30)


8  
 9 However, despite these measures to achieve comparability, some households still show large  
 10 differences in mileage between EM and FCOR19. Therefore, we investigated the reasons for these  
 11 differences by calculating the monthly and weekly VKT based on EM and FCOR19. An overview of these  
 12 measures is shown in Table 1. Among households that traveled significantly fewer miles in EM than in  
 13 FCOR19, it is notable that they generally travel only a few kilometers in their EM. Possible reasons for this  
 14 are unknown, unreported irregularities. Hence, they are classified as group 0. They reported no long-  
 15 distance leisure activities in their EM as well as no business trips either. However, since they report much  
 16 more VKT in FCOR19 than in EM, it can be assumed that the reported week in EM is not representative  
 17 for an *ordinary week* of the household. Therefore, these households are excluded from our further  
 18 investigation. In particular, pensioners are found in group 0. We assume that their irregular driving behavior  
 19 means that their mobility greatly varies within a week. For the households with over 1.7 times the VKT in  
 20 EM than in FCOR19, we found that they undertake many business trips. Long-distance leisure trips are also  
 21 more frequent than for other households. Overall, they travel on average twice as many kilometers by car  
 22 as households of group 1, who have a balanced ratio between EM and FCOR19. Due to the differences  
 23 between EM and FCOR19, we decided to exclude these households from further investigation. The large  
 24 differences indicate that normal behavior was not reported in at least one survey. Since both surveys are  
 25 used as references for basic mobility, no conclusions can be drawn about these households. Households  
 26 with children are mostly found in group 1. Because of the children, these households are likely to be tied  
 27 into daily routines (e.g. commuting, child care) and making few exceptions. In total, 235 households remain  
 28 for further analyses.

1 Figure 3 shows the ratio of EM and FCOR19. The distribution resembles a bell curve, but shifted  
 2 slightly to the left, which means that the median reported VKT is lower in EM than in FCOR19, while the  
 3 mean VKT is approximately the same. Households that are sorted into Group 0 and Group 2 are not included  
 4 in the further analysis due to uncertainties in their EM or FCOR19. While we are aware that irregularities  
 5 in mobility patterns are part of normal behavior, these irregularities do not make the data usable for the  
 6 evaluation of *ordinary weeks* and thus unusable for examining shifts in mobility patterns due to the  
 7 pandemic.



8  
 9 **Figure 3 Ratio of EM divided by FCOR19**

10 To put the differences in VKT into perspective, the differences in VKT between surveys FCOR18  
 11 and FCOR19 and FCOR19 and FCOR20, respectively, are displayed in Figure 4. For the analysis, the  
 12 household VKT of the previous year is subtracted from the VKT of the reference year. In the transition  
 13 from 2018 to 2019, which was not affected by the pandemic, households are evenly spread, and no particular  
 14 trends are observed. The distribution resembles a bell curve. The variations result from irregularities in  
 15 mobility patterns due to holidays, especially in spring. For the transition from 2019 to 2020, however, the  
 16 bell curve is shifted to the left, indicating a decrease in car travel. While there are still some households that  
 17 have increased their mileage, these are within the expected range of variation.  
 18



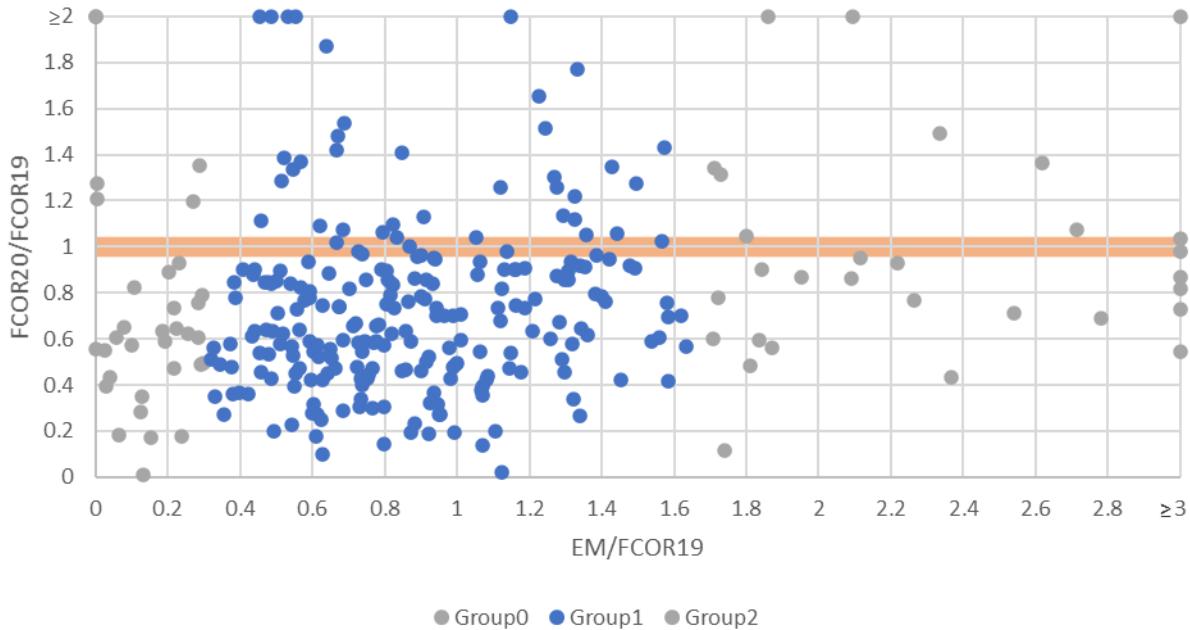
**Figure 4 Distribution of the difference in household VKT between FCOR18/19 and FCOR19/20 (N=144)**

## RESULTS

To understand the dynamics in car usage of private households that resulted from the COVID-19 pandemic, it is of interest how the distances traveled changed between 2019 and 2020. Table 2 provides an overview of the mean monthly VKT of the cars differentiated by household characteristics. Next to the mean monthly VKT in spring 2019 (FCOR19) and spring 2020 (FCOR20), the mean monthly VKT resulting from the reported car usage in the survey on everyday mobility (EM) is presented. For better interpretation, the coefficients of variation and the differences between the three surveys are presented.

The total results indicate that the FCOR19 is, on average, 180 km higher than the EM. With the lower mobility during the COVID-19 pandemic measured with FCOR20, we see a decline of about 450 km compared to the previous year. In addition, we see a higher variation in the FCOR20 than in the FCOR19. This indicates a more diverse use of cars during the pandemic. It has to be considered that the results describe the monthly mileage on the household level and not on the individual car level.

The difference in mileage between FCOR19 and EM indicates how well the combination of the data sets works. A low delta indicates a perfect match in the monthly mileage of FCOR19 and EM. We see that if the reported car usage in the household includes primarily trips to work, the Delta FCOR19-EM is smaller. This indicates, that our approach to use *ordinary days* in the EM to approximate the monthly car usage on the household level works the best for such usage types. The greatest difference between the monthly mileages is found for households in which the cars are primarily used for leisure purposes (Table 1). This confirms the assumption that leisure activities, e.g. excursions and long-distance day trips, are the most variable and less regular and are thus the least predictable. The minor difference between FCOR20-EM than FCOR19-EM indicates that during the COVID-19 pandemic, the car usage of 2020 can be better explained by the reported car usage on *ordinary days* in the EM. This allows the conclusion that these cars were used for basic mobility rather than extraordinary leisure trips. Further, we see that households with a low share of distances traveled by car on the weekend but on weekdays have the highest reduction in VKT during spring 2020 compared to 2019. Households with a high share of distances traveled by car on the weekend show both suitable matches of FCOR19-EM and FCOR20-EM and the lowest reduction in mileage during the pandemic compared to the previous year.


Family households use the car more frequently than single households in years not affected by the pandemic. However, the reduction in the year of the pandemic is the same in relation to the VKT of the previous year. Thus, no conclusion can be drawn that different household sizes have reduced their mobility differently. The same is found for high-income households. Although they use the car more frequently in

1 normal years and restricted their car usage more in the pandemic affected year, the ratio is the same as for  
 2 low-income households (-30%).

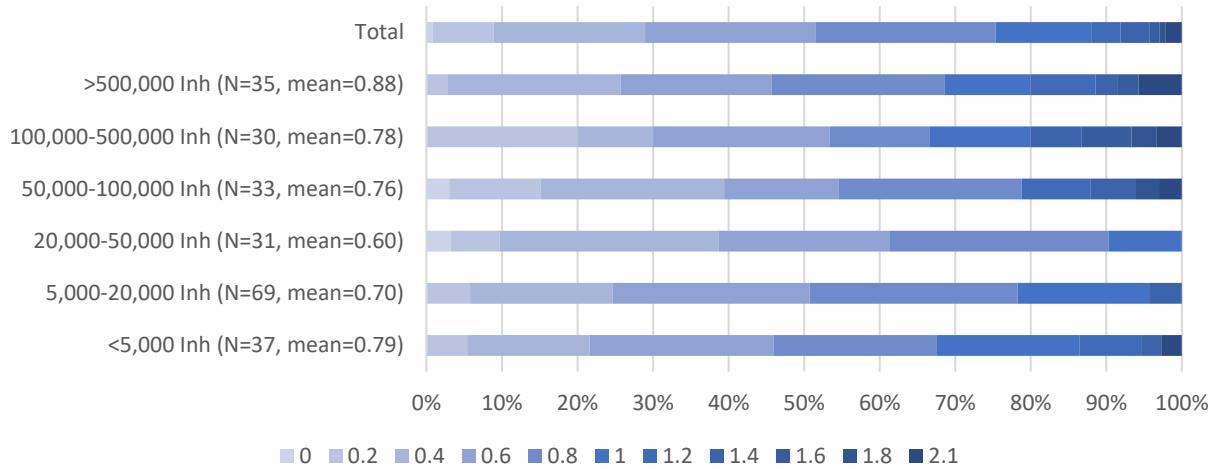
Table 2 Mean monthly VKT in FCOR19, EM and FCOR20 differentiated by household characteristics

| Variable         | Figure           | Sample Size n | FCOR19 [km] | CV   | EM [km] | CV   | FCOR20 [km] | CV   | FCOR19-EM [km] | Delta FCOR20-EM [km] | Delta FCOR20-EM [km] |
|------------------|------------------|---------------|-------------|------|---------|------|-------------|------|----------------|----------------------|----------------------|
| Total            |                  | 235           | 1,427       | 0.63 | 1,247   | 0.75 | 976         | 0.75 | 180            | -271                 | -451                 |
| 1 person         |                  | 85            | 1,008       | 0.66 | 917     | 0.76 | 715         | 0.73 | 91             | -202                 | -294                 |
| Household Size   | 2 people         | 99            | 1,556       | 0.54 | 1,256   | 0.63 | 1,006       | 0.65 | 300            | -250                 | -550                 |
|                  | 3 or more people | 51            | 1,873       | 0.56 | 1,779   | 0.71 | 1,352       | 0.71 | 95             | -427                 | -521                 |
|                  | 1: <2,000€       | 61            | 1,035       | 0.68 | 855     | 0.73 | 726         | 0.76 | 180            | -129                 | -309                 |
| Household Income | 2: 2,000€-3,499€ | 79            | 1,260       | 0.71 | 1,062   | 0.78 | 802         | 0.77 | 199            | -260                 | -458                 |
|                  | 3: >3,500€       | 95            | 1,817       | 0.48 | 1,653   | 0.63 | 1,281       | 0.62 | 164            | -371                 | -536                 |
|                  | 100              | 43            | 1,782       | 0.50 | 1,807   | 0.68 | 1,408       | 0.72 | -25            | -399                 | -374                 |
|                  | 110              | 42            | 1,784       | 0.60 | 1,645   | 0.60 | 1,084       | 0.66 | 139            | -561                 | -700                 |
|                  | 200              | 38            | 1,155       | 0.77 | 895     | 0.87 | 872         | 0.79 | 260            | -23                  | -283                 |
|                  | 220              | 43            | 1,126       | 0.65 | 916     | 0.64 | 666         | 0.57 | 209            | -250                 | -460                 |
| Car Usage Group* | 300              | 45            | 1,158       | 0.55 | 879     | 0.59 | 738         | 0.60 | 279            | -142                 | -420                 |
|                  | 999              | 24            | 1,637       | 0.55 | 1,384   | 0.64 | 1,178       | 0.57 | 254            | -206                 | -460                 |
|                  | 1: <50%          | 66            | 1,108       | 0.64 | 821     | 0.75 | 781         | 0.62 | 287            | -41                  | -327                 |
|                  | 2: 50%-69%       | 53            | 1,416       | 0.53 | 1,139   | 0.63 | 949         | 0.69 | 277            | -191                 | -468                 |
|                  | 3: 70%-89%       | 51            | 1,892       | 0.59 | 1,737   | 0.71 | 1,239       | 0.79 | 155            | -498                 | -652                 |
|                  | 4: >90%          | 65            | 1,394       | 0.61 | 1,382   | 0.65 | 990         | 0.72 | 12             | -392                 | -404                 |
|                  | 0: <30%          | 119           | 1,470       | 0.60 | 1,306   | 0.70 | 970         | 0.65 | 165            | -336                 | -500                 |
| Weekend Usage    | 1: 30%-70%       | 97            | 1,458       | 0.66 | 1,249   | 0.81 | 1,030       | 0.84 | 209            | -219                 | -428                 |
|                  | 2: >70%          | 19            | 994         | 0.48 | 866     | 0.64 | 737         | 0.54 | 128            | -129                 | -258                 |

\*100: >50% work related 110: >70% work related 200: >50% private (e.g. shopping) 220: >70% private (e.g. shopping) 300: >50% leisure usage  
 999: no specific car use



1  
2 **Figure 5 Relation of household VKT for EM/FCOR19 and FCOR20/FCOR19**


3 Figure 5 shows the relation between EM and FCOR19 on the x-axis and the relation between  
4 FCOR20 and FCOR19 on the y-axis. A point oriented to the left indicates that the household's VKT is  
5 lower in EM than in FCOR19. When a point is located at the top, the household's VKT is higher in FCOR20  
6 than in FCOR19. The orange line in the middle illustrates a balanced ratio between FCOR19 and FCOR20.  
7 A gray point indicates large ratio differences between EM and FCOR19 based on the approach described,  
8 which can no longer be meaningfully interpreted and thus will not be considered further. Only the blue  
9 points can be meaningfully investigated.

10 The figure shows that most households (73%) have reduced their VKT in 2020 by at least 10%  
11 compared to 2019. 14% of the surveyed households increased their VKT by at least 10%. 13% of  
12 households did not change their VKT. The reasons for the decrease in car usage include the COVID-19-  
13 related restrictions and an increase in working from home, consequently decreasing commuting to work.  
14 Also, visits of relatives or friends and recreational trips were deliberately reduced to minimize exposure.  
15 Under normal conditions, however, such visits and trips contribute to the VKT.

16 Figure 6 displays the proportionate change of household VKT by car from FCOR19 to FCOR20  
17 differentiated by the size of the city where the households live in. A value of 1 indicates a balanced ratio of  
18 household VKT for both years. A value of less than 1 indicates a decrease in VKT between the years,  
19 whereas a value greater than 1 indicates increased mileage. We emphasize that our analysis focuses on  
20 mileage on the household level and we focus on households with an equal number of cars in both years  
21 which means that households that purchased an additional car and thus achieve higher mileage are not  
22 considered. The same applies to households that have reduced the number of cars.

23 The share of households who reduced their mileage is highest in medium-sized cities. These  
24 settlements sizes are considered as to be the most efficient in terms of travel. Medium-sized cities usually  
25 provide all opportunities for daily requirements, including workplaces. Commuting to other cities is less  
26 relevant. The lower densities allow for a comfortable living which results in fewer leisure trips. Generally,  
27 the total of the trip lengths within these cities are comparably low.

28 In contrast to medium-sized cities, there are some households in large cities that actually increased  
29 their VKT. This ensures that the mean VKT ratio is highest in large cities, meaning that the reduction in  
30 VKT is lowest.



1  
2 **Figure 6: Proportionate change of mileage from 2019 to 2020 on the household level differentiated**  
3 **by city sizes based on FCOR19 and FCOR20**

4 **DISCUSSION**

5 This paper presents an approach that allows deriving insights for which areas of life and trip purposes the  
6 car usage has changed during the COVID-19 pandemic. Therefore, we separate between the volumes of  
7 everyday car travel as basic travel needs in everyday life and „additional mobility“, resulting from untypical  
8 events such as long-distance travel. An interpretation of the results is only possible by comparing the  
9 outcomes for different groups where we can assume behavior adaptions.

10 1. The largest reduction in VKT was observed for commuters. Many of them use their cars only to  
11 get to work. While their VKT is still higher than for the other groups during the pandemic, this can  
12 be attributed to an increase of working from home. While some can work entirely from home, this  
13 is not possible for all (e.g. nurses, cashiers and construction workers). This becomes evident by the  
14 high coefficient of variation (Table 2).

15 2. Households using their cars mainly for private purposes and leisure activities show the lowest VKT  
16 during the pandemic. Due to the stay-at-home measures announced by the government, the VKT  
17 of these households decreased.

18 3. A reduction in VKT was observed for all households, regardless of the share of cars in total  
19 transport volume. Substitution effects, whereby people switched from public transport to car, are  
20 not visible. However, Figure 7 shows that in large cities, where the share of public transport is  
21 highest, the decrease in VKT is lowest. This is an indication of substitution effects. In addition, it  
22 is known from other sources that these effects occurred during the pandemic (5; 8; 15; 16;).  
23 Therefore, further research is needed in this area.

24  
25 In summary, it can be said that all household types reduced their VKT to a similar extent, although  
26 some differences can be identified. Our approach is limited by the fact that we are working with two  
27 different data sets whose only link is at the household level. This means that we cannot draw conclusions  
28 about general travel behavior changes but only about car mobility, as captured in both surveys.

29 1. Even in years without a pandemic, the intra-household comparison of travel volumes and car usage  
30 between years is challenging. We distinguish between basic mobility, e.g. commuting and grocery  
31 shopping, as necessary mobility in everyday life and leisure trips and vacation trips as additional  
32 mobility. This allows for the travel distinction to be regarded as *ordinary* and which is less likely  
33 to be reduced under normal conditions.

1        2. Our approach aims to best approximate the FCOR19 data using the EM data. This ensures that car  
 2        mobility in a non-pandemic year can best be explained in terms of everyday use. For 21% of  
 3        households (group 0, group 2), it is impossible to describe the car mobility of FCOR19 based on  
 4        EM. This indicates that car usage is highly variable. Table 2 shows that the CV for most groups is  
 5        above 0.5, indicating that the spread relative to the mean is large, regardless of the survey year. For  
 6        the interpretation of the VKT, it must be taken into account that the VKT scatters at the household  
 7        level since the households own a different number of cars and cars can also be used in very different  
 8        ways.  
 9        3. Our results indicate that eight weeks are not enough to capture the whole car usage variation even  
 10        in normal years. The relatively large dispersion of changes in VKT in FCOR shows that even in  
 11        eight weeks there are still rare events that are not recorded in the next year.

12  
 13        By being designed as a longitudinal survey, the MOP allows to collect and study car mobility even  
 14        during the unpredictable pandemic. By linking the two surveys, we were able to analyze effects that would  
 15        otherwise remain undetected. This approach has a great potential to be further exploited.

## 16 CONCLUSIONS

17        This paper presents an approach of combining the data from a survey on fuel consumption and odometer  
 18        reading with the data from a survey on everyday mobility. These two surveys are parts of the German  
 19        Mobility Panel and therefore allow for a longitudinal perspective. The combination of these two surveys  
 20        poses several challenges: One survey focuses on mileage and refueling events, has a survey period of eight  
 21        weeks and is conducted between April and June. The other survey collects data from individual travel  
 22        behavior, including all means of transport in a survey period of one week and is conducted in  
 23        September/October. However, the latter contains information on trip purposes, which describe the reasons  
 24        for car usage in private households. This paper presents an approach to combine these two data sets by  
 25        approximating the monthly mileage with both data sets.

26        It is undisputed that the COVID-19 pandemic has a major impact on habits and daily routines of  
 27        everyday mobility. The first lockdown in spring 2020 had a great impact on individual mobility, since the  
 28        number of trips as well as the distances traveled have been reduced. The car was attributed additional  
 29        importance in this situation, but the higher share of car usage has not resulted in more kilometers traveled  
 30        since the overall travel demand declined disproportionately. Our results show that using so-called *ordinary*  
 31        days in the EM data for calculating the monthly mileage of all household members comes closest to the  
 32        monthly mileage resulting from the FCOR data. However, we see variation between years, meaning that  
 33        the monthly mileage differs between the years and the surveys. Reasons for this are extraordinary events  
 34        such as vacations or illnesses that occur randomly in the survey period but are not explicitly reported by the  
 35        participants in the FCOR survey due to the survey design. We found that pensioners were often classified  
 36        in group 0, which indicates irregular travel behavior. By contrast, the mileage of households with children  
 37        can be described very well with our approach. We used data from 2019 and spring 2020 from the same  
 38        households and cars to provide insights into how the measures of COVID-19 affected car usage. By using  
 39        the combination of the data sets, we are able not only to describe an increase or decrease of mileage, but  
 40        also to differentiate car usage on the household level. Cars that are primarily used for commuting to work  
 41        were stronger affected by the pandemic in spring 2020 than cars that were primarily used for other trip  
 42        purposes. We additionally see that in total the mileage strongly declined between 2019 and 2020. Reason  
 43        for this is the overall reduction of travel during the first lockdown of the pandemic, both because of political  
 44        measures and avoiding exposure.

45        From our point of view the COVID-19 pandemic can result in an event that triggers sustainable  
 46        changes in travel behavior and car usage. This can be both – a curse and a blessing. To track the dynamic  
 47        of these changes, we need to survey car usage continuously.

48

1 **ACKNOWLEDGMENTS**

2 This paper presents analyses of the German Mobility Panel funded by the German Federal  
3 Ministry of Transport and Digital Infrastructure.

4 **AUTHOR CONTRIBUTIONS**

5 The authors confirm contribution to the paper as follows: study conception and design: J. Vallee, L. Ecke,  
6 M. Magdolen, B. Chlond; data analysis: J. Vallee; interpretation of results: J. Vallee, L. Ecke, M.  
7 Magdolen, B. Chlond, P. Vortisch; draft manuscript preparation: L. Ecke, M. Magdolen; All authors  
8 reviewed the results and approved the final version of the manuscript.

9 **REFERENCES**

- 10 1. WHO. *Timeline: WHO's COVID-19 response*, 2021.  
<https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#event-72>.
- 11 2. Bauer, A., and E. Weber. *COVID-19: How much unemployment was caused by the shutdown in Germany?*, 14.04.2021. [http://doku.iab.de/arbeitsmarktdaten/daten\\_corona\\_maßnahmen.xlsx](http://doku.iab.de/arbeitsmarktdaten/daten_corona_maßnahmen.xlsx).
- 12 3. Axhausen, K. W. *The impact of COVID19 on Swiss travel*, 2020. Accessed July 31, 2021.
- 13 4. Haas, M. de, R. Faber, and M. Hamersma. *How COVID-19 and the Dutch 'intelligent lockdown' change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands*. *Transportation Research Interdisciplinary Perspectives*, Vol. 6, 2020, p. 100150, <http://dx.doi.org/10.1016/j.trip.2020.100150>.
- 14 5. Nobis, C., C. Eisenmann, V. Kolarova, C. Winkler, and B. Lenz. *Mobilität in Zeiten der Pandemie. Auswirkungen von Corona auf Einstellungen und Mobilitätsverhalten*. *Internationales Verkehrswesen*, (72) 3, 2020.
- 15 6. Follmer, R., and M. Schelewsky. *Mobilitätsreport 02. Ergebnisse aus Beobachtungen per repräsentativer Befragung und ergänzendem Mobilitätstracking bis Ende Juni*, 2020. [https://www.infas.de/fileadmin/user\\_upload/MOBICOR\\_Mobilit%C3%A4tsreport\\_2\\_202008017.pdf](https://www.infas.de/fileadmin/user_upload/MOBICOR_Mobilit%C3%A4tsreport_2_202008017.pdf). Accessed July 31, 2021.
- 16 7. Eisenmann, C., C. Nobis, V. Kolarova, B. Lenz, and C. Winkler. *Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground*. *Transport Policy*, Vol. 103, 2021, pp. 60–67, <http://dx.doi.org/10.1016/j.tranpol.2021.01.012>.
- 17 8. Shamshiripour, A., E. Rahimi, R. Shabani, and A. Mohammadian. *How is COVID-19 reshaping activity-travel behavior? Evidence from a comprehensive survey in Chicago*. *Transportation Research Interdisciplinary Perspectives*, Vol. 7, 2020, p. 100216, <http://dx.doi.org/10.1016/j.trip.2020.100216>.
- 18 9. Molloy, J., T. Schatzmann, B. Schoeman, C. Tchervenkov, B. Hintermann, and K. W. Axhausen. *Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS panel*. *Transport Policy*, Vol. 104, 2021, pp. 43–51, <http://dx.doi.org/10.1016/j.tranpol.2021.01.009>.
- 20 10. Ecke, L., B. Chlond, M. Magdolen, and P. Vortisch. *Deutsches-Mobilitätspanel (MOP) - Wissenschaftliche Begleitung und Auswertung Bericht 2019/2020: Alltagsmobilität und Fahrleistung*, 2020. [http://mobilitätspanel.ifv.kit.edu/downloads/Bericht\\_MOP\\_19\\_20.pdf](http://mobilitätspanel.ifv.kit.edu/downloads/Bericht_MOP_19_20.pdf). Accessed July 31, 2021.
- 21 11. Eisenmann, C., and T. Kuhnlimhof. *Some pay much but many don't: Vehicle TCO imputation in travel surveys*. *Transportation Research Procedia*, Vol. 32, 2018, pp. 421–435, <http://dx.doi.org/10.1016/j.trpro.2018.10.056>.

1 12. Weiss, C., B. Chlond, M. Heilig, V. Wassmuth, and P. Vortisch. *Who Uses Freeways and Who Pays*  
2 *for Them?: Model-Based Analysis of Distribution Effects of Toll Tariff Systems in Germany.*  
3 *Transportation Research Record: Journal of the Transportation Research Board*, No. 1, 2016, pp. 88–95,  
4 <http://dx.doi.org/10.3141/2563-13>.

5 13. Zumkeller, D., B. Chlond, J. Last, and W. Manz. *Long-Distance Travel in a Longitudinal*  
6 *Perspective: The INVERMO Approach in Germany*. *TRB 85th Annual Meeting Compendium of Papers*,  
7 Washington, D.C., 2006.

8 14. Abdullah, M., C. Dias, D. Muley, and M. Shahin. *Exploring the impacts of COVID-19 on travel*  
9 *behavior and mode preferences*. *Transportation Research Interdisciplinary Perspectives*, Vol. 8, 2020,  
10 p. 100255, <http://dx.doi.org/10.1016/j.trip.2020.100255>.

11 15. Kolarova, V., C. Eisenmann, C. Nobis, C. Winkler, and B. Lenz. *Analysing the impact of the*  
12 *COVID-19 outbreak on everyday travel behaviour in Germany and potential implications for future*  
13 *travel patterns*. *European Transport Research Review*, Vol. 13, No. 1, 2021,  
14 <http://dx.doi.org/10.1186/s12544-021-00486-2>.

15 16. Bucsky, P. *Modal share changes due to COVID-19: The case of Budapest*. *Transportation Research*  
16 *Interdisciplinary Perspectives*, Vol. 8, 2020, p. 100141, <http://dx.doi.org/10.1016/j.trip.2020.100141>.

17 17. BASt. *Auswirkungen der Corona-Pandemie 2020 auf den Straßenverkehr an 359 Dauerzählstellen*  
18 *(DZ) und Achslastmessstellen (AMS) auf BAB*.  
19 [https://www.bast.de/BASt\\_2017/DE/Statistik/Verkehrsdaten/Verkehrsbarometer-](https://www.bast.de/BASt_2017/DE/Statistik/Verkehrsdaten/Verkehrsbarometer-DL.pdf?__blob=publicationFile&v=3)  
20 [DL.pdf?\\_\\_blob=publicationFile&v=3](https://www.bast.de/BASt_2017/DE/Statistik/Verkehrsdaten/Verkehrsbarometer-DL.pdf?__blob=publicationFile&v=3). Accessed January 3, 2021.

21 18. Zumkeller, D., and B. Chlond. *Dynamics of Change: Fifteen-Year German Mobility Panel*. *TRB 88th*  
22 *Annual Meeting Compendium of Papers*, Washington, D.C., 2009.