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STRICHARTZ ESTIMATES FOR EQUATIONS WITH STRUCTURED LIPSCHITZ

COEFFICIENTS

DOROTHEE FREY AND ROBERT SCHIPPA*

Abstract. Sharp Strichartz estimates are proved for Schrödinger and wave equations with Lipschitz coef-

ficients satisfying additional structural assumptions. We use Phillips functional calculus as a substitute for
Fourier inversion, which shows how dispersive properties are inherited from the constant coefficient case.

Global Strichartz estimates follow provided that the derivatives of the coefficients are integrable. The esti-

mates extend to structured coefficients of bounded variations. As applications we derive Strichartz estimates
with additional derivative loss for wave equations with Hölder-continuous coefficients and solve nonlinear

Schrödinger equations. Finally, we record spectral multiplier estimates, which follow from the Strichartz

estimates by well-known means.

1. Introduction and Main results

In the following we show Strichartz estimates for Schrödinger and (half-)wave equations with time-
independent Lipschitz coefficients under additional structural assumptions. Let d ≥ 1, and ai ∈ C0,1(R)
satisfy an ellipticity condition for i = 1, . . . , 2d:

(1) ∃λ,Λ > 0 : ∀x ∈ R : λ ≤ ai(x) ≤ Λ, i ∈ {1, . . . , 2d}.
We consider the Dirac operators

iDaj =

(
0 −iaj+d(xj)∂j(·)

iaj(xj)∂j 0

)
.

We further write

L = D2
a =

d∑
j=1

D2
aj =

(
−
∑d
j=1 aj+d(xj)∂j(aj(xj)∂j) 0

0 −
∑d
j=1 aj(xj)∂j(aj+d(xj)∂j)

)
,

|DL| = L
1
2 , and |D| = |∇|. We consider the homogeneous Schrödinger

(2)

{
i∂tu+ Lu = 0, (t, x) ∈ R× Rd,
u(0) = u0 ∈ Hs(Rd;C2)

and half-wave equation

(3)

{
i∂tu+ L

1
2u = 0, (t, x) ∈ R× Rd,

u(0) = u0 ∈ Hs(Rd;C2).

The homogeneous Strichartz estimates quantify dispersive effects by estimates

(4) ‖u‖Lp([0,T ],Lq(Rd)) .T,d,p,q,s ‖u0‖Hs(Rd)

for solutions to (2) or (3). In the constant-coefficient case, i.e., ai = 1 for i = 1, . . . , 2d global Strichartz
estimates

‖u‖Lp(R,Lq(Rd)) .d,p,q ‖u0‖Ḣs(Rd)

*Corresponding author.
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hold true with s determined by scaling, see below. Our first result are local-in-time Strichartz estimates for
L and L

1
2 .

Theorem 1.1. Let d ≥ 1, 2 ≤ p ≤ ∞, 2 ≤ q <∞, s` = d
(

1
2 −

1
q

)
− `
p , ` ∈ {1, 2}. Suppose that ai ∈ C0,1(R),

i = 1, . . . , 2d satisfy (1). Then, we find the half-wave Strichartz estimate to hold

(5) ‖|D|−s1eitL
1
2 u0‖Lp([0,T ],Lq(Rd)) . µ

1
p ‖u0‖L2(Rd)

with µ = T maxi ‖ai‖Ċ0,1 ≥ 1 provided that 2
p + d−1

q = d−1
2 .

Furthermore, the Schrödinger Strichartz estimate holds true

(6) ‖|D|−s2eitLu0‖Lp([0,T ],Lq(Rd)) . µ
1
p ‖u0‖

H
1
p (Rd)

with µ = T maxi ‖ai‖2Ċ0,1 ≥ 1 provided that 2
p + d

q = d
2 .

Remark 1.2. For q = ∞, the above estimates remain true after changing to Besov norms Ḃ−s`,q2 , except
at the double endpoints (p, q, d) 6= (2,∞, 2) for the Schrödinger equation or (p, q, d) 6= (2,∞, 3) for the wave
equation.

If the coefficients have integrable derivatives with small L1-norm, we can show global estimates:

Theorem 1.3. Let d ≥ 1, 2 ≤ p, q ≤ ∞, s` = d
(

1
2 −

1
q

)
− `
p , ` ∈ {1, 2}, and ai ∈ C0,1(R), i = 1, . . . , d satisfy

(1). Let ai = 1 for i = d+ 1, . . . , 2d. Suppose that V ar(log((ai)) < 2π. Then, we find the following estimate
to hold

(7) ‖|D|−s1eitL
1
2 u0‖Lp(R;Lq(Rd)) . ‖u0‖L2(Rd)

provided that 2
p + d−1

q = d−1
2 and (p, q, d) 6= (2,∞, 3).

Furthermore, the Schrödinger Strichartz estimate holds true

(8) ‖|D|−s2eitLu0‖Lp(R;Lq(Rd)) . ‖u0‖L2(Rd)

provided that 2
p + d

q = d
2 and (p, q, d) 6= (2,∞, 2).

Recall that p ≥ 2 and q ≥ 2 are necessary due to convolution structure. The Knapp counterexample
for constant coefficients gives the necessary conditions for the integrability indices. For the Schrödinger
equation, this reads

(9)
2

p
+
d

q
≤ d

2
,

and for the half-wave equation, this is

(10)
2

p
+
d− 1

q
≤ d− 1

2
.

Estimates (5)-(8) follow for the strict inequalities in (9) or (10), respectively, by Sobolev embedding for
q 6= ∞. The double endpoints (p, q) = (2,∞) in two dimensions for the Schrödinger equation and three
dimensions for the wave equation are ruled out by more sophisticated counterexamples due to Montgomery–
Smith [26] and E. Stein (cf. [36, p. 81]), respectively. Tupels (s, p, q, d), for which the necessary conditions
hold, will be referred to as Schrödinger or wave Strichartz pairs, respectively. If equality holds in (9) or (10),
the pairs are referred to as sharp.

Clearly, on a finite time interval we can use Hölder in time and Bernstein’s inequality to estimate low
frequencies. Hence, on a finite time interval we can as well consider inhomogeneous Sobolev spaces. The
estimates are named after Strichartz’s pioneering work [34] on constant coefficients, where the relation with
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L2-Fourier restriction was established (cf. [39]). Ginibre–Velo [15] covered a wider range of integrability
indices, and finally Keel–Tao [21] covered the time-integrability p = 2 endpoints.

It was clarified in [21] that Strichartz estimates follow from a dispersive estimate and an energy estimate,
see Theorem 3.1. In the constant-coefficient case the required dispersive estimate reads as

‖P1e
it(−∆)k/2u0‖L∞(Rd) . (1 + |t|)−σ(k)‖u0‖L1(Rd) (t 6= 0),

where P1 denotes a smooth frequency projection to unit frequencies, σ(k) denotes a decay parameter, and
the energy estimate is given by

‖P1e
it(−∆)k/2u0‖L2(Rd) . ‖u0‖L2(Rd).

By the interpolation arguments due to Keel–Tao [21] these yield Strichartz estimates for unit frequencies.
The claim follows by rescaling for any dyadic frequency range and the dyadic frequency pieces are assembled
by Littlewood-Paley theory.

We follow this strategy also in the current setup of Lipschitz coefficients as square function estimates
and scaling symmetries are still available. The key step remains the proof of the dispersive estimate at unit
frequencies. In the constant-coefficient case the crucial kernel estimate is a consequence of stationary phase
estimates. Here we can use Phillips functional calculus as substitute for Fourier inversion.

Previously, the first author proved fixed-time Lp-estimates for wave equations with structured Lipschitz
coefficients in joint work with P. Portal [14]. In [14] an adapted scale of Hardy spaces was introduced on
which the time-evolution is bounded. Wave packet analysis is not required in the following. We believe that
it is worthwhile to track the time-evolution of wave packets also in the current setup.

Without imposing additional structural assumptions, Tataru proved sharp Strichartz estimates for wave
equations with rough coefficients in Cs, 0 < s ≤ 2 in [37] (see also [2, 22, 38]). As counterexamples due to
Smith–Tataru [31] show, in the general case there is derivative loss for Cs-coefficients, 0 < s < 2 compared to
the constant-coefficient case; for C2-coefficients the usual Strichartz estimates hold true (see also Smith [30]).
In the present work, the additional structural assumptions rule out the trapping examples by Smith–Tataru,
which allows us to recover the Strichartz estimates for constant-coefficients.

General Strichartz estimates for Schrödinger equations with variable coefficients were firstly derived by
Staffilani–Tataru [33] for C2-coefficients under non-trapping assumptions, see also Burq–Gérard–Tzvetkov
[6] for estimates on smooth compact manifolds and Marzuola–Metcalfe–Tataru [25]. Moreover, in one spatial
dimension Burq–Planchon [7] showed Strichartz estimates only for coefficients with bounded variation; see
also Beli–Ignat–Zuazua [4]. It is conceivable that the proof of Burq–Planchon [7] also applies in higher
dimensions.

To the best of the authors’ knowledge, in higher dimensions the present results are the first ones showing
the full Strichartz estimates for certain Lipschitz coefficients as well for wave as Schrödinger equations.

We shall also discuss inhomogeneous estimates and Strichartz estimates for Hölder coefficients. A straight-
forward consequence of Theorem 1.1 by Duhamel’s formula and Minkowski’s inequality, which is already
useful to handle nonlinear equations, is the following:

Corollary 1.4. Let ` ∈ {1, 2}, and (ρ, p, q, d) be sharp wave (` = 1) or Schrödinger (` = 2) admissible
Strichartz pairs. Then, we find the following estimates to hold:

(11) ‖|D|−ρ〈D〉−
`−1
p u‖Lpt ([0,T ],Lq(Rd)) .T,‖ai‖Ċ0,1

‖u(0)‖L2(Rd) + ‖(i∂t + L
`
2 )u‖L1

t ([0,T ],L2(Rd)).

A standard argument invoking the Christ–Kiselev lemma [11] yields more inhomogeneous estimates with
precise dependence on time scale and Lipschitz norm of the coefficients. However, this misses endpoint
estimates:
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Corollary 1.5. Let ` ∈ {1, 2}, and (ρ, p, q, d), (ρ̃, p̃, q̃, d) be sharp wave (` = 1) or Schrödinger (` = 2)
admissible Strichartz pairs. Suppose that p < p̃′. Then, we find the following estimates to hold:

‖|D|−ρ〈D〉−
`−1
p

∫ t

0

ei(t−s)L
`
2 F (s)ds‖Lpt ([0,T ],Lq(Rd))

. µ
1
p+ 1

p̃ ‖|D|ρ̃〈D〉
`−1
p̃ F‖

Lp̃
′
t ([0,T ],Lq̃′ (Rd))

(12)

with µ = maxi T‖ai‖`Ċ0,1 .

More inhomogeneous estimates are available by the bilinear interpolation due to Keel–Tao [21]. The
estimates were further refined by Foschi [13] (see also [41, 35, 28, 24]). For the sake of brevity, we only record
the estimates due to Keel–Tao, but remark that the estimates from [13] hold in a wider range.

Theorem 1.6. Let ` ∈ {1, 2}, and let (ρ, p, q, d), (ρ̃, p̃, q̃, d) be sharp wave (` = 1) or Schrödinger (` = 2)
admissible Strichartz pairs. Let ai = 1 for i = d+ 1, . . . , 2d. Suppose that V ar(log(ai)) < 2π. Then, we find
the following inhomogeneous Strichartz estimates to hold:

(13) ‖|D|−ρ
∫ t

0

ei(t−s)L
`
2 F (s)ds‖Lpt (R,Lqx(Rd)) . ‖|D|ρ̃F‖Lp̃′t (R,Lq̃

′
x (Rd))

.

We remark that in case of the half-wave equation, we can also apply the Keel-Tao argument for finite
times. In Section 4 we give further applications of the analysis. Since the dispersive estimate hinges on
integrals of the derivatives, we can extend the results to coefficients with (locally) bounded variation. We
refer to Subsection 4.1 for details. Next, we use a refined version of Corollary 1.4 to derive wave Strichartz
estimates for Hölder coefficients. We truncate the coefficients in Fourier space, which allows to use Strichartz
estimates for Lipschitz coefficients for frequency localized functions and use commutator estimates. Similar
arguments were previously used by Tataru [37]; see also [2]. Below (SN )N∈2N0 denotes an inhomogeneous
Littlewood–Paley decomposition in spatial frequencies.

Theorem 1.7. Let d ≥ 2, s ∈ (0, 1), T > 0, P = ∂2
t −

∑d
i=1 ∂xiai(xi)∂xi , and ai ∈ Ḃs∞,1(R) satisfy (1) for

i = 1, . . . , d. Suppose that T s‖ai‖Ḃs∞,1(R) ≤ µ for some µ ≥ 1. Then, we find the following estimate to hold:

(14) sup
N∈2N0

N1−ρ−σp ‖SNu‖Lp([0,T ],Lq(Rd)) . µ
1
p ‖∇u‖L∞([0,T ],L2(Rd)) + µ

− 1
p′ ‖|D|−σPu‖L1([0,T ],L2(Rd))

provided that (ρ, p, q, d) is a wave Strichartz pair and σ = 1− s.

We also apply Strichartz estimates to nonlinear Schrödinger equations. With the same Strichartz estimates
as in case of constant coefficients at hand, the arguments to show analytic well-posedness for (sub-)critical
nonlinear Schrödinger equations are standard by now (cf. [40, 36]). We refer to Subsection 4.3 for details.
In Section 5 we point out how the global Schrödinger Strichartz estimates of Theorem 1.3 yield Bochner–

Riesz and spectral multiplier estimates for the scalar operator L = −
∑d
i=1 ∂xi(ai(xi)∂xi) with ai ∈ BV (R)

satisfying ellipticity conditions. For this we apply the abstract results due to Chen et al. [10, 9] and
Sikora–Yan–Yao [29].

Outline of the paper. In Section 2 we recall basic facts about elliptic operators with Lipschitz coefficients
as resolvent estimates and the Phillips functional calculus. In Section 3 we show Strichartz estimates for
Lipschitz coefficients, and in Section 4 we record applications. We extend the Strichartz estimates to BV -
coefficients, derive wave Strichartz estimates for Hölder coefficients, and also record well-posedness results
for nonlinear Schrödinger equations with BV -coefficients. In Section 5 we show Bochner–Riesz means and
spectral multiplier estimates.



STRICHARTZ ESTIMATES FOR LIPSCHITZ COEFFICIENTS 5

2. Preliminaries

We recall the basic setup of [14] with an emphasis on the Phillips functional calculus. We also collect
basic resolvent estimates and the square function estimate. Recall that for i ∈ {1, . . . , 2d}, ai ∈ C0,1(R),
which satisfy the ellipticity condition

(15) ∃λ,Λ > 0 : ∀x ∈ R : λ ≤ ai(x) ≤ Λ.

The ellipticity constants will be fixed for the rest of the paper.

Definition 2.1. For j ∈ {1, . . . , 2d}, let aj ∈ C0,1(R) satisfy (15). For ξ = (ξ1, . . . , ξd) ∈ Rd, we define

ξ.Da =

d∑
j=1

ξj

(
0 −aj+d(xj)∂j(·)

aj(xj)∂j 0

)
,

ξ.
√
D2
a =

d∑
j=1

ξj

(√
−aj+d(xj)∂j(aj(xj)∂j) 0

0
√
−aj(xj)∂j(aj+d(xj)∂j)

)
,

which we view as unbounded operator in L2(Rd;C2) with domain W 1,2(Rd;C2).

The Dirac operators Dai are not commuting. The remedy is to use the cosine group, which is as well

generated by
√
D2
ai , and the operators

√
D2
ai and

√
D2
aj are commuting. Recall the following about the

generator of the transport group:

Proposition 2.2 ([14, Proposition 3.1]). The operator a d
dx generates a bounded C0-group in Lp(R) for all

p ∈ [1,∞). Moreover, φ(x) =
∫ x

0
1

a(y)dy is a global C1-diffeomorphism, and we have

(eta∂xf)(x) = f(χ(t, x)) for f ∈ C∞c (R)

with χ(t, x) = φ−1(t+ φ(x)), χ ∈ C1(R2;R).

We can now prove the following basic property of the Dirac operator:

Proposition 2.3. Let a, b ∈ C0,1(R) satisfy (15). Then, the operators

A : W 1,p(R;C2)→ Lp(R;C2), A =

(
0 b∂x(·)
a∂x 0

)
, iD̃a = i

(
0 −b∂x(·)
a∂x 0

)
with the same domain generate C0-groups in Lp(R;C2) for 1 ≤ p <∞.

Proof. It will be enough to show the claim for A as we shall see that the proof extends to iD̃a. For the proof
we diagonalize A up to an Lp bounded operator. The principal symbol is given by

iξ

(
0 b(x)

a(x) 0

)
.

The eigenvalues are given by ±iξ(ab)1/2(x), and it suffices to note a matrix M of eigenvectors is given by

M =

(
b1/2 b1/2

a1/2 −a1/2

)
, M−1 =

1

2

(
b−1/2 a−1/2

b−1/2 −a−1/2

)
.

With this it is straightforward that

1

2

(
b−1/2(x) a−1/2(x)
b−1/2(x) −a−1/2(x)

)(
0 ∂x(b(x)·)

a(x)∂x 0

)(
b1/2(x) b1/2(x)
a1/2(x) −a1/2(x)

)
=

(
(ab)1/2(x)∂x 0

0 −(ab)1/2(x)∂x

)
+ E(x),
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where E is a 2 × 2 matrix consisting of linear combinations of derivatives of the coefficients, which are
bounded. Hence, we can transform the equation

∂t

(
u1

u2

)
=

(
0 b∂x(·)
a∂x 0

)(
u1

u2

)
to

∂t

(
v1

v2

)
=

((
(ab)1/2∂x 0

0 −(ab)1/2∂x

)
+ E

)(
v1

v2

)
with

(16)

(
v1

v2

)
=

1

2

(
b−1/2 a−1/2

b−1/2 −a−1/2

)(
u1

u2

)
, ‖E‖Lp→Lp ≤ C(λ,Λ) max

c=a,b
(‖c‖Ċ0,1).

For v we have the following representation by Duhamel’s formula:

(17) v =

(
et(ab)

1/2(x)∂xv1

e−t(ab)
1/2(x)∂xv2

)
+

∫ t

0

Tt−s(Ev)(s)ds,

with (Tt) denoting the C0-transport group generated by

(18) B = diag((ab)1/2(x)∂x,−(ab)1/2(x)∂x).

From (17) is immediate that v0 7→ v(t) is a C0-group in Lp(R;C2) for 1 ≤ p < ∞, and so is u0 7→ u(t).

In a similar spirit, we can show that iD̃a generates a C0-group in Lp(R2;C) for 1 ≤ p < ∞ because the

diagonalization still applies, and after change of basis, iD̃a generates the transport group up to an Lp-bounded
error. �

We find a representation in terms of solutions to wave equations by squaring the transport group. Let(
u
v

)
(t) = eitDa

(
u0

v0

)
.

By taking two time derivatives, we find {
∂2
t u = b∂x(a∂x)u,
∂2
t v = a∂x(b∂xv).

Let L1 = −b∂x(a∂x), L2 = −a∂x(b∂x). Then we can write the solution as{
u(t) = cos(tL1)u0 − i sin(tL1)

L1
b∂xv0,

v(t) = cos(tL2)v0 + i sin(tL2)
L2

a∂xu0,

or, concisely,

eitDa =

(
cos(tL1) −i sin(tL1)

L1
(b∂x)

i sin(tL2)
L2

a∂x cos(tL2)

)
.

A similar computation yields for (
u
v

)
(t) = eit

√
D2
a

(
u0

v0

)
,

the representation {
u(t) = cos(tL1)u0 + i sin(tL1)u0,
v(t) = cos(tL2)v0 + i sin(tL2)v0,

or, concisely, (
u(t)
v(t)

)
=

(
cos(tL1) + i sin(tL1) 0

0 cos(tL2) + i sin(tL2)

)(
u0

v0

)
= eit

√
D2
a

(
u0

v0

)
.
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The Dirac operators (Da) are bisectorial operators (cf. [14, Definition 2.4], [20, Chapter 10]), but not
commuting. However, the cosine groups of the operators coincide:

eit
√
D2
a + e−it

√
D2
a = eitDa + e−itDa .

This allows us to recover a Phillips functional calculus, for which we follow the argument in [14]:

Definition 2.4. For Ψ ∈ S(Rd), we define Ψ(
√
D2
a) using Phillips functional calculus associated with the

commutative group
(

exp(iξ.
√
D2
a)
)
ξ∈Rd :

Ψ(
√
D2
a) =

1

(2π)d

∫
Rd

Ψ̂(ξ) exp(iξ.
√
D2
a)dξ.

We consider functions Ψ which are even in every coordinate, i.e., Ψ = Ψs with

Ψs(x) = 2−d
∑

(δj)dj=1∈{−1,1}d
Ψ(δ1x1, . . . , δdxd).

For such functions, we have that

Ψ(
√
D2
a)

=
1

(2π)d

∫
Rd−1

∫
R

Ψ̂s(ξ)
1

2

(
exp(iξ1e1

√
D2
a) + exp(−iξ1e1

√
D2
a)
)

exp(i(ξ − ξ1e1)
√
D2
a)

=
1

(2π)d

∫
Rd

Ψ̂s(ξ)

d∏
j=1

exp(iξjDaj )dξ,

since Da and
√
D2
a generate the same cosine family. For the sake of brevity, we write

Ψs(
√
D2
a) = Ψs(Da) =

1

(2π)d

∫
Rd

Ψ̂s(ξ) exp(iξ.Da)dξ.

Moreover, we have

L = D2
a =

√
D2
a ·
√
D2
a =

(
−
∑d
j=1 aj+d(xj)∂xj (aj(xj)∂xj ) 0

0 −
∑d
j=1 aj(xj)∂xj (aj+d(xj)∂xj )

)
.

As another consequence of the close relation with the transport group, the group generated by iξ.Da

satisfies a strong form of finite speed of propagation (cf. [14, Remark 4.2]). We summarize the finite speed
of propagation property in the following lemma:

Lemma 2.5. Let u0 ∈ C∞c (R;C2), and ∂tu = iD̃au, u(0) = u0. Then, we find

u(t, x) = 0 if dist(x, supp(u0)) ≥ C|t|.

Moreover, after introducing the scalar product in L2(R;C2),

〈
(
u1

v1

)
,

(
u2

v2

)
〉(a,b) := 〈

(
u1

v1

)
,

(
b−1 0
0 a−1

)(
u2

v2

)
〉,

we find iDa to be a self-adjoint operator, which implies the following global L2-estimates.

Proposition 2.6. Let u0 ∈ L2(R;C2) and ∂tu = iD̃au, u(0) = u0. Then, we find the following estimate to
hold:

(19) ‖u(t)‖L2(R;C2) . ‖u0‖L2(R;C2).

In subsequent sections we need the following properties of the operators Da and L:
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Proposition 2.7. There is N = N(d) such that we find the following estimate to hold:

(20) ‖(1 + L)−N‖L1(Rd)→L∞(Rd) ≤ C(λ,Λ).

We shall also make use of Littlewood-Paley theory associated with L
1
2 = |DL|. For this purpose, we

consider a radially decreasing function

φ(ξ) ≡ 1 for |ξ| ≤ 1, supp(φ) ⊆ B(0, 2).

Let ψ(ξ) = φ(ξ/2)− φ(ξ) and ψk(ξ) = ψ(2−kξ) such that

φ(ξ) +
∑
k∈N

ψk(ξ) = 1,
∑
k∈Z

ψk(ξ) ≡ 1 (ξ 6= 0).

In view of the previous paragraph, we note that φ = φs and Ψ = Ψs. We have the following square function
estimate:

Proposition 2.8. Let 1 < p <∞. Then, we find the following estimate to hold

(21) ‖f‖Lp(Rd) ∼ ‖
(∑
k∈Z
|ψk(

√
D2
a)f |2

) 1
2 ‖Lp(Rd)

with implicit constant only depending on d, p, and ‖a‖C0,1 .

This follows from Lq-boundedness of F (L
1
2 ) provided that F satisfies the usual Mikhlin condition (cf.

[42]). The square function estimate is concluded by a Rademacher function argument.

It turns out that the Besov norms for structured L∞-coefficients remain equivalent. Let (ai)i=1,...,d ⊆
L∞(R) satisfy (15). Let L = −

∑d
i=1 ∂xi(ai(xi)∂xi). Let SL(t) = etL denote the associated heat kernel and

∆L
j = 4−jLSL(4−j) the dyadic projection. We define Besov spaces associated with L as

‖f‖Ḃs,pq,L =
(∑
j∈Z

2sqj‖∆L
j f‖

q
Lp

) 1
q

Proposition 2.9. Under the above assumptions, for 1 < p <∞ and −1 < s < 1, we have Ḃs,pq = Ḃs,pq,L with
equivalence of the norms only depending on the ellipticity constants.

Proof. In the present case, the heat kernel factors as a consequence of

[∂xi(ai(xi)∂xi), ∂xj (aj(xj)∂xj )] = 0.

Since the operators (∂xi(ai(xi)∂xi)i are commuting, the properties of the one-dimensional heat kernel of
Li = −∂xi(ai(xi)∂xi) are inherited for L:

KL(x, y, t) = SL(t)(x, y) = etL(x, y) =

d∏
i=1

etLi(xi, yi).

The one-dimensional case was discussed in detail in [7, Appendix A]. By the properties of the one-dimensional
kernel, there exists c depending only on the ellipticity constants such that

(22) |KL(x, y, t)| . t− d2 e−
|x−y|2

t .

Moreover,

|∂yiKL(x, y, t)|+ |∂xiKL(x, y, t)| . t− d2− 1
2 e−

|x−y|2
t

and

|LKL(x, y, t)| . t− d2−1e−
|x−y|2

t .
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By the Gaussian bounds, it follows that SL(t) is continuous on Lp, as well as ∆L
j = 4−jLSL(4−j). By the

kernel estimate, we can derive equivalence of Besov norms as in [7, Appendix A.2]. �

Remark 2.10. We remark that the argument strongly hinges upon the structure of the operator. For
general elliptic operators with Hölder coefficients the equivalence of Besov norms fails.

We shall also need the following square function estimate, which even holds for general elliptic L∞-
coefficients (cf. [1]):

Proposition 2.11 (One-dimensional Kato square-root estimate). Under the above assumptions, we have

(23) ‖|DL|f‖L2 ∼λ,Λ ‖f‖Ḣ1 .

3. Strichartz estimates for Lipschitz coefficients

This section is devoted to the proof of Strichartz estimates for structured Lipschitz coefficients. The key
ingredient in our proof are as in the constant-coefficient case dispersive estimates. Recall how dispersive
estimates imply Strichartz estimates by the following abstract result due to Keel–Tao [21]:

Theorem 3.1 (Keel–Tao). Let (X, dx) be a measure space and H a Hilbert space. Suppose that for each
t ∈ R we have an operator U(t) : H → L2(X) which satisfies the following assumptions for σ > 0:

(i) For all t and f ∈ H we have the energy estimate:

‖U(t)f‖L2(X) . ‖f‖H .

(ii) For all t 6= s and g ∈ L1(X) we have the decay estimate

‖U(s)(U(t))∗g‖L∞(X) . (1 + |t− s|)−σ‖g‖L1(X).

Then, for σ-admissible exponents (p, q), which satisfy 1
p + σ

q ≤
σ
2 and (p, q, σ) 6= (2,∞, 1), the estimate

‖U(t)f‖LptLqx(R×X) . ‖f‖H

holds. Furthermore, for two σ-admissible pairs (p, q) and (p̃, q̃), the estimate

(24) ‖
∫
s<t

U(t)(U(s))∗F (s)ds‖LptLqx(R×X) . ‖F‖Lp̃′t Lq̃
′
x

holds true.

We shall see by Littlewood-Paley decomposition and rescaling that it will be enough to show estimates
for unit frequencies. The energy estimate required by Theorem 3.1 (i) is Proposition 2.6. We have to show
the dispersive estimate:

Proposition 3.2. Let ai ∈ C0,1(R) satisfy (15). Then, we find the following estimate to hold:

(25) ‖eitL
`
2 ψ(

√
D2
a)‖L1(Rd)→L∞(Rd) . (1 + |t|)−σ(`)

for ` ∈ {1, 2}, 0 < t ≤ C(λ,Λ) max(‖ai‖Ċ0,1), and

σ(`) =


d− 1

2
, ` = 1,

d

2
, ` = 2.
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Proof. By Phillips functional calculus, we have to prove

(26) sup
x∈Rd

∣∣ ∫ Kt(ξ)e
iξ.Dau0(x)dξ

∣∣ . (1 + |t|)−σ(`)‖u0‖L1(Rd),

where

Kt(ξ) =
1

(2π)d

∫
Rd
eit|y|

`

ψ(y)eiy.ξdy

denotes the kernel of the half-wave equation for ` = 1 or the Schrödinger equation for ` = 2 at unit frequencies.
Note that Kt(ξ) = Ks

t (ξ) and Definition 2.4 applies. Recall that

(27) |Kt(ξ)| .

{
(1 + |t|+ |ξ|)−N , |t| 6∼ |ξ|,
(1 + |t|)−σ(`), |t| ∼ |ξ|

by (non-)stationary phase (cf. [32, Chapter 1]). Hence, to show the dispersive estimate (25), it suffices to
prove ∫

Rd

∣∣eiξ.Daf(x)
∣∣dξ . ∫

Rd
|f(x)|dx.

We show this after suitable localization.
By the L2-estimate, Phillips functional calculus, and the rapid decay of the kernel (27) for |ξ| � |t|, we

can localize the integral in (26) to |ξ| ≤ T : Let χT ∈ C∞c (B(0, 2T )) be a radially decreasing function with
χT (ξ) = 1 for ξ ∈ B(0, T ). Let ηT = 1 − χT . We estimate by integration by parts, the L2-estimate from
Proposition 2.6, and the resolvent estimate from Proposition 2.7:∥∥∫

Rd
ηT (ξ)Kt(ξ)e

iξ.Dau(x)dξ‖L∞(Rd) .
∥∥∫

Rd
ηT (ξ)Kt(ξ)(1−∆ξ)

2N (1 + L)−2Neiξ.Dau(x)dξ
∥∥
L∞

.
∥∥∫

Rd
(1−∆ξ)

N (ηT (ξ)Kt(ξ))e
iξ.Da(1 + L)−Nu(x)dξ

∥∥
L2

.
∫
|ξ|≥T

(1 + |ξ|)−Ndξ‖(1 + L)−Nu‖L2

. (1 + T )−M‖u‖L1 .

Thus, it is enough to show the estimate

(28) sup
x∈Rd

∣∣ ∫
|ξ|≤T

Kt(ξ)e
iξ.Dau0(x)dξ

∣∣ . (1 + |t|)−σ(`)‖u0‖L1(Rd),

which follows from

(29) sup
x∈Rd

∫
|ξ|≤T

∣∣eiξ.Dau0(x)
∣∣dξ . ‖u0‖L1(Rd).

By Lemma 2.5, we can suppose that supp(u0) ⊆ B(x,CT ) to show (29). Furthermore, by commutativity
of the Dirac operators under the radial frequency constraint, we can write

(30)

∫
B(0,T )

∣∣eiξ.Dau0(x)dξ
∣∣ ≤ ∫ T

−T
dξ2 . . .

∫ T

−T
dξd
( ∫ T

−T
dξ1
∣∣eiξ1.Da1 (eiξ′.D′au0(x1, x

′)
)∣∣)

with ξ′ = (ξ2, . . . , ξd) and D′a = (Da2 , . . . , Dad). It suffices to prove the estimate for a one-parameter group
as the estimate for the above expression then follows by iteration. Thus, the proof will be complete once we
show the following estimate:

(31)

∫ T

−T
|eitD̃au0(x)|dt . ‖u0‖L1(R)
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for u0 ∈ L1(R) and supp(u0) ⊆ B(x,CT ). We write u(t, x) = eitDau0(x) and with the notations from the
proof of Proposition 2.3, we find by change of basis

(32)

∫ T

−T
|u(t, x)|dt .

∫ T

−T
|v(t, x)|dt

with

v(t, x) = Ttv0(x) +

∫ t

0

Tt−sEv(s, x)ds,

where Tt = exp diag(t(ab)1/2(x)∂x,−t(ab)1/2(x)∂x). We can write Ttv0(x) = v0(χ(t, x)) with χ(x, ·) a C1-
diffeomorphism and ∫

R
|Ttv0(x)|dt ≤ C(λ,Λ)‖v0‖L1(R;C2).

Hence, integration in time of v(t, x) yields

(33)

∫ T

−T
|v(t, x)|dt ≤ C(λ,Λ)‖v0‖L1(R;C2) +

∫ T

−T
dt

∫ T

−T
ds|Ev(s, χ(t− s, x))|.

We estimate the second term by the diffeomorphism property of χ(x, · − s), Fubini’s theorem, and L1-
boundedness of E:∫ T

−T
dt

∫ T

−T
ds|Ev(s, χ(x, t− s))| ≤ C(λ,Λ)

∫ T

−T
ds‖Ev(s)‖L1

≤ C(λ,Λ)

∫ T

−T
ds‖E‖L1→L1‖v(s)‖L1

x

≤ C(λ,Λ)‖E‖L1→L1

∫ T

−T
ds

∫ CT

−CT
dx′|v(s, x+ x′)|

≤ C(λ,Λ)‖E‖L1→L1CT sup
x
‖v(t, x)‖L1

t ([−T,T ]).

(34)

We use the bound for ‖E‖L1→L1 from (16): Let T = 1
2‖E‖L1→L1 ·C·C(λ,Λ) such that we can absorb (34) into

the right-hand side of (33) to find ∫ T

−T
|v(t, x)|dt . ‖v0‖L1(R2;C).

Conclusively, (31) follows from (32), the previous estimate, and a final change of basis. The proof is complete.
�

In the following we show the dispersive estimate for arbitrary finite times. We start with the following
growth bound as consequence of Grønwall’s lemma:

Lemma 3.3. Let u(t, x) = eitDau0. Then, we find the following estimate to hold:

‖u(t)‖L1 ≤ eC(‖ai‖Ċ0,1 ,λ,Λ)t‖u0‖L1 .

Proof. Starting with the representation by Duhamel’s formula after change of basis

v(t, x) = Ttv0(x) +

∫ t

0

Tt−sEv(s, χ(t− s, x))ds,
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we obtain ∫
R
|v(t, x)|dx ≤

∫
R
|v0(χ(t, x))|dx+

∫ t

0

∫
R
|(Ev)(s, χ(t− s, x))|dxds

≤ C(λ,Λ)‖u0‖L1(R) +

∫ t

0

C(λ,Λ)‖E‖L1→L1‖v(s)‖L1ds.

By ‖E‖L1→L1 ≤ C(λ,Λ, ‖ai‖Ċ0,1), the proof is concluded by applying Grønwall’s lemma and inverting the
change of basis. �

In the following we show that the dispersive estimate remains true on arbitrary time intervals, but with
a bad constant.

Lemma 3.4. Let ` ∈ {1, 2} and A = maxi ‖ai‖Ċ0,1 . Then, we find the following estimate to hold:

‖P1e
itL

`
2 ‖L1→L∞ ≤ C1e

C2TA(1 + |t|)−σ(`) (0 < |t| ≤ T ).

Proof. As in the proof of Proposition 3.2 by the localization and decay of the half-wave or Schrödinger kernel
at unit frequencies (27), it suffices to prove

|
∫
|ξ|≤T

eiξ.Dau0| ≤ C1e
C2TA‖u0‖L1(Rd).

As above, it suffices to prove the estimate for one Dirac operator by their commutativity and iteration. Let

u(t, x) = eitD̃au0(x). We show ∫ T

−T
|u(t, x)|dt ≤ C1e

C2TA‖u0‖L1(R).

Proposition 3.2 yields T ′(A, λ,Λ) such that∫ T ′

0

|u(t, x)|dt . ‖u0‖L1(R).

We partition [0, T ] into N = bT/T ′c + 1 intervals Ik = [ak, bk] of length T ′ such that
∫
I′
|u(t, x)|dt .

‖u(ak)‖L1 . Hence, by Lemma 3.3 we find∫ T

0

|u(t, x)|dt ≤
N+1∑
k=0

∫
Ik

|u(t, x)|dt .
N+1∑
k=0

ekT
′C‖u0‖L1 . eTC‖u0‖L1(R).

�

For the proof of the global results and extending the above to coefficients with bounded variation, we use
the following result due to Beli–Ignat–Zuazua:

Theorem 3.5 ([4, Theorem 1.1]). For any a ∈ BV (R) satisfying (15) and V ar(log(a)) < 2π there exists a
positive constant C(V ar(a), λ,Λ) such that the solution u to{

∂ttu = ∂x(a(x)∂x)u, (t, x) ∈ R× R,
u(0) = u0 ∈ L1(R), u̇(0) = 0

satisfies

(35) sup
x∈R

∫
R
|u(t, x)|dt ≤ C(V ar(a), λ,Λ)‖u0‖L1(R).

Remark 3.6. We note that Beli et al. showed the threshold for V ar(log(a)) to be sharp for (35) to hold.
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We show the corresponding result to Proposition 3.2 for functions with locally bounded variation. To this
end, let

V arT (a) = sup{
∫
I

d|a′(x)| : I ⊆ R interval, |I| = T}.

Proposition 3.7. Let ai ∈ BVloc(R), i = 1, . . . , d satisfy (15) such that there is T > 0 with V arT (log(ai)) <

2π and ai = 1 for i = d+ 1, . . . , 2d. Then, there is T̃ = T̃ (T, λ,Λ) such that

‖P1e
itL

`
2 ‖L1→L∞ . (1 + |t|)−σ(`) (0 < |t| ≤ T̃ ).

If V ar(log(ai)) < 2π, then we can choose T̃ =∞.

Proof. By the reductions from above, it is enough to prove∫ T̃

−T̃
|eiξ.Dau0(x)|dξ ≤ C(V arT (a), λ,Λ)‖u0‖L1(R).

T̃ will be determined from T and λ, Λ. It suffices to show the above display in one dimension:∫ T̃

−T̃
|eit.Dau0(x)|dt ≤ C‖u0‖L1(R).

By the symmetry of the kernel, we change to the cosine group, and it is enough to prove∫ T̃

−T̃
| cos(tL)u0(x)|dt ≤ C‖u0‖L1(R)

for L =
√
−∂x(ai(x)∂x). Note that the second entry on the diagonal can be recast into divergence form after

change of variables as pointed out in [7]. By finite speed of propagation, we can localize u0 to an interval

of length l = C(λ,Λ)T̃ such that cos(tL)u0(x) = cos(tL)ũ0(x) for |t| ≤ T̃ . Secondly, we can localize the
coefficients of L such that

cos(tL̃)ũ0(x) = cos(tL)u0(x).

Note that this strictly speaking only works for piecewise constant coefficients, but we can assume this by
approximation arguments (cf. [4]). Moreover, the localization of a can be chosen in an interval of length

C(λ,Λ)T̃ around x. By hypothesis, for C(λ,Λ)T̃ < T , we have by the localization and Theorem 3.5∫ T̃

−T̃
| cos(tL)u0(x)|dt ≤

∫
R
| cos(tL̃)u0(x)|dt ≤ C(V arT (a), λ,Λ)‖u0‖L1(R).

�

Remark 3.8. The hypothesis on locally bounded variation is satisfied for ai ∈ C1(R) with ‖∂xai‖L1(R) <∞
or ai ∈ C1(R) being τ -periodic.

We begin the proof of Theorem 1.1 in earnest:

Proof of Theorem 1.1. We have the scaling symmetry

x→ ‖ai‖Ċ0,1x, t→ ‖ai‖`Ċ0,1t,

with ` = 1 for the half-wave equation and ` = 2 for the Schrödinger equation, which reduces the estimate to

‖|D|−s`eitL
`
2 u0‖Lp([0,T ],Lq) . T

1
p ‖u0‖L2
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with ‖a‖Ċ0,1 ≤ 1. For a sharp Strichartz pair (s, p, q, d) we always have 0 ≤ s < 1. Hence, for Lipschitz

coefficients the homogeneous Sobolev spaces Ẇ s,p and Ẇ s,p
L are equivalent for −1 < s < 1, and it suffices to

estimate

‖|DL|−s`eitL
`
2 u0‖Lp([0,T ],Lq) . T

1
p ‖u0‖L2 .

The estimate for the low frequencies

‖|DL|−s`eitL
`
2 φ(|DL|)u0‖Lp([0,T ],Lq(Rd)) . T

1
p ‖|DL|

`
p eitL

1
2 φ(|DL|)u0‖L∞([0,T ],L2(Rd))

. T
1
p ‖u0‖L2(Rd)

follows by Hölder’s and Bernstein’s inequality and boundedness of the group on L2(Rd).
We turn to the estimate for the high frequencies: The square function estimate (21) and Minkowski’s

inequality, recall that p, q ≥ 2, yield

‖|DL|−s`eitL
`
2 u0‖Lp([0,T ],Lq(Rd)) ∼ ‖

(∑
k≥1

||DL|−s`ψk(|DL|)eitL
`
2 u0|2

) 1
2 ‖Lp([0,T ],Lq(Rd))

.
(∑
k≥1

2−2ks`‖ψk(|DL|)eitL
`
2 u0‖2Lp([0,T ],Lq(Rd))

) 1
2 .

(36)

Hence, it suffices to show the frequency localized estimate

(37) ‖ψk(|DL|)eitL
`
2 u0‖Lp([0,T ],Lq(Rd)) . T

1
p 2ks`2

k(`−1)
p ‖ψk(|DL|)u0‖L2(Rd)

We use the scaling x′ = 2kx, t′ = 2`kt, which yields ∂x = 2k∂x′ and Da
2k

= Dã, ãi(x) = ai(2
−kxi). Note that

(38) ‖ai(2−k·)‖Ċ0,1 . 2−k‖ai‖Ċ0,1 . 2−k.

This reduces (37) to unit frequencies:

(39) ‖ψ(|DL̃|)e
itL̃

`
2 u0‖Lp([0,T2`k],Lq(Rd)) .

(
T2(`−1)k

) 1
p ‖u0‖L2(Rd).

We note that as a consequence of (38) by Proposition 3.2 there is C independent of k ∈ N0 such that the
dispersive estimate

(40) ‖ψ(|DL̃|)e
itL̃

`
2 u0‖L∞(Rd) . (1 + |t|)−σ(`)‖u0‖L1(Rd)

holds for 0 ≤ |t| ≤ C2k with implicit constant independent of k and t. Thus, by the energy estimate from
Proposition 2.6, the dispersive estimate (40), and Theorem 3.1, we find

(41) ‖ψ(|DL̃|)e
itL̃

`
2 u0‖Lp([0,C2k],Lq(Rd)) . ‖u0‖L2(Rd).

Hence, by partitioning [0, T2`k] into O(T2(`−1)k) intervals (Im) of length C2k, we conclude

‖ψ(|DL̃|)e
itL̃

`
2 u0‖Lp([0,T2`k],Lq(Rd))

=
(∑
m

‖ψ(|DL̃|)e
itL̃

`
2 u0‖pLp(Im,Lq(Rd))

) 1
p .

(
#Im

) 1
p ‖u0‖L2(Rd).

We have additionally used that eitL̃
`
2 conserves the L2-norm independently of k.



STRICHARTZ ESTIMATES FOR LIPSCHITZ COEFFICIENTS 15

Thus, by change of variables, we can conclude the Strichartz estimates for high frequencies of the original
operators from estimates for unit frequencies of the rescaled operator:

‖eitL
`
2 ψk(|DL|)u0‖Lp([0,T ],Lq) . 2−

`k
p 2−

dk
q ‖eitL̃

`
2 ψ(|DL̃|)ũ0‖Lp([0,T2`k],Lq)

. (T2(`−1)k)
1
p 2−

`k
p 2−

dk
q ‖ψ(|DL̃|)ũ0‖L2

. (T2(`−1)k)
1
p 2−

`k
p 2−

dk
q 2

dk
2 ‖ψk(|DL|)u0‖L2

= (T2(`−1)k)
1
p 2ks`‖ψk(|DL|)u0‖L2 .

The proof is concluded by (36) and square summing the above display. �

Next, we turn to the proof of global-in-time Strichartz estimates. The additional hypothesis on small vari-
ation allows for dispersive estimates with uniform constant for arbitrary times, from which global Strichartz
estimates follow.

Proposition 3.9. Let ai ∈ C0,1(R) satisfy (15) and suppose that V ar(log(ai)) < 2π for i = 1, . . . , d and
ai = 1 for i = d+ 1, . . . , 2d. Then, we find the following estimates to hold:

‖eitL
1
2 ψ(|DL|)‖L1→L∞ . (1 + |t|)−

d−1
2 ,(42)

‖eitL‖L1→L∞ . |t|−
d
2 (t 6= 0)(43)

with implicit constant only depending on the ellipticity constants and V ar(log(aiai+d)).

Proof. As in the proof of Proposition 3.2, by the decay of the half-wave kernel at unit frequencies, to show
(42), it suffices that

(44)

∫
Rd

∣∣eiξ.Daf(x)
∣∣dξ . ∫

Rd
|f(x)|dx.

For the proof of (43), we write by Phillips functional calculus without frequency localization

eitLu0(x) =

∫
Rd
Gt(ξ)e

iξ.Dau0(x)dξ

with

Gt(ξ) =
1

(2π)d

∫
Rd
eiy.ξeit|y|

2

dy =
1

(4πit)
d
2

eitξ
2

.

Thus,

|eitLu0(x)| . sup
ξ∈Rd

|Gt(ξ)|
∫
Rd
|eiξ.Dau0(x)|dξ . |t|− d2

∫
Rd
|eiξ.Dau0(x)|dξ,

and (43) follows likewise from (44).
As in the proof of Proposition 3.2, by commutativity of the generators and iteration, it suffices to show

(45)

∫
R

∣∣eitD̃au(x)
∣∣dt . ∫

R
|u(x)|dx

for u ∈ C∞c (R). We write u(t, x) = eitD̃au(x). Since we can change to the cosine group by radial frequency
constraint, (45) is immediate from Theorem 3.5. �

With global dispersive estimates at hand, we turn to the proof of Theorem 1.3:
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Proof of Theorem 1.3. We begin with the proof of (8), which does not require an additional Littlewood-Paley
decomposition. We have to show

‖eitLu0‖Lp(R;Lq(Rd)) . ‖u0‖L2(Rd)

for 2
p + d

q = d
2 , (p, q, d) 6= (2,∞, 2). This is a consequence of Theorem 3.1 due to the global energy and

dispersive estimates from Proposition 2.6 and 3.9.
For the proof of (7), it suffices again to consider only sharp Strichartz pairs. We use the square function

estimate and Minkowski’s inequality to find

‖|D|−s1eitL
1
2 u0‖Lp(R;Lq(Rd)) ∼ ‖

(∑
k∈Z
||DL|−s1ψk(|DL|)eitL

1
2 u0|2

) 1
2 ‖Lp(R;Lq(Rd))

.
(∑
k∈Z

2−2s1k‖ψk(|DL|)eitL
1
2 u0‖2Lp(R;Lq(Rd))

) 1
2 .

(46)

We rescale similarly as in the proof of Theorem 1.1 to reduce to unit frequencies. It suffices to prove that

(47) ‖ψ(|DL̃|)e
itL̃

1
2 ũ0‖Lp(R;Lq(Rd)) . ‖ũ0‖L2(Rd)

with implicit constant uniform in the rescalings. This is true as the rescaled coefficients are given by
ai,k(x) = ai(2

−kx) and hence, ‖∂xai,k‖L1(R) = ‖∂xai‖L1(R). Thus, the global dispersive estimate derived in
Proposition 3.9 holds uniformly in k, so does the energy estimate by Proposition 2.6, and hence (47) holds
true independently of k ∈ Z. Plugging (47) into (46) and square summing over the spectrally localized pieces
finishes the proof. �

Next, we discuss inhomogeneous estimates. The involved arguments are standard by now, so we shall
be brief. The most straight-forward estimate is recorded in Corollary 1.4. By local well-posedness of the
half-wave and Schrödinger equation in L2, we can make use of Duhamel’s formula:

u = eitL
`
2 u0 +

∫ t

0

ei(t−s)L
`
2 (P`u)(s)ds

with P` = i∂t +L
`
2 . Corollary 1.4 now follows from Minkowski’s inequality and homogeneous estimates. For

details we refer to [6, Corollary 2.10].
For the proof of Corollary 1.5, we use the following taylored version of the Christ–Kiselev lemma [11]:

Lemma 3.10 ([17, Lemma 8.1]). Let X and Y be Banach spaces and for all s, t ∈ R let K(s, t) : X → Y be
an operator-valued kernel from X to Y . Suppose we have the estimate

‖
∫
R
K(s, t)f(s)ds‖Lq(R,Y ) ≤ A‖f‖Lp(R,X)

for some A > 0 and 1 ≤ p < q ≤ ∞, and f ∈ Lp(R;X). Then, we have

‖
∫
s<t

K(s, t)f(s)ds‖Lq(R,Y ) ≤ Cp,qA‖f‖Lp(R,X).

Theorem 1.6 is another consequence of Theorem 3.1 with the dispersive estimate at hand. Additionally,
a Littlewood-Paley decomposition is required.
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4. Applications

In this section we give applications of the preceding analysis. First, we show Strichartz estimates for
coefficients of bounded variation by limiting arguments. Next, we prove wave Strichartz estimates for Hölder
coefficients under the additional structural assumptions. In this case, they improve the general estimates
due to Tataru [37]. Finally, we indicate applications to the well-posedness theory of nonlinear Schrödinger
equations.

4.1. Strichartz estimates for BV coefficients. In the following we see that by approximation arguments
due to Burq–Planchon [7, Proposition 1.3], we can drop the hypothesis that the coefficients are Lipschitz
and allow for BVloc(T )-coefficients, which norm is defined by

‖a‖BVloc(T ) = sup{
∫
I

d|a′|(y) : I ⊆ R interval, |I| = T}

for a′ being a locally finite measure. The backbone is the dispersive estimate only depending on the ellipticity
constants and ‖a‖BVloc(T ). We have the following:

Theorem 4.1. Let (ai)i=1,...,d ⊆ L∞ satisfy (15) and let T > 0 such that ‖ log(ai)‖BVloc(T ) < 2π and

L = −
∑d
i=1 ∂xi(ai(xi)∂xi). Then, we find the following estimates to hold:

‖eitL
`
2 u0‖Lp([0,T ],Ḃ

−s`,q
2 (Rd))

. ‖u0‖
H
`−1
p (Rd)

for ` ∈ {1, 2}, s` = d
(

1
2 −

1
q

)
− `

p , (p, q, d) being wave (` = 1) or Schrödinger (` = 2) admissible.

A straight-forward modification of the proof of [7, Proposition 1.3] yields the following:

Proposition 4.2. Let (ai)
d
i=1 ⊆ C0,1(R;R) satisfy (15) and ‖ai‖BVloc(T ) <∞.

Denote L = −
∑d
i=1 ∂xi(a(xi)∂xi). Suppose that the C0-group Sa(t) generated by iL satisfies

‖Sa(t)u0‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖u0‖L2(Rd)

with B a Banach space (weakly) continuously embedded in D′(Rd+1), whose unit ball is weakly compact.
Then the same result holds for (ai)

d
i=1 ⊆ L∞(R) satisfying (15) and ‖ai‖BVloc(T ) <∞.

This yields the Schrödinger Strichartz estimates of Theorem 4.1. We turn to Strichartz estimates for wave
equations locally-in-time with coefficients ‖ai‖BVloc(T ) <∞:

Proposition 4.3. Let d ≥ 2 and (ai)
d
i=1 ⊆ C0,1(R;R) satisfy (15). Denote L = −

∑d
i=1 ∂xi(ai(xi)∂xi).

Suppose that the C0-group Sa(t) generated by(
0 1
L 0

)
on H1 × L2

satisfies

‖(Sa(t)(u0, v0))1‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖(u0, ∂tu0)‖H1×L2

with B a Banach space (weakly) continuously embedded in D′([0, T ]×Rd), whose unit ball is weakly compact.
Then the same result holds for (ai)

d
i=1 ⊆ BVloc(T ) satisfying (15).

Proof. Let (ai)
d
i=1 ⊆ BVloc(T ) satisfy (15). Let (ρε)ε>0 be a family of positive mollifiers and consider

aεi = ρε ∗ ai. We have (aεi ) ⊆ C∞ and ‖∂x(aεi )‖L1
loc(T ) ≤ ‖ai‖BVloc(T ). Hence, by assumption

‖(Saε(t)(u0, v0))1‖B ≤ C(λ,Λ, ‖ai‖BVloc(T ))‖(u0, v0)‖H1×L2
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and (Saε(t)(u0, v0))1 converges weakly in D′([0, T ]×Rd). As in [7], it suffices to prove that Saε(t)(u0, v0)→
Sa(t)(u0, v0) in H1×L2 because by energy estimates this yields convergence to Sa(·)(u0, v0) in D′([0, T ]×Rd).
For this purpose it is enough to show the strong convergence of

L−1
ε =

(
i 1
Lε i

)−1

to L−1 =

(
i 1
L i

)−1

by [27, Theorem VIII.21]. Clearly, L−1
ε : L2 ×H−1 → H1 × L2 uniformly in ε as well as L−1 : L2 ×H−1 →

H1 × L2. By the resolvent formula,

L−1 − L−1
ε = L−1

ε (Lε − L)L−1.

Hence, L−1
ε converges strongly to L−1 as operators from L2 × H−1 to H1 × L2. Hence, L−1

ε converges to
L−1 strongly as operators from H1 × L2 to H1 × L2. The proof is complete. �

Now we can prove the Strichartz estimates for half-wave equations stated in Theorem 4.1.

Proof of Theorem 4.1, Half-wave Strichartz estimates. The half-wave Strichartz estimates for Lipschitz co-
efficients read

‖eitL
1
2 u0‖LpT Ḃ−s1,q2

. ‖u0‖L2(Rd).

These yield wave Strichartz estimates for C0,1-coefficients:

‖|D|1−s(Sa(t)(u0, v0))1‖LpTLq . ‖u0‖Ḣ1 + ‖v0‖L2 .

We have (Sa(t)(u0, v0))1 = cos(tL)u0 + sin(tL)v0

L
1
2

. Since it is enough to consider sharp Strichartz pairs with

q > 2, we have 0 < 1− s < 1 and have equivalence of Besov norms by Proposition 2.9. We estimate

‖(Sa(t)(u0, v0))1‖LpT Ḃ1−s,q
2

. ‖ cos(tL)u0‖LpT Ḃ1−s,q
2,L

+ ‖ sin(tL)v0‖LpT Ḃ−s,q2,L

. ‖|DL|u0‖L2 + ‖v0‖L2 . ‖u0‖Ḣ1 + ‖v0‖L2 .

At this point, we invoke Proposition 4.3, which yields estimates

‖(Sa(t)(u0, v0))1‖LpT Ḃ1−s,q
2

. ‖u0‖Ḣ1 + ‖v0‖L2

for BVloc(T )-coefficients. We apply this estimate to v0 = iL
1
2u0, which gives

‖eitL
1
2 u0‖LpT Ḃ1−s,q

2,L
. ‖u0‖Ḣ1 .

The half-wave Strichartz estimate now follows from trading derivatives and the substitution v0 = |DL|u0. �

As an example for new local-in-time Strichartz estimates for Schrödinger equations with BVloc-coefficients,
we consider the Kronig–Penney model: Let x0 ∈ (0, 1), and b0 6= b1 > 0 with b0x0 = b1(1 − x0). Consider
the 1-periodic function a : R→ R defined by

a(x) =

{
b−2
0 for x ∈ [0, x0),

b−2
1 for x ∈ [x0, 1).

Banica [3, Theorem 1.2] showed that the dispersive estimate

‖u(t)‖L∞(R) . |t|−
1
2 ‖u0‖L1(R) (t 6= 0)

fails for solutions {
i∂tu+ ∂x(a(x)∂x)u = 0 (t, x) ∈ R× R,

u(0) = u0.
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Still we find the Strichartz estimates with derivative loss

(48) ‖u‖Lp([0,1],Lq(R)) . ‖u0‖
H

1
p (R)

for 2
p + 1

q ≤
1
2 , p, q ≥ 2 to hold, which indicates dispersive properties on frequency dependent time scales

‖SANu(t)‖L∞(R) . |t|−
1
2 ‖SANu0‖L1(R)

for 0 < |t| . N−1 with SAN denoting the spectral projection to [N, 2N) of −∂x(a(·)∂x). This is reminiscent
of the short-time dispersive estimates on smooth compact manifolds due to Burq–Gérard–Tzvetkov [6].

4.2. Strichartz estimates for Hölder coefficients. To show Strichartz estimates for Hölder coefficients,
we firstly derive Strichartz estimates with inhomogeneity in L1L2 and with precise dependence on the
Lipschitz norm and time interval. We show the following refinement of Corollary 1.4:

Proposition 4.4. Let (ρ, p, q, d) a wave admissible Strichartz pair. Then, we find the following estimate to
hold:

(49) ‖|D|−ρu‖Lp([0,T ],Lq) . µ
1
p ‖u‖L∞L2(Rd) + µ

− 1
p′ ‖P1u‖L1([0,T ],L2)

with µ = T‖a‖`
Ċ0,1 ≥ 1 and P1 = i∂t + L

1
2 .

Proof. We find by Minkowski’s inequality and the homogeneous Strichartz estimate for admissible exponents

‖|D|−ρu‖Lp([0,T ],Lq) . µ
1
p ‖u0‖L2 +

∫ T

0

µ
1
p ‖P1u(s)‖L2ds

. µ
1
p ‖u‖L∞L2 + µ

1
p ‖P1u‖L1L2 .

We shall see that we can improve the constants: Suppose that ‖a‖Ċ0,1 . 1 (by rescaling). Divide [0, T ] into
intervals Ij = [tj , tj+1] such that

‖P1u‖L1([tj ,tj+1],L2) ≤ T−1‖P1u‖L1([0,T ],L2)

and tj+1 − tj ≤ 1. Then, there are roughly T intervals Ij and for each interval Ij , we find by the above
argument

‖|D|−ρu‖Lp(Ij ,Lq) . ‖u(tj)‖L2 + T−1‖P1u‖L1([0,T ],L2).

Taking the `p-sum over intervals Ij , we find

‖|D|−ρu‖LpLq . T
1
p ‖u‖L∞L2 + T

− 1
p′ ‖P1u‖L1([0,T ],L2).

For arbitrary ‖a‖Ċ0,1-norm, we find

‖|D|−ρu‖Lp([0,T ],Lq) . µ
1
p ‖u0‖L2 + µ

− 1
p′ ‖P1u‖L1L2 .

�

In the following we derive Strichartz estimates for coefficients with lower regularity. The estimates are
supposed to be understood as a priori estimates for smooth solutions to equations with smooth coefficients
(but only depending on the rough norms). Later it becomes useful that for smooth solutions to wave
equations

∂2
t u =

d∑
i=1

∂xi(ai(xi)∂xiu), (t, x) ∈ R× Rd,

the energy

(50) Ea(u) =

∫
Rd
|∂tu|2 +

d∑
i=1

ai(xi)(∂xiu)2
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is conserved. The arguments are adapted from Tataru’s works [37, 38] to our setting. Dealing with time-
independent coefficients simplifies matters. The idea remains the same: After truncating the coefficients
in frequency, we arrive at Lipschitz coefficients with large Lipschitz norm. The argument only works for

operators in divergence form. Let P = ∂2
t −

∑d
i=1 ∂i(ai(xi)∂i) and let (SN )N∈2N0 denote inhomogeneous

Littlewood-Paley projectors. We record the following consequence of Proposition 4.4:

Corollary 4.5. Let d ≥ 2, T > 0, and ai ∈ C0,1(R), i = 1, . . . , d satisfy (15). Suppose that T‖ai‖Ċ0,1 ≤ µ
for some µ ≥ 1. Then, we find the following estimate to hold:

(51) ‖|D|1−ρu‖Lp([0,T ],Lq(Rd)) . µ
1
p ‖∇u‖L∞L2 + µ

− 1
p′ ‖Pu‖L1([0,T ],L2(Rd)

provided that (ρ, p, q, d) is a sharp wave Strichartz pair.

We turn to the proof of Theorem 1.7:

Proof of Theorem 1.7. By scaling invariance, we can suppose that T = 1 and ‖ai‖Ḃs∞,1 ≤ µ. Let ai,≤N

denote the coefficients with Fourier transform smoothly truncated at frequencies N
10 , and PN = ∂2

t −∑d
i=1 ∂i(ai,≤N∂i). We first argue that it is enough to show

(52) N1−ρ−σp ‖SNu‖LpLq . µ
1
p ‖∇SNu‖L∞L2 + µ

− 1
p′ ‖|D|−σPNSNu‖L1L2 .

Since the spatial frequencies of PNSNu are comparable to N , (52) is equivalent to

(53) N1−ρ‖SNu‖LpLq . (Nσµ)
1
p ‖∇SNu‖L∞L2 + (µNσ)

− 1
p′ ‖PNSNu‖L1L2 .

After observing that ‖ai,≤N‖Ċ0,1 . µNσ, (53) follows from Corollary 4.5. To see that (52) implies (14), it
suffices to see that

‖|D|−σ(SNP − PNSN )u‖L1L2 . µ‖∇u‖L∞L2 .

Let v = ∇xu, which is compactly supported in time, and since P is in divergence form, it suffices to show
the fixed-time estimate

‖|D|1−σ(SNai − ai,≤NSN )v(t)‖L2 . µ‖v(t)‖L2

or

‖(SNai − ai,≤NSN )v(t)‖L2 . N−sµ‖v(t)‖L2 .

We prove this by considering dyadic blocks SKai = ai,K . We have Ks‖ai,K‖L∞ . µ. For K � N
10 , the

estimate reads

‖SN (ai,Kv(t))‖L2 . N−sKs‖ai,K‖L∞‖v(t)‖L2 ,

which is immediate. For K . N
10 , we have to prove

‖(SNai,K − ai,KSN )v(t)‖L2 . N−sKs‖ai,K‖L∞‖v(t)‖L2 .

By rescaling K → 1, N → N
K , it suffices to prove

‖[SN , ai,1]v(t)‖L2 . N−s‖ai,1‖L∞‖v(t)‖L2 ,

or, equivalently,

‖[SN , ai,1]v(t)‖L2 . N−s‖∇xai,1‖L∞‖v(t)‖L2 .

This is a well-known commutator estimate as the kernel is given by

|K(x, y)| = |kN (x, y)(ai,1(x)− ai,1(y))| .M (1 +N |x− y|)−M |x− y|‖∇xai,1‖L∞ .

The proof is complete. �
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Note that there is slack in the proof as the commutator estimate gives

‖[SN , ai,1]v(t)‖L2 . N−1‖∇xai,1‖L∞‖v(t)‖L2 .

Moreover, Strichartz estimates for P are suitable to handle lower order perturbations as
∑d
i=1 bi(t, x)∂i +

c(t, x). However, the above argument cannot deal with Schrödinger equations with rougher coefficients as
the free part is estimated in L2 and not in H1. The Duhamel integral does not gain one derivative.

To obtain more inhomogeneous estimates for the wave equation, we record the following consequence of
Theorem 1.7 for solutions to

(54)

{
∂2
t u = Pu, (t, x) ∈ R× Rd,

u(0) = f, ∂tu(0) = g.

combined with conservation of energy (50).

Corollary 4.6. Let d ≥ 2, s ∈ (0, 1), σ = 1−s, and ai ∈ C∞(R), i = 1, . . . , d satisfy (15), and let (ρ, p, q, d)
be a wave Strichartz pair. Suppose that u is a smooth solution to (54). Then, we find the following estimate
to hold:

sup
N
N1−ρ−σp ‖SNu‖Lp([0,T ],Lq) . ‖f‖Ḣ1(Rd) + ‖g‖L2(Rd)

with implicit constant depending only on T , ‖ai‖Ḃs∞,1 , (ρ, p, q, d), and the ellipticity constants.

As a consequence of trading derivatives, we find the following homogeneous Strichartz estimate for the
half-wave equation:

(55) ‖|D|−ρ−
σ
p eitL

1
2 f‖Lp([0,T ],Lq(Rd)) . ‖f‖L2(Rd).

In fact, for the sharp Strichartz estimates, it is easy to see that it suffices to trade less than one derivative.
For non-sharp pairs one reduces to the sharp case first by Sobolev embedding. We prove inhomogeneous
estimates by using again the taylored version of the Christ–Kiselev Lemma 3.10.

Proposition 4.7. Let d ≥ 2, s ∈ (0, 1), σ = 1 − s, and (ρ, p, q, d), (ρ̃, p̃, q̃, d) be two wave Strichartz pairs
with p > p̃′. Suppose that ai ∈ C∞(R) satisfies (15) and u solves

(56)

{
∂2
t u−

∑d
i=1 ∂xi(a(xi)∂xiu) = F, (t, x) ∈ [0, T ]× Rd
u(0) = f, ∂tu(0) = g.

Then, we find the following estimate to hold for ρ1 > ρ+ σ
p and ρ2 > ρ+ σ

p :

(57) ‖〈D〉1−ρ1u‖Lp([0,T ],Lq(Rd)) . ‖f‖H1(Rd) + ‖g‖L2(Rd) + ‖〈D〉ρ2F‖Lp̃′ ([0,T ],Lq̃′ (Rd))

with implicit constant only depending on T , ‖ai‖Ċ0,1 , and the ellipticity constants.

Proof. We write

(58) u(t) = cos(tL
1
2 )f +

sin(tL
1
2 )

L
1
2

g +

∫ t

0

sin((t− s)L 1
2 )

L
1
2

F (s)ds.

The homogeneous components are estimated by (55). We turn to the forcing term: Consider

T : L2(Rd)→ Lp([0, T ], Lq(Rd)), f 7→ 〈D〉−ρ1eitL
1
2 f

whose boundedness follows from the homogeneous estimates (55). The dual operator with respect to the
L2-scalar product is given by

T ∗ : Lp
′
([0, T ], Lq

′
(Rd))→ L2(Rd), F 7→

∫ T

0

e−isL
1
2 〈D〉−ρ1F (s)ds.
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We consider the composition with different exponents

TT ∗ : Lp̃
′
([0, T ], Lq̃

′
(Rd))→ Lp([0, T ], Lq(Rd)),

F 7→ 〈D〉−ρ1
∫ T

0

ei(t−s)L
1
2 (〈D〉−ρ2F )(s)ds,

which is also bounded. Since by assumption p̃′ < p, we can invoke Lemma 3.10 to find the bound

‖〈D〉−ρ1
∫ t

0

ei(t−s)L
1
2 F (s)ds‖Lp([0,T ],Lq(Rd)) . ‖〈D〉ρ̃+

σ
p̃ F‖Lp̃′ ([0,T ],Lq̃′ (Rd)).

This yields the claim after trading |D| to |DL|. �

4.3. Applications to nonlinear equations. With the usual Strichartz estimates at disposal, it is straight-
forward to prove well-posedness for a large class of equations with power-type nonlinearity. Here we consider
as an example Schrödinger equations with power type nonlinearity in L2(Rd):

(59)

{
i∂tu+

∑d
i=1 ∂xi(ai(xi)∂xi)u = µ|u|p−1u, (t, x) ∈ R× R,
u(0) = u0 ∈ L2(Rd)

with d ≥ 1 and ai ∈ BV (R) satisfying (15) and V ar(log(ai)) < 2π. The results in the constant-coefficient
case are due to Tsutsumi [40]. For further explanation, we refer to [36, Section 3.3]. The following holds by
substituting the free Strichartz estimates for the Schrödinger equation with the estimates from Theorems
1.3 and 1.6:

Theorem 4.8 (L2-well-posedness). Let 1 < p < 1 + 4
d and µ ∈ {−1; 1}. Then, (59) is analytically globally

well-posed in L2(Rd) in the subcritical sense. If p = 1 + 4
d , then (59) is analytically locally well-posed in the

critical sense.

We remark that also the Hs-theory extends as long as it is valid to trade derivatives ‖|D|sf‖Lq ∼
‖|DL|sf‖Lq .

5. Spectral multiplier estimates and Bochner–Riesz means

In the following we consider the non-negative self-adjoint operator

(60) L = −
d∑
i=1

∂xi(ai(xi)∂xi)

in L2(Rd) for ai ∈ BV (R) satisfying (15) and V ar(log(ai)) < 2π. We derive consequences of the dispersive
properties worked out in Proposition 3.9 for spectral restriction, multiplier estimates, and Bochner-Riesz
means. The results follow from the analysis of Chen et al. [10] for L being a self-adjoint operator on a
doubling metric space. Since L is self-adjoint, it admits a spectral resolution EL(λ), and for F : [0,∞)→ C
a bounded Borel function, the operator

F (L) =

∫ ∞
0

F (λ)dEL(λ)

defines an L2-bounded operator by the spectral theorem. A special case are the Bochner-Riesz means: We
let

SδR(λ) = (1− λ/R2)δ+

for δ > 0 and R > 0. SδR(L) is referred to as Bochner–Riesz mean of order δ corresponding to L. In the
classical case L = −∆, the Bochner–Riesz conjecture states that SδR(L) : Lp(Rd) → Lp(Rd) is bounded
provided that δ > max

(
d
∣∣ 1

2 −
1
p

∣∣ − 1
2 , 0
)

for 1 ≤ p ≤ ∞ and d ≥ 2. Note that for p = 2, δ = 0 is trivially
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admissible; see also [12]. The conjecture was verified for d = 2 by Carleson–Sjölin [8] and Hörmander [18]. By
using the Stein–Tomas restriction theorem and finite speed of propagation, Fefferman verified the conjecture
for d ≥ 3 and max(p, p′) ≥ 2d+2

d−1 (note the self-duality). Further progress was closely tied to work on the

restriction conjecture [23, 5, 16]. In terms of the spectral measure dE√−∆(λ) the classical Stein–Tomas
restriction theorem is equivalent to

(61) ‖dE√−∆(λ)‖p→p′ = ‖ λ
d−1

(2π)d
R∗λRλ‖p→p′ ≤ Cλ

d
(

1
p−

1
p′

)
−1

for all p ∈ [1, (2d+ 2)/(d+ 3)]. In the first part of Chen et al. [10] spectral multiplier estimates, which are
sharp in general, were derived based on the following Stein–Tomas restriction condition:(

ST
)q
p,s

‖F (
√
L)‖p→s ≤ CRd

(
1
p−

1
s

)
‖δRF‖Lq .

We denote dilations by δRF (x) = F (Rx). These estimates in turn can be derived from (61). We have the
following as an instance of [10, Proposition II.4]. Note that the required smoothing estimates

(62) ‖ exp(−tL)‖p→ 2d
d+2
≤ Kt−

d
2

(
1
p−

d+2
2d

)
for all t > 0 and 1 ≤ p ≤ 2d

d+2 follow from the pointwise heat kernel estimate (22).

Proposition 5.1. Let d ≥ 3, and L be defined as in (60). Then, for all 1 ≤ p ≤ 2d
d+2 and λ ≥ 0, the

following estimate holds:

(63) ‖dE√L(λ)‖p→p′ ≤ Cλd
(

1
p−

1
p′

)
−1
.

As a consequence of (63) we derive the Stein–Tomas restriction (cf. [10, p. 267])

‖F (
√
L)‖p→p′ =

∥∥ ∫ R

0

F (λ)dE√L(λ)‖p→p′ ≤ C
∫ R

0

|F (λ)|λd
(

1
p−

1
p′

)
−1
dλ

≤ CRd
(

1
p−

1
p′

)
‖δRF‖1.

By a TT ∗-argument this is (ST)2
p,2. This yields the following spectral multiplier estimates and endpoint

estimates for Bochner–Riesz means by [10, Theorem II.6] and [10, Theorem I.24].

Theorem 5.2. Let L be as in (60), d ≥ 3, and p ∈ [1, 2d/(d+ 2)]. For each bounded Borel function F such

that supt>0 ‖ηδtF‖Wβ,2 < ∞ for some β > max
(
{d
(

1
p −

1
2

)
, 1

2}
)

and non-trivial η ∈ C∞c (0,∞), F (
√
L) is

bounded on Lr(Rd) for all r ∈ (p, p′). We find the following spectral multiplier estimate to hold:

‖F (
√
L)‖r→r ≤ Cβ(sup

t>0
‖ηδtF‖Wβ,2 + |F (0)|

)
.

Furthermore, for max(p, p′) > 2d
d−2 , the Bochner–Riesz means S

δ(p)
R (L) : Lp(Rd)→ Lp(Rd) are bounded and

satisfy weak endpoint bounds uniformly in R with δ(p) = max(d
∣∣ 1

2 −
1
p

∣∣− 1
2 , 0).

We turn to maximal Bochner–Riesz operators Sα∗ (L) defined by

(64) Sα∗ (L)f(x) = sup
R>0
|SαR(L)f(x)|.

These were explored in the general context described above by Chen et al. in [9]. [9, Theorem A] yields the
following:
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Theorem 5.3. Let L be as in (60), and d ≥ 3. Then the maximal Bochner–Riesz operator Sα∗ (L) is bounded
on Lp(Rd) provided that

(65) 2 ≤ p < 2d

d− 2
, and α > max(d

(1

2
− 1

p

)
− 1

2
, 0).

In particular, we find pointwise convergence of the Bochner–Riesz means to hold:

(66) lim
R→∞

SαR(L)f(x) = f(x) a.e.

In [29] Sikora–Yan–Yao considered Bochner–Riesz estimates of negative index and spectral multiplier
estimates Lp(Rd) → Lq(Rd). The results were likewise obtained in the general context described above,
hinging on heat kernel and Tomas–Stein restriction estimates. We consider for α > −1

(67) SαR(
√
L) =

1

Γ(α+ 1)

(
1−
√
L

R

)α
+
.

For α = −1, we set S−1
R (
√
L) = R−1dE√L(R). This is based on the distributional limit (cf. [19, Eq. (3.2.17’)]):

lim
α↓−1

1

Γ(α+ 1)
xα+ = δ(x).

Let L be as above (60). By the pointwise Gaussian estimates noted in (22), Davies–Gaffney estimates of
second order follow

(68) ‖P
B(x,t

1
2 )
e−tLP

B(y,t
1
2 )
‖2→2 ≤ C exp(−c|x− y|

2

t
)

for all t > 0, and x, y ∈ Rd. PEf(x) = χE(x)f(x) denotes multiplication with an indicator function.
Moreover, the condition

(69) ‖e−t
2L‖p→2 ≤ Ctd

(
1
2−

1
p

)
holds for all x ∈ Rd and t > 0.
The Bochner–Riesz estimates of negative index investigated in [29] for operators satisfying (68) and (69)
read

(BRα
p,q) ‖SαR(

√
L)‖p→q ≤ CRd

(
1
p−

1
q

)
.

Thus, the Stein–Tomas restriction estimates (63) showed in Proposition 5.1 corresponds to (BRα
p,p′). Sikora–

Yan–Yao [29, Theorem 3.9] proved that Bochner–Riesz estimates of negative index imply the following
spectral multiplier estimates:

Theorem 5.4. Let L be as in (60). Suppose that (BRα
p,q) holds for α ≥ −1 and 1 < p < q < ∞. Let

p ≤ r ≤ s ≤ q, and β > d
(

1
p −

1
r

)
+ d
(

1
s −

1
q

)
+ α + 1, supp(F ) ⊆ [1/4, 4], and F ∈ W β,1(R), the operator

F (t
√
L) is bounded from Lr(Rd)→ Ls(Rd). Moreover, the following estimate holds:

(70) sup
t>0

td
(

1
r−

1
s

)
‖F (t

√
L)‖r→s ≤ C‖F‖Wβ,1(R).

For a second result on spectral multipliers, we recall the definition of the Weyl–Sobolev norm: The
distributions

(71) χα± =
xα±

Γ(α+ 1)
<α > −1.

can be extended to arbitrary index ν ∈ C by respecting the recursion relation of the derivatives (cf. [29,
p. 3087]). For supp(F ) ⊆ [0,∞), we then define the Weyl fractional derivative of F of order ν by

F (ν) = F ∗ χ−ν−1
− , ν ∈ C
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and the Weyl–Sobolev norm by

‖F‖WSν,p = ‖F‖p + ‖F (ν)‖p.
For 1 < p < ∞ and ν ≥ 0, the Weyl–Sobolev norm is equivalent to the usual Sobolev norm ‖F‖W ν,p ∼
‖F‖WSν,p whereas for p = 1 we have

‖F‖WSν,1 ≤ Cε‖F‖W ν+ε,1

for any ε > 0 (cf. [29, Lemma 3.7]). The following result [29, Proposition 3.8] is not restricted to dyadically
supported multipliers:

Proposition 5.5. Suppose that (BRα
p,q) holds for some α ≥ −1 and 1 ≤ p < q ≤ ∞. Then, for every ε > 0,

there exists a constant Cε such that for any R > 0 and all Borel functions F with supp(F ) ⊆ [R/2, R], we
find the estimate

‖F (
√
L)‖p→q ≤ CRd

(
1
p−

1
q

)
‖δRF‖WSα+1,1(R)

to hold.

Moreover, Bochner–Riesz estimates of index −1 yield Bochner–Riesz estimates of higher order with more
admissible indices (cf. [29, Theorem 3.12]). We omit the details.
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Équations aux Dérivées Partielles, 1997–1998, pages Exp. No. XXIII, 15. École Polytech., Palaiseau, 1998.
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[42] Željko Štrkalj and Lutz Weis. On operator-valued Fourier multiplier theorems. Trans. Amer. Math. Soc., 359(8):3529–3547,

2007.



STRICHARTZ ESTIMATES FOR LIPSCHITZ COEFFICIENTS 27

Email address: dorothee.frey@kit.edu

Email address: robert.schippa@kit.edu

Fakultät für Mathematik, Karlsruher Institut für Technologie, Englerstrasse 2, 76131 Karlsruhe, Germany


	1. Introduction and Main results
	2. Preliminaries
	3. Strichartz estimates for Lipschitz coefficients
	4. Applications
	4.1. Strichartz estimates for BV coefficients
	4.2. Strichartz estimates for Hölder coefficients
	4.3. Applications to nonlinear equations

	5. Spectral multiplier estimates and Bochner–Riesz means
	Data availability statement
	Acknowledgements
	References

