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OSCILLATORY INTEGRAL OPERATORS WITH

HOMOGENEOUS PHASE FUNCTIONS

ROBERT SCHIPPA

Abstract. Oscillatory integral operators with 1-homogeneous phase functions

satisfying a convexity condition are considered. For these we show the Lp−Lp-
estimates for the Fourier extension operator of the cone due to Ou–Wang via

polynomial partitioning. For this purpose, we combine the arguments of Ou–

Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed
sharp Lp − Lp-estimates for non-homogeneous phase functions with variable

coefficients under a convexity assumption. The estimates are supplemented

by examples exhibiting Kakeya compression. We apply the estimates to show
new local smoothing estimates for wave equations on compact Riemannian

manifolds (M, g) with dimM ≥ 3.

1. Introduction

We consider operators with λ ≥ 1,

(1) Tλf(x) =

∫
eiφ

λ(x;ω)aλ(x;ω)f(ω)dω

and a ∈ C∞c (Rn × Rn−1,R), φ ∈ C∞(Rn × Rn−1\0;R), φλ(x;ω) = λφ(x/λ;ω),
aλ(x;ω) = a(x/λ;ω). We suppose that φ is 1-homogeneous in ω, i.e.,

(2) φ(x;µω) = µφ(x;ω)

for µ > 0. For the support of a we suppose that

supp(a) ⊆ An−1 = Bn−1(0, 2)\Bn−1(0, 1/2).

We write x = (x′, xn) ∈ Rn−1 × R and impose the following conditions on φ in
supp(a):

C1) rank(∂2
xωφ) = n− 1,

C2+) ∂2
ωω〈∂xφ,G(x;ω0)〉

∣∣
ω=ω0

has n− 2 non-vanishing eigenvalues of the same sign,

where G denotes the Gauss map

(3) G0(x;ω) =

n−1∧
j=1

∂2
xωjφ(x;ω), G = G0/|G0|

of the embedded surface ω 7→ ∂xφ(x;ω). We identify
∧n−1 Rn ' Rn.

The operators defined in (1) naturally extend the adjoint Fourier restriction
operator for the cone

(4) Ef(x) =

∫
An−1

ei(x
′.ω+xn|ω|)f(ω)dω.

In this note we prove new estimates

(5) ‖Tλf‖Lp(Rn) .ε,φ,a λ
ε‖f‖Lp(An−1)
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for operators (1) like described above. Firstly, we recall the conjectured range of
Lp-estimates

(6) ‖Ef‖Lp(Rn) . ‖f‖Lp(An−1).

is given by p > 2(n−1)
n−2 . This prominent open problem is known as restriction

conjecture for the cone and goes back to Stein. The conjecture was solved for n = 3
by Barcelo [32], for n = 4 by Wolff [38] via bilinear estimates, and for n = 5 by
Ou–Wang [25] via polynomial partitioning. Let

(7) pn =


4, n = 3,

2 · 3n+1
3n−3 , n > 3 odd,

2 · 3n
3n−4 , n > 3 even.

Ou–Wang showed (6) for p > pn, which is also currently the widest range in
higher dimensions to the best of the author’s knowledge. Notably, in the case of
Carleson-Sjölin phase functions (cf. [7, 18]), which are not 1-homogeneous anymore,
where C2+) is replaced with

H2+) ∂2
ωω〈∂xφ(x;ω), G(x;ω0)〉

∣∣
ω=ω0

has n− 1 eigenvalues of the same sign,

Guth–Hickman–Iliopoulou [13] showed the sharp range of Lp−Lp estimates, in the
sense that there are phase functions for which the estimate fails for lower values of
p. The deviation from the corresponding generalized restriction conjecture for the
paraboloid occurs due to Kakeya compression. This was initially observed by Bour-
gain [4], see also Wisewell [36] and Bourgain–Guth [6]. Related phenomena were
discussed by Minicozzi–Sogge [22] and Sogge [29]. In this note we point out Kakeya
compression for 1-homogeneous phases with variable coefficients, which shows that
the following Lp-estimates are sharp up to endpoints:

Theorem 1.1. Let φ : Rn×Rn−1\0→ R be a 1-homogeneous phase satisfying C1)
and C2+) and a ∈ C∞c (An−1) be an amplitude. Then, we find the estimate (5) to
hold for p ≥ pn with pn as in (7).

We remark that for p > pn the λε-factor can be dropped. Guth–Hickman–
Iliopoulou showed the ε-removal lemma for oscillatory integral operators in [13,
Section 12], albeit with a stronger non-degeneracy hypothesis than presently con-
sidered. The idea goes back to Tao [34, 35]. In Section 9 we prove the following
global estimates for p > pn by a small variation of the argument in [13]:

‖Tλf‖Lp(Rn) .φ,a ‖f‖Lp(An−1).

The proof of Theorem 1.1 combines ideas from the case of constant-coefficient
homogeneous phases due to Ou–Wang [25] and Gao–Liu–Miao–Xi [9] and variable-
coefficient non-homogeneous phases due to Guth–Hickman–Iliopoulou [13]. We
digress for a moment to describe the tools we will use and put them into con-
text. Bennett–Carbery–Tao [3] delivered an important contribution with sharp n-
multilinear restriction estimates. We note that the multilinear estimates were shown
as well for constant-coefficient phase functions as smooth perturbations thereof.
Bourgain–Guth [6] devised an iteration to deduce linear estimates from multilinear
estimates. Guth [11] observed that the full strength of k-multilinear estimates is
not required, but a slightly weaker variant given by k-broad norms suffices to run
the iteration. He used polynomial partitioning to improve on the previous results in
[11, 12]. The idea is to equipartition the broad norm with polynomials of controlled
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degree: After wave packet decomposition, one finds that either the broad norm is
concentrated on “cells” or on the “wall”, which is a neighbourhood of a variety. To
oversimplify matters for a moment, if the broad norm is concentrated on the cells,
then sharp bounds follow from induction on scales. If the broad norm is concen-
trated along the wall, then we are morally dealing with a restriction problem in
lower dimensions, which is amenable to another induction hypothesis.

We introduce the k-broad norms in the present context: For its definition de-
compose An−1 into finitely overlapping sectors τ of aperture ∼ K−1 and length
∼ 1, where K is a large constant. Given f : An−1 → C, write f =

∑
fτ , where fτ

is supported in τ . In view of the rescaling φλ of the phase, we define the rescaled
Gauss map

Gλ(x;ω) = G(
x

λ
;ω) for (x;ω) ∈ supp (aλ).

For each x ∈ B(0, λ)

Gλ(x; τ) = {Gλ(x;ω) : ω ∈ τ and (x;ω) ∈ suppaλ}.

For V ⊆ Rn a linear subspace, let ∠(Gλ(x; τ), V ) denote the smallest angle between
any non-zero vector v ∈ V and Gλ(x; τ).

The spatial ball B(0, λ) is decomposed into relatively small balls BK2 of radius
K2. We fix BK2 a collection of finitely-overlapping K2-balls, which are centred in
and cover B(0, λ). For BK2 ∈ BK2 centred at x̄ ∈ B(0, λ), define

(8) µTλf (BK2) = min
V1,...,VA∈Gr(k−1,n)

(
max

τ :∠(Gλ(x̄;τ),Va)>K−2 ∀a
‖Tλfτ‖pLp(BK2 )

)
,

where Gr(k− 1, n) denotes the Grassmannian manifold of (k− 1)-dimensional sub-
spaces in Rn. We stress the deviation from [13], in which the angle threshold K−1

was considered. In case of the Fourier extension operator associated with the cone,
we have to strengthen the angle condition to K−2 to further confine the narrow
part.

We write τ 6∈ Va as shorthand for ∠(Gλ(x̄; τ), Va) > K−2 provided that x̄ is clear
from context. Thus, we can write as well

µTλf (BK2) = min
V1,...,VA∈Gr(k−1,n)

(
max
τ :τ 6∈Va,

for 1≤a≤A

‖Tλfτ‖pLp(BK2 )

)
.

For U ⊆ Rn the k-broad norm is defined as

‖Tλf‖BLpk,A(U) =
( ∑
BK2∈BK2 ,
BK2∩U 6=∅

µTλf (BK2)
)1/p

.

A key step in the proof of the Lp-Lp-estimate is the proof of k-broad estimates:

Theorem 1.2. For 2 ≤ k ≤ n and all ε > 0, there exists a constant Cε > 1 and
an integer A such that, whenever Tλ is an oscillatory integral operator with reduced
1-homogeneous phase satisfying C1) and C2+), the estimate

(9) ‖Tλf‖BLpk,A(Rn) .ε K
Cελε‖f‖L2(An−1)

holds for all λ ≥ 1 and K ≥ 1 whenever

(10) p ≥ p̄(k, n) =
2(n+ k)

n+ k − 2
.
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Reduced phase functions are introduced in Section 3.1. These phases are basically
small CN perturbations of 1-homogeneous phases with constant coefficients. These
reduced phase functions were previously used by Beltran–Hickman–Sogge [1] to
derive decoupling estimates. As in [1], general phase functions satisfying C1) and
C2+) are transformed by partitioning the support of the amplitude and Lorentz
rescaling to reduced phases.

The arguments to deduce Theorem 1.1 from Theorem 1.2 are essentially due to
Bourgain–Guth and we give a sketch in the following: As mentioned previously, it
is enough to work with reduced phases and amplitudes.

Firstly, we write

‖Tλf‖pLp(B(0,λ)) .
∑

BK2∈BK2

‖Tλf‖pLp(BK2 ).

Fixing one K2-ball, there is a collection of (k−1)-dimensional subspaces V1, . . . , VA
such that

µTλf (BK2) = max
τ 6∈Va

for 1≤a≤A

‖Tλfτ‖pLp(BK2 ).

Note that there are only KO(1) K−1-sectors. Writing Tλf =
∑
τ T

λfτ , sectors
τ 6∈ Va for 1 ≤ a ≤ A are estimated by µTλf (BK2). The remaining sectors are
isolated. This yields

(11) ‖Tλf‖pLp(BK2 ) .A K
O(1)µTλf (BK2) +

A∑
a=1

‖
∑
τ∈Va

Tλfτ‖pLp(BK2 ).

The first term is captured by the broad estimate; the second term is estimated by
`p-decoupling (cf. [5, 1]) and induction on scales [25, 9].

Very recently, Gao–Liu–Miao–Xi [9] proved an extension of Ou–Wang’s result
for the circular cone φ(x, ω) = x′.ω + xn|ω| for more general conic surfaces, but
still with constant coefficients. For these constant coefficient phase functions, the
Kakeya compression described in the present work cannot happen. Gao et al. [9]
used k-broad estimates to derive new local smoothing estimates for the wave equa-
tion in Euclidean space. At small spatial scales, the variable coefficient phases
are approximated with extension operators for conic surfaces. Then we can use
arguments from [9]. Furthermore, in [17] Hickman and Iliopoulou showed sharp Lp-
estimates for non-homogeneous phases with indefinite signature. This suggests to
study also homogeneous phase functions with indefinite signature with the methods
of the paper.

Notably, we do not use the usual wave packet decomposition for the cone as e.g.
in [25] or [9] to prove the broad estimate. Instead, we stick to the wave packet
decomposition commonly used for the Fourier extension operator of the paraboloid
or its variable coefficient counterpart [13]. This allows to use many arguments from
[13] without change and hints at the possibility of a unified approach. A major
change happens for the transverse equidistribution estimates, to be analyzed in
Section 5. Secondly, the narrow decoupling requires additional considerations, see
Section 8. Since the polynomial partitioning approach is involved, we elected to
elaborate on the argument in Sections 3 - 8.

We remark that the idea to use the same wave packet decomposition for homo-
geneous and inhomogeneous phase functions in the variable coefficient context is
not new: In [20] Lee considered linear and bilinear estimates for oscillatory integral
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operators and could treat variable coefficient versions of the Fourier extension oper-
ator of the paraboloid and the cone with the same wave packet decomposition. He
generalized bilinear estimates due to Tao [33] and Wolff [38] to variable coefficient
phases. Notably, in [20] was pointed out for the first time that a convexity condition
as H2+) or C2+) allows to go beyond Tomas–Stein L2 − Lp-estimates, which are
sharp for phases without convexity condition. Bourgain [4] showed in the context of
non-homogeneous phases without convexity conditions that the Tomas-Stein range
is sharp (see also [6]). In the present work, the Lp-Lp-estimates for general oscil-
latory integral operators with phase satisfying C1) and C2+) due to Lee [20] are
improved to the sharp range up to the endpoint for n ≥ 5.

In Section 10 we apply the new estimates for oscillatory integral operators to
prove new local smoothing estimates for solutions to wave equations on compact
Riemannian manifolds with dim(M) ≥ 3. Local parametrices are given by

Ff(x′, xn) =

∫
Rn−1

eiφ(x′,xn;ω)a(x;ω)f̂(ω)dω

with φ ∈ C∞(Rn × Rn−1\0) a phase function satisfying C1) and C2+) and a ∈
S0(R2d+1) with compact support in x. Hence, it suffices to prove local smoothing
estimates of rescaled Fourier integral operators Fλ. In Theorem 10.1 and Corollary
10.2 we extend the recent results due to Gao et al. [9] for the Euclidean wave
equation to wave equations on compact Riemannian manifolds. This improves on
the previously best local smoothing estimates due to Beltran–Hickman–Sogge [1]
for wave equations on compact manifolds.

Outline of the paper: In Section 2 we show the necessary conditions for Lp-
estimates for variable-coefficient 1-homogeneous phases. Preliminaries for the poly-
nomial partitioning argument to show Theorem 1.2 are given in Section 3. In this
section we introduce the notion of a reduced homogeneous phase function and collect
geometric consequences. This will simplify the proof of Theorem 1.2. We recall the
wave packet analysis in the context of variable coefficients [20, 13] and collect facts
on the k-broad norms. In Section 4 we recall the polynomial partitioning tools.
In Section 5 transverse equidistribution estimates are proved. These differ from
the transverse equidistribution estimates shown in [13] for Carleson–Sjölin phase
functions. In Section 6 we compare wave packet decompositions at different scales,
which is necessary to run the induction on scales in Section 7. In this section we
deduce Theorem 1.2 from Theorem 7.1, which is suitable for induction on dimension
and radius. In Section 8 we show how Theorem 1.2 implies Theorem 1.1. In Section
9 we show how the λε-factor can be removed away from the endpoint.In Section 10
we apply the oscillatory integral estimates to show new local smoothing estimates
for solutions to wave equations on compact Riemannian manifolds.

2. Kakeya compression

In the following we modify the example due to Guth–Hickman–Iliopoulou [13,
Section 2] (see also [6]) for homogeneous phase functions. This yields the necessary
conditions:

Proposition 2.1. Necessary for the estimate (5) to hold for n ≥ 5 is

p ≥

{
2 · 3n

3n−4 , n even,

2 · 3n+1
3n−3 , n odd.
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We only consider n ≥ 5 because the bilinear estimates due to Wolff [38] and Lee
[20] solve the cone restriction conjecture for 3 ≤ n ≤ 4. Let

x = (x′′, xn−1︸ ︷︷ ︸
x′

, xn) ∈ Rn−2 × R× R and ω = (ω′, ωn−1) ∈ Rn−2 × R.

We consider the phase functions

(12) φ(x;ω) = x′.ω +
〈A(xn)ω′, ω′〉

2ωn−1
, ωn−1 ∈ (1/2, 1).

A(xn) denotes the (n− 2)× (n− 2)–positive definite matrix

A(xn) =


⊕n−2

2
i=1

(
xn x2

n

x2
n xn + x3

n

)
, n− 2 even,

⊕n−3
2

i=1

(
xn x2

n

x2
n xn + x3

n

)
⊕ (xn), n− 2 odd.

The main idea is to construct many wave packets which are concentrated in the
neighbourhood of a lower dimensional algebraic variety. Whereas the direction
governed by the frequency ωθ below varies, for fixed ωθ we consider precisely one
starting position vθ. This concentration in a low dimensional algebraic variety does
not happen in the linear case (4).

We consider wave packets adapted to φ as follows: Ξ = (Bn−2(0, c)× (1/2, 1) is
covered by essentially disjoint elongated caps

Ξθ = {(ω′, ωn−1) ∈ Ξ : |ω′/ωn−1 − ωθ| . λ−
1
2 }

with ωθ ∈ Bn−2(0, c) for |c| � 1. Apparently, Ξ can be covered by ∼ λ
n−2

2

finitely overlapping sets Ξθ. We consider a corresponding smooth partition of unity
(ψθ)ωθ∈Ξ and wave packets

fθ,v(ω) = e−iλ〈v,ω
′〉ψθ(ω), v = (v1, . . . , vn−2) ∈ Rn−2.

We have by non-oscillation of the phase

|Tλfθ,v(x′′, xn−1, xn)| & λ−
n−2

2 χTθ,v (x).

χTθ,v denotes the characteristic function of Tθ,v. The Tθ,v are curved slabs of size

(1× λ1/2 × . . .× λ1/2︸ ︷︷ ︸
n−2 times

×λ) with

Tθ,v ⊆ {x ∈ B(0, λ) : |x′′−λγθ,v
(xn
λ

)
| < cλ

1
2 +ε and |xn−1−λγ′θ(xn/λ)| < cλ

1
2 +ε},

for any ε > 0, which follows from non-stationary phase; c denotes a small constant
and γθ,v, γ

′
θ denote curves:

γθ,v(xn) = v −A(xn)ωθ, γ′θ(xn) =
1

2
〈A(xn)ωθ, ωθ〉.

Furthermore, note that the condition∣∣ ω′

ωn−1
− ωθ

∣∣ . λ− 1
2 , ωn−1 ∈ (1, 2), ω′ ∈ B(ω, cλ−

1
2 )

corresponds to considering λ−
1
2 -sectors into direction (ωθ, 1). The degeneracy of

∂2φ into radial direction gives the localization of tubes to size λε into this direction:
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We have

∂ωφ(x;ω).
(ωθ, 1)

|(ωθ, 1)|
= ∂ωφ(x; (ωθ, 1)).

(ωθ, 1)

|(ωθ, 1)|
+O(λ−1) for | ω

|ω|
− (ωθ, 1)

|(ωθ, 1)|
| . λ− 1

2 .

The non-degeneracy of ∂2φ gives localization to size λ1/2+ε into the remaining
directions. We argue in the following why the curved tubes χTθ,v are in fact of size

1× λ 1
2 × . . .× λ 1

2 × λ: Consider the oscillatory integral

F (x′) =

∫
ei(x

′.ω+λφ̃(xn/λ,ω))ψθ(ω)dω

with ψθ ∈ C∞c (An−1) localizing to a slab into direction θ ∈ Sn−2 and

φ̃(xn, µω) = µφ̃(xn, ω) for µ > 0.

We use Taylor expansion in ω to write

λφ̃(xn/λ, ω) = |ω|(λφ̃(xn/λ, ω/|ω|))

= |ω|(λφ̃(xn/λ, θ) + λ∇ωφ̃(xn/λ, θ)(
ω

|ω|
− θ) +O(c)).

For ω ∈ supp(ψθ) we have

|ω| = ω.θ +O(cλ−1).

Hence, we can write

λφ̃(xn/λ, ω) = λφ̃(xn/λ, θ)(ω.θ) + λ∇ωφ̃(xn/λ, θ)(ω − (ω.θ)θ) +O(c).

Let {θ1
⊥, . . . , θ

n−2
⊥ , θ} be an orthonormal basis of Rn−1. Then,

λφ̃(xn/λ, ω) = λφ̃(xn/λ, θ)(ω.θ) + λ

n−2∑
i=1

(∇ωφ̃(xn/λ, θ).θ
i
⊥)(ω.θi⊥) +O(c).

Consequently,

x′.ω + λφ̃(xn/λ, ω) = (x′.θ + λφ̃(xn/λ, θ))(ω.θ)

+

n−2∑
i=1

(x′.θi⊥ + λ∇ωφ̃(xn/λ, θ).θ
i
⊥)(ω.θi⊥) +O(c).

And for |x′.θ + λφ̃(xn/λ, θ)| � c and |x′.θi⊥ + λ∇ωφ̃(xn/λ, θ).θ
i
⊥| � cλ1/2, we see

that the whole phase is O(c). Hence, there is no oscillation within supp(ψθ) and
for fixed xn this defines a region Axn for x′ of size 1 × λ1/2 × . . . × λ1/2. Taking

Tθ =
⋃
xn
Axn yields the 1×λ1/2×. . .×λ1/2×λ-tube. Note that the factor e−iλ〈v,ω

′〉

amounts to a shift in x′ by λv, but does not change the size of the tube.

We prepare the initial data with randomized signs:

f =
∑
θ

εθfθ,v.

By Khintchine’s theorem, the expected value of |Tλf(x)| is given by the square
sum:

E[|Tλf(x)|] ∼
(∑

θ

|Tλfθ,vθ |2
)1/2
& λ−

n−2
2

(∑
θ

χTθ,vθ (x)
)1/2

.

Taking Lp-norms yields by Minkowski’s inequality

λ−
n−2

2

( ∫ (∑
θ

χTθ,vθ
) p

2
) 1
p . E[‖Tλf‖Lp ].



8 ROBERT SCHIPPA

Next, we find by applying Hölder’s inequality

λ−
n−2

2

( ∫ ∑
θ

χTθ,vθ
)1/2
.

∣∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣∣
1/2−1/p

E[‖Tλf‖Lp ]

.

∣∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣∣
1/2−1/p

‖f‖p .

∣∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣∣
1/2−1/p

.

The penultimate estimate is by hypothesis, and the final estimate follows from
|f | = 1 and |supp f | ∼ 1. Since the tubes Tθ,vθ are (1×λ1/2× . . .×λ1/2×λ)-slabs,∫
χTθ,vθ ∼ λ

n
2 . Moreover, there are about λ

n−2
2 slabs. Hence,

λ−
n−2

2

( ∫ ∑
χTθ,vθ

)1/2 ∼ λ 1
2 .

Thus, we arrive at

(13) 1 ∼ ‖f‖Lp(Bn−1) .

∣∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣∣
1/2−1/p

λ−
1
2 ‖f‖Lp(Bn−1).

Next, we shall see how to choose vθ such that the curved slabs are concentrated in
a neighbourhood of a low-dimensional algebraic variety inspired by [13].
For Ξθ, we set

(14) vθ,2j−1 = −(ωθ)2j and vθ,2j = vθ,n−2 = 0 for 1 ≤ j ≤ bn− 2

2
c.

Let d = n − 1 − bn−2
2 c and Z = Z(P1, . . . , Pn−1−d) be the common zero set of

the polynomials

(15) Pj(x1, . . . , xn−2, xn) = λx2j − x2j−1xn for 1 ≤ j ≤ bn− 2

2
c.

It is straight-forward to show that xn 7→ (λγθ,vθ (xn/λ), xn) is contained in Z(P1, . . . , Pn−1−d).
Z is an algebraic variety of dimension

(16) d = (n− 1)− bn− 2

2
c

in Rn−1 and of degree On(1). Thus, Wongkew’s theorem (cf. Theorem 5.8) on the
size of neighbourhoods of algebraic varieties applies, and we find

(17) |Nλ1/2(Z) ∩Bn−1(0, λ)| . λd+n−1−d
2 .

We find by (16) and (17)

(18) |N
λ

1
2

(Z)| .

{
λ

3n−2
4 , n even,

λ
3n−1

4 , n odd.

Moreover, for (x1, . . . , xn) ∈ Tθ,vθ we have xn−1 ∈ B(λγ′θ(xn/λ), λ
1
2 +ε).

This yields

(19)

∣∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣∣
1/2−1/p

. |Nλ1/2(Z) · λ 1
2 |1/2−1/p.

Plugging (19) into (13) with the estimate from (18), we find

p ≥

{
2 · 3n

3n−4 , n even,

2 · 3n+1
3n−3 , n odd.
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This finishes the proof of Proposition 2.1. �

3. Preliminaries

3.1. Basic reductions of the phase function. In this paragraph we shall re-
duce 1-homogeneous phase functions satisfying the above assumptions to a form,
which highlights that the class of considered phase functions are indeed smooth
perturbations of the translation-invariant case

φ∗(x;ω) = 〈x′, ω〉+
t(ω′)2

ωn−1
, ω′ ∈ B(0, c), ωn−1 ∈ (1, 2).

Constant-coefficient perturbations were analyzed in [9].
The arguments were provided in [1, Section 2] and details are omitted here (see

also [20]). After localisation and translation, we may assume that a is supported
inside X × Ξ, where X = X ′ × T for X ′ ⊆ B(0, 1) ⊆ Rn−1 and T ⊆ (−1, 1) ⊆ R
are small open neighbourhoods of the origin and Ξ ⊆ An−1 is a small sector around
en−1 = (0, . . . , 0, 1) ∈ Rn−1.
Firstly, we can suppose that

C1′) det ∂2
ωx′φ(x;ω) 6= 0 for all (x, ω) ∈ X × Ξ,

C2′) ∂2
ω′ω′∂xnφ(x, ω) has eigenvalues of the same sign for all (x, ω) ∈ X × Ξ.

This follows as in [1]. By rotation in the x-variables, we can also suppose that

G(0; en−1) = en and ∂2
xnωφ(0; en−1) = 0.

Hence, by making Ξ small enough, we find that

(20) |∂2
xnωφ(x;ω)| ≤ cpar for (x, ω) ∈ X × Ξ.

By non-degeneracy C1′), we find a smooth locally inverse mapping Φxn,ω : X ′ →
Rn−1 such that

∂ωφ(Φxn,ω(x′), xn;ω) = x′.

We shall also write Φxn,ω(x′) = Φ(x′, xn;ω). There is also a smooth mapping Ψ(x, ·)
with

∂x′φ(x; Ψ(x;ω)) = ω.

For λ ≥ 1, we consider the rescaled versions Φλ(x;ω) = λΦ(x/λ;ω) and Ψλ(x;ω) =
Ψ(x/λ;ω). We assume that X and Ξ are such that the above mappings are defined
on the whole support of a.

In the following we shall quantify the deviation from φ∗ further, by restricting
the values of second and third derivatives and bounding higher derivatives: Let
cpar > 0 denote a small constant. Firstly note that there are (possibly large)
constants A1, A2, A3 ≥ 1 such that

C1′′) |∂2
ωx′φ(x;ω)− In−1| ≤ cparA1 for (x;ω) ∈ X × Ξ,

C2′′) |∂2
ω′ω′∂xnφ(x;ω)− In−1

ωn−1
| ≤ cparA2 for (x;ω) ∈ X × Ξ.
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For the higher derivatives, we suppose that

D1) ‖∂βω∂xkφ‖L∞(Z×Ξ) ≤ cparA1 for 1 ≤ k ≤ n− 1 and β ∈ Nn−1
0 with 2 ≤ |β| ≤ 3

such that |β′| ≥ 2;

‖∂β
′

ω′∂xnφ‖L∞(Z×Ξ) ≤
cpar
2n

A1 for all β′ ∈ Nn−2
0 with |β′| = 3,

D2) For some large integer N ∈ N, one has

‖∂βω∂αxφ‖L∞(X×Ξ) ≤
cpar
2n

A3 for all (α, β) ∈ Nn0 × Nn−1
0 with 2 ≤ |α| ≤ 4N

and 1 ≤ |β| ≤ 2N + 2 satisfying 1 ≤ |β| ≤ 2N or |β′| ≥ 2.

A phase φ satisfying the above four conditions with constants A1, A2, A3 is said
to be of type (A1, A2, A3). By parabolic rescaling (cf. Lemma 8.7), we see that we
can reduce to initial data with Ai = 1; these phases are said to be reduced.

3.2. Geometric consequences. Let φ be a reduced phase function in the above
sense. We shall see how the corresponding hypersurfaces Σx parametrized by
ω 7→ ∂xφ(x;ω) resemble the ones from φ∗. To see this, recall that Ψ : U → Ξ
satisfies ∂x′φ(x; Ψ(x;ω)) = ω. Hence, Σx is the graph of the function hx(ω) =
∂xnφ(x; Ψ(x;ω)) over the fibre Ux.
Each hx is a perturbation of the translation invariant case in the following sense:

Lemma 3.1. The following estimate holds true for all ω ∈ Ux:

(21) ‖∂2
ω′ω′hx(ω)− In−1/ωn−1‖L∞ . cpar.

Here cpar > 0 denotes the constant from the definition of a reduced phase function.

Proof. This is a consequence of properties of Ψ. Firstly, we record that Ψ(x; en−1) =
1. By the implicit function theorem and non-degeneracy of φ, we find

∂ωΨ(x;ω) = ∂2
x′ωφ(x; Ψ(x;ω))−1.

Hence,

‖∂ωΨ(x;ω)− In−1‖L∞ = O(cpar).

As a consequence of this identity (and choosing cpar to be sufficiently small),

|Ψ(x;ω)−Ψ(x;ω′)| ∼ |ω − ω′| for all ω, ω′ ∈ Ux
with implicit constant only depending on n.
Additionally, if 1 ≤ k ≤ n− 1, then by twice differentiating the identity

∂xkφ(x; Ψ(x;ω)) = ωk

in the ω-variables, it follows that

‖∂2
ωωΨk(x;ω)‖L∞ = O(cpar).

By the previous estimate, (21) follows from C2′′). �

By similar means, we infer estimates for the generalized Gauss map associated
with Tλ. To give the results, let

Xλ = {x ∈ Rn | x
λ
∈ X}

denote the λ-dilate of X, so that aλ is supported in Xλ × Ξ.
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Lemma 3.2. For all x, x̄ ∈ Xλ and ω, ω̄ ∈ Ξ, the estimates

∠(Gλ(x;ω), Gλ(x; ω̄)) ∼ | ω
|ω|
− ω̄

|ω̄|
| ∼ ∠(ω, ω̄),

∠(Gλ(x;ω), Gλ(x̄;ω)) . λ−1|x− x̄|
(22)

hold true.

This will be helpful to understand the wave packet analysis in the following
sections.

3.3. Wave packet decomposition. We carry out the wave packet decomposition
with respect to some spatial parameter 1 � R � λ. For this purpose, we follow
[13] and use that the construction only depends on the non-degeneracy condition
C1). We do not use the usual wave packet decomposition for the cone as e.g. in
[25], but adapt the parabolic case, as previously done by Lee [20]. The reason is
that in Section 6 we would sort the smaller cone tubes into larger tubes anyway.
It appears that the present choice of wave packet decomposition allows to transfer
arguments from [13] to the homogeneous setting more directly. In the following we
introduce notations from [13].

Cover An−1 by finitely overlapping balls of radius R−1/2, and let ψθ be a smooth
partition of unity adapted to this cover. These θ will frequently be referred to
as R−1/2-balls. For a ball θ, cover Rn−1 with finitely overlapping balls of size

R
1+δ

2 × . . . × R 1+δ
2 with center v ∈ R 1+δ

2 Zn−1. Let ηv = η(· − v) denote a bump

function adapted to B(v,R
1+δ

2 ) such that∑
v∈Zn−1

ηv = 1

with η̂v essentially supported in B(0, CR−
1+δ

2 ). This is possible by the Poisson
summation formula.

Let T denote the collection of all pairs (θ, v). Then, for f : Rn−1 → C with
support in An−1 and sufficiently regular, we find

f =
∑

(θ,v)∈T

(ηv(ψθf )̌ )̂ =
∑

(θ,v)∈T

η̂v ∗ (ψθf).

For eachR−1/2-ball θ, let ωθ denote its centre. Choose a real-valued smooth function
ψ̃ so that ψ̃θ is supported in θ, and ψ̃θ(ω) = 1 whenever ω belongs to a cR−1/2-
neighbourhood of the support of ψθ for some small c > 0. Finally, define

fθ,v = ψ̃θ · [η̂v ∗ (ψθf)].

The function η̂v is rapidly decaying outside B(0, CR−
1+δ

2 ) and, consequently,

‖fθ,v − (η̂v ∗ (ψθf))‖L∞(Rn−1) ≤ RapDec(R)‖f‖L2(An−1).

The functions fθ,v are almost orthogonal: if S ⊆ T, then

‖
∑

(θ,v)∈S

fθ,v‖2L2(Rn−1) ∼
∑

(θ,v)∈S

‖fθ,v‖2L2(Rn−1).

Let Tλ be an oscillatory integral operator with reduced phase φ satisfying C1′) and
amplitude a supported in X ×Ξ. For (θ, v) ∈ T define the curve γ1

θ,v : I1
θ,v → Rn−1

by setting γ1
θ,v(t) = Φ(v, t;ωθ), where Φ is the function introduced above and

I1
θ,v = {xn ∈ T | ∂ωφ(x′, xn;ωθ) = v for some x′ ∈ X ′}.



12 ROBERT SCHIPPA

Hence, ∂ωφ(γ1
θ,v(xn), xn;ωθ) = v for all xn ∈ I1

θ,v. For the rescaled curve

γλθ,v(t) = λγ1
θ,v/λ(t/λ),

we find

∂ωφ
λ(γλθ,v(xn), xn;ωθ) = v for all t ∈ Iλθ,v = {t ∈ R :

t

λ
∈ I1

θ,v}.

Let Γλθ,v : Iλθ,v → Rn denote the graph mapping Γλθ,v(xn) = (γλθ,v(xn), xn); for the

sake of brevity, the image of this mapping is denoted by Γλθ,v, too.

Lemma 3.3 ([13, Lemma 5.2]). The tangent space TΓλθ,v(xn)Γ
λ
θ,v lies in the direction

of the unit vector Gλ(Γλθ,v(xn);ωθ) for all xn ∈ Iλθ,v.

We consider curved tubes

Tθ,v = {(x′, xn) ∈ B(0, R) : xn ∈ Iλθ,v and x′ ∈ B(γλθ,v(xn), R
1
2 +δ)}.

We refer to the curve Γλθ,v as the core of Tθ,v. Since φ is of reduced form, we find

by the diffeomorphism property of Φ (writing x′ = Φ−1
xn,ωθ

◦ Φxn,ωθ (x
′))

|x′ − γλθ,v| ∼ |∂ωφλ(x;ωθ)− v|,

for all x = (x′, xn) ∈ Xλ with xn ∈ Iλθ,v uniformly in λ. This has the following
consequence:

Lemma 3.4 ([13, Lemma 5.4]). If 1� R� λ and x ∈ B(0, R)\Tθ,v, then

|Tλfθ,v(x)| ≤ (1 +R−1/2|∂ωφλ(x;ωθ)− v|)−(n+1)RapDec(R)‖f‖L2(An−1).

3.4. L2-L2-estimate. We recall the following generalization of Parseval’s theorem,
only depending on non-degeneracy C1′) of the phase function (cf. [30, Section 2.1]):

Lemma 3.5 ([13, Lemma 5.5]). If 1 ≤ R ≤ λ and BR is any ball of radius R, then

(23) ‖Tλf‖L2(BR) . R
1/2‖f‖L2(An−1).

This follows from the following estimate:

Lemma 3.6 ([13, Lemma 5.6]). For any fixed xn ∈ R, we find the estimate

(24) ‖Tλf‖L2(Rn−1×{xn}) . ‖f‖L2(An−1).

3.5. k-broad norms. Here we recall basic properties of the k-broad norms. Al-
though the naming is misleading as k-broad norms are strictly speaking no norms,
the properties are similar enough to make the following arguments work. We shall
also see that U 7→ ‖Tλf‖p

BLpk,A(U)
behaves as a measure.

Lemma 3.7 (Finite (sub-)additivity, [13, Lemma 6.1]). Let U1, U2 ⊆ Rn and U =
U1 ∪ U2. If 1 ≤ p <∞ and A is a non-negative integer, then

(25) ‖Tλf‖p
BLpk,A(U)

≤ ‖Tλf‖p
BLpk,A(U1)

+ ‖Tλf‖p
BLpk,A(U2)

holds for all integrable f : An−1 → C.

Secondly, we have the following variant of the triangle inequality:

Lemma 3.8 (Triangle inequality, [13, Lemma 6.2]). If U ⊆ Rn, 1 ≤ p < ∞ and
A = A1 +A2 for A1 and A2 non-negative integers, then

(26) ‖Tλ(f1 + f2)‖BLpk,A(U) . ‖Tλf1‖BLpk,A1
(U) + ‖Tλf2‖BLpk,A2

(U)

holds for all integrable f1, f2 : An−1 → C.
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We further have the following variant of Hölder’s inequality:

Lemma 3.9 (Logarithmic convexity, [13, Lemma 6.3]). Suppose that U ⊆ Rn,
1 ≤ p, p1, p2 <∞ and 0 ≤ α1, α2 ≤ 1 satisfy α1 + α2 = 1 and

1

p
=
α1

p1
+
α2

p2
.

If A = A1 +A2 for A1, A2 non-negative integers, then

‖Tλf‖BLpk,A(U) . ‖Tλf‖α1

BL
p1
k,A1

(U)
‖Tλf‖α2

BL
p2
k,A2

(U)
.

Later on, we shall only consider A� 1, which will allow for the use of Hölder’s
and Minkowski’s inequality for k-broad norms.

4. Polynomial partitioning

A key tool in the proof will be polynomial partitioning following previous work
by Guth [11, 12] (see also Guth–Katz [14]) and in the variable coefficient case Guth–
Hickman–Iliopoulou [13]. The idea is to divide the ball BR through the zero set of
a polynomial into cells, which equidistribute the broad norm. Either µTλf will be
concentrated in the cells or at the wall, i.e., neighbourhood of the zero locus of the
polynomial. Both cases will be handled by induction. We recall some facts from
[13], which we will rely on in the following.

4.1. Tools from algebraic geometry. Given a polynomial P in Rn, its zero set
is denoted by Z(P ). To make the varieties Z(P1, . . . , Pn−m) smooth m-dimensional
manifolds, we consider transverse complete intersections:

Definition 4.1. Let m ∈ N, m ≤ n, and let P1, . . . , Pn−m be polynomials on Rn
whose common zero set is denoted by Z(P1, . . . , Pn−m). The variety Z(P1, . . . , Pn−m)
is called a transverse complete intersection if

∇P1(x) ∧ . . . ∧∇Pn−m(x) 6= 0 ∀x ∈ Z(P1, . . . , Pn−m).

The degree of the transverse complete intersection degZ is defined as
maxj=1,...,n−m degPj .

We have the following partitioning argument:

Theorem 4.2 ([13, Theorem 7.3]). Suppose that W ≥ 0 is a non-zero L1-function
on Rn. Then, for any degree D ∈ N, there exists a non-zero polynomial P of degree
degP . D such that the following holds:

• The set Z(P ) is a finite union of logD transverse complete intersection.
• If (Oi)i∈I denotes the set of connected components of Rn\Z(P ), then #I .
Dn and

(27)

∫
Oi

W ∼ D−n
∫
Rn
W for all i ∈ I.

The connected components are called cells.
We further need the following lemma on transverse intersections of tubes with

varieties:

Lemma 4.3 ([12, Lemma 5.7]). Let T be a cylinder of radius r with central line `
and suppose that Z = Z(P1, . . . , Pn−m) ⊆ Rn is a transverse complete intersection,
where the polynomials Pj have degree at most D. For α > 0, let

Z>α = {z ∈ Z : Angle(TzZ, `) > α}.
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Then Z>α ∩ T is contained in a union of . Dn balls of radius . rα−1.

For the application, we are interested in r = R(1+δ)/2, as this will be the radius
of the (thin) tubes and α = R−

1
2 +δ.

4.2. Polynomial approximation. However, with smooth core curves, Lemma 4.3
is not applicable directly. We approximate the core curves by polynomials such
that algebraic methods can still be applied to the curved tubes. We follow [13,
Section 7.2]. Let ε > 0 be a small parameter and let N = Nε := d1/(2ε)e ∈ N.
Suppose that Γ : (−1, 1)→ Rn is a smooth curve with

‖Γ‖CN+1(−1,1) = max
0≤k≤N+1

sup
|t|<1

|Γ(k)(t)| . 1.

After reductions of Section 3.1, we find the following estimates:

Lemma 4.4. The curves Γ1
θ,v satisfy

|(Γ1
θ,v)
′(t)| ∼ 1 for all t ∈ I1

θ,v,

and
sup
t∈I1

θ,v

|(Γ1
θ,v)

(k)(t)| . cpar for 2 ≤ k ≤ N.

The proof from [13, Lemma 7.4] applies verbatim although the phase functions
are from different classes, but because of bounds (20) and D2) from Subsection 3.1.

We denote by [Γ]ε : R→ Rn the polynomial curve given by the degree-N Taylor
approximation of Γ around zero. Observe that

‖[Γ]ε‖C∞(−2,2) ≤ e2‖Γ‖CN (−1,1) . 1.

Furthermore, for λ� 1, noting that λ−εN ≤ λ−1/2, Taylor’s theorem yields

|Γ(i)(t)− [Γ](i)ε (t)| .ε λ−
1
2 |t|1−i for all |t| .ε λ−ε and i = 0, 1.

Letting Γλ : (−λ, λ) → Rn denote the rescaled curve Γλ(t) = λΓ(t/λ), the above
inequalities imply that

(28) ‖[Γλ]′ε‖C∞(−2λ,2λ) . 1 and ‖[Γλ]′′ε‖C∞(−2λ,2λ) . λ
−1,

and

|(Γλ)(i)(t)− ([Γλ]ε)
(i)(t)| .ε λ−

1
2 |t|1−i for all |t| .ε λ1−ε and i = 0, 1.

As a consequence of |(Γλ)′(t)| ∼ |[Γλ]′ε(t)| ∼ 1, the tangent spaces to the curves Γλ

and [Γλ]ε have a small angular separation, i.e.,

(29) ∠(TΓλ(t)Γ
λ, T[Γλ]ε(t)[Γ

λ]ε) .ε λ
− 1

2 for all |t| .ε λ1−ε.

4.3. Transverse interactions between curved tubes and varieties. Next, we
generalize the transverse interaction of straight lines and varieties as in Lemma 4.3
to curved tubes, which are approximated by polynomials. Let Z = Z(P1, . . . , Pn−m)
be a transverse complete intersection and Γ : R→ Rn be a polynomial curve. Given
α, r > 0, the problem is to estimate the size of the set

Z>α,r,Γ := {z ∈ Z : there exists x ∈ Γ with |x− z| < r and ∠(TzZ, TxΓ) > α}.
We further assume that Γ is a polynomial graph, which means it can be rotated so
that it is given by Γ(t) = (γ(t), t) for some polynomial mapping γ : R→ Rn−1. This
is the case considered in the present context. We have the following generalization
of Lemma 4.3:
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Lemma 4.5 ([13, Lemma 7.5]). Let n ≥ 2, 1 ≤ m ≤ n and Z = Z(P1, . . . , Pn−m) ⊆
Rn be a transverse complete intersection. Suppose that Γ : R→ Rn is a polynomial
graph satisfying

(30) ‖Γ′‖L∞(−2λ,2λ) . 1 and ‖Γ′′‖L∞(−2λ,2λ) ≤ δ
for some λ, δ > 0. There exists a dimensional constant C̄ > 0 such that, for all
α > 0 and 0 < r < λ satisfying α ≥ C̄δr, the set Z>α,r,Γ ∩ B(0, λ) is contained in
a union of

O((degZ · deg Γ)n)

balls of radius r/α.

In the present context, we consider the polynomial approximant Γ = [Γλθ,v]ε of

the curve Γλθ,v as defined in Subsection 4.2. Then, deg Γ .ε 1 and by (28) we find

(30) to hold with δ ∼ε 1/λ. Consequently, for α > 0 and 0 < r < λ with α & r/λ,
the set Z>α,r,Γ ∩B(0, λ) can be covered by Oε((degZ)n) balls of radius r/α.

5. Transverse equidistribution estimates

5.1. Linearizing the phase function. In this section transverse equidistribution
estimates for wave packets tangential to varieties will be examined. This is a key
point in the main induction argument. Contrary to [25] or [9], however, we stick to
the wave packet decomposition used in [13].

Definition 5.1. Let Z = Z(P1, . . . , Pn−m) be a transverse complete intersection.

A wave packet (θ, v) is said to be R−
1
2 +δm -tangent to Z in B(0, R) if

(31) Tθ,v ∩BR ⊆ N
R

1
2

+δm
(Z)

and

(32) ∠(Gλ(x;ωθ), TzZ) ≤ c̄tangR−
1
2 +δm

for any x ∈ Tθ,v and z ∈ Z ∩B(0, 2R) with |x− z| ≤ C̄tangR
1
2 +δm .

We want to study functions concentrated on the collection of wave packets

TZ = {(θ, v) ∈ T : Tθ,v in R−
1
2 +δm − tangent to Z in B(0, R)}.

Precisely, we make the following definition:

Definition 5.2. If S ⊆ T, then f is said to be concentrated on wave packets from
S if

f =
∑

(θ,v)∈S

fθ,v + RapDec(R)‖f‖L2 .

Let B ⊆ Rn be a ball of radius R
1
2 +δm with centre x̄ ∈ B(0, R). We study

ηB · Tλg, where ηB is a suitable choice of Schwartz function adapted to B. A
stationary phase argument yields that ηB · Tλgθ,v is concentrated near the surface
Σ = {Σ(ω) : ω ∈ An−1}, where Σ(ω) = ∂xφ

λ(x̄;ω). This leads to the refined set of
wave packets

TZ,B = {(θ, v) ∈ TZ : Tθ,v ∩B 6= ∅}.
For (θ, v) ∈ TZ,B , the direction Gλ(x̄;ωθ) of Tθ,v on the ball B must make a small
angle with each of the tangent spaces TzZ for all z ∈ Z ∩B. This constrains Σ(ωθ)
to lie in a small neighbourhood of some typically m-dimensional manifold Sξ. But
in the homogeneous case, Sξ might only be one-dimensional, or “close” to a one-
dimensional manifold. This will be quantified below. This case does not contribute



16 ROBERT SCHIPPA

essentially in the broad norm. To linearize Sξ, if it is not a “thin”, essentially one-

dimensional set, let R
1
2 < ρ� R and for the remainder of this section, let τ ⊆ An−1

denote a sector of radius O(ρ−
1
2 +δm). We define

TZ,B,τ = {(θ, v) ∈ TZ : θ ∩ τ 6= ∅ and Tθ,v ∩B 6= ∅}.

We recall the constant-coefficient examples. Suppose that Z is an m-dimensional
affine plane so that TzZ = V for all z ∈ Z, where V ‖ Z. The extension operator for
the paraboloid has the unnormalized Gauss map G0(ω) = (−ω, 1). Consequently,

Aω = {ω ∈ Rn−1 : G0(ω) ∈ V }
is an affine subspace of Rn−1 of dimension m− 1. If G0(ω) ∈ V , then Σ(ω) ∈ Aξ =
Au × R. Due to the frequency localization and the uncertainty principle, ηB · Tλg
will decay little in directions transverse to Aξ. This was exploited in [12].
The situation for the cone is a little different. Here, G0(ω) =

(
− ω
|ω| , 1

)
is not an

affine map. Let V + = {ω : G0(ω) ∈ V }. By a crucial observation due to Ou–Wang
[25], if V + is tangent to C = {(ω, ω|ω| ) : ω ∈ An−1} up to an angle R−δm , then

N
R−

1
2

+δm
V + ∩ C is a O(R−δm)-neighbourhood of O(1) radial lines.

In the variable coefficient case, we see that if V + is tangent to Cx = {∂xφλ(x̄;ω)}
up to an angle R−δm , then N

R−
1
2

+δm
V + ∩ C is a O(R−δm)-neighbourhood of O(1)

radial lines. A contribution like this can be neglected in the K-broad norm. Oth-
erwise, we shall see that we find quantitative transversality to hold and can deduce
transverse equidistribution estimates similar to the paraboloid case (or its variable
coefficient counterpart). In the constant coefficient case, but for arbitrary cones,
this was recently investigated in [9]. We shall see how the arguments adapt to the
variable coefficient case.

Consider an m-dimensional linear subspace V = {
∑n
j=1 ai,jxj = 0, i = 1, . . . , n−

m} and let V − = {
∑n−1
j=1 ai,jxj = 0}. We change to u-frequencies via Ψλ, which

recall is defined by
∂x′φ

λ(x̄; Ψλ(x̄;u)) = u.

We use short-hand notation Ψ(u) := Ψλ(x̄;u). It is easy to see that Ψ like ∂x′φ
λ

and the identity mapping is 1-homogeneous because

∂x′φ
λ(x̄; Ψ(µu)) = µu = µ∂x′φ

λ(x̄; Ψ(u)) = ∂x′φ
λ(x̄;µΨ(u)).

By substituting φ̃(u) = hx̄(u) = ∂xnφ
λ(x̄; Ψ(u)) the arguments from [9] apply. We

define a set

L = {u ∈ An−1 :

n−1∑
j=1

ai,j∂j φ̃(u)− ai,n = 0; i = 1, . . . , n−m}.

The set {(u, φ̃(u)) : u ∈ L} describes the points on the generalized cone, which have
a normal in V . The tangential case gives a negligible contribution to the broad
norm:

Lemma 5.3 ([9, Lemma 4.5]). Let η ∈ Sn−2 ⊆ Rn−1. If η ∈ L and ∠(η, V −) >
π
2 −K

−2, then L is contained in the set {ξ ∈ Rn−1\0 : ∠(ξ, η) . K−2}.

It is important to note that, contrary to the transverse case analyzed below,
the lemma does not hinge on a stronger localization of η. For later purposes, note
that for the suitably defined k-broad norm balls B(x̄;R

1
2 +δm), for which Lemma

5.3 applies, make a negligible contribution.
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We turn to the more involved transverse case: In general {(u, φ̃(u)) : u ∈ L}
may not lie in an affine subspace because L may have curvature. We start by
linearizing L. By taking the orthogonal complement of a suitable extension of the
tangent space we shall construct W , which is quantitatively transverse to V . Let
η ∈ L ∩ Sn−2 with Ang(η, V −) < π

2 −K
−2. Define Ṽ to be the n−m-dimensional

linear subspace spanned by γ1, . . . , γn−m given by

γi = ∂2φ̃(η)αi, αi = (ai,1, . . . , ai,n), i = 1, . . . , n−m.

The angle condition ∠(η, V −) < π
2 − K

−2 ensures that γi, i = 1, . . . , n − m are
linearly independent. Indeed, the Hessian is degenerate in the direction of η, but
αi is orthogonal to V −. Let V̄ − be the orthogonal complement of Ṽ in Rn−1, i.e.,

Rn−1 = Ṽ ⊕ V̄ −.

Note that V̄ − denotes the tangent space of L: Starting from the equations

n−1∑
j=1

ai,j∂j φ̃(η + ξ′)− ai,n = 0,

linearizing yields for ξ′ ∈ TηL

n−1∑
j=1

ai,j

n−1∑
k=1

∂2
jkφ̃(η)ξ′k = (∂2φ̃(η)αi, ξ

′) = 0.

Let V̄ be the linear subspace spanned by V̄ − and en. Define W to be the
orthogonal complement of V̄ in Rn, i.e.,

Rn = V̄ ⊕W.

As pointed out in [9], all the linear subspaces depend on the choice of η. We have
the following quantitative transversality:

Lemma 5.4 ([9, Lemma 4.6]). Let η ∈ Sn−2 ∩L. If ∠(η, V −) ≤ π
2 −K

−2, then W

and V are transverse in the sense that ∠(V,W ) & K−4.

5.2. Verifying the transverse equidistribution estimate. We turn to the key
equidistribution estimate. In the following let τ ⊆ An−1 denote a sector of aperture
O(ρ−

1
2 +δm) and B a ball of radius R

1
2 +δm . Moreover, we suppose that Z is K-flat,

i.e., for any z, z′ ∈ Z ∩ 2B we have

∠(TzZ, Tz′Z) . K−5

with K . Rδ � ρδm .

Lemma 5.5. Let Z be a K-flat, transverse complete intersection with dimZ = m,
deg Z .ε 1, B = B(x̄, R

1
2 +δm) a ball of radius R

1
2 +δm , and let g be concentrated

on wave packets in TZ,B,τ . Suppose that with the notations of Subsection 5.1, with

φ̃ = hx̄, and for some η ∈ Ψ−1(τ) ∩ Sn−2 we are in the situation of Lemma 5.4.
Then, for any ρ ≤ R,

(33)

∫
B∩N

ρ
1
2

+δm
(Z)

|Tλg|2 . R 1
2 +O(δm)

( ρ
R

)n−m
2 ‖g‖2L2 .
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For the proof, we recall the following quantifications of the uncertainty principle
from [13, Subsection 8.2]: LetG : Rn → C be frequency supported on a ball of radius
r > 0. Then we have the moral estimate due to lack of L2-norm concentration:

−
∫
B(x0,ρ)

|G|2 . −
∫
B(x0,r−1)

|G|2.

We use the below manifestation with Ĝ essentially supported in a ball of radius
r > 0.

Lemma 5.6. If r−
1
2 ≤ ρ ≤ r−1, then for any B(x0, ρ), ξ0 ∈ Rn and ρ > 0 one has

−
∫
B(x0,ρ)

|G|2 .δ ‖Ĝw−1
B(ξ0,r)

‖
2δ

1+δ
∞

1

|B(r)|−1

( ∫
Rn
|G|2

) 1
1+δ .

Above, wB(ξ0,r) is a weight concentrated on B(ξ0, r) given by

wB(ξ0,r)(ξ) = (1 + r−1|ξ − ξ0|)−N for some large N = Nδ ∈ N.

As first step in the proof of Lemma 5.5, we consider wave packets tangential to
linear subspaces: In the following transverse equidistribution estimates are consid-
ered with respect to some fixed linear subspace V ⊆ Rn. Let B be a ball of radius
R

1
2 +δm with centre x̄ ∈ Rn, and define

TV,B = {(θ, v) : ∠(Gλ(x̄;ωθ), V ) . R−
1
2 +δm and Tθ,v ∩B 6= ∅}.

Let R
1
2 < ρ < R and, for τ ⊆ Rn−1 be a sector of aperture O(ρ−

1
2 +δm) centred

around a point in An−1, define

TV,B,τ = {(θ, v) ∈ TV,B : θ ∩
( τ

10

)
6= ∅}.

Lemma 5.7. If V ⊆ Rn is a linear subspace, then there exists a linear subspace W
with the following properties:

(1) dimV + dimW = n;
(2) V and W are quantitatively transverse with ∠(v, w) & K−4 for any v ∈ V ,

w ∈W , v, w 6= 0;
(3) if g is concentrated on wave packets from TV,B,τ and there is η ∈ Ψ−1(τ)

such that for φ̃ = hx̄ the assumptions of Lemma 5.4 are valid, Π is any
plane parallel to W and x0 ∈ Π ∩B, then the inequality∫

Π∩B(x0,ρ
1
2

+δm )

|Tλg|2 .δ RO(δm)
( ρ
R

) dimW
2 ‖g‖2δ/(1+δ)

L2

( ∫
Π∩2B

|Tλg|2
) 1

1+δ

holds, up to inclusion of RapDec(R)‖g‖L2 on the right-hand side.

Proof. Constructing the subspace W : We choose W after linearizing as in
Lemma 5.4. Recall that hx̄(u) = ∂xnφ

λ(x̄; Ψ(u)) with ∂x′φ
λ(x̄; Ψ(u)) = u such that

(u, hx̄(u)) is a graph parametrization of ∂xφ
λ(x̄; ·) in u-frequencies with ω = Ψ(u).

Fix some η ∈ L ∩Ψ−1(τ) and construct W as in Lemma 5.4. Note that

∂2
xu1

φλ(x̄; Ψ(u)) ∧ . . . ∧ ∂2
xun−1

φλ(x̄; Ψ(u)) = G0(x̄;ω) · det JΨ(u).

If L ∩Ψ−1(τ) = ∅, then Ψ(L) ∩ τ = ∅, but then, by Lemma 3.2 we had TV,B,τ = ∅
and there is nothing to show. Hence, we can construct W around η ∈ L ∩ Ψ−1(τ)
as in Subsection 5.1. W and V are quantitatively transverse as in (2) by Lemma
5.4.

Verifying the transverse equidistribution estimate: Recall that g is con-
centrated on wave packets TV,B,τ , B is a R

1
2 +δm-ball, and τ is a O(ρ−

1
2 +δm)-sector.
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W is constructed as above. Let ηB(x) = η((x − x̄)/R
1
2 +δm) denote a Schwartz

cutoff, which satisfies η(x) = 1 for x ∈ B(0, 2). We have

(34) (ηBT
λgθ,v|Π)̂(ξ) = e−2πix0.ξRdimW

(
1
2 +δm

) ∫
An−1

Kλ,R(ξ;ω)gθ,v(ω)dω

with Kλ,R given by

Kλ,R(ξ;ω) =

∫
W

e2πiφλ,Rω (z)aλ,Rω (z)dz

for the phase and amplitude function

φλ,Rω (z) = φλ(x0 +R
1
2 +δmz;ω)−R 1

2 +δm〈z; ξ〉,

aλ,Rω (z) = aλ(x0 +R
1
2 +δmz;ω)η̃(z),

and

η̃(z) = η(z +
x0 − x̄
R

1
2 +δm

).

Let Σ(ω) = ∂xφ
λ(x̄;ω). Fixing ω ∈ Ξ, ξ ∈ R̂n such that |ξ−projWΣ(ω)| & R− 1

2 +δm

and R� 1, the following estimates hold on supp(aλ,Rz ):

(i) |∂zφλ,Rω (z)| ∼ R 1
2 +δm |ξ − projWΣ(ω)| & R2δm ,

(ii) |∂αz φλ,Rω (z)| . |∂zφλ,Rω | for 2 ≤ |α| ≤ Npar,
(iii) |∂αz aλ,Rω | .ε 1.

This is verified as in [13, Claim 2, p. 308].

Furthermore, ω ∈ supp(gθ,v), then |ω − ωθ| < R−
1
2 , and so |Σ(ω) − ξθ| . R−

1
2 ,

where ξθ = Σ(ωθ). Consequently, by non-stationary phase,

|(ηB · Tλgθ,v)|Π(̂ξ)| .N RO(1)w
B(projW ξθ,R

− 1
2 )

(ξ)‖gθ,v‖L2 .

Let

L = {u ∈ An−1 : (−∇hx̄(u), 1) ∈ V },

Sω = {ω ∈ An−1 : Gλ(x̄;ω) ∈ V }.

Let Au = TηL
aff denote the affine variant of the linear subspace TηL, and Aξ =

Au×R. With Vξ denoting the linear subspace associated with Aξ, we have V ⊥ξ = W .
Next, we shall show that

(35) dist(ξθ, Aξ) . R
− 1

2 +δm .

Then it follows
w
B(projW ξθ,R

− 1
2 )
.δ w

B(ξ∗,R
− 1

2
+δm )

.

Here ξ∗ denotes the centre of a ball of radius O(R−
1
2 +δm) containing projW (ξθ) for

(θ, v) ∈ TB,τ,V . We can again refer to [13] for details. The claim follows then by
estimating

‖(ηB · Tλg|Π)̂ w−1

B(ξ∗,R
− 1

2
+δm )
‖∞

via Lemma 5.6.
We turn to the proof of (35): Fix (θ, v) ∈ TB,τ,V and let

uθ = projx⊥n (Σ(ωθ)).

We compute by triangle inequality

dist(ξθ, Aξ) = dist(uθ, Au) ≤ dist(uθ, L ∩Ψ−1(τ)) + sup
u∗∈L∩Ψ−1(τ)

dist(u∗, Au).



20 ROBERT SCHIPPA

Furthermore, by Lemma 3.2,

dist(uθ, L ∩Ψ−1(τ)) ∼ dist(ωθ, Sω ∩ τ) . ∠(Gλ(x̄;ωθ), V ) . R−
1
2 +δm ,

where the last inequality is by the definition of TV,B,τ .
We turn to the estimate of the second term: Fix u∗ ∈ L∩Ψ−1(τ). We note that

dist(u∗, Au) = dist(u∗, Aū) for ū = ‖u∗‖
‖u‖ u by null direction. Let Aū = u0 + Vu for

some linear subspace Vu. Now we note that the surface L ∩Ψ−1(τ) ∩ {‖u∗‖Sn−2},
provided ρ is large enough, can be written as subset of graph of a function ψ :W →
V ⊥u , whereW ⊆ Vu is a subset around the origin of size O(ρ−

1
2 +δm). More precisely,

we may write

L ∩Ψ−1(τ) ∩ {‖u∗‖Sn−2} ⊆ {w + ψ(w) : w ∈ W}+ u0

with ψ(0) = 0 and ∇ψ(0) = 0. The estimate now follows from Taylor expansion as
in [13, p. 310].

�

For proof of the transverse equidistribution estimate in Lemma 5.5 requires we
have to extend the estimate from fixed vector space to variety. The argument
follows [13, Section 8.4] with the difference that the quantitative transversality
mildly depends on the scale. We use the following result of Wongkew [39] to control
the size of neighbourhoods of varieties.

Theorem 5.8 ([39]). Suppose Z = Z(P1, . . . , Pn−m) is an m-dimensional trans-
verse complete intersection in Rn with degZ ≤ D. For any 0 < ρ ≤ R and R-ball
BR, Nρ(Z ∩BR) can be covered by OD((R/ρ)m) balls of radius ρ.

Next, we consider planar slices of neighbourhoods of varieties. We recall the
following from [13]: Any m-dimensional linear subspace V can be expressed as a
transverse complete intersection V = Z(PN1

, . . . , PNn−m) with {N1, . . . , Nn−m} an

orthonormal basis of V ⊥ and PNj (x) = 〈x,Nj〉. Let V1, V2 be linear subspaces in
Rn and suppose that

(36) dimV1 + dimV2 ≥ n.
V1 ∩ V2 is a transverse complete intersection if and only if

dim(V1 ∩ V2) = dimV1 + dimV2 − n.
This means that V1 ∩ V2 is as small as possible.

Definition 5.9. A pair (V1, V2) of linear subspaces Rn satisfying (36) is said to be
quantitatively transverse if the following hold:

• dim(V1 ∩ V2) = dimV1 + dimV2 − n;
• ∠(v1, v2) ≥ ctrans for all non-zero vectors vj ∈ (V1 ∩ V2)⊥ ∩ Vj , j = 1, 2.

In the main argument the constant ctrans will not be fixed, contrary to [13]. We
need to quantify the dependence on ctrans in [13, Lemma 8.13]:

Lemma 5.10. There exists some dimensional constant C > 0 such that the fol-
lowing holds. Let Br ⊆ Rn be an r-ball, V ⊆ Rn be a linear subspace, Z be a
transverse complete intersection and suppose that dimZ + dimV ≥ n and (TzZ, V )
is a quantitatively transverse pair for all z ∈ Z∩2Br. Then, the following inclusion
holds

V ∩Br ∩Nρ(Z) ⊆ N2C̄ρ(V ∩ Z).

for all 0 < ρ� r with C̄ = sin(ctrans)
−1.
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Proof. This follows from the proof of [13, Lemma 8.13]. �

We are ready for the proof of Lemma 5.5:

Proof of Lemma 5.5. First, by

|Gλ(x̄; θ)−Gλ(x; θ)| . |x− x̄|/λ . R− 1
2 +δm ,

we infer that

∠(Gλ(x̄; θ), TzZ) . R−
1
2 +δm for all z ∈ Z ∩ 2B.

Letting V = TzZ, we have

TZ,B,τ ⊆ TV,B,τ .

We can apply Lemma 5.7 to find a subspace W such that

(37) ∠(V,W ) & K−4

and

(38)

∫
Π∩B(x0,ρ

1
2

+δm )

|Tλg|2 .δ RO(δm)
( ρ
R

) dimW
2 ‖g‖

2δ
1+δ

L2

( ∫
Π∩2B

|Tλg|2
) 1

1+δ

for every affine subspace Π parallel toW . ByK-flatness of Z, we have that (TzZ,W )
is a quantitatively transverse pair for all z ∈ Z ∩ 2B. By Lemma 5.10, we have

Π ∩N
ρ

1
2

+δm
(Z) ∩B ⊆ N

CK4ρ
1
2

+δm
(Π ∩ Z) ∩ 2B.

Since Π∩Z is a transverse complete intersection of dimension dimV ′ + dimZ − n,
Theorem 5.8 yields that Π ∩N

ρ
1
2

+δm
(Z) ∩B can be covered by

O
(
RO(δm)

(R
ρ

)(dimV+dimZ−n)/2)
= O(RO(δm))

balls of radius ρ
1
2 +δm because K . Rδ � ρδm . Applying (38) to each of these balls

and summing, one deduces that∫
Π∩N

ρ
1
2

+δm
(Z)∩B

|Tλg|2 .δ RO(δm)
( ρ
R

)n−m
2 ‖g‖2δ/(1+δ)

L2

( ∫
Π∩2B

|Tλg|2
) 1

1+δ .

Following the steps from [13, p. 318] completes the proof.
�

6. Comparing wave packets at different spatial scales

For the induction on scales, we shall compare wave packet decompositions at
different radii. Let 1� R� λ, and

Tλf(x) =
∑

(θ,v)∈T

Tλfθ,v(x) + RapDec(R)‖f‖L2(An−1).

In this section we recall the results from [13, Section 9], which again did not hinge
on H2+), but on non-degeneracy.
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6.1. Wave packets at smaller scale. Let R
1
2 ≤ ρ ≤ R and fix B(y, ρ) ⊆ B(0, R).

Tλfθ,v can be decomposed into wave packets at scale ρ over B(y, ρ). For g : An−1 →
C, define g̃ = eiφ

λ(y;·)g, so that

Tλg(x) = T̃λg̃(x̃) for x̃ = x− y,

where T̃λ is the oscillatory integral operator with phase φ̃λ and amplitude ãλ given
by

(39) φ̃(x;ω) = φ(x+
y

λ
;ω)− φ(

y

λ
;ω) and ã(x;ω) = a(x+

y

λ
;ω).

This yields by linearity

Tλf(x) =
∑

(θ,v)∈T

T̃λ((fθ,v )̃ )(x̃) + RapDec(R)‖f‖L2(An−1).

Each Tλfθ,v is (spatially) concentrated on the curve R
1
2 +δ-tube Tθ,v and, conse-

quently, each T̃λ(fθ,v )̃ is concentrated on Tθ,v − y. Since

(40) ∂ωφ̃
λ((γλω,v(t), t)− y;ω) = v − ∂ωφλ(y;ω),

the core curve Γλθ,v − y of Tθ,v − y is equal to Γλθ,v−v̄(y;ωθ), where

v̄(y;ω) = ∂ωφ
λ(y;ω).

We repeat the construction of wave packets for each T̃λ(fθ,v )̃ at scale ρ. Cover An−1

by finitely overlapping balls θ̃ of radius ρ−
1
2 , and Rn−1 by finitely-overlapping balls

of radius ρ
1+δ

2 centered at vectors ṽ ∈ ρ 1+δ
2 Zn−1. Let T̃ denote the set of all pairs

(θ̃, ṽ). For each (θ, v) ∈ T one may decompose

(fθ,v )̃ =
∑

(θ̃,ṽ)∈T̃

(fθ,v)
˜
θ̃,ṽ

+ RapDec(R)‖f‖L2(An−1).

The significant contributions to this sum arise from pairs (θ̃, ṽ) belonging to

T̃θ,v = {(θ̃, ṽ) ∈ T̃ : dist(θ, θ̃) . ρ−
1
2 and |v − v̄(y;ωθ)− ṽ| . R

1+δ
2 }.

Lemma 6.1 ([13, Lemma 9.1]). The following holds:

(fθ,v )̃ =
∑

(θ̃,ṽ)∈T̃θ,v

(fθ,v)
˜
θ̃,ṽ

+ RapDec(R)‖f‖L2 .

6.2. Tangency properties. In this subsection we recall how tangency properties
of the large wave packets are inherited by the small wave packets (cf. [13, Sec-
tion 9.2]). On the other hand, recall that a small wave packet coming from a large
packet, which is tangential to Z, need not be contained in a neighbourhood of Z on
a small scale. The small wave packet is located too far away from Z. However, with
the angle condition inherited, we shall see that the small wave packet is contained
in a small neighbourhood of a translate of the variety.

We analyze functions h concentrated on wave packets from

TZ,B(y,ρ) = {(θ, v) ∈ TZ : Tθ,v ∩B(y, ρ) 6= ∅}.
For this purpose, we consider the core of a small tube:

∂ωφ̃
λ(γ̃λω,v(t), t;ω) = v

for t ∈ (−ρ, ρ). By (40), we have the identity:

(41) γλω,v(t) = γ̃λω,v−v̄(y;ω)(t− yn) + y′.
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Let T̃ω,v be the ρ
1
2 +δ-tube with core curve Γ̃λω,v = (γ̃λω,v(t), t). We have the following:

Lemma 6.2 ([13, Lemma 9.3]). If (θ, v) ∈ T and (θ̃, ṽ) ∈ T̃θ,v, then

|Γ̃λ
θ̃,ṽ

(t)− (Γλθ,v(t+ yn)− y)| . R
1+δ

2

for all t ∈ (−ρ, ρ).

Fix (θ, v) ∈ TZ and (θ̃, ṽ) ∈ T̃θ,v. Next, we show that for x ∈ T̃θ̃,ṽ and z ∈ Z
and b ∈ B(0, 2R

1
2 +δm) are such that

z − y + b ∈ B(0, 4ρ) and |x− (z − y + b)| ≤ C̄tangρ
1
2 +δm ,

then we find the following estimate to hold:

(42) ∠(G̃λ(x;ωθ̃), Tz−y+b(Z − y + b)) ≤ c̄tangρ−
1
2 +δm ,

where G̃λ is the generalized Gauss map associated with φ̃λ. We have G̃λ(x;ω) =
Gλ(x+ y;ω) and Tz−y+b(Z − y + b) = TzZ, so it is equivalent to check that

∠(Gλ(x+ y;ωθ̃), TzZ) ≤ c̄tangρ−
1
2 +δm .

By Lemma 6.2, the definition of T̃θ̃,ṽ, and assuming that ρ ≤ R1−δ, it follows

|x+ y − Γλθ,v(xn + yn)| . R
1+δ

2 .

By expanding the Gauss map, we find

∠(Gλ(x+ y;ωθ̃), TzZ) . ∠(Gλ(Γλθ,v(xn + yn);ωθ), TzZ) + ρ−
1
2 .

Finally, Γλθ,v(xn + yn) ∈ Tθ,v, which is R−
1
2 +δm-tangent to Z. Hence,

∠(Gλ(Γλθ,v(xn + yn);ωθ), TzZ) ≤ c̄tangR−
1
2 +δm .

Likewise the argument in [13, pp. 326f] shows that a ρ
1
2 +δ-tube, which intersects

N
ρ

1
2

+δm/2
(Z− y+ b)∩B(0, ρ), is actually contained in N

ρ
1
2

+δm
(Z− y+ b) by virtue

of (42).
We arrive at the following proposition (cf. [13, Proposition 9.2]):

Proposition 6.3. Let R
1
2 ≤ ρ ≤ R1−δ and Z ⊆ Rn be a transverse complete

intersection.

(1) Let (θ, v) ∈ TZ and b ∈ B(0, 2R
1
2 +δm). If (θ̃, ṽ) ∈ T̃θ,v satisfies

T̃θ̃,ṽ ∩Nρ 1
2

+δm/2
(Z − y + b) 6= ∅,

then (θ̃, ṽ) ∈ T̃Z−y+b.

(2) If h is concentrated on wave packets in TZ,B(y,ρ), then h̃ is concentrated on
wave packets in ⋃

|b|.R
1
2

+δm

T̃Z−y+b.

We also make the following definition:

T̃b = {(θ̃, ṽ) : (θ̃, ṽ) ∈
⋃

(θ,v)∈TZ,B(y,ρ)

T̃θ,v : T̃θ̃,ṽ ∩Nρ 1
2

+δm/2
(Z − y + b) 6= ∅}.
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By the above, we have T̃b ⊆ T̃Z−y+b. For a function h concentrated on wave packets
in TZ,B(y,ρ), we consider a function of the form

h̃b =
∑

(θ̃,ṽ)∈T̃b

h̃θ̃,ṽ.

Since T̃b ⊆ T̃Z−y+b by Proposition 6.3, we have

T̃λh̃b(x̃) = Tλhb(x)χN
ρ

1
2

+δm
(Z+b)(x) + RapDec(R)‖h‖L2

for all x = x̃+ y ∈ B(y, ρ).

6.3. Sorting wave packets. In this section we recall sorting the large wave packets
by “medium tubes”. This was carried out in[13, Section 9.3]. Given a ball B(y, ρ),

many large wave packets (θ, v) might give rise to essentially the same set T̃θ,v.
Medium tube segments of Tρ of length ρ and radius R

1
2 +δ allow for a grouping into

large and small wave packets.
We give the details: Let T denote the collection of all pairs (θ̃, w) formed by a

ρ−
1
2 -ball θ̃ and w ∈ R(1+δ)/2Zn−1. For each (θ̃, w) ∈ T , choose some

Tθ̃,w ⊆ {(θ, v) ∈ T : dist(θ, θ̃) . ρ−
1
2 and |v − v̄(y;ωθ)− w| . R(1+δ)/2}

so that the family {Tθ̃,w : (θ̃, w) ∈ T } forms a covering of T by disjoint sets. The
medium tubes are given by

Tθ̃,w =
⋃

(θ,v)∈Tθ̃,w

Tθ,v ∩B(y, ρ).

If (θ̃, w) ∈ T and (θ, v) ∈ Tθ̃,w, then (cf. [13, Cor. 9.4])

distH(Tθ,v ∩B(y, ρ), Tθ̃,w) . R
1
2 +δ.

Let g : An−1 → C be integrable and define

gθ̃,w =
∑

(θ,v)∈Tθ̃,w

gθ,v

for all (θ̃, w) ∈ T . Since Tθ̃,w cover T and are disjoint, it follows that

g =
∑

(θ̃,w)∈T

gθ̃,w + RapDec(R)‖g‖L2 .

The functions gθ̃,w are almost orthogonal and, consequently,

‖g‖2L2 ∼
∑

(θ̃,w)∈T

‖gθ̃,w‖
2
L2 .

(gθ̃,w )̃ is concentrated on scale ρ wave packets belonging to
⋃

(θ,v)∈Tθ̃,w
T̃θ,v. This

union is contained in

T̃θ̃,w = {(θ̃′, ṽ) ∈ T̃ : dist(θ̃′, θ̃) . ρ−1/2 and |ṽ − w| . R
1+δ

2 }.

The family {T̃θ̃,w : (θ̃, w) ∈ T } forms a covering of T̃ by almost disjoint sets. Hence,
we have almost orthogonality between the scale ρ wave packets of the different
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functions (gθ̃,w )̃ (cf. [13, Eq. (9.17)]):∥∥ ∑
(θ̃,w)∈T

(gθ̃,w)b̃
∥∥2

L2 ∼
∑

(θ̃,w)∈T

‖(gθ̃,w)b̃ ‖2L2 .

6.4. Reverse Hörmander L2-estimate. In the following we record a reverse
Hörmander L2-estimate. This will imply transverse equidistribution estimates for
functions concentrated on wave packets, which are sorted as above. This was pre-
viously done in [13, Subsection 9.4], whose statements carry over. Thus, the proofs
are omitted. We collect the relevant estimates here for future reference.

Let Z be an m-dimensional transverse complete intersection, (θ̃, w) ∈ T and h be
a function concentrated on TZ∩B(y,ρ)∩Tθ̃,w. By the above, every scale R wave packet

of h intersects B(y, ρ) on the set Tθ̃,w, which has a Hausdorff distance . R
1
2 +δm to

Tθ,v ∩ B(y, ρ) for any (θ, v) ∈ Tθ̃,w. Moreover, the scale ρ wave packets of h̃ will

intersect B(x0 − y, CR
1
2 +δm). In this case, the following reverse of Hörmander’s

L2-estimate holds:

Lemma 6.4 ([13, Lemma 9.5, p. 329]). Let Tλ be an oscillatory integral operator
with phase φλ given by a translate of a reduced phase in the sense of (39) and

1 ≤ R
1
2 +δ ≤ r . λ

1
2 . There exists a family of oscillatory integral operators Tλ all

with phase φλ such that the following hold:

(i) each Tλ ∈ Tλ is again an operator with phase given by a translate of a
reduced phase as in (39),

(ii) #Tλ = O(1);
(iii) if f is concentrated on wave packets to (with respect to Tλ) which intersect

some B(x̄, r) ⊆ B(0, R), then

‖f‖2L2 . r−1‖Tλ∗ f‖2L2(B(x̄;Cr))

holds for some Tλ∗ ∈ Tλ.

Lemma 6.4 is proved in [13] via Fourier series expansion and Plancherel’s theorem.
The proof hinges only on the non-degeneracy C1) of the phase function. Hence, it
applies to the homogeneous phase functions presently considered as well. For h as
above, x0 ∈ Tθ̃,w and |b| . R

1
2 +δm , this implies that h̃b, as defined above, is a sum

of wave packets which intersect

B(x0 − y, CR
1
2 +δm).

Applying Lemma 6.4 at scale ρ with r ∼ R 1
2 +δm to h̃b yields

‖h̃b‖2L2 . R−
1
2−δm‖T̃λ∗ h̃b‖2

L2(B(x0−y,CR
1
2

+δm )
.

Since the tangency properties of Tλ are inherited by Tλ∗ , we infer

‖h̃b‖2L2 . R−
1
2−δm‖Tλ∗ hb‖2

L2(N
ρ

1
2

+δm
(Z+b)∩B(x0,CR

1
2

+δm ))
.

Applying Hörmander’s L2-bound yields the following lemma:

Lemma 6.5. [13, Lemma 9.6] Let h be concentrated on wave packets from TZ∩B(y,ρ)∩
Tθ̃,w for some (θ̃, w) ∈ T . Let B ⊆ B(0, CR

1
2 +δm) be such that the sets

N
ρ

1
2

+δm
(Z + b) ∩B(x0, CR

1
2 +δm)
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are essentially disjoint over b ∈ B. Then,∑
b∈B

‖h̃b‖2L2 . ‖h‖2L2 .

7. Main inductive argument

The k-broad estimate is a consequence of the following claim, which is suitable
for induction. Let

p̄(k, n) = 2 · n+ k

n+ k − 2
.

Theorem 7.1. For ε > 0, sufficiently small, there are

0 < δ � δn−1 � . . .� δ1 � δ0 � ε

and large dyadic parameters Āε, C̄ε, Dm,ε .ε 1 and θm < ε such that the following
holds. Suppose Z = Z(P1, . . . , Pn−m) is a transverse complete intersection with
degZ ≤ Dm,ε. For all 2 ≤ k ≤ n, 1 ≤ A ≤ Āε dyadic and 1 ≤ K ≤ R ≤ λ, the
inequality

(43) ‖Tλf‖BLpk,A(B(0,R)) .ε K
C̄εRθm+δ(log Āε−logA)−ek,n(p)+ 1

2 ‖f‖L2(An−1)

holds whenever f is concentrated on wave packets from TZ and

(44) 2 ≤ p ≤ p̄0(k,m) =

{
p̄(k,m), if k < m,

p̄(m,m) + δ, if k = m.

Above,

ek,n(p) =
1

2

(1

2
− 1

p

)
(n+ k).

In the first step we reduce to R .ε λ1−ε by covering B(0, λ) with balls of radius
λ1−ε. The technical details are provided in [13, Lemma 10.2]. This reduction is
necessary to allow for polynomial approximation of the core curve γλω,v uniformly
in R.

Next, we set up the induction argument for 1 ≤ R .ε λ1−ε. For ε > 0 sufficiently
small, it is enough to consider K . Rδ by choosing C̄ε sufficiently large (as the
claim then follows from the trivial L1-L∞-estimate and crude summation). We let
furthermore

Dm,ε = ε−δ
−(2n−m)

, θ(ε) = ε− cnδm, Āε = de 10n
δ e,

δi = δi(ε) = ε2i+1 for all i = 1, . . . , n− 1, and δ = δ(ε)� δn−1.
(45)

The base case is given by m ≤ k − 1, and A ≥ 210. For details we refer to [13,
Subsection 10.3].

7.1. Inductive step. Let 2 ≤ k ≤ n − 1, k ≤ m ≤ n, and K .ε Rδ. Assume,
by way of induction hypothesis, that (43) holds whenever dimZ ≤ m − 1 or the
radial parameter is at most R

2 . Fix ε > 0, 1 < A ≤ Āε and a transverse complete

intersection Z = Z(P1, . . . , Pn−m) with degZ ≤ Dm,ε, where Āε and Dm,ε are as in
(45). Let f be concentrated on wave packets from TZ . It suffices to show (43) for
p = p̄0(k,m) by interpolation with the trivial L2-bound. We recall the two cases to
be analyzed:
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The algebraic case: There exists a transverse complete intersection Y l ⊆ Z of
dimension 1 ≤ l ≤ m− 1 of maximum degree at most (Dm,ε)

n such that

(46) ‖Tλf‖p
BLpk,A(N

R
1
2

+δm/4
(Y l)∩B(0,R))

≥ calg‖Tλf‖pBLpk,A(B(0,R))
.

Here calg > 0 depends on n and ε.
The cellular case: For any transverse complete intersection Y l ⊆ Z of dimen-

sion 1 ≤ l ≤ m− 1 and maximum degree at most (Dm,ε)
n, the inequality

(47) ‖Tλf‖p
BLpk,A(N

R
1
2

+δm/4
(Y l))∩B(0,R)

< calg‖Tλf‖pBLpk,A(B(0,R))

holds.
The cellular case is as usually treated by induction on the radius. Via polynomial

partitioning the BLpk,A-norm is equidistributed among the cells and the induction

closes. The algebraic case is more involved: Tλf can be regarded as concentrated
near a low-dimensional and low degree variety Y l (for an oversimplification, think
of a hyperplane). If the wave packets from f are also tangential to this variety,
then we can use induction on the dimension to conclude. If this is not the case and
many wave packets are transverse to Y l, we conclude via transverse equidistribution
estimates.

7.1.1. Cellular case. This case is handled as in [13, Section 10.5]. We omit the
details.

7.1.2. Algebraic case. In this case transverse equidistribution estimates become im-
portant at one step. This is different than [13, Section 10.6], and we turn to the
details. Fix a transverse complete intersection Y l of dimension 1 ≤ l ≤ m − 1 of
maximum degree degY l ≤ (Dm,ε)

n, which satisfies (43). Let R
1
2 � ρ� R be such

that ρ
1
2 +δl = R

1
2 +δm , and note that

R ≤ R2δlρ and ρ ≤ R−δl/2R.

Let Bρ be a finitely overlapping cover of B(0, R) by ρ-balls, and for each B ∈ Bρ
define

TB = {(θ, v) ∈ T : Tθ,v ∩N
R

1
2

+δm/4
(Y l) ∩B 6= ∅}

and

fB :=
∑

(θ,v)∈TB

fθ,v.

We have by the triangle inequality for broad norms

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈Bρ

‖TλfB‖pBLpk,A(N
R

1
2

+δm/4
(Y l)∩B))

up to RapDec(R)‖f‖pL2 on the right-hand side by the rapid decay off the wave
packets.

For B = B(y, ρ) ∈ Bρ, let TB,tang denote the set of all (θ, v) ∈ TB with the

property that, whenever x ∈ Tθ,v and z ∈ Y l∩B(y, 2ρ) satisfy |x−z| ≤ 2C̄tangρ
1
2 +δl ,

it follows that

∠(Gλ(x;ωθ), TzY
l) ≤ 1

2
c̄tangρ

− 1
2 +δl ,
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where C̄tang and c̄tang are the constants appearing in the definition of tangency.
Furthermore, let TB,trans = TB\TB,tang and define

fB,tang =
∑

(θ,v)∈TB,tang

fθ,v and fB,trans =
∑

(θ,v)∈TB,trans

fθ,v.

It follows that fB = fB,tang + fB,trans and, by the triangle inequality for broad
norms, one concludes that

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈Bρ

‖TλfB,tang‖pBLp
k,A/2

(B)
+
∑
B∈Bρ

‖TλfB,trans‖pBLp
k,A/2

(B)
.

Either the tangential or transverse contribution to the above sum dominates, and
each case is treated separately.

Tangential subcase: Suppose that the tangential term dominates and we have

(48) ‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈Bρ

‖TλfB,tang‖pBLp
k,A/2

(B)
.

This case can be handled as in [13, pp.345-346], and we skip the details.

Transverse sub-case: In this case, we have

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈Bρ

‖TλfB,trans‖pBLp
k,A/2

(B)
.

Following [13], we use an argument similar to the cellular case. In the transverse
case the number of cells a given tube can enter is controlled by transversality as
follows:

Lemma 7.2 ([13, Eq. (10.23)]). We find the following estimate to hold:

(49)
∑
B∈Bρ

‖fB,trans‖2L2(An−1) .ε ‖f‖
2
L2(An−1).

The strategy in the transverse case is to use induction on radius to show that for
some cε > 0 one has (redenoting fj for fBj ,trans)

(50) ‖Tλfj‖BLp
k,A/2

(B) ≤ cεEm,A(R)‖fj‖L2(An−1)

for all Bj ∈ Bρ.
Provided cε > 0 is chosen sufficiently small, depending only on n and ε, (50) can

be combined with (49) and the estimate

‖fB,trans‖L2(An−1) . ‖f‖L2

to yield

‖Tλf‖BLp
k,A/2

(B(0,R)) .ε c̄εEm,A(R)‖f‖1−
2
p

L2

( ∑
B∈Bρ

‖fB,trans‖2L2

) 1
p ≤ Em,A(R)‖f‖L2 .

The main obstacle is that fj do not, in general, satisfy the hypothesis of Theorem

7.1 at scale ρ. The remedy is to break fj into pieces fj,b, which are ρ
1
2 +δm-tangent

to a translated variety of Z + b.

Flattening the variety: In the first step we flatten the variety up to K−5 (cf.
[25, p. 25]). This requires to estimateK5(n−1)-expressions of the form ‖Tλfj‖BLp

k,A/2
(B)

with Z flat up to angles K−5. The factor of KO(n) is admissible (see (55) below).
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Separating essentially and non-essentially contributing R
1
2 +δm-balls:

Cover Bj by finitely overlapping R
1
2 +δm-balls Bj,k. Let (θ, v) ∈ TZ,Bj,k and x ∈

Tθ,v ∩ N
R

1
2

+δm
(Z) ∩ Bj,k, z ∈ Z with |x − z| ≤ C̄tangR

1
2 +δm . By definition of

tangency, we have

∠(Gλ(x;ωθ), TzZ) . R−
1
2 +δm .

Let V = TzZ. By Lemma 3.2, we have

∠(Gλ(x̄;ωθ), V ) . R−
1
2 +δm .

Now we consider the linearization φ̃x̄(u) = ∂xnφ
λ(x̄; Ψλ(u)) around x̄, the centre of

Bj,k. We consider as in Section 5.1

V = {
n∑
j=1

ai,jxj = 0, i = 1, . . . , n−m}, Lx̄ = {u ∈ An−1 :

n−1∑
j=1

ai,j∂j φ̃x̄(u)−ai,n = 0}

such that Lx̄ denotes the u-frequencies with normal in V .
We apply the dichotomy of Section 5.1: Either Lx̄ is contained in O(1) slabs of
size 1 × K−2 × . . . × K−2 by Lemma 5.3. This is referred to as Case I. Note
that if Lx̄ is contained in O(1) 1 × K−2 × . . . × K−2-slabs, then so is

⋃
θ with

∠(Gλ(x̄;ωθ), V ) . R−
1
2 +δm by Lemma 3.2. Consequently, Case I-balls can be

neglected in the k-broad norm (see (51) below).

Otherwise, we consider the further refinement TV,Bj,k,τ with τ a ρ−
1
2 -sector. By

Lemma 5.4, there is a quantitatively transverse subspace W with V̄ ⊕W = Rn and

∠(V,W ) & K−4.

V̄ denotes a suitable extension of a tangent space of Lx̄ from Subsection 5.1 (Case
II). We let XI and XII denote the union of balls Bj,k from Cases I and II.

Next, we use the sorting into medium tubes as in Section 5.1. Recall notations

Tθ̃,w and T̃θ̃,w with θ̃ a ρ−
1
2 -cap and w ∈ R 1+δ

2 Zn−1 for sortings, which relate ρ-wave
packets on Bj with the large R-wave packets. For the sake of brevity let g = fj,trans.
We define as in [25, p. 25]:

gess =
∑

(θ̃,w)∈Tess

gθ̃,w = g −
∑

(θ̃,w)∈Ttail

gθ̃,w,

where

Tess = {(θ̃, w) : ∃(θ, v) ∈ Tθ̃,w so that Tθ,v ∩XII 6= ∅},

Ttail = {(θ̃, w) : ∀(θ, v) ∈ Tθ̃,w : Tθ,v ∩XII = ∅}.

Like in [25], we infer that

(51) ‖Tλg‖BLpk,A(Bj) ≤ ‖T
λgess‖BLp

k,A/2
(Bj) + RapDec(R)‖f‖L2 .

As in [13], we choose a set of translates B, so that we can write

(52) ‖Tλgess‖BLp
k,A/2

(Bj) .
(∑
b∈B

‖Tλgess,b‖pBLp
k,A/2

(Bj)

) 1
p ,

where each piece gess,b is defined so that it is concentrated on scale ρ wave packets,
which are tangential to some translate Z − y + b of Z. At this point, we can
use transverse equidistribution and infer that gess,b satisfy favorable L2-estimates.
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Moreover, the radial induction hypothesis is applied to each of the Tλgess,b. To
close the induction, one must estimate(∑

b∈B

‖gess,b‖pL2

) 1
p

in terms of ‖gess‖L2 . The gain in (ρ/R) stemming from transverse equidistribution
is crucial. We can sum the contributions from the individual pieces gess,b without
any (significant) loss in R.

To ensure that gess,b form a reasonable decomposition of gess so that (52) holds up
to logarithmic factors, the set of translates B must be chosen so that

⋃
b∈BNρ

1
2

+δm
(Z−

y + b) covers N
R

1
2

+δm
(Z) (where the mass of Tλgess,b is concentrated) and so that

the N
ρ

1
2

+δm
(Z − y + b) are essentially disjoint. This was achieved in [13] using a

probabilistic construction: Fix B = B(y, ρ) ∈ Bρ, one may show the following:

Lemma 7.3 ([13, Lemma 10.5]). There exists a finite set B ⊆ B(0, 2R
1
2 +δm) and

a collection

B′ ⊆ {BK2 ∈ BK2 : BK2 ∩B(y, ρ) 6= ∅}
such that, up to inclusion of a rapidly decreasing error term,

(53) ‖TλfB,trans‖BLp
k,A/2

(B) . (logR)2
( ∑
BK2∈B′

µTλfB,trans(BK2)
) 1
p

and for each BK2 ∈ B′ the following holds:

(i) there exists some b ∈ B such that

(54) BK2 ⊆ N
ρ

1
2

+δm/2
(Z + b);

(ii) there exist at most O(1) vectors b ∈ B for which

BK2 ∩N
ρ

1
2

+δm
(Z + b) 6= ∅.

By the lemma, we may argue as follows: For each b ∈ B, let B′b denote the
collection of all BK2 ∈ B′ for which (54) holds. Then, by (53) and property (i) in
the lemma,

‖TλfB,trans‖BLp
k,A/2

(B) . (logR)2
(∑
b∈B

∑
BK2∈B′b

µT̃λ(fB,trans )̃
(BK2 − y)

) 1
p .

Define the collection of wave packets

T̃′b = {(θ̃, ṽ) ∈
⋃

(θ,v)∈Tess

T̃θ,v : T̃θ̃,ṽ ∩
( ⋃
BK2∈B′b

(BK2 − y)
)
6= ∅}.

If gess,b is defined by

(gess,b)̃ =
∑

(θ̃,ṽ)∈T̃′b

(gess)
˜
θ̃,ṽ
,

then (gess,b)̃ is concentrated on wave packets that are ρ−
1
2 +δm -tangent to Z−y+ b.

Furthermore, again up to a rapidly decreasing error term, one has

‖Tλgess,b‖BLp
k,A/4

(Bj) . (logR)2
(∑
b∈B

‖T̃λ(gess,b)̃ ‖pBLp
k,A/4

(B(0,ρ))

) 1
p .
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The function (gess,b)̃ satisfies the hypotheses of Theorem 7.1 at scale ρ and therefore
the radial induction hypothesis yields(∑

b∈B

‖T̃λ(gess,b)‖̃pBLp
k,A/4

(B(0,ρ))

) 1
p ≤ Em,A/4(ρ)

(∑
b∈B

‖gess,b‖pL2

) 1
p .

We claim that

(55)
(∑
b∈B

‖gess,b‖pL2

) 1
p . RO(δm)

( ρ
R

)(n−m)
(

1
4−

1
2p

)
‖gess‖L2 .

We show this via interpolation between p = 2 and p =∞.
For p = 2 this follows from orthogonality of the wave packets and property (ii)

of Lemma 7.3.

For p = ∞ we use transverse equidistribution. By almost orthogonality of
(θ̃, w) ∈ T and the definition of Tess we have

‖g̃ess,b‖2L2 ∼
∑

(θ̃,w)∈Tess

‖g̃ess,b,θ̃,w‖
2
L2 .

By construction of gess,b,θ̃,w there is (θ, v) ∈ Tθ̃,w such that Tθ,v for (θ, v) in-

tersects XII . Let B = B(x̄;R
1
2 +δm) denote the corresponding ball in XII . Since

the Hausdorff distance between Tθ1,v1 for further (θ1, v1) ∈ Tθ̃,w is . R
1
2 +δ, we can

apply Lemma 6.4 at scale ρ with r ∼ R 1
2 +δm to find that

(56) ‖g̃ess,b,θ̃,w‖
2
L2 . R−

1
2−δm‖T̃λ∗ g̃ess,b,θ̃,w‖

2
L2(10B).

Next, we can apply Lemma 5.5 to find that

‖Tλgess,b,θ̃,w‖
2
L2(10B∩N

ρ
1
2

+δm
(Z+b)) . R

1
2 +O(δm)

( ρ
R

)n−m
2 ‖gess,b,θ̃,w‖

2
L2

. R
1
2 +O(δm)

( ρ
R

)n−m
2 ‖gess,b‖2L2 .

(57)

Taking (56) and (57) together, we find

‖g̃ess,b,θ̃,w‖
2
L2 . RO(δm)

( ρ
R

)n−m
2 ‖gess,b‖2L2 ,

which is the claimed p =∞ estimate for (55).

At this point, the computation to close the induction follows [13, p. 351] verbatim.
The proof of Theorem 7.1 is complete. �

8. From k-broad to linear estimates

In this section we deduce the linear estimates from the k-broad estimates by
applying the Bourgain–Guth argument [6]. We show the following proposition:

Proposition 8.1. Suppose that for all K ≥ 1 and all ε > 0 any oscillatory integral
operator Tλ with reduced 1-homogeneous phase satisfying C1) and C2+) obeys the
k-broad inequality

(58) ‖Tλf‖BLpk,A(B(0,R)) .ε K
CεRε‖f‖Lp(An−1)

for some fixed k, A, p, Cε, and all R ≥ 1. If

(59) p(k, n) ≤ p ≤ 2n

n− 2
, p(k, n) =

{
2 · n−1

n−2 if 2 ≤ k ≤ 3,

2 · 2n−k+1
2n−k−1 if k > 3,
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then any oscillatory integral operator with C1) and C2+) phase φ and amplitude a
satisfies

(60) ‖Tλf‖Lp(Rn) .φ,ε,a λ
ε‖f‖Lp(An−1).

From this proposition Theorem 1.1 is immediate by choosing k = n+1
2 for n odd

and k = n
2 + 1 for n even as max(p(k, n), p̄(k, n)) gives the lower bound for p in

Theorem 1.1. For the proof we use induction on scales: Qp,δ(R) will denote the
infimum over all constants C for which the estimate

‖Tλf‖Lp(B(0,r)) ≤ C‖f‖Lp(An−1)

holds for 1 ≤ r ≤ R and all oscillatory integral operators built from a suitable
class of phase functions, which is invariant under rescaling and amenable to narrow
decoupling, which is explained below.

With this definition, it remains to prove that for p as in Proposition 8.1

Qp,δ(R) .ε R
ε

for all ε > 0 and 1 ≤ R ≤ λ.
For this purpose, we decompose B(0, R) into finitely overlapping balls BK2 of radius
K2 and estimate ‖Tλf‖Lp(BK2 ). f is decomposed into “broad” and “narrow” term.
The narrow term is of the form

(61)
∑
τ∈Va

for some a

fτ ,

consisting of contributions to f from sectors for which Gλ(x̄; τ) makes a small angle
with some member of a family of (k− 1)-planes. Here x̄ denotes the centre of BK2 .
The broad term consists of contributions to f from the remaining sectors. One may
choose the planes V1, . . . , VA so that the broad term can be bounded by the k-broad
inequality. Thus, f of the form (61) has to be analyzed. This is accomplished by
narrow `p-decoupling and rescaling. We use the following decoupling result:

Proposition 8.2 (Variable coefficient decoupling). Suppose that Tλ is an oscilla-
tory integral operator with reduced C1) and C2+) phase, which is K-flat and let

BK2 ⊆ λ1−δ with 1 ≤ K2 ≤ λ
1
2−δ, 0 < δ ≤ 1/2. If V ⊆ Rn is an m-dimensional

linear subspace, then for 2 ≤ p ≤ 2n
n−2 and any δ > 0 one has∥∥∑

τ∈V
Tλgτ

∥∥
Lp(BK2 )

.δ max(1,K(m−2)
(

1
2−

1
p

)
)Kδ

(∑
τ∈V
‖Tλgτ‖pLp(wB

K2
)

) 1
p

+ λ−
δN
2 ‖g‖L2 .

Here, the sum ranges over sectors τ for which ∠(Gλ(x̄; τ), V ) ≤ K−2, where x̄ is
the centre of BK2 and wBK2 = (1 + |x− x̄|)−N is a rapidly decaying weight off BK2

with N the same as in the notion of K-flatness.

We remark that on the right-hand side there are strictly speaking slightly different
amplitude functions involved. If we choose BK2 ⊆ B(0, λ1−δ) for λ large enough
however, the amplitude functions satisfy the uniform bounds

|∂αωa(x;ω)| .N 1

for 0 ≤ |α| ≤ N , N being the parameter from K-flatness. This technicality of
dealing with different amplitude functions is handled by appropriate definition of
the induction quantity.
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In the translation-invariant case, e.g., with E as in (4), this follows from the
`2-decoupling ∥∥∑

τ

Egτ
∥∥
Lp(BK2 )

.δ K
δ
(∑
τ∈V
‖Egτ‖2Lp(wB

K2
)

) 1
2

for 2 ≤ p ≤ 2n
n−2 and by counting the sectors τ such that ∠(G(τ), V ) ≤ K−2. This is

carried out in [25]; see also [16, Lemma 2.2]. The error term λ−
δN
2 ‖f‖L2 comes from

approximation with constant coefficient operators. Gao et al. [9] used K-flatness to
prove narrow decoupling of general homogeneous phases in the constant coefficient
case.

Definition 8.3. We say that a 1-homogeneous smooth φ : Rn−1\0→ R supported
in Ξ is K-flat if

φ(ω′, ωn−1) = ωn−1φ(ω′/ωn−1, 1)

= ωn−1φ(en−1) + ∂ω′φ(en−1)ω′ +
〈∂2
ω′ω′φ(en−1)ω′, ω′〉

2ωn−1
+K−4E(ω)

with E(ω) 1-homogeneous, satisfying |∂αER| .α 1 for 0 ≤ |α| ≤ N .

In the course of the argument, we will need to consider higher derivatives; above
unspecified as N . These are needed for approximation with constant-coefficient
operators. In the end, we choose N = N(ε) (since δ = δ(ε)) large enough such

that the error term λ−
δN
2 ‖f‖L2 propagates through the argument. Note that by

comparison with Taylor’s formula we have

K−4E(ω) =
∑
|α|=3

3

α!

∫ 1

0

(1− s)2(∂αω′φ)(
sω′

ωn−1
, 1)ds

(ω′)α

ω2
n−1

.

For these constant-coefficient operators, Harris’s argument [16, Lemma 2.2] of
sector counting applies. To apply narrow decoupling for the variable coefficient op-
erator on a small K2-ball with K2 . λ

1
2−ε, we approximate the variable coefficient

phase with a constant coefficient phase. Beltran–Hickman–Sogge [1] worked out
that this is possible by Taylor expansion.
We need the following notations: Let φ be a reduced phase and x̄ ∈ Rn, which will
be the centre of the small ball on which we want to apply decoupling. Recall that
u 7→ ∂xφ

λ(x̄; Ψλ(x̄;u)) is a graph parametrization of the hypersurface Σū. We have

〈x, (∂xφλ)(x̄; Ψλ(x̄;u))〉 = 〈x′, u〉+ xnhx̄(u)

for all x = (x′, xn) ∈ Rn with hz̄(u) = (∂xnφ
λ)(z̄; Ψλ(z̄;u)). We suppose for

technical reasons that a(x;ω) = a1(x)a2(ω); the general case is reduced to this by
Fourier series expansion. Let Ex̄ denote the extension operator associated to Σx̄,
given by

Ex̄g(x) =

∫
Rn−1

ei(〈x
′,u〉+xnhx̄(u))ax̄(u)g(u)du for all x ∈ Rn,

where ax̄(u) = a2 ◦Ψλ(x̄;u)|det ∂uΨλ(x̄;u)|. We recall how Tλ is approximated by
Ex̄: Let x ∈ B(x̄;K2) ⊆ B(0, 3λ/4). By change of variables ω = Ψλ(x̄;u) and a
Taylor expansion of φλ around x̄, we have

Tλf(x) =

∫
Rn−1

ei(〈x−x̄,(∂xφ
λ)(x̄;Ψλ(z̄;u))〉+Eλx̄ (x−x̄;u))aλ1 (x)az̄(u)fz̄(u)du
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with fx̄ = eiφ
λ(x̄;Ψλ(x̄;·))f ◦Ψλ(x̄; ·) and by Taylor expansion

Eλx̄ (v;u) =
1

λ

∫ 1

0

(1− r)〈(∂xxφ)((x̄+ rv)/λ; Ψλ(x̄;u))v, v〉dr.

By the derivative bounds

sup
(v;u)∈B(0,K2)×suppax̄

|∂βωEλx̄ (v;u)| .N 1

and Fourier series expansion, the oscillation of Eλx̄ can be neglected. This yields the
following lemma:

Lemma 8.4 ([1, Lemma 2.6]). Let Tλ be an oscillatory integral operator with

reduced C1) and C2+) phase. Let 0 < δ ≤ 1/2, 1 ≤ K2 ≤ λ
1
2−δ and x̄/λ ∈ X so

that B(x̄;K2) ⊆ B(0, 3λ/4).

• Then

(62) ‖Tλf‖Lp(wB(x̄;K2))
.N ‖Ex̄fx̄‖Lp(wB(0;K2))

+ λ−
δN
2 ‖f‖L2

holds provided that N is sufficiently large depending on n, δ, and p.
• Suppose that |x̄| ≤ λ1−δ′ . There exists a family of operators Tλ all with

phase φ and of type (1, 1, C) data such that

(63) ‖Ex̄fx̄‖Lp(wB(0,K2))
.N ‖Tλ∗ f‖Lp(wB(x̄;K2))

+ λ−
N min(δ,δ′)

2 ‖f‖2

holds for some Tλ∗ ∈ Tλ. The family Tλ has cardinality ON (1) and is
independent of B(x̄;K2).

To apply the narrow decoupling to Ex̄fx̄, we need that the constant coefficient
phase

hx̄(u) = ∂xnφ
λ(x̄; Ψλ(x̄;u))

is K-flat.

Definition 8.5. Let K � 1. We say that a reduced homogeneous phase φ :
Rn × Rn−1\0 → R is K-flat, if all its constant-coefficient approximations hx̄ are
K-flat and

|∂x′∂αξ φ| . K−4 2 ≤ |α′| ≤ N,
|∂xn∂αξ φ| . K−4 3 ≤ |α′| ≤ N.

The derivative bounds are required to control a change of variables in frequen-
cies. We remark that with this definition, Proposition 8.2 now follows from the
constant-coefficient decoupling and the approximation by constant-coefficient oper-
ators provided by the previous lemma.

We can give the definition of the inductive quantity now:

Definition 8.6. For 1 ≤ p ≤ ∞ and R ≥ 1 let Qp,δ(R) denote the infimum over
all constants C for which the estimate

‖Tλf‖Lp(B(0,r)) ≤ C‖f‖Lp(An−1)

holds for 1 ≤ r ≤ R and all oscillatory integral operators Tλ with reduced C1)
and C2+) 1-homogeneous phase, which is λδ-flat, and all λ ≥ R. Furthermore, we
require estimates

|∂αωa(x;ω)| .N 1

for the amplitude function with 0 ≤ |α| ≤ N .
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Before we turn to the parabolic rescaling, note that by homogeneity,

(64) ∂x′φ(x, ω) =

n−1∑
j=1

ωj · ∂ωj∂x′φ(x, ω).

Thus, for each t ∈ (−1, 1) and ω ∈ Rn−1 the Jacobian determinant of the map x′ 7→
((∂ω′φ)(x;ω), φ(x;ω)) is given by ωn−1 · det ∂2

ωx′φ(x;ω) and hence, non-vanishing.
Let x = (x′′, xn−1, xn) ∈ Rn−2 × R × R. The implicit function theorem yields a
smooth local inverse mapping Υ(·, xn;ω), which satisfies

∂ωφ(Υ(x′, xn;ω), xn;ω) = x′′ and φ(Υ(x;ω), xn;ω) = xn−1.

Lemma 8.7 (Parabolic rescaling). Let supp(f) ⊆ Ξ be supported in a ρ−1-plate
and φ be a reduced phase, that is λδ-flat. Then, for any 1 ≤ ρ ≤ R ≤ λ:

(65) ‖Tλf‖Lp(B(0,R)) .δ′ R
δ′Qp,δ(R/ρ)ρ

2(n−1)
p −(n−2)‖f‖Lp .

The proof combines arguments from [1] and [13]. In [1] the phase after parabolic
rescaling was computed, and it was shown how after rescaling we find the bounds
for higher derivatives introduced in Section 3.1 to hold, even for arbitrary phases.
We shall also see that these phases are λδ-flat. Since we need expressions from the
computations in [1], some details are repeated.

Proof. Let ω ∈ Bn−2(0, 1) with (ω, 1) the centre of the ρ−1-plate encasing the
support of g:

supp(g) ⊆ {(ξ′, ξn−1) ∈ Rn−1 : 1/2 ≤ ξn−1 ≤ 2 and
∣∣ ξ′

ξn−1
− ω

∣∣ ≤ ρ−1}.

We perform the change of variables

(ξ′, ξn−1) = (ηn−1ω + ρ−1η′, ηn−1),

after which follows

Tλg(x) =

∫
Rn−1

eiφ
λ(x;ηn−1ω+ρ−1η′,ηn−1)aλ(x; ηn−1ω + ρ−1η′, ηn−1)g̃(η)dη,

where g̃(η) = ρ−(n−2)g(ηn−1ω+ρ−1η′, ηn−1) and supp(g̃) ⊆ Ξ. By Taylor expansion
and homogeneity of the phase, we find

φ(x; ηn−1ω + ρ−1η′, ηn−1) = φ(x;ω, 1)ηn−1 + ρ−1〈∂ω′φ(x;ω, 1), η′〉

+ ρ−2

∫ 1

0

(1− r)〈∂2
ω′ω′φ(x; ηn−1ω + rρ−1η′, ηn−1)η′, η′〉dr.

Let Υω(y′, yn) = (Υ(y′, yn;ω, 1), yn−1) and Υλ
ω(y′, yn) = λΥω(y′/λ, yn/λ) and con-

sider anisotropic dilations

Dρ(y
′′, yn−1, yn) = (ρy′′, yn−1, ρ

2yn) and D′ρ−1(y′′, yn−1) = (ρ−1y′′, ρ−2yn−1)

on Rn and Rn−1, respectively. By definition of Υ, we find

Tλg ◦Υλ
ω ◦Dρ = T̃λ/ρ

2

g̃

where

T̃λ/ρ
2

g̃(y) =

∫
Rn−1

eiφ̃
λ/ρ2 (y;η)ãλ(y; η)g̃(η)dη
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for the phase φ̃(y; η) given by

〈y′, η〉+

∫ 1

0

(1− r)〈∂2
ξ′ξ′φ(Υω(D′ρ−1y′, yn); ηn−1ω + rρ−1η′, ηn−1)η′, η′〉dr

and the amplitude ã(y; η) = a(Υω(D′ρ−1y′, yn); ηn−1ω + ρ−1η′, ηn−1). By a change

of spatial variables, we find

‖Tλg‖Lp(BR) . ρ
n
p ‖T̃λ/ρ

2

g̃‖Lp((Υλω◦Dρ)−1(BR)).

We want to apply the induction hypothesis at scale R/ρ2. First, we make a harmless
linear change of variables: Let L ∈ GL(n− 1;R) be such that Len−1 = en−1 and

∂2
η′η′∂yn φ̃L(0, 0; en−1) = In−1,

where

φ̃L(y; η) = φ̃(L−1y′, yn;Lη).

It suffices to analyze T̃
λ/ρ2

L g̃L with T̃
λ/ρ2

L defined with respect to the datum (φ̃L, ãL)

for φ̃L as above, ãL(y; η) = ã(L−1y′, yn;Lη) and g̃L = |detL|g̃ ◦ L.

To see that φ̃L is still a reduced phase, note the representations

φ̃L(y; η) = ρ2φ(Υω(D′ρ−1 ◦ L−1y′, yn), yn; ηnω + ρ−1L′η′, ηn)

and

〈y′, η〉+
∫ 1

0

(1−r)〈∂2
ω′ω′φ(Υω(D′ρ−1◦L−1y′, yn); ηn−1ω+rρ−1L′η′, ηn−1)L′η′, L′η′〉dr,

where L′ denotes the (n − 2) × (n − 2)-submatrix of L, containing the first n − 2
rows and columns. In [1] was then shown that, starting with a reduced phase φ,

that φ̃L is again a reduced phase. For sake of simplicity, suppose that L = 1 in the
following as taking derivatives only gives additional components of L. For reduced
phase functions the components are bounded. We still have to show that it is still
λδ-flat: Consider the formula

φ̃ = 〈y′, η〉+

∫ 1

0

(1− r)〈∂2
ω′ω′φ(Υω(y′, yn); ηn−1ω + rρ−1η′, ηn−1)η′, η′〉dr

Hence, we find
(66)

∂xn φ̃ =

∫ 1

0

(1−r)
∑
i,j,k

∂2
ω′jω

′
k
∂xiφ(Υω(D′ρ−1y′, yn); ηn−1ω+rρ−1η′, ηn−1)·∂Υi

ω

∂xn
(η′j)(η

′
k)dr

and for Ψ(x̄;u) = u, it is straight-forward from taking additional derivatives in η′

that the resulting extension operator is indeed λδ-flat. Next, we consider

hx̄(u) = ∂xn φ̃(x̄; Ψ(x̄;u)).

By definition of Ψ(x̄;u) = (Ψ′(x̄;u),Ψn−1(x̄;u)), we find

ui = ∂x′i φ̃(x̄; Ψ(x̄;u))

= Ψ′i(x̄;u) + ρ−1

∫ 1

0

(1− r)
∑
`,j,k

∂x′`∂
2
ω′jω

′
k
φ(Υω(D′ρ−1y′, yn);

Ψn−1ω + rρ−1Ψ′(x̄;u)Ψn−1(x̄;u))
∂Υ`

ω

∂x′i
(D′ρ−1y′, yn)Ψ′j(x̄;u)Ψ′k(x̄;u)dr.

(67)



OSCILLATORY INTEGRAL OPERATORS WITH HOMOGENEOUS PHASE FUNCTIONS 37

We find

Ψ(x̄;u) = u+ f(u), |f(u)| . ρ−1.

This also yields bounds for the derivatives of f in (67) and taking the bounds of Ψ
and we see that hx̄(u) is ρ−1-flat. The argument also shows that, if φ was already
ρ̃−1-flat, in particular, |∂x′∂2

ω′ω′φ| . ρ−1 and bounds for higher derivatives, then

φ̃ is ρ−1ρ̃−1-flat. This matches the heuristic that rescaling makes the phase more
resemble the translation-invariant case.

Hence, it suffices to show that

‖Tλf‖Lp(DR) .δ′ Qp,δ(R)Rδ
′
‖f‖Lp

for an ellipse

DR = {x ∈ Rn :
( |x′|
R′
)2

+
( |xn|
R

)2 ≤ 1}

and an oscillatory integral operator with λδ-flat phase. This can be argued as in
[13, Section 11.2]. �

The narrow decoupling allows to separate the contribution of Tλfτ and it remains
to estimate ‖Tλfτ‖Lp(BR). We are ready for the proof of Proposition 8.1:

Proof of Proposition 8.1. It suffices to prove the linear estimate for p satisfying the
additional constraint

p(k, n) < p

by interpolation. In the first step, for λ � 1, we carry out a parabolic rescaling

depending on the phase such that it is enough to consider λδ̃-flat phase functions.

This loses a factor Cφλ
O(n)δ̃ by partitioning Ξ into sectors, which will be admissible

provided that

(68) λO(n)δ̃ ≤ λε.

Let ε > 0. By the assumed k-broad estimate, we find

(69)
∑

BK2∈BK2 ,
BK2∩B(0,R)6=∅

min
V1,...,VA

max
τ /∈Va

∫
BK2

|Tλfτ |p ≤ C̃εKCεR
pε
2 ‖f‖pLp(An−1),

where V1,...,VA are (k − 1)-planes and τ /∈ Va is short-hand for

∠(Gλ(x̄; τ), Va) > K−2,

with x̄ being centre of BK2 .
We choose V1,...,VA for each BK2 , which attains the minimum in (69). By this, we
may write∫

BK2

|Tλf |p . KO(n) max
τ /∈Va

∫
BK2

|Tλfτ |p +

A∑
a=1

∫
BK2

∣∣ ∑
τ∈Va

Tλfτ
∣∣p.

By summing over BK2 and using (69), we find∫
B(0,R)

|Tλf |p . KO(n)C̃εK
CεRpε/2‖f‖pLp +

∑
BK2∈BK2 ,

BK2∩B(0,R)6=∅

A∑
a=1

∫
BK2

∣∣ ∑
τ∈Va

Tλfτ
∣∣p.
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By the decoupling result Proposition 8.2, we find for any δ′ > 0, provided that

K ≤ λδ̃,∫
BK2

∣∣ ∑
τ∈Va

Tλfτ
∣∣p .δ′ Kmax((k−3)( p2−1),0)+δ′

∑
τ∈Va

∫
Rn
|Tλfτ |pwBK2

and summing over a and BK2 , we find
(70)∑
BK2∈BK2

A∑
a=1

∫
BK2

∣∣ ∑
τ∈Va

Tλfτ
∣∣p .δ′ Kmax((k−3)(p/2−1),0)+δ′

∑
τ :K−1

∫
B(0,2R)

|Tλfτ |p.

The separated expressions Tλfτ are amenable to Lemma 8.7 and an application
gives

(71)

∫
B(0,2R)

|Tλfτ |p .δ (Qp,δ̃(R))pRδK2(n−1)−(n−2)p‖fτ‖pLp .

Plugging (71) into (70), we find∫
B(0,R)

|Tλf |p ≤ (KO(n)C̃εK
CεRpε/2 + Cδ,δ′(Qp,δ̃(R))pRδK−e(k,p)+δ

′
)‖f‖pLp(An−1).

This yields

(Qp,δ̃(R))p ≤ KO(n)C̃εK
CεRpε/2 + Cδ,δ′(Qp,δ̃(R))pRδK−e(k,p)+δ

′
.

Since p is as in (59), we find e(k, p) > 0, and may choose δ′ = e(k, p)/2, so that the
K exponent in the second term on the right-hand side is negative. Moreover, we

can choose δ small enough such that 2δ
e(k,p)Cε ≤

pε
8 and O(n)δ

2e(k,p) ≤
ε
8 . This ensures

for the first term on the right-hand side:

KO(n)KCε ≤ D̃εR
3pε
4 .

Thus, if K = K0R
2δ

e(k,p) for a sufficiently large K0, depending on ε, δ = δ(ε), p
and n, it follows that

(Qp,δ̃(R))p ≤ D̃εR
3pε
4 +

1

2
(Qp,δ̃(R))p.

By choosing δ̃ = 3δ
e(k,p) and λ ≥ E(ε) such that λδ̃ ≥ K0λ

2δ
e(k,p) , the proof is complete

because (68) is ensured by O(n)δ
2e(k,p) ≤

ε
8 . �

9. ε-removal away from the endpoint

In the following we prove the estimate

(72) ‖Tλf‖Lp(Rn) .φ,a ‖f‖Lp(An−1)

for p > pn with pn defined in (7). The argument is essentially well-known in the
literature [34, 35, 13] and we shall be brief. The detailed argument from [13] cannot
be applied directly because it relies on non-degenerate curvature properties H2) of
the phase function. However, we shall see that the partial non-degeneracy

(73) ∃non-vanishing eigenvalue of ∂2
ωω〈∂xφλ(x;ω), Gλ(x;ω0)〉|ω=ω0
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suffices for the argument. In the following we suppose that the phase φ satisfies the
non-degeneracy C1) and (73). We shall prove that, if for p̄ ≥ 2 and for all ε > 0
the estimate

(74) ‖Tλf‖Lp(BR) .ε,φ,a R
ε‖f‖Lp(An−1)

holds for all p ≥ p̄, all R-balls BR, and any amplitude, then we find the global
estimate (72) to hold for all p > p̄. The following notion plays an important role in
the argument:

Definition 9.1 (Tao [35]). Let R ≥ 1. A collection {B(xj , R)}Nj=1 of R-balls in

Rd is sparse if {x1, . . . , xN} are (RN)C̄-separated. Here C̄ ≥ 1 is a fixed constant,
chosen large enough to satisfy the requirements of the forthcoming argument.

Like in previous instances of the argument, we are reduced to the analysis of
sparse families of balls.

Lemma 9.2 ([13, Lemma 12.2]). To prove (72) for all p > p̄, it suffices to show
that for all ε > 0 the estimate

(75) ‖Tλf‖Lp̄(S) .ε,φ,a R
ε‖f‖Lp̄(An−1)

holds whenever R ≥ 1 and S ⊆ Rn is a union of R-balls belonging to a sparse
collection, for any choice of amplitude function.

The key ingredient in the proof of Lemma 9.2 is the following covering lemma
due to Tao [34]:

Lemma 9.3 (Covering lemma, [34, 35]). Suppose that E ⊆ Rn is a finite union of 1-

cubes and N ≥ 1. Define the radii Rj inductively by R0 = 1 and Rj = (Rj−1|E|)C̄
for 1 ≤ j ≤ N − 1. Then, for each 0 ≤ j ≤ N − 1, there exists a family of
sparse collections (Bj,α)α∈Aj of balls of radius Rj such that the index sets Ak have

cardinality O(|E|1/N ) and

E ⊆
N−1⋃
j=0

⋃
α∈Aj

Sj,α,

where Sj,α is the union of all the balls belonging to the family Bj,α.

With Lemma 9.3 at hand, the proof of Lemma 9.2 from [13] applies. It remains
to establish the estimates for Tλ over sparse collections of R-balls.

Lemma 9.4. Under the above hypotheses, if p ≥ p̄, then the estimate

‖Tλf‖Lp(S) .ε,φ,a R
ε‖f‖Lp

holds for all ε > 0 whenever S ⊆ Rn is a union of R-balls belonging to a sparse
collection.

Proof. Let (B(xj , R))Nj=1 be a sparse collection of balls. We can suppose that R� λ

and that all B(xj , R) intersect the x-support of aλ. Furthermore, letting cdiam > 0
be a small constant diamX < cdiam so that

|xj1 − xj2 |
λ

. cdiam for all 1 ≤ j1, j2 ≤ N.

Fix η ∈ C∞c (Rn−1) satisfying 0 ≤ η ≤ 1, supp(η) ⊆ Bn−1 and η(z) = 1 for
all z ∈ B(0, 1/2). For R1 := CNR, where C ≥ 1 is a large constant, define
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ηR(z) = η(z/R1). Let ψ ∈ C∞c (Rn−1) satisfy 0 ≤ ψ ≤ 1, supp(ψ) ⊆ Ω and
ψ(ω) = 1 for ω belonging to the ω-support of aλ. Fix 1 ≤ j ≤ N and write

eiφ
λ(xj ;·)ψf = Pjf + (eiφ

λ(xj ;·)ψf − Pjf) =: Pjf + fj,∞,

where Pjf = η̂R1
∗ [eiφ

λ(xj ;·)ψf ]. If one defines

Err(x) =

∫
Rn−1

ei(φ
λ(x;ω)−φλ(xj ;ω))aλ(x;ω)fj,∞(ω)dω,

then it follows that

Tλf(x) = Tλ[e−iφ
λ(xj ;·)Pjf ](x) + Err(x).

For x ∈ B(xj ;R), the term Err(x) is negligible. By Plancherel’s theorem,

Err(x) =

∫
G∨x (z) · (1− ηR1(z))[eiφ

λ(xj ;·)ψf ]∨(z)dz,

where

G∨x (z) =
1

(2π)n−1

∫
Rn−1

ei(〈z,ω〉−φ
λ(x;ω)+φλ(xj ;ω))aλ(x;ω)dω.

Taking the ω-derivatives of the phase of G∨x (z), one obtains

z − λ
(
∂ωφ

(x
λ

;ω
)
− ∂ωφ

(xj
λ

;ω
))

= z +O(R)

⇒ −λ
(
∂αωφ

(x
λ

;ω
)
− ∂αωφ

(xj
λ

;ω
))

= O(R) for |α| ≥ 2.

Hence, if z belongs to the support of 1− ηR1
, then integration by parts shows that

Gx(z) is rapidly decaying in R1, and we find

|Err(x)| ≤ RapDec(R1)‖f‖Lp .
By applying the estimate for Tλ with Rε-loss over each ball B(xj ;R), one obtains

‖Tλf‖Lp(S) ≤
( N∑
j=1

‖Tλ[e−iφ
λ(xj ;·)Pjf ]‖pLp(B(xj ;R))

) 1
p

.ε,a,φ R
ε
( N∑
j=1

‖Pjf‖pLp(An−1)

) 1
p + ‖f‖Lp .

Thus, it suffices to show that( N∑
j=1

‖Pjf‖pLp
) 1
p . ‖f‖Lp .

This follows via interpolation between p = 2 and p = ∞. For p = ∞, this is a
consequence of Young’s inequality. The estimate for p = 2 is by duality equivalent
to ∥∥ N∑

j=1

e−2πiφλ(xj ;·)ψ · [η̂R1 ∗ gj ]
∥∥
L2(Rd−1)

.
( N∑
j=1

‖gj‖2L2

) 1
2 .

By squaring the left-hand side, we find

N∑
j1,j2=1

∫
Rd−1

Gj1,j2(ω)η̂R1
∗ gj1(ω)η̂R1

∗ gj2(ω)dω,

where
Gj1,j2(ω) = ei(φ

λ(xj1 ;ω)−φλ(xj2 ;ω))ψ2(ω).
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Plancherel’s theorem yields
(76)∫

Rn−1

Gj1,j2(ω)η̂R1 ∗gj1(ω)η̂R1 ∗ g2(ω)dω =

∫
Rn−1

G∨j1,j2(z)(ηR1
ǧj1)∗(ηR1

ǧj2)˜(z)dz.

Here (ηR1
ǧj2)˜(z) = ηR1

ǧj2(−z). Fix 1 ≤ j1, j2 ≤ N with j1 6= j2, let z ∈ Rn−1 with
|z| . R1 < |xj2 − xj1 | and consider

G∨j1,j2(z) =
1

(2π)n−1

∫
Rn−1

ei(〈z,ω〉+φ
λ(xj1 ;ω)−φλ(xj2 ;ω))ψ2(ω)dω.

For α ∈ Nn−1 with |α| ≤ 2, consider

∂αω [φλ(xj1 ;ω)− φλ(xj2 ;ω)] = ∂αω 〈∂xφλ(xj1 ;ω), xj2 − xj1〉+O(cdiam|xj2 − xj1 |).

Let ccrit > 0 be a small constant, chosen to satisfy the further needs of the argu-
ments, and ω0 ∈ Ω. Suppose that

(77)
∣∣± xj2 − xj1
|xj2 − xj1 |

−Gλ(xj1 ;ω0)
∣∣ ≥ ccrit.

The non-degeneracy C1) implies that the vector Gλ(x;ω0) spans the kernel of
∂2
ωxφ

λ(x;ω0). This yields, in case of (77),

|∂ω[〈∂xφλ(xj1 ;ω), xj2 − xj1〉|ω=ω0 | & |xj2 − xj1 |

and consequently,

|∂ω[φλ(xj1 ;ω)− φλ(xj2 ;ω)]|ω=ω0 | & |xj2 − xj1 |.

Then, rapid decay of Ǧj1,j2 follows by integration by parts. If (77) fails, then

∂αω 〈∂xφλ(xj1 ;ω),
xj2 − xj1
|xj2 − xj1 |

〉|ω=ω0
= ∂αω 〈∂xφλ(xj1 ;ω), Gλ(xj1 ;ω0)〉|ω=ω0

+O(ccrit).

Hence, by a Van der Corput-argument [31, Proposition 5, p. 342] we still find due
to (73)

|Ǧj1,j2(z)| . |xj2 − xj1 |−
1
2 .

This yields the estimate for the absolute value of (76):

|(76)| . R−C̄/21 ‖(ηR1 ǧj1) ∗ (ηR1 ǧj2)˜‖L1(Rn−1) . R
−C̄/2
1

2∏
j=1

‖ηR1 ǧji‖L1(Rn−1)

. R−C̄/2+n−1
1

2∏
j=1

‖gji‖L2(Rn−1).

Since there are only O(N2) choices of indices j1 and j2 and R1 = CRN , the trivial
estimate

2∏
i=1

‖gji‖L2 .
N∑
j=1

‖gj‖2L2

suffices to sum the off-diagonal terms. The diagonal contribution is estimated by

( N∑
j=1

‖η̂R1 ∗ gj‖2L2(An−1)

)1/2
.
( N∑
j=1

‖gj‖2L2(An−1)

)1/2
.

The proof is complete. �



42 ROBERT SCHIPPA

10. Improved local smoothing for Fourier integral operators

In this section we improve Lp-smoothing estimates for solutions to wave equations
on compact Riemannian manifolds (M, g) with dim(M) ≥ 3: We consider

(78)

{
∂2
t u−∆gu = 0, (t, x) ∈ R×M,
u(·, 0) = f0, u̇(·, 0) = f1

with the solution u to (78) given by

u(t) = cos(t
√
−∆g)f0 +

sin(t
√
−∆g)√
−∆g

f1.

Parametrices for the half-wave equation are provided by Fourier integral oper-
ators (FIOs); see below. By results due to Seeger–Sogge–Stein [27] relying on the
parametrix representation (see also [26, 23] in the Euclidean case), it is known that
the fixed-time estimate

‖u(·, t)‖Lp(Rd) . ‖f0‖Lps̄p (Rd) + ‖f1‖Lps̄p−1(Rd)

with

(79) s̄p = (d− 1)
∣∣1
2
− 1

p

∣∣
is sharp for all 1 < p <∞ provided that t avoids a discrete set. The local smoothing
conjecture due to C. Sogge [28] for the Euclidean wave equation, i.e., (M, g) =
(Rd, (δij)) in (78), states that

(80)
( ∫ 2

1

‖u(·, t)‖p
Lp(Rd)

) 1
p . ‖f0‖Lps̄p−σ(Rd) + ‖f1‖Lps̄p−1−σ(Rd)

for σ < 1
p and 2d

d−1 ≤ p <∞. (Note that s̄p − 1
p = 0 for p = 2d

d−1 .) This conjecture

stands on top of prominent open problems in Harmonic Analysis as it implies as
well the restriction conjecture as the Bochner–Riesz conjecture. Initial progress was
due to Sogge [28] and Mockenhaupt–Seeger–Sogge [24]. Wolff identified decoupling
inequalities [37] to yield sharp local smoothing estimates. Further progress in this
direction was made in [10, 19, 21]. Bourgain–Demeter [5] covered the sharp range
for decoupling inequalities, which implies sharp local smoothing estimates for p ≥
2(d+1)
d−1 . We refer to the survey by Beltran–Hickman–Sogge [2] for local smoothing

estimates for FIOs. Guth–Wang–Zhang [15] verified the Euclidean local smoothing
conjecture for d = 2 by a sharp L4-square function estimate. Gao et al. [8] extended
this to compact Riemannian surfaces. We remark that for d ≥ 3, counterexamples
due to Minicozzi–Sogge [22] show that (80) fails if one replaces Rd with general
compact Riemannian manifolds for σ < 1/p, if p < pd,+ with

(81) pd,+ =

{
2·(3d+1)

3d−3 , if d is odd,
2·(3d+2)

3d−2 , if d is even.

Hence, local smoothing estimates for solutions to wave equations on compact Rie-
mannian manifolds are only conjectured for p ≥ pd,+ with σ < 1/p.

Gao et al. [9] also improved the Euclidean local smoothing estimates for d ≥
3 and 2 ≤ p ≤ 2(d+1)

d−1 due to Bourgain–Demeter by a broad–narrow iteration.
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Presently, we extend their arguments to the variable coefficient case. Let d ≥ 3 and

(82) pd =

{
2 · 3d+5

3d+1 for d odd,

2 · 3d+6
3d+2 for d even.

We show the following:

Theorem 10.1 (Improved local smoothing on compact manifolds). Let (M, g) be a
compact Riemannian manifold with dim(M) ≥ 3. Let s̄p be as in (79), pd ≤ p <∞
with pd as in (82) and σ < 2

p −
1
2 . Let u be a solution to (78). Then, we find the

following estimate to hold:

(83) ‖u‖Lpt ([1,2],Lpx(M)) .M,g,p,σ ‖f0‖Lps̄p−σ(M) + ‖f1‖Lps̄p−σ+1(M).

We can interpolate with the trivial L2-estimate and the sharp local smoothing

estimates for p ≥ 2(d+1)
d−1 due to Beltran–Hickman–Sogge [1] to find a broader range

of estimates (cf. [9, Corollary 1.3]):

Corollary 10.2. Let d ≥ 3 and u be a solution to (78). Then, (83) holds true for
σ < σp, where, if d ≥ 3 is odd,

σp =

{
3d−3

4

(
1
2 −

1
p

)
, 2 < p ≤ pd,

d−1
d+3

(
3d+1
6d+10 −

1
p

)
+ 3d−3

6d+10 , pd < p ≤ 2(d+1)
d−1 ,

and, if d ≥ 3 is even,

σp =

{
3d−2

4

(
1
2 −

1
p

)
, 2 < p ≤ pd,

d−2
d+4

(
3d+2
6d+12 −

1
p

)
+ 3d−2

6d+12 , pd < p ≤ 2(d+1)
d−1 .

It is well-known (cf. [30, Chapter 4], [22, p. 224]) that local parametrices for (78)
take the form of FIOs

(84) (Ff)(x, t) =

∫
Rd
eiφ(x,t;ξ)a(x, t; ξ)f̂(ξ)dξ

with phase functions φ ∈ C∞(Rd+1 × Rd\0), which are 1-homogeneous in ξ and
satisfy C1) and C2+). a ∈ S0(R2d+1) is a symbol of order zero, compactly supported
in (x, t).

It turns out that for the proof of Theorem 10.1, it suffices to prove bounds for
rescaled operators

(85) (Fλf)(x, t) =

∫
Rd
eiφ

λ(x,t;ξ)aλ(x, t; ξ)f̂(ξ)dξ

with aλ and φλ defined like in previous sections. Theorem 10.1 is a consequence of
the following (cf. [1, Section 3]):

Proposition 10.3. Let F be an FIO as in (84) and pd as in (82). Then, we find
the following local smoothing estimate to hold for pd ≤ p <∞:

(86) ‖Fλf‖Lpt,x(Rd+1) .ε,φ,a λ
d
(

1
2−

1
p

)
+ε‖f‖Lp(Rd).

Proposition 10.3 improves on the previously best estimates due to Beltran–
Hickman–Sogge [1], which read

‖Fλf‖Lpt,x(Rd+1) .ε,φ,a λ
(d−1)

2

(
1
2−

1
p

)
+ 1
p+ε‖f‖Lp(Rd)
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for 2 ≤ p ≤ 2(d+1)
d−1 . Beltran–Hickman–Sogge [1] extended the decoupling inequali-

ties in the constant coefficient case [5] to variable coefficients. This argument also
yields local smoothing estimates for FIOs, which do not satisfy the convexity con-
dition C2+). Indeed, the FIOs, for which decoupling yields the sharp smoothing
estimates (cf. [1, Section 4]), are the ones with d odd, and

∂2
ξξ〈∂xφ(x, t; ξ), G0(x, t; ξ)〉

having d−1
2 positive and d−1

2 negative eigenvalues.
For the proof of Proposition 10.3, we run almost the same iteration as in the

proof of Theorem 1.1. The following lemma based on finite speed of propagation
allows to convert L2-estimates for Tλ into Lp-estimates for Fλ:

Lemma 10.4. Let (φ, a) be reduced data and ψ ∈ S(Rd) such that supp(ψ̂) ⊆
B(0, 1),

∑
`∈Zd ψ(x− `) ≡ 1 for any x ∈ Rd. Assume supp(f̂) ⊆ Ad. Then, for any

ε > 0, the following estimate holds true:

|Fλf(x, t)| .ε |Fλ(ψR1+ε(x0)f)(x, t)|

+ RapDec(R)
∑
|`|>Rε

(1 + |`|)−M‖f |ψ`(· − x0)| 12 ‖Lp(w
Bd
R

(x0)
)

(87)

for (x, t) ∈ B(x0, R)× [−R,R], 1 < p <∞, where

ψR1+ε(x0)(x) =
∑
|`|<Rε

ψ(R−1(x− x0)− `).

Proof. The claim follows from a kernel estimate. We have

Fλ(x, t) =

∫
eiφ

λ(x,t;ξ)aλ(x, t; ξ)f̂(ξ)dξ

=
1

(2π)d

∫
ei(φ

λ(x,t;ξ)−〈y,ξ〉)aλ(x, t; ξ)f(y)dydξ.

We set Kλ(x, t; y) =
∫
ei(φ

λ(x,t;ξ)−〈y,ξ〉)aλ(x, t; ξ)dξ. Let Φλ(x, y, ξ, t) = φλ(x, t; ξ)−
〈y, ξ〉. We have

∇ξΦλ(x, y, ξ, t) = ∇ξφλ(x, t; ξ)− y.
For a reduced phase function, we have

∇ξφλ(x, 0; ξ) = x, ∇ξφλ(x, t; ξ) =
1

λ
∇ξ
∫ λt

0

∂tφ
λ(x, s; ξ)ds+ x.

By |∇ξ∂tφ(x, t; ξ)| . 1 for a reduced phase function, we find for |t| ≤ R and
|x− y| ≥ R1+ε rapid decay by non-stationary phase. We have the estimate

|Kλ(x, t; y)| ≤ CN (1 +R|x− y|)−N .

Provided that |∂αξ a| ≤ cpar for 0 ≤ |α| ≤ N and reduced phase functions, CN can

be chosen uniformly. By this, we find (87) to hold. �

By the same arguments as in Section 8, we can show the following narrow de-
coupling:

Proposition 10.5. Let BK2 ⊆ B(0, λ1−δ′) be a K2-ball. Let (φ, a) be a K-flat
datum. Let k ≥ 3 and V be a (k − 1)-dimensional vector space. Suppose that
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supp(f) ⊆
⋃
ν Sν be a union of K−1-slabs such that ∠(Gλ(x̄; τ), V ) ≤ K−2. Then,

we find the following estimate to hold:

(88) ‖Tλf‖Lp(Bd+1

K2 ) .δ K
δ
(∑

ν

‖Tλfν‖2Lp(w
B
d+1

K2
)

)1/2
+ λ−

min(δ,δ′)N
2 ‖f‖L2

for 2 ≤ p ≤ 2(k−1)
k−3 .

Like in Proposition 8.2, the amplitude functions on the right-hand side are
slightly different, but satisfy uniform bounds. The discrepancy will be hidden in
the induction hypothesis again.

As further ingredient we use the following Lorentz rescaling for FIOs. LetQp,δ(R)
be the infimum over all constants such that

‖Fλf‖Lp(B(0,R)) ≤ Qp,δ(R)Rd
(

1
2−

1
p

)
‖f‖Lp

for 1 ≤ R ≤ λ and all FIOs F with λδ-flat phase functions and amplitude functions,
which satisfy

|∂αξ a(x, t; ξ)| ≤ cpar
for 0 ≤ |α| ≤ N .

Lemma 10.6 (Lorentz rescaling for FIOs). Let (φ, a) be reduced data with φ a

λδ-flat phase function and f̂ supported in a ρ−1-slab in Ad. Then, for any 1 ≤ ρ ≤
R ≤ λ:

(89) ‖Fλg‖Lp(B(0,R)) .δ′ R
δ′Qp,δ(R/ρ

2)Rd
(

1
2−

1
p

)
ρ

2(d+1)
p −d‖g‖Lp .

Proof. The proof has much in common with the proof of Lemma 8.7. However,
after rescaling, we use almost orthogonality in space-time, which comes from finite
speed of propagation (cf. Lemma 10.4). Let ω ∈ Bd−1(0, 1) with (ω, 1) the centre
of the ρ−1-slab encasing the support of ĝ:

supp(ĝ) ⊆ {(ξ′, ξd) ∈ Rd : 1/2 ≤ ξd ≤ 2 and
∣∣ ξ′
ξd
− ω

∣∣ ≤ ρ−1}.

We perform the change of variables:

(ξ′, ξd) = (ηdω + ρ−1η′, ηd),

after which follows

(Fλg)(x, t) =

∫
Rd
eiφ

λ(x,t;ηdω+ρ−1η′,ηd)aλ(x, t; ηdω + ρ−1η′, ηd)ˆ̃g(η)dη,

where ˆ̃g(η) = ρ−(d−1)ĝ(ηdω+ρ−1η′, ηd) and supp(
ˆ̃
f) ⊆ Ξ. By Taylor expansion and

homogeneity of the phase, we find

φ(x, t; ηdω + ρ−1η′, ηd) = φ(x, t;ω, 1)ηd + ρ−1〈∂ξ′φ(x, t;ω, 1), η′〉

+ ρ−2

∫ 1

0

(1− r)〈∂2
ξ′ξ′φ(x, t; ηdω + rρ−1η′, ηd)η

′, η′〉dr.

Let Υω(x, t) = (Υ(x, t;ω, 1), xd) and Υλ
ω(x, t) = λΥω(x/λ, t/λ) and consider anisotropic

dilations

Dρ(x
′, xd, t) = (ρx′, xd, ρ

2t) and D′ρ−1(x′, xd) = (ρ−1x′, ρ−2xd)

on Rd+1 and Rd, respectively. By definition of Υ, we find

Fλg ◦Υλ
ω ◦Dρ = F̃λ/ρ

2

g̃,
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where

F̃λ/ρ
2

g̃(y, τ) =

∫
Rd
eiφ̃

λ/ρ2 (y,τ ;η)ãλ/ρ
2

(y, τ ; η)ˆ̃g(η)dη

for the phase φ̃(y, τ ; η) given by

〈y, η〉+

∫ 1

0

(1− r)〈∂2
ξ′ξ′φ(Υω(D′ρ−1y, yd); ηdω + rρ−1η′, ηd)η

′, η′〉dr

and the amplitude

ã(y, τ ; η) = a(Υω(D′ρ−1y; τ); ηdω + ρ−1η′, ηd).

By change of space-time variables, we find

(90) ‖Fλg‖Lp(BR) . ρ
d+1
p ‖F̃λ/ρ

2

g̃‖Lp((Υλω◦Dρ)−1(BR).

Note that (Υλ
ω◦Dρ)

−1(BR) = DR is roughly a set of size R/ρ×. . .×R/ρ×R×R/ρ2.
We want to apply the induction hypothesis, to which end we use finite speed of
propagation: Since the time-scale is R/ρ2, the localization by Lemma 10.4 yields

(91) ‖F̃λ/ρ
2

g̃‖Lp(DR) .δ′ R
δ′Qp,δ(R/ρ

2)(R/ρ2)d
(

1
2−

1
p

)
‖g̃‖Lp .

Since g̃(x) = g(ρx′, xd − ωx′), we find

(92) ‖g̃‖Lp = ρ−
d−1
p ‖g‖Lp .

Taking (90), (91), and (92) together, we find (89) to hold. �

We are ready for the proof of the following proposition:

Proposition 10.7. Let d ≥ 3, 2 ≤ k ≤ d, and λ ≥ 1. If for all ε > 0 and

p̄(k, d) ≤ p ≤

{
∞, 2 ≤ k ≤ 3,

2k−1
k−3 , k ≥ 4,

with p̄(k, d) =

{
2(d+1)
d , k = 2,

2 · 2d−k+5
2d−k+3 , k ≥ 3,

FIOs with reduced data (φ, a) obey the k-broad estimate for all 1 ≤ K ≤ R ≤ λ and
some fixed choice of A

‖Fλf‖BLpk,A(Bd+1
R ) ≤ C̄εK

CεRεRd
(

1
2−

1
p

)
‖f‖Lp ,

then we have for some Dε,φ,a

(93) ‖Fλf‖Lp(Rd+1) ≤ Dε,φ,aλ
d
(

1
2−

1
p

)
+ε‖f‖Lp(Rd).

Proposition 10.3 follows from Proposition 10.7 by choosing k = d+5
2 for d odd

and k = d+4
2 for d even. This will complete the proof of Theorem 10.1.

Proof of Proposition 10.7. The proof has many similarities with the proof of Propo-
sition 8.1, and we shall be brief. By one parabolic rescaling depending on the phase
as in the beginning of the proof of Proposition 8.1, we can suppose that (φ, a) is
λδ-flat, and R ≤ λ1− ε

10d .

In the following Qp,δ̃(R) denotes the smallest constant such that for all λδ̃-flat
phase functions and normalized amplitude functions, we have

‖Fλf‖Lp(B(0,R)) ≤ Rd
(

1
2−

1
p

)
Qp,δ̃(R)‖f‖Lp .

It suffices to prove that for any ε > 0 there is Cε > 0 such that Qp,δ̃(R) ≤ CεRε for

any R ≤ λ1− ε
10d .
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For a given ball BK2 ⊆ B(0, R), let V1, . . . , VA be (k − 1)-dimensional linear
subspaces, which achieve the minimum in the definition of the k-broad norm, such
that ∫

Bd+1

K2

|Fλf(x, t)|pdxdt . KO(1) max
τ /∈V`

∫
Bd+1

K2

|Fλfτ (x, t)|pdxdt

+

A∑
`=1

∫
Bd+1

K2

∣∣ ∑
τ∈V`

Fλfτ (x, t)
∣∣pdxdt.

Summing over a finitely overlapping family
(
BK2

)
= BK2 covering B(0, R) yields∫

B(0,R)

|Fλf(x, t)|pdxdt . KO(1)
∑

BK2∈BK2

min
V1,...,VA

max
τ /∈V`

∫
BK2

|Fλfτ (x, t)|pdxdt

+
∑

BK2∈BK2

A∑
`=1

∫
BK2

∣∣ ∑
τ∈V`

Fλfτ (x, t)|pdxdt.

By the broad norm estimate, we find∑
BK2∈BK2

min
V1,...,VA

max
τ /∈V`

∫
BK2

|Fλfτ (x, t)|pdxdt ≤ C̄εKCεR
εp
2 Rdp

(
1
2−

1
p

)
‖f‖pLp .

The narrow contribution is estimated by Proposition 10.5:

A∑
`=1

∫
BK2∈BK2

∣∣ ∑
τ∈V`

Fλfτ (x, t)
∣∣pdxdt ≤ CδKδKmax((k−3)

(
1
2−

1
p

)
p,0)

×
∑
τ

∫
Rd+1

wBK2 |Fλfτ (x, t)|pdxdt,

(94)

where we have used the sector counting estimate

#{τ : τ ∈ V`} . max(1,Kk−3).

Summing over BK2 ∈ BK2 in (94), we find∑
BK2∈BK2

A∑
`=1

∫
Bd+1

K2

∣∣ ∑
τ∈V`

Fλfτ (x, t)
∣∣pdxdt ≤ CδKδKmax((k−3)

(
1
2−

1
p

)
p,0)

×
∑
τ

∫
Rd+1

wB(0,2R)|Fλfτ (x, t)|pdxdt.

By Lemma 8.7, we find∫
B(0,R)

|Fλfτ (x, t)|pdxdt

.δ1 K
−2d
(

1
2−

1
p

)
p+2Qp

p,δ̃
(R/K2)Rdp

(
1
2−

1
p

)
+δ1‖fτ‖pp + RapDec(R)‖f‖pp.

(95)

Note the following by Plancherel’s theorem for p = 2, the kernel estimate for p =∞,
and interpolation:

(96)
(∑

τ

‖fτ‖pp
) 1
p . ‖f‖p.
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Hence, summing (95) over τ yields by (96)∫
Bd+1
R

|Fλf(x, t)|pdxdt ≤ CεRdp
(

1
2−

1
p

)
+ εp

2 ‖f‖pLp

+ Cδ,δ1K
δRdp

(
1
2−

1
p

)
+δ1K−e(p,k,d)Qp

p,δ̃
(R/K2)‖f‖pLp

with

e(p, k, d) = max{2d
(1

2
− 1

p

)
p− 2, 2d

(1

2
− 1

p

)
p− 2− (k − 3)

(1

2
− 1

p

)
p}.

We find e(p, k, d) ≥ 0, if

p ≥

{
2(d+1)
d , k = 2,

2 · 2d−k+5
2d−k+3 , k ≥ 3.

By the induction hypothesis, we have

Qp
p,δ̃

(R) ≤ KO(1)C̃εK
C̄εR

εp
2 + Cδ,δ1R

δ1Qp
p,δ̃

(R)K−e(p,k,d)+δ.

We can choose δ(ε), δ1(ε), and K = K0R
δ̃ similarly as at the end of the proof of

Proposition 8.1 to close the induction. �
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