
Consistency Preservation in the
Development Process of Automotive

So�ware

Master’s Thesis of

Manar Mazkatli

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Jun. Prof. Anne Koziolek
Second reviewer: Prof. Ralf Reussner
Advisor: Dr.-Ing. Erik Burger
Second advisor: Dr.-Ing. Jochen Quante

01. January 2016 – 30. June 2016

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.
Karlsruhe, 30.06.2016

. .
(Manar Mazkatli)

Abstract

The development of automotive systems is becoming more and more complex as several
modeling formalisms and languages are used to describe the same system from di�erent
viewpoints. These formalisms and languages o�er domain-speci�c analysis of the system
under development using speci�c modeling notations and levels of abstraction. The Au-
tomotive Electronics (AE) division of Bosch-group, for example, uses SysML for system
engineering, AMALTHEA platform for embedded multi- or many- core software engineer-
ing, and the ASCET product family for embedded automotive software development.

These heterogeneous models can share common semantics. That implies that changes
in an artifact may require multiple updates in di�erent models due to the fragmentation of
information across the models. These models are separately developed by di�erent project
partners. Therefore, the synchronisation between them is more complex, an error-prone
and may result in an inconsistency if not all related a�ected models are synchronized.

Currently, the consistency is preserved and reestablished using an expensive cumber-
some manual process. Furthermore there is no e�cient mechanism to check consistency
between the models. The potential inconsistent cases are detected for the �rst time at
a very late stage, e.g., by the linker. Besides that, resolving the con�icts at this stage is
expensive and leads also to drift and erosion between the models and the implementation.

The Vitruvius approach for view-based software development provides synchronization
mechanism between heterogonous models based on change-driven model transformations,
which automatically propagate the change to the related artifacts. These transformations
can be generated by Mapping Invariants and Responses (MIR) language from declarative
expression of the correspondence rules between the metamodels. These rules de�ne the
mapping between the artifacts of the metamodels, the consistency constraints and the
appropriate actions to keep the consistency when the constraints are violated. However,
the current Vitruvius prototype supports neither automotive modeling tools nor the ability
to integrate legacy models that are developed by external tools.

The proposed work in this thesis enables the Vitruvius approach to support the auto-
motive system development through two contributions. The �rst one is identifying the
correspondence rules between the SysML, ASCET, and AMALTHEA metamodels and
explaining the obstacles that prevents using the current version of MIR language to declare
these rules. The second contribution is extending Vitruvius to enable the integration
of legacy models in the development process. For this purpose, this work proposes an
algorithm for automatic consistency check and semi-automatic resolving of the potential
con�icts.

This algorithm is evaluated by a case study from AE division of Bosch-group. In this
case study, a control algorithm is de�ned using SysML, AMALTHEA and ASCET models.
This evaluation shows the ability of our proposed algorithm to automatically detect the
inconsistent cases between these models and solve the con�icts semi-automatically during

i

the design stage. As a result, the costs and the e�orts of preserving the consistency are
signi�cantly reduced compared to the previous manual solutions.

ii

Zusammenfassung

Die Entwicklung von Automobilesystemen wird immer komplexer, da mehrere Model-
lierungsformalismen und Sprachen verwendet werden, um das gleiche System von ver-
schiedenen Standpunkten zu beschreiben. Diese Formalismen und Sprachen bieten domä-
nenspezi�sche Analyse des Systems mittels spezi�schen Modellierungsnotationen und
Abstraktionsebenen.

Zum Beispiel verwendet der Bosch-Geschäftsbereich Automotive Electronics (AE) SysML
für Systems Engineering, die AMALTHEA-Plattform für eingebettete Vielkern-/ Mehrkern-
Softwaretechnik und die ASCET-Produktfamilie für modellbasierte Entwicklung eingebet-
teter Automobilsoftware. Diese heterogenen Modelle können eine gemeinsame Semantik
teilen. Daher können die Änderungen in einem Artefakt aufgrund der Fragmentierung von
Informationen auf mehreren Modellen zu mehreren Updates in verschiedenen Modellen
führen. Darüber hinaus werden diese Modelle separat voneinander manuell von unter-
schiedlichen Projektpartnern gep�egt. Dies kann zur Inkonsistenz führen, wenn nicht alle
durch die Änderung beein�usste Modelle synchronisiert sind.

Momentan wird die Konsistenz mit einem teuren umständlichen manuellen Verfahren
erhalten. Dazu gibt es keinen wirksamen Mechanismus, um die Konsistenz der Modelle
zu prüfen. Die potentielle Inkonsistenz wird erst in einer sehr späten Phase wie beim
Übersetzen/Linken festgestellt, dabei werden nicht alle Inkonsistenzen entdeckt. Außerdem
ist die Kon�iktlösung im dieser Phase teuer und führt auch zu Drift und Erosion zwischen
den Modellen und der Implementierung.

Der Vitruvius-Ansatz für die sichtbasierte Software-Entwicklung bietet einen Synchro-
nisationsmechanismus zwischen heterogenen Modellen an, der die Änderung automatisch
dank der modelbasierten Transformationen auf die relevanten Artefakte propagiert. Diese
Transformationen können durch Mapping Invarianten und Responsen (MIR) Sprache aus
deklarativem Ausdruck der Korrespondenzregeln zwischen den Metamodellen generiert
werden. Diese Regeln de�nieren die Abbildung zwischen den Artefakten der Metamodelle,
die Konsistenz-Einschränkungen und die entsprechenden Maßnahmen, die die Konsistenz
halten, wenn die Einschränkungen verletzt werden. Allerdings unterstützt die aktuellen
Vitruvius Prototyp weder Automobil-Modellierungs-Werkzeuge noch die Fähigkeit, die
von externen Tools entwickelte Legacy Modelle zu integrieren.

Durch zwei Beiträge ermöglicht es meine Masterarbeit dem Vitruvius-Ansatz, die
Automobil-Systementwicklung zu unterstützen. Der erste Beitrag ist die Identi�zierung der
Haupt-Korrespondenzregeln zwischen den SysML, ASCET und AMALTHEA Metamodelln
und Erklärung der Hindernisse, die den deklarative Ausdruck dieser Regeln sowie die
automatische Generierung der Modell-Transformationen verhindern.

Der zweite Beitrag erweitert Vitruvius, um die Integration von Legacy-Modelle in den
Vitruvius Entwicklungsprozess zu ermöglichen. Zu diesem Zweck stellt diese Arbeit einen

iii

Algorithmus für die automatische Konsistenzprüfung und halbautomatische Kon�iktlösung
vor.

Dieses Algorithmus wird durch eine Fallstudie von AE-Bosch-Geschäftsbereich evaluiert.
In dieser Fallstudie wird ein Steuer-Algorithmus mit SysML, AMALTHEA und ASCET
Modelle de�niert. Die Evaluation zeigt die Fähigkeit unseres vorgeschlagenen Algorithmus,
die inkonsistenten Fälle zwischen diesen Modellen automatisch zu entdecken und die
Kon�ikte halbautomatisch während der Entwurfsphase zu lösen. Dies reduziert deutlich
die zur Konsistenzhaltung gebrachten Kosten und Bemühungen im Vergleich zu den
bisherigen manuellen Lösungen.

iv

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Contributions . 3
1.2 The structure of the thesis . 4

2 Foundations 5
2.1 Model driven development . 5
2.2 View-based development . 6

2.2.1 The synthetic approach . 7
2.2.2 The projective approach . 8

2.3 Vitruvius . 9
2.3.1 Vitruvius development process 10
2.3.2 Synchronization mechanism in Vitruvius 12
2.3.3 Integration of a legacy model in Vitruvius environment 13

2.4 MIR Language . 15
2.4.1 MIR syntax . 16

2.5 AMALTHEA . 17
2.5.1 Overview of AMALTHEA data model 18
2.5.2 Model-based development process: 18

2.6 ASCET . 19
2.7 SysML . 22

3 Automotive system development in the context of Bosch case study 25
3.1 The challenges of automotive system development 25
3.2 Overview about the automotive system development by Bosch 26
3.3 Bosch case study . 26

3.3.1 AMALTHEA modeling process 28
3.3.2 ASCET modeling process . 30
3.3.3 The integration of the ASCET and AMALTHEA models 32

3.4 The consistency problem in Bosch case study 32
3.5 Research question . 33

4 Applying Vitruvius approach in automotive systems development 35
4.1 Research objective . 35

v

Contents

4.2 Using MIR language to declare the consistency rules 36
4.2.1 The reason of using MIR language 36
4.2.2 The evaluation mechanisms . 36
4.2.3 The problems by MIR language and the suggested solutions . . . 37

4.3 Development process using Vitruvius . 53
4.4 Support the scenario of legacy models . 54

4.4.1 S1: Describe the correspondences between the metamodels of
legacy models . 57

4.4.2 S2: Build the correspondences between legacy models 58
4.4.3 S3: Find and resolve inconsistent cases 59

4.5 Modeling using external tools . 59
4.5.1 Using Vitruvius as a view-based development approach 61
4.5.2 Using Vitruvius to ensure the consistency between legacy models 62

5 Evaluation 65
5.1 Evaluation of the correspondences rules expression using MIR language . 65

5.1.1 The main correspondences between the case study metamodels . 65
5.1.2 The evaluation and the feedback of the found correspondence rules 72
5.1.3 The result of MIR evaluation . 72

5.2 Applying the extended Vitruvius development process 73
5.3 Support and integration of the legacy models by Vitruvius 74

5.3.1 The mapping of the correspondences 74
5.3.2 The integration of AMALTHEA and ASCET models 75
5.3.3 Results . 76

5.4 Vitruvius development process using external tools 79
5.5 Evaluate the consistency preservation by Vitruvius in practice 81

6 Related work 85
6.1 Consistency preservation in automotive system development 85

6.1.1 Consistency preservation using document-based approach 85
6.1.2 Consistency preservation depending on model-based approach . 86

6.2 Integration of the legacy models in the change-based development 89

7 Conclusion 91
7.1 Summary . 91
7.2 Future work . 92

Bibliography 93

8 Appendix 97
8.1 Abbreviations . 98
8.2 AMALTHEA models . 99

8.2.1 Software model . 99
8.2.2 Components model . 103
8.2.3 Runnable items . 104

vi

Contents

8.3 ASCET model . 104
8.4 MIR examples . 105

vii

List of Figures

1.1 Automotive system modeling from [18] 2

2.1 View and view type terminology from [20] 6
2.2 The e�ort of synchronization in synthetic approach of model-based devel-

opment from [14] . 7
2.3 The e�ort of synchronization in projective approach of model-based de-

velopment from [14] . 8
2.4 Example of a SUM metamodel and some views for component-based soft-

ware engineering from [27] . 10
2.5 Use cases for developer roles in Vitruvius from [15] 11
2.6 Process for the creation of the modular SUM metamodel from [15] 12
2.7 Editing work�ow in views[15] . 13
2.8 Integration process for code using the linking integration strategy from [29] 14
2.9 The main steps of the model-based development using AMALTHEA [33] 19
2.10 The development process of ASCET . 20
2.11 ASCET block diagram editor . 21
2.12 Relationship Between SysML and UML from [18] 22
2.13 SysML diagram types from [18] . 24

3.1 Layout of the control algorithm ECU . 27
3.2 One of the scenarios used by Bosch for automotive system development 27
3.3 IBD diagram of the control algorithm case study 28
3.4 Automotive system development using AMALTHEA from [53] 29
3.5 The software architectures of the case study (Tasks, Runnables and labels)

that are de�ned using AMALTHEA environment 30
3.6 The software distribution and memory mapping in AMALTHEA from [33] 31
3.7 Modeling of control algorithm in ASCET using block diagram editor . . 32

4.1 Composite pattern structure illustrates the multiple ways to refer to on
object of class B. 38

4.2 Example of referring to object (TaskRunnableCall) using unde�ned or-
der of objects (LabelSwitch, ProbabilitySwitch and CallSequence) . . 40

4.3 Example of mapping one-to-many relation 41
4.4 The task type in ASCET . 42
4.5 The Task and ISR types in AMALTHEA 42
4.6 Examples of one way association, in each one the metaclass A is not able

to access the class B directly . 51
4.7 Example of no direct access problem . 51
4.8 The metaclass of AscetModule . 52

ix

List of Figures

4.9 The updated use cases for developer roles in Vitruvius. Use cases colored
with red are performed in this work. Use case colored with green will be
performed in the future work. Old use cases is colored with gray. 55

4.10 Integrate structural models into change-based development approach . . 56
4.11 Resolve con�icts during the integration of legacy models. 60
4.12 Vitruvius development process using external tools. 62
4.13 Using Vitruvius to resolve the inconsistency of the models, which are

created and modi�ed using external tools 63

5.1 The component type in AMALTHEA . 66
5.2 The Label type in AMALTHEA . 67
5.3 ASCET data types . 68
5.4 The inconsistent legacy models of the test case before the integration into

Vitruvius platform (the round rectangles represent the �les of the models
and the bulleted list represent the model’s elements). 76

5.5 The resulting consistent test case models after resolving the inconsistency
by applying suggested synchronization algorithm.(the round rectangles
represent model �les and the bulleted list represent the model’s elements.
Elements created by Vitruvius to resolve the inconsistency are colored
with yellow). 77

5.6 The inconsistent case study legacy models. (the round rectangles represent
model �les and the bulleted list represent the model’s elements.) 80

5.7 Case study models after the �rst integration in Vitruvius platform. (the
round rectangles represent model �les and the bulleted list represent the
model’s elements. Elements created by Vitruvius to resolve the inconsis-
tency are colored with yellow) . 81

5.8 The consistent case study models after the second integration in Vitruvius
platform (the round rectangles represent model �les and the bulleted list
represent the model’s elements.) . 81

8.1 Metamodel excerpt for Task, ISR and Stimulus 99
8.2 Metamodel excerpt for Stimulus and Periodic 100
8.3 Metamodel excerpt for AMALTHEA data types 101
8.4 Callgraph structure . 102
8.5 Components model in AMALTHEA, which is central accessible through

the ComponentsModel type . 103
8.6 The runnable items in AMALTHEA . 104
8.7 The AscetModule type in ASCET . 105

x

List of Tables

5.1 Examples of the correspondences between AMALTHEA and ASCET meta-
models . 69

5.2 Examples of the correspondences between SysML and ASCET 71
5.3 Summary of MIR problems . 73

xi

1 Introduction

The development of large systems or System of Systems (SoS) [42] is an inherently complex
process due to the varied perspectives and viewpoints considered during the development.
This complexity justi�es the tendency of developers to adopt the Model-Driven Develop-
ment MDD approach. According to this paradigm, all concepts and entities are represented
as models with a high level of abstraction, which simpli�es the design independently of
the used platform and allows reusability and automatic code generation.

The developers also use the view-based software engineering approach to cope with
the aforementioned complexity. In this approach the information of the system is repre-
sented using di�erent domain-speci�c models and languages, which increases the level of
abstraction.

The view-based development according to ISO [39] is based on one of the following
approaches: The synthetic approach and the projective approach. The synthetic approach
de�nes multiple metamodels and instantiates them as multiple views, whereas the pro-
jective approach uses a common formalism in which all viewpoints of the system can be
represented.

In the automotive systems development [50] the synthetic approach is the most widely
used to bene�t from the di�erent speci�c existing modeling tools.

Therefore, speci�c heterogeneous models are built by di�erent project partners using
diverse tools to describe the system from di�erent perspectives. Among these are for
example system engineering models which describe the structure of the system, software
models which describe the behaviour of the software and performance models which
ensure that the development meets the non-functional requirement. (see the �gure 1.1).

The fragmentation and redundancy of the information overall di�erent instances of
metamodels in the synthetic approach can lead to inconsistency when for example the
overlapping elements are modi�ed only in subset of the models. The synchronization
between these heterogeneous models requires a great e�ort compared to projective ap-
proach, because these models, which share the same semantics, are separately developed
using modeling notations that belong to di�erent metamodels.

Therefore, the project partners depend on the exchange of the information and documen-
tation along the development process to develop consistent models. This process, however,
is expensive because some of the exchanged �les are written per hand. Moreover, each
modi�cation of one of the models requires new synchronization, which is also performed
manually and takes more time. That is because it should be performed between each pair
of the models on one hand and the mapping between the metamodels is either hidden in
the modeling tools or not explicitly de�ned on the other hand.

Furthermore, the manual speci�cation and synchronization could lead to inconsistency
between the models developed separately. Detecting the eventual inconsistency is only
possible at the assembly stage when the di�erent previously generated codes are inte-

1

1 Introduction

Figure 1.1: Automotive system modeling from [18]

grated and compiled. The con�icts will cause compiling or linking errors. These require
much e�ort to be resolved as each compiling process may take hours. Besides that, the
inconsistency can cause drift and erosion between the models and the implementation
because keeping the models synchronized with implemented changes made to resolve
the inconsistency is an error-prone and time consuming process as long as there is no
proper tool that supports or veri�es the synchronization between the models and their
implementation.

The problems discussed above emphasize the need for an e�cient mechanism to syn-
chronize the automotive models and check the consistency between them.

The problem of synchronization between multiple views is addressed by the projective
approach of view-based development, which eases the synchronization through repre-
senting the views in a single model. This approach is adopted by the OSM (Orthographic
Software Modeling) [1] concept, which stores the whole information of the system in a
single underlying model (SUM) so that the end users can generate their views from this
SUM and synchronize them again to the SUM. This approach, however, cannot be used in
the automotive industry considering that the SUM would be too general and the views
will be speci�c to a project and cannot be reused.

The Vitruvius approach is based on the OSM concept [13]. This approach combines
the di�erent legacy metamodels of the system to serve as a modular underlying model
instead of a monolithic (SUM) by OSM. The modular SUM is constructed from the legacy
metamodels coupled with the consistency rules and synchronization mechanisms. The
developer can consequently generate �exible views dynamically according to their roles
by instantiating parts of the SUM called view types. In this way, the Vitruvius approach
avoids the restriction of reusability by OSM and eases the synchronization between the
views through recording atomic changes and propagating them only to the related artifacts
from the SUM the model-based transformations.

2

1.1 Contributions

For these reasons, this work is based on Vitruvius approach in order to develop and
maintain consistent automotive models. This requires Vitruvius to support the further
developments of existing legacy models on one hand and to allow modeling using speci�c
modeling tools on the other hand. However, the current prototype of Vitruvius only
supports the development of new views generated from the SUM and does not provide a
mechanism to further develop legacy models created using other modeling tools.

1.1 Contributions

The main contribution is extending Vitruvius approach in order to support the further
development of legacy models and the use of external domain-speci�c modeling tools
during applying Vitruvius approach. The main purpose is to apply Vitruvius in order to
improve automotive system development (as type of SoS), where the consistency should be
preserved between large number of models (including legacy models) developed separately
from di�erent project partner using diverse modeling tools. To achieve this purpose the
following sub-contributions are performed and evaluated by a case study from the AE
division of company Robert Bosch GmBH 1:

Extend the development process of Vitruvius The Vitruvius platform is already prototyp-
ically implemented. My contribution is de�ning and implementing the new processes
which have to be included in order to support automotive system development. The new
processes are importing of legacy models in Vitruvius platform, integrating them and
resolving the inconsistencies if any are found.

Moreover, I will describe two scenarios to develop heterogeneous consistent models
using Vitruvius. The �rst one is based on continuously using Vitruvius to synchronize
and resolve the inconsistency despite of the modeling using external tools. The second
one uses Vitruvius from time to time in order to check the consistency of the models and
resolve potential con�icts.

Strategy to integrate the legacymodels in change-based platform In this work I introduce
a strategy to integrate di�erent legacy models in change-based platform like Vitruvius.
This strategy is evaluated already by integrating legacy automotive models of a case study
from Bosch in Vitruvius platform.

Evaluation of the declaration of consistency rules using MIR language In this study I eval-
uate the declarative representation of consistency rules using MIR (Mapping Invariants
Responses) language, which is supported by Vitruvius and de�nes the correspondences
between the di�erent metamodels in purpose of creating a modular SUM. The evaluation
of MIR is based on using it to declare the correspondences between the metamodels of
Bosch case study (AMALTHEA, ASCET and SysML). As a result I discuss in this work the

1see http://www.bosch.de/de/de/our_company_1/business_sectors_and_divisions_1/automotive_

electronics_1/automotive-electronics.html

3

http://www.bosch.de/de/de/our_company_1/business_sectors_and_divisions_1/automotive_electronics_1/automotive-electronics.html
http://www.bosch.de/de/de/our_company_1/business_sectors_and_divisions_1/automotive_electronics_1/automotive-electronics.html

1 Introduction

found problems and the points which have to be developed. Furthermore I suggest four
solutions to improve MIR.

1.2 The structure of the thesis

The thesis is structured as follows: the next chapter 2 gives an overview about the main
foundations. In this chapter I describe the Vitruvius approach in more detail. I will also
introduce the main standards used by Bosch and related to the case study, which are:
SysML, AMALTHEA and ASCET.

Chapter 3 describes the development process of the automotive system and explains
one of the development scenarios followed by Bosch through examples of the case study.

Then the inconsistency problem encountered during development process is illustrated
and the related research questions are arisen.

Chapter 4 begins with the research objectives and describes how the automotive system
as an example of system of system can be developed using Vitruvius.

The evaluation with the answers of the research questions will be discussed in chapter
5. After that related work is discussed in chapter 6.

Chapter 7 gives summary and draws some conclusion.

4

2 Foundations

This chapter presents the conceptual and technical foundation, on which this work based.
First, I will give a brief overview of model-driven and view-based development. Section
2.3 presents Vitruvius approach, which is applied in this work to keep the consistency
between the automotive models that are used by the case study of the AE division of
Bosch GmBH. Section 2.4 introduces the MIR language that is used to declare the semantic
relations between automotive metamodels.

Then I will introduce the following models that are related to the case study of this
work. Section 2.5 outlines the AMALTHEA platform. An overview of ASCET tool suite is
given in section 2.6. A description of the SysML standard follows in section2.7.

2.1 Model driven development

Model Driven Development MDD is a development methodology which puts the model in
the center of the attention and considers that "Everything is a model" [8]. The model can
be de�ned according to Stachowiak [47] as a formal representation of natural or arti�cial
original elements. This representation contains generally only some attributes of the
original that it represents, which are selected by the model creator and relevant to achieve
a certain purpose (pragmatism).

Jean Bezivin de�ned the MDD or as he called it Model Driven Engineering MDE as
"a set of well de�ned practices based on tools that use at the same time metamodeling and
model transformations, to achieve some automated goals in the production, maintenance or
operation of software intensive systems" [8].

According to this de�nition MDD aims to utilize domain-speci�c languages to create
models that express application structure and behaviour in a more e�cient way. These
languages are de�ned using metamodels. These metamodels are also de�ned using other
metametamodels like Meta-Object Facility (MOF) [35], which is standardized metamodel
from Object Management Group OMG (an international, open membership, not-for-pro�t
technology standards consortium 1). This eases the transformations between the models
that are instances of di�erent domain-speci�c languages. Sequentially, the MDD process
will reduce the platform complexity.

MDD can be applied in three areas. The �rst one is the development automation for
the purpose of creating new system. In this process the de�ned models are transformed
into executable code using model transformations. The second application is the reverse
engineering for the purpose of legacy modernization. The models will be extracted for
more understandability of the system under study. The last application is the synchronisa-

1see http://www.omg.org/

5

http://www.omg.org/

2 Foundations

tion using model driven transformations in order to achieve system interoperability and
platform independence through combining the two former applications.

The main goal of the MDD process is increased development speed with code generation
in addition to the better software quality through working and analysing models. Moreover,
MDD increases the level of abstraction and simpli�cation via models and optimizes the
separation of concerns using di�erent models (as it will explained in the next section 2.2).

2.2 View-based development

View-based development is a development paradigm that focuses on the separation of the
di�erent concerns through forming di�erent views, each of them describes the system
depending on domain-speci�c perspective. As a result, the whole system will be precisely
described based on multiple viewpoints and level of abstraction.

There are di�erent de�nition for views. In following I will present two de�nition that
are more precise and related to my work. Atkinson et al.[1] de�ne views as following:
a view is a normal model which just happens to have been generated dynamically for the
purpose of allowing a user to see the system from a speci�c viewpoint. Goldschmidt et al.
[20] de�ne also the views in addition to the main terminologies (view type, view point) that
are shown in �gure 2.1 as the following: A view type de�nes the set of metaclasses whose
instances a view can display. It comprises a de�nition of a concrete syntax plus a mapping to
the abstract metamodel syntax. The actual view is an instance of a view type showing an
actual set of objects and their relations using a certain representation. A view point de�nes a
concern.

System

Model Metamodel

Stakeholder

ViewPoint Concern

View

ViewType

1

1

models

modelledBy

1

1..*

analyses

stakeholders

*

1

views

instantiates

*
1shows

Elements

represents *
1defines

definedBy

1..*

stakeholders

1
hasStakesIn

*

*

viewTypes

defines

*has

1represents

1representedIn 1concern

*

defines

*definedBy

*

* interestedIn

Figure 2.1.: Terminology for and (from [57])

Figure 2.1: View and view type terminology from [20]

6

2.2 View-based development

The view-based approach is represented by ISO 42010 standard (published from In-
ternational Organization for Standardization ISO in 2011 [39]) and classi�ed into two
approaches. The �rst approach is the synthetic approach which describes the system using
di�erent modeling notations belong to di�erent metamodels. The second approach is the
projective approach, which de�nes a general metamodels, which can be instantiated to
represent the diverse viewpoints.

The following subsections give more details about these approaches.

2.2.1 The synthetic approach

In the synthetic approach the system can be described using multiple metamodels. These
metamodels are de�ned and instantiated as multiple views. So, the overall system will be
synthesis of the information resulted of these views. The advantage of this approach is
the distribution of the complex system description on di�erent metamodels addressing
di�erent aspects of the system.

However, the information of system, which can share the same semantics, will be dis-
tributed across di�erent views in this approach. The fragmentation of the information can
lead to inconsistency, either because of the redundancy of a piece of information or the
modi�cation of the overlapping elements only in some views. As a result, the synchroniza-
tion between each pair of views will be needed. The number of these synchronizations will
grow as a result quadratically with the number of the views (see �gure 2.2). Furthermore,
the synchronization will be more di�cult and need more e�ort if they are performed
manually.

View

1
View7

View1

View2

View3

View4 View5

View6

Figure 2.2: The e�ort of synchronization in synthetic approach of model-based develop-
ment from [14]

7

2 Foundations

2.2.2 The projective approach

This approach uses a common formalism, in which all viewpoints of the system can be
represented. In other words each view can be generated from a single base metamodel by
hiding details that are not relevant for the particular viewpoint taken into account.

Contrast to syntactic approach the synchronization between the views will be easier,
because of representing the all views in a single model. As a result, each view has to
synchronize itself only with the central model and the information will be propagated
from the central model to the other views (see �gure 2.3). So, the synchronization relations
grows only linearly with the number of views.

The projective approach su�ers that the central metamodel has to represent the all
viewpoints and be compatible to the existed formalisms. Moreover, this central metamodel
will be suitable only for speci�c development scenarios. In other words, the reusability is
low.

SUM

view1

view2

view3

view4view5

view6

view7

Figure 2.3: The e�ort of synchronization in projective approach of model-based develop-
ment from [14]

This approach is adopted by OSM (Orthographic Software Modeling) [1] concept, which
stores the all information of system in a single underlying model (SUM). So, the information
will be available to all developer, who can generate their views automatically from this
SUM metamodel, modify them and synchronize them with SUM.

The automatically generation of views according OSM approach will be based on model
transformation from the SUM. Similarly, model transformation are used for keeping the
views consistent, since the changes in a view is re�ected in SUM, which synchronize them
with the other all other views. Hence, bi-directional transformation for every view is
needed. The complexity of writing these transformation in OSM architecture is linear and
less signi�cantly than the complexity of writing them in peer-to-peer architecture like the
case of synthetic approach (see the di�erent between �gure 2.2 and �gure 2.3)

The OSM approach considers however that the SUM will be too general to represent all
information. Besides that,OSM does not provide a way for constructing the SUM. In the

8

2.3 Vitruvius

common component modeling example (CoCoME) [2] Atkinson et al. built the metamodel
for SUM manually in order to apply OSM concept.

2.3 Vitruvius

Vitruvius (VIew-cenTRic engineering Using a VIrtual Underlying Single model) approach
is view-based software development approach. It enables express the system from various
viewpoints based on OSM concept [1]. Contrast to OSM approach Vitruvius approach
combines various heterogeneous metamodels in addition to the information about the
correspondences between them to serve as a modular SUM [14].

As a result, Vitruvius approach combines the advantages of the projective and synthetic
approach. It enables the usage of the di�erent domain-speci�c metamodels and presents
concept to ease the synchronisation and to avoid the inconsistency and complexity.

According to Vitruvius approach the developers can also generate �exible views [14]
with more details about their roles in addition to the combined abstract view about
the system. These views integrate information from instances of multiple metamodels,
enable the selection of related elements, identi�es the overlapping elements by a naming
convention and sets the editability restriction.

For example Vitruvius concept has been applied for component-based development sce-
nario [14, 13, 15, 27]. This scenario is based on three formalisms: the Palladio Component
Model (PCM) [6] for representing both of software architecture and performance proper-
ties, Uni�ed Modeling Language (UML) class diagram for representing class architecture
and Java code for the implementation. Figure 2.4 represents the SUM metamodel of this
example as a circle containing several view types that are parts of the legacy metamodels
of PCM, UML and Java. Developer of system can instantiate views from these de�ned
view types according to their roles.

For example system architects instantiate component diagram view from view type
VT3, component developers instantiate UML class diagram from view type VT1 and
programmers instantiate Java source view from view type VT4. Moreover, the multi-
scope view type VT2 enable that system architects and component developers instantiate
a view with information from both PCM component and UML classes metamodels in
addition to information on which classes implement which component. The resulting view
(component-class implementation view) is an example of the �exible views. It represents
elements from two distinct metamodels in addition to the relation between them, displays
only components and classes that are connected by an implementation relation and allows
editing only the implementation relation (both components and classes are read-only).

SUM metamodel contains also the semantic relations and consistency constraints be-
tween the legacy metamodels, which are used to guarantee that the SUM is always in
consistent state. These relations and constraints are de�ned through determining Mapping-
Invariants-Response (MIR) elements: the mapping between the metamodels elements, the
invariants (consistency constraints) and the responses that applied to preserve the consis-
tency when the constraints are violated. For this purpose Mapping-Invariants-Response
(MIR) language can be used as it will be explained in the section 2.4. These relation and

9

2 Foundations

PCM

UML

Java

CCR

CCR

C1

C2 C3

UML class
diagram view

VT1

C1

C2

imple-

ments

imple-ments

component-class
implementation view

VT2

component
diagram view

VT3

@ADLImplements(implements-

component comp_1)

public class C2 extends C1 {

public static void main (

String[] args) {

System.out.println ("

Hello World!");

}

}

annotated Java
source view

VT4

instance of a view type
view transformation
synchronization transformation

comp1

comp1comp2

Figure 2.4: Example of a SUM metamodel and some views for component-based software
engineering from [27]

constraints are de�ned only where there is semantic overlap like the case between PCM
metamodel and UML metamodel.

In addition to the abovementioned case study Vitruvius approach has already tested
with case studies based on PCM, Java Modeling Language (JML), and Java source code
[28] [29].

2.3.1 Vitruvius development process

Vitruvius development process makes a di�erence according to the role of users (as it
is shown in �gure 2.5). The main users are the methodologist and the developer. In the
following, I will explain the development process of Vitruvius for each user role.

Development process according to the methodologists Vitruvius development process
from the viewpoint of the methodologist (as shown in �gure 2.5) can be summarized into
the following points:

10

2.3 Vitruvius

create SUM metamodel

de ne view type

modify SUM metamodel

instantiate SUM

instantiate view

methodologist developer

«include»

«include»

Figure 2.5: Use cases for developer roles in Vitruvius from [15]

• Creating VSUM metamodel through adding the legacy metamodels, de�ning at least
a view type for each metamodel and determining the correspondences between
the metamodels. (SysML activity diagram in �gure 2.6 illustrates the process of
creating modular SUM metamodel). The de�nition of the correspondences is done
by describing the MIR elements (Mapping, Invariants and Responses) between each
pair of metamodels, where there is semantic overlap. MIR elements are the mapping
between the metamodels, the invariants, which determine the main constraints,
and the responses, which describe the suitable action, which have to be performed
when the invariants are violated. For this goal, the declarative language MIR (2.4)
or another transformation language can be used (like Xtend language 2 or QVT
language [36]).

• Methodologists can elicit a set of the metamodels to de�ne and add combined view
types to the SUM. This requires also, that the correspondences between the selected
metamodels are de�ned by the last step.

The development process according to the developers The developers use the prede�ned
view types, that are created from the methodologists to access, generate and manipulate

2see http://www.eclipse.org/xtend/

11

http://www.eclipse.org/xtend/

2 Foundations

Existing
Formalisms

Collect
Metamodels

Specify
Legacy

View Types

Elicit
Combined
View Types

Specify
Corres-

pondences

Specify
Combined
View Types

modular
SUM

metamodel

MIR

act create SUM
metamodel

Figure 2.6: Process for the creation of the modular SUM metamodel from [15]

their own views. Moreover, they are allowed to de�ne their custom view types (see �gure
2.5).

Vitruvius will o�er two types of collaborative development. The �rst type is online-
synchronous modeling which allows the developer to check out their views, modify them
and synchronize them online. The developers in this type have to be connected to a central
repository. As a result, the occurred changes can be propagated immediately and the
developers will be noti�ed about them. To prevent the con�icts a versioning system will
be supported, which creates a new version after each editing process to the parts, that are
edited synchronously.

The second type is the asynchronous modeling. The developers using this type will be
able to check out their working copies, modify them, and check in them again. However
resolving the concurrent con�icts will be required by each check-in.

2.3.2 Synchronizationmechanism in Vitruvius

Vitruvius depends on the change-based approach to preserve the consistency between
the generated views. According to this approach, the view is marked as dirty after any
modi�cation and all atomic changes made to the view are recorded. The user has to save
its view in order to re�ect these changes to the VSUM and make them also available by
the next re-opening of the views. When the developer saves the view, the changes are
synchronized with the related parts of SUM. For this purpose, each change triggers an
appropriate model-based transformation according to the type of modi�cation (create,

12

2.3 Vitruvius

edit or delete) and the modi�ed artifact. These change-driven model transformations will
propagate the changes to the related artifacts from VSUM. Potential con�icts can appear
after applying the transformation because of violating sub-metamodel constraints, inter-
metamodel constraints de�ned by MIR elements, or both of them. To resolve the con�icts
the responses actions de�ned by MIR elements are applied automatically. These responses
are de�ned by methodologists for every invariants. Applying the responses can also lead
to further responses. Moreover, not all con�icts may be resolved automatically. In this
case, manual operations may be needed to preserve the consistency, otherwise the changes
will not applied to the modular SUM and the state of the view will not change (the state
stays dirty). (SysML activity diagram showed in �gure 2.7 illustrates the abovementioned
view editing steps)

v1

original view
edit

v∗1
dirty view

save
consistency
conservation
operation

triggers

SUM not
consistent

update v′1
saved view

SUM
consistent

act edit view

Figure 2.7: Editing work�ow in views[15]

MIR language aims to generate the change-driven transformation automatically from
the declarative expression of the correspondences rules between the metamodels [27, 28].

2.3.3 Integration of a legacy model in Vitruvius environment

Vitruvius approach support the development of complex systems, which consist of hetero-
geneous models. These models, which often share the same semantics, are kept consistent
based on change-based approach. To bene�t from Vitruvius approach for developing
consistent models, it will be also useful to integrate the already existing legacy models into
Vitruvius environment. These legacy models are often developed using external modeling
tools, which are not supported from Vitruvius.

The integration of these legacy models in Vitruvius environment will not be possible
without information about all the changes that have been made to these models. In other

13

2 Foundations

words, the developers, who want to integrate legacy models or to use external tools for
modeling, have to record all the atomic editing steps, detect the occurred changes through
calculating the di�erences between two versions of the model or to �nd a way to generate
the occurred changes when they are not available. In the following subsection I will talk
about two strategies to integrate only one legacy model into Vitruvius environment.

The strategies of integrating a legacymodel There are two strategies to integrate a legacy
model into Vitruvius platform. The �rst one is Reconstructive Integration Strategy (RIS)
[29]. In this strategy the change histories of the legacy models have to be generated, as if
this model is recreated. Then these changes are transmitted to Vitruvius which propagates
them in SUM depending on incremental change-driven model transformations. As a result,
the legacy model is integrated in Vitruvius and the applied transformations create its
corresponding models. This strategy has been validated with case study, which integrates
the Palladio Component Model PCM through detecting and recreating the changes and
then using them to create the linked elements (Java code elements).

The second strategy is Linking Integration Strategy (LIS) [29]. It creates the correspon-
dences between the legacy model on one hand and its corresponding model, which is
generated using reverse or forward engineering process, on the other hand. Besides the
legacy model and its generated corresponding one, LSI expects as input the set of linking
information, which is created during the process of the reverse/ forward engineering. In
this process the software architecture can be generated from the code and visa versa. As a
result, the LSI strategy will link the code and software architecture based on the linking
information. The linking information will be used to generate the correspondence model,
which speci�es which elements from the code elements are corresponding with which
elements from the architecture model. The �gure 2.8 shows the process of code integration
in change-based environment using LIS.

21 y
C ho o s e Pr o j e c t L in k in gI n fo r m a t io nL in k in g S tr a t e g yCo r r e s po n d en c eMo d e l e x p o r t t o c ha n g e' d r iv e na p p r oa c h

Ar c h i t e c tu r a lMo d e lCo d e R e v er s eEn g in e er in g
Figure 2.8: Integration process for code using the linking integration strategy from [29]

14

2.4 MIR Language

This strategy is implemented in order to add the correspondences between the elements
of the java code on one hand and PCM information generated by the reverse engineering
tool SoMoX (SOftware MOdel eXtractor 3) on the other hand, depending on the tracing
information provided from SoMoX (see �gure 2.8).

Both the abovementioned strategies are applied only to one homogeneous legacy model
(either the model as in RIS case studies or source code as in LIS case studies) and generate
its corresponding model. In other words, the current version of Vitruvius does not support
the integration of multiple heterogeneous legacy models in its environment.

2.4 MIR Language

Kramer et. al. introduce MIR language based on textual domain-speci�c language (DSL)
for the purpose of express the correspondences rules between the metamodels. The
correspondence rules are declarative expression of semantic relation as well as consistency
constrains[48]. These rules can be used to keep the Virtual SUM(VSUM)4 consistent [27].

MIR is de�ned with XText language (Framework for development of programming
languages and domain speci�c languages) 5 in order to obtain the full infrastructure
including parser, linker, type checker, compiler and editing support for Eclipse [7].

Other bene�t from using Xtext is that Xtext supports using Xbase language 6. Xbase is
an expression language that can be embedded into Xtext language and o�ers additional
advantages like type inference, lambda expressions, a powerful switch expression and a
lot more.

MIR language provides the declarative expression of the corresponding rules between
the metamodels through de�ning the following three elements:

• The mapping between the di�erent metaclasses and features of the related meta-
models.

• The invariants which de�ne the consistency constraints between the di�erent meta-
models.

• The response actions, which have to be applied in order to preserve the consistency
of VSUM, when consistency constraints are violated.

Depending on this declarative description of the correspondence rules MIR language
aims to generate the synchronisation model-based transformations between the metamod-
els automatically, which are required to preserve the consistency between the models.

3see www.somox.org and http://www.q-impress.eu
4VSUM refers to the term modular SUM, which is used by Burger in [14],[13],[15]. From this point VSUM

term will be used instead of modular SUM
5see http://www.eclipse.org/Xtext/
6see https://wiki.eclipse.org/Xbase

15

www.somox.org
http://www.q-impress.eu
http://www.eclipse.org/Xtext/
https://wiki.eclipse.org/Xbase

2 Foundations

2.4.1 MIR syntax

Current MIR editor allow only writing the declarative mapping between two metamodels.
The invariants and responses are not implemented.

MIR describes the correspondence rules textual in (.mir) �le, which is based internally
on XText language. The MIR �le begins with importing the required metamodels and the
required bundles containing the model codes of the metamodels. Then various map blocks
can be declared between the metaclasses of the imported metamodels.

The structure of the MIR �le is shown in listing 1.

generates package vitruv.test1

generates type TestMIRExecutor

bundle org.first.firstMetaModel

bundle org.second.secondMetaModel

import package "http://www.first.org/firstMetaModel" as mm1

import package "http://www.second.org/secondMetaModel" as mm2

map mm1.MetaclassA as a and mm2.MetaclassB as b

{

when-where { ... }

with-block { ... }

with map ... and ... { ... }

...

}

map mm1.MetaclassC as c and mm2.MetaclassD as d

{

when-where { ... }

with-block { ... }

with map ... and ... { ... }

...

}

...

Listing 1: MIR �le structure

Mapping block structure: Each map block de�nes the correspondence between two meta-
classes in a bidirectional, declarative way. For this purpose the map key word is used.
Then the correspondent metaclasses are determined. The map block can de�ne also the
following information:

• The pre- and post-conditions. The pre-condition de�nes the constraints, which have
to be ful�lled in order to apply the mapping between two instances of the speci�ed
metaclasses. The post-conditions are enforced once the pre-conditions hold. The
when-where block is used to express these conditions.

16

2.5 AMALTHEA

For example the when-where condition de�ned in listing 2 is checked from left to
right (when) as literal equality checks (metaClassVarName.attributeName == Literal-
Expr) and is enforced from right to left (where) as literal assignment expressions
(metaClassVarName.attributeName = LiteralExpr).

generates package vitruv.test1

generates type TestMIRExecutor

bundle org.first.firstMetaModel

bundle org.second.secondMetaModel

import package "http://www.first.org/firstMetaModel" as mm1

import package "http://www.second.org/secondMetaModel" as mm2

map mm1.MetaclassA as a and mm2.MetaclassB as b

{

when-where

{

equals(a.attributeName,LiteralExpr)

}

}

Listing 2: Example of when-where expression

• The mapping of the attributes, which need a certain computation using restricted
conversion operators, is de�ned using with-blocks.

• The nested mapping which declares the correspondence between the attributes and
the references. For this purpose the with map blocks are used.

2.5 AMALTHEA

AMALTHEA 7 [33] is an open and expandable tool platform for embedded multicore
systems. It is developed in a publicly funded ITEA 2 project 8 [32] , to combine the
di�erent tools used to develop multi-core automotive ECUs (Electronic Control Unit) in
a single platform, which eases the exchange of data between them [10]. AMALTHEA
combines furthermore information of the low level behavior and timing, which enables
the simulation and veri�cation of the systems.

AMALTHEA architecture is compatible with the standardized AUTomotive Open System
ARchitecture, AUTOSAR [3]. That means it can support the multicore automotive systems
well, which increases the performance of processing the growing numbers of complex
functions needed to provide the increasing comfort and driver assistance systems.

7see http://www.amalthea-project.org/
8see project information in https://itea3.org/project/amalthea.html

17

http://www.amalthea-project.org/
https://itea3.org/project/amalthea.html

2 Foundations

2.5.1 Overview of AMALTHEA data model

AMALTHEA supports model-based development based on two main models. The �rst one
is the system model, which o�ers the processing of data and build the models of the system.
The second main model of AMALTHEA is the trace model, which analyses the results of
execution/simulation of the de�ned system model and veri�es the timing behavior.

2.5.2 Model-based development process:

Using the system model and trace model the developers follow and process the data in
AMALTHEA between the following activities, which are shown in �gure 2.9:

• Modeling In this step the behavior of the system is de�ned in form of block diagram
or state diagram, whereas the dynamical behavior is implemented using external
modeling tools like ASCET. The used hardware will also be modeled in this step. That
means all the information about the hardware, like the processor, cores, memories
and timers, will be described. Moreover the system constraints have to be cleared.

• Partitioning: In this step the de�ned software units will be broken into smaller
parts, which can be allocated to available scheduler of hardware elements, i.e. the
cores in the case of a multicore processor. The initial tasks will be identi�ed in this
step. The units that can be run in parallel (runnable) will be also determined and
assigned to the tasks or Interrupt Service Routine (ISR).

• Mapping: Based on the software and hardware models de�ned in the various steps,
the executable software units will be assigned to the cores of system. Furthermore,
the data and the instructions will be mapped to the memory sections of hardware.

• C code generation: In this step the C code (glue-code) is automatically generated
and the software is executed in order to evaluate the de�ned models and timing
behaviour.

• Tracing: The timing traces resulted by the evaluation and saved in the trace model
will be further traced and analysed to verify the correct behavior of the software
system.

18

2.6 ASCET

Figure 2.9: The main steps of the model-based development using AMALTHEA [33]

2.6 ASCET

Advanced Simulation and Control Engineering Tool ASCET (previously ASCET-SD) [22]
[21] is a tool suite from ETAS GmbH for model-based development of embedded automotive
software[23] 9.

ASCET describes and models the functionality of the ECUs using a database of compo-
nents, models and data. The modeled functions are compatible with AUTOSAR standard.
ASCET generates optimized C code comparing to C code written by hand. This code is
also compatible with the speci�ed ECU operating systems.

ASCET enables simulation to validate the modeled functions. In addition to the sim-
ulation ASCET o�ers rapid prototyping considering the real time behaviour, which can
be done in labor or in vehicle. Moreover, ASCET o�ers automatic documentation of the
modeled ECU software (�gure 2.10 shows the main functionality of ASCET tool suit).
ASCET consists of the following main products :

9see http://www.etas.com

19

http://www.etas.com

2 Foundations

s

Databases

 ETAS-

components

- libraries

 Models

 Data

Block diagram editor

Finite state machine

editor

ESDL code editor

C code editor

Operating system

specification

Automatic

documentation

Simulation

environment

Documentation

records

Functionality

Software specification for

target system
Automatic code generating Simulation on PC

Prototype creation series production

Figure 2.10: The development process of ASCET

• ASCET Modeling and Design (ASCET-MD) 10 o�ers executable speci�cation of the
functions.
ASCET-MD is compatible with AUTOSAR standard [3] and supports as a result the
development and the integration of its components. Not only AUTOSAR compo-
nents but also the components of Matlab/Simulink 11 can be easily imported and
integrated using ASCET MATLAB Integration Package (ASCET-MIP). This package
is compatible with ASCET-MD and ASCET Rapid Prototyping and allows the model
transformations from and to Matlab/Simulink.
The behavior of ECUs (like real-time behavior) can be described and modeled by
either graphical modeling tools like block diagram and state machine or by textual
tools like Embedded Software Description Language (ESDL) editors and C code
editors. In the following I will give an overview about these modeling editor:

– The block diagram editor: It describes the functionality of the main components
through blocks. Each block represents a component. The �ow of the data or
control signal between the component is represented through directed arrows
(the solid arrows represent data �ow whereas the dashed arrows represent the
control �ow). Di�erent data type (parameters, messages, variables, constants
etc.) in addition to the arithmetical and logical operations can be represented
using di�erent pre-de�ned blocks. Figure 2.11 shows an example of de�ning an

10see http://www.etas.com/de/products/ascet_md_modeling_design-details.php
11see http://www.mathworks.com/

20

http://www.etas.com/de/products/ascet_md_modeling_design-details.php
http://www.mathworks.com/

2.6 ASCET

ASCET component using the Block diagram editor. This example describes the
functionality of the timer component using three methods. The �rst method
"start" gives the signal to start. The second method "out" returns the out value
while the timeCounter variable is greater than 0. The third method "compute"
calculates the new value of timeCounter.

Figure 2.11: ASCET block diagram editor

– The advanced �nite state machine editor: It models the di�erent states of the
system and how the di�erent events change the current state of system.

– ESDL (Embedded Systems Description Language) editor: This language is used
for modeling the physical layer of the system. It is also similar to the Java
language.

– C code editor: it is particularly used for describing hardware functionality,
accessing hardware drivers etc.

• ASCET Software Engineering (ASCET-SE) 12 is a tool to generate target-speci�c
C code for selected microcontrollers in relatively shorter time and higher quality
compared to handwritten code. ASCET-SE supports code generation for both OSEK
Operating Systems (OSEK OS) and AUTOSAR Run-Time Environments (AUTOSAR
RTE).

• RTA-OSEK 13 is ETAS’ OSEK-compatible Real-Time Operating System, which can
be used for all types of automotive ECUs development. It models the scheduling of
the functions and as a result it describes the runtime behavior.

12see http://www.etas.com/de/products/ascet_se_software_engineering.php
13see http://www.etas.com/de/products/rta_osek.php

21

http://www.etas.com/de/products/ascet_se_software_engineering.php
http://www.etas.com/de/products/rta_osek.php

2 Foundations

• ASCET Rapid Prototyping (ASCET-RP)14 enables create a rapid prototyping of the
ASCET functions in order to validate them earlier. These functions can be connected
to the both of I/O and system buses and executed in order to support Hardware-In-the
Loop (HIL) simulation which test the complex real-time embedded systems.

2.7 SysML

Systems Modelling Language SysML is a graphical modeling language developed for sys-
tems engineering by OMG, the International Council on Systems Engineering INCOSE (a
not-for-pro�t membership organization founded to develop and disseminate the interdis-
ciplinary principles and practices that enable the realization of successful systems 15) , and
a standard for the exchange of system engineering data AP233, which is a part of iso10303
standard [24] workgroup. It extends the UML as it is shown in �gure 2.12 to model a
wide range of systems, which may include hardware, software, information, processes,
personnel, facilities and procedures [18].

UML 2

UML reused by
SysML

(UML4SysML)

SysML

UML not required by SysML
(UML – UML4SysML)

SysML extensitions
to UML

(SysML Profile)

Figure 2.12: Relationship Between SysML and UML from [18]

SysML is based on model-driven approach. It separates the concerns in di�erent archi-
tectural models/views in order to support the speci�cation, analysis, and design of the
complex systems. Furthermore SysML improves the quality of the design by detecting the
errors earlier. SysML can enable the automatic code generation through some supported
tools.

The four pillars of SysML The diagrams provided from SysML can describe the system
from di�erent viewpoints:

• Structure: The SysML can depict system structure, like the system hierarchies,
system block, and the interconnections between the di�erent parts of system. For

14see http://www.etas.com/en/products/ascet_rp_rapid_prototyping.php
15see http://www.incose.org/

22

http://www.etas.com/en/products/ascet_rp_rapid_prototyping.php
http://www.incose.org/

2.7 SysML

this purpose the Block De�nition Diagram (BDD) or Internal Block Diagram (IBD)
can be used.

BDD provides a black box representation of a system block, which can be of any
type including software, hardware, etc. Moreover it de�nes the �ow ports, which
represent what can go through a block (data, matter, or energy). The �ow ports can
be in-ports and/or out-ports.

IBD instantiate the BDD to represent the �nal assembly of all blocks within the main
system block and depicts the interconnection between them.

• Behaviour: SysML provides diagrams to describe both of function-based behaviours
and state-based behaviours, like activity diagram, sequence diagram, state machine
diagram and use case diagram.

• Properties: The performance and quantitative constraints are de�ned and analysed
using the parametric diagram (or it can be called constraints diagram), for instance in
the automotive system the maximum acceleration, minimum curb weight, and total
air conditioning capacity parameters can be represented and quantitative analysed
using this diagram.

• Requirements: SysML supports the representation of the functional and perfor-
mance requirements. Moreover it enables the capturing, deriving and traceability
of the represented requirements. For this objective, the new added diagram called
requirement diagram is used.

23

2 Foundations

Diagram type

Behaviour
diagram

Activity
diagram

Sequence
diagram

State
machine
diagram

Use case
diagram

Requirement
diagram

Structure
diagram

Block
definition
diagram

Internal
block

diagram

Parametric
diagram

Package
diagram

Same as UML 2

Modified from UML2

New diagram type

Figure 2.13: SysML diagram types from [18]

24

3 Automotive system development in the
context of Bosch case study

In this chapter I will explain �rst the main challenges which the automotive system
development faces in section 3.1. Then section 3.2 gives an overview about the development
process followed by AE division of Bosch GmbH. In this overview I will describe some
tools used by AE division of Bosch to overcome the main challenges. Then I will explain
the case study and one of the development process scenarios followed by Bosch in section
3.3. In this scenario the use of automotive modeling tools will be illustrated. Moreover,
the consistency problem and its reason will be explained through the case study. Based on
the consistency problem I will �nally introduce the research questions in section 3.5.

3.1 The challenges of automotive system development

Automotive systems became more complex in the recent years. For example the modern
cars today contain more than 100 control units [38]. These units provide several services,
for example operating the engine or controlling the heating, ventilation and air condition
systems. Therefore several project partners and suppliers need to share and combine their
experts to develop one project separately using di�erent tools. Furthermore, the automo-
tive system tends to use the multi-core processor in order to increase their performance
on one hand and to reduce the number of the technical and economic problems of using
a large number of single processors on the other hand, for instance the problems of the
isolation and the limited composability of the processors [26]. Moreover, the integration
of functional modules developed from multiple suppliers on the di�erent types of ECUs
became a necessity, which should be met. That requires supporting AUTOSAR standard
during the development, to ensure the decoupling of the supporting hardware and soft-
ware services. Multiple functions of the automotive system are based on the real time
environment and consequently a suitable environment to de�ne and validate them will
be needed. Finally most of automotive services require a high level of the reliability and
safety, therefore they have to be validated well and also simulated to detect defects in the
earlier stages.

To overcome the abovementioned challenges the developers of automotive systems tend
to use di�erent heterogeneous domain-speci�c formalisms, which requires keeping these
formalisms consistent along the development process as my work aims. The following
section gives an overview about Bosch GmBH and some of the formalisms that it uses to
overcome these challenges.

25

3 Automotive system development in the context of Bosch case study

3.2 Overview about the automotive system development by
Bosch

Bosch as one of the largest automotive suppliers consists of a lot of departments and
teams working together with a variety of technologies to supply precision automotive
components and systems. Bosch has signi�cantly participated in the development of
automotive systems using various standards in order to meet the requirements mentioned
in section 3.1. For example Bosch founded ETAS GmbH in 1994 [23] which provides
innovative solutions for the development of embedded systems for the automotive industry
and also developed its main product ASCET. Furthermore, Bosch has managed the ITEA 2
project which develops AMALTHEA platform to support multicore systems and tool chain.
Bosch uses ASCET, AMALTHEA, SysML and other di�erent standards for automotive
system development. In the following I will emphasize the purpose of using the standards
related to my case study (SysML, AMALTHEA and ASCET).

• At �rst Bosch uses SysML to de�ne the system context, via establishing the system
boundary and all system actors (humans and external systems) that interact with
the system. For this purpose package diagram, use case diagram and block diagram
can be used. Moreover, it is used to describe the structure of the system including
block hierarchy and the relationships between the system parts using BDD and IBD
diagrams. Furthermore, both requirements and system parameters can be described
and analysed by SysML.

• Secondly Bosch uses AMALTHEA to support the development of multi-core em-
bedded systems, which are used widely in the recent years. For this purpose,
AMALTHEA is used to describe the hardware architecture, software architecture and
the software distribution on hardware architecture. Besides that, AMALTHEA pro-
vides simulation and timing analyses. Moreover, Bosch bene�ts from AMALTHEA
tools chain by easing the exchange of data and results between the di�erent project
partners [53]

• The third used standard is ASCET. It is used to model, specify and implement (in
term of code generation) the behavior of the software functions. ASCET supports
real-time behavior and enables the de�nition of its execution sequence.

3.3 Bosch case study

This case study describes the development of controller software dependent on a control
algorithm. This algorithm is used by the systems, whose state depends on the value read
by a sensor, and which use an actuator to in�uence this state.

For example the control algorithm read data about the actual position of the vehicle from
sensors and calculate control values for the new position which are sent to an actuator.

To achieve this purpose, the control algorithm depends on control loop feedback mech-
anism. It calculates an error value as the di�erence between a desired set point (target

26

3.3 Bosch case study

position) and a measured process variable. Then it attempts to minimize the error over
time by adjustment of a control variable.

The following �gure 3.1 shows the layout of the �nal ECU, where the control algorithm
will be later executed.

out normal

target_pos

actual_position

new_position

Figure 3.1: Layout of the control algorithm ECU

There are di�erent scenarios of the automotive system development, which are used by
Bosch and can be applied to develop this case study. For example, either the top-down
design, bottom-up design or mixture of them can be applied. In this case study I will
outline one of these scenarios, which depends on top-down design and is shown in �gure
3.2.

C code generation and integration

detecting the inconsistent cases resolving the conflicts

Further design

Amalthea

•Software model

•Hardware model

•Operating System model, etc.

ASCET

•Control Function modeling using

•block diagram

•finite state machine

•ESDL, C code

Analyse, Specification and design

Requierment diagram Block diagram parametric diagram ...

Figure 3.2: One of the scenarios used by Bosch for automotive system development

27

3 Automotive system development in the context of Bosch case study

Figure 3.3: IBD diagram of the control algorithm case study

In this scenario the automotive system is analysed and speci�ed (this step can be done
by SysML. Actually SysML is not always used in this step but Bosch AE aims to use it in
future). Then the system architects share the resulting information with the other project
partner in order to build and maintain the AMALTHEA and ASCET models separately.
The resulting codes of these models have to be integrated with each other.

The structure of the controller can be de�ned by SysML using the BDD and IBD diagrams.
The ControlAlgorithm software block is responsible for applying the control algorithm.

Therefore it receives the information about the actual and target position through its in-
ports and sends the result by new_position out-port. The �gure 3.3 shows the IBD diagram
of the controller system. This diagram represents the main Block (ControlAlgorithm) with
its internal blocks (PIDT and Limiter) in addition to the in-/ out-ports (actual_position,
target_position and new_position).

In the following I will explain the modeling process of AMALTHEA that is needed
to de�ne software architecture of the ControlAlgorithm block as well as the modeling
process of ASCET that is required to describe the functionality of this block. After that I
will explain the problem of integrating the code generated from these models.

3.3.1 AMALTHEAmodeling process

The software developers of AMALTHEA prefer to use agile development process because
of the complexity of automotive systems [4]. Therefore, the development process will be
broken down in fast iterations. In each iteration the requirements of this iteration will be
de�ned and di�erent variants of the �nal system will be described too.

According to the requirement and the selected variants the modeling, partitioning,
mapping, code generation and tracing activities (mentioned in section 2.5.2) will be applied
step by step (see �gure 3.4). After the requirement engineering and variants modeling,
the software architecture will be de�ned using components to describe the structure of

28

3.3 Bosch case study

Figure 3.4: Automotive system development using AMALTHEA from [53]

the automotive system. However, these components will be implemented and simulated
using other tools. In this case study Bosch uses ASCET to implement the de�ned software
components. For example, AMALTHEA de�nes a component called ControlAlgorithm
component (its functionality will be illustrated in the next section 3.3.2). The de�ned
software architecture will be saved in the components model.

Besides that, the hardware model of the system is described in modeling step. This
model includes detailed and accurate information about the hardware con�guration, like
data about the number of cores and their frequency, the type of memory (shared memory,
distributed memory, private memory), the operating system, the scheduling, the timing
constraints, process communication, etc. Moreover, the constraints of the hardware are
de�ned in this step too.

In partitioning step, the developers de�ne the software model elements that can be
allocated to the hardware elements. Here, I will explain the software elements, which are
belong to the case study. The developer determine the smallest executable parts of code,
which can be run in parallel. These parts are called runnables. The initial activation of a
runnable can only be performed by a task or another runnable. Therefore, the developers
de�ne the tasks and add them to the software model. Tasks provide context for the
operating system. For instance, in this case study a task called Task_10MS is de�ned
in the software model. This task calls two runnables (ControlAlgorithm_normal and
ControlAlgorithm_out). The following �gure 3.5 shows the task of the ControlAlgorithm
component and how it calls the runnables.

Moreover the software model de�nes three labels. The labels represents the data
elements and will be directly located in a de�ned area of a given memory. These labels are
accessed from the de�ned runnables.

29

3 Automotive system development in the context of Bosch case study

Figure 3.5: The software architectures of the case study (Tasks, Runnables and labels) that
are de�ned using AMALTHEA environment

In the mapping step, the de�ned software (tasks and runnables) is allocated to the
described multicore-system and the related data (like labels) is mapped to the memory
(look at �gure 3.6). This distribution depends also on the selected variants.

The operating system model de�nes the schedule of the tasks on the cores. Moreover
it assign the components, which describe the behavior of software components and are
modeled in ASCET environment, to the related software components in AMALTHEA.

The last step is generating the glue C code in addition to the needed con�gurations (like
operating system con�guration, Real-Time Environment (RTE) con�guration etc..)from
the AMALTHEA models (components model, software model, hardware model, operating
system model etc..). This code extends the ECU software to support the multi-core platform.

This glue code will be integrated with the component implementation, which is per-
formed parallel using ASCET.

Finally, timing analysis will be performed and the results will be integrated in the
repository of AMALTHEA. Consequently, another iteration with other requirements and
variants can begin.

3.3.2 ASCETmodeling process

Bosch uses ASCET to model the executable speci�cation, which may depend on various
requirements, like the limitations of the microcontroller in terms of space or real-time
capability. These executable speci�cation will be modeled using components that are
independent of the target system, which ensures the re-usability of these components.

30

3.3 Bosch case study

Figure 3.6: The software distribution and memory mapping in AMALTHEA from [33]

The modeling process will be achieved using the viewpoints and editors of ASCET-MD
(the block diagram editor, the �nite state machine editor, ESDL editor and C code editor).

According to the Bosch case study scenario the block diagram will be used for modeling
the control functions. This diagram uses multiple blocks and represents both data �ow and
control �ow between the di�erent blocks. Each block models the behavior of the software
component and can import/ export data, which is represented as messages, from/ to other
blocks.

For example �gure 3.7 shows the implementation of the ControlAlgorithm software
component, which is de�ned in AMALTHEA as explained in section 3.3.1, using the type
AscetModule. The purpose of the algorithm is to calculate the new position of the vehicle
according to its actual position and the desired position.

Therefore, it de�nes both target position and the actual position as input whereas the new
position as output. The values of the input will be imported from other blocks in the term of
input messages (target_pos and actual_position). Similarly, the output (new_position) will
be exported to other components as output message. During modeling the behavior of this
algorithm various pre-de�ned components can be used, for example Limiter component
provided from ASCET database and PIDT1 component whose functionality is described in
other block diagram. Moreover, the di�erent types of messages, parameters and variables
can be followed between the components and also manipulated using di�erent available
arithmetical and logical calculations.

After modeling of the di�erent components, ASCET will generate optimal C code, which
implements the functionality of the component. As a result, this component can be used
by integrating this code on the ECU.

31

3 Automotive system development in the context of Bosch case study

Figure 3.7: Modeling of control algorithm in ASCET using block diagram editor

3.3.3 The integration of the ASCET and AMALTHEAmodels

The generated C code of AMALTHEA, which de�nes the software architecture in addition
to other information about the hardware, scheduling etc., will be integrated with the
generated C code of ASCET, which de�nes the functionality of the software components,
on the circuits. If there are inconsistencies, they will be detected too late, when the
errors occurred by compilation and linking stages. Examples of the inconsistencies are the
syntactical errors, like using di�erent spelling to type the name of Runnable in AMALTHEA
and its Implementation Method in ASCET, and the semantic errors, like the case that there
is no de�ned implementation method for a de�ned Runnable.

Correcting these errors needs a lot of time to be �xed because the translation process
may take several hours and must be restarted after the correction of each error. Moreover,
some of the inconsistencies could not be detected in this stage, which means that more
time and cost will be needed to resolve them.

3.4 The consistency problem in Bosch case study

According to the case study of Bosch we can see that Bosch uses di�erent models to develop
the automotive system. These models are separately constructed and maintained and also
share the same semantics. For example the component is described using AMALTHEA
standard and its behavior is described using ASCET. This correspondence has to be insured
during the development in order to avoid inconsistency after integrating the di�erent
models.

32

3.5 Research question

Bosch developers depend on information exchange along the process development in
order to develop consistent models. Therefore they exchange Extensible Markup Language
(XML) �les to share the information.

For example the information about each software component developed in AMALTHEA
(like name of component, its internal architecture and imported/ exported interfaces)
has to be written by hand and shared with the developers of ASCET, who describe the
functionality of these software component.

The related information (like the name of the software component in AMALTHEA and
the name of ASCET module, which describes the functionality of the software component)
can be distributed over multiple documents and reused through copy and paste techniques.
The changes in individual artifacts can lead to multiple updates in di�erent documents
whereby it is di�cult to determine which documents have been a�ected.

Each modi�cation of the speci�cation documents as well as models have to be synchro-
nized to keep the consistency. The synchronization process is performed also manually
and costs time, because it has to be done between each pair of models.

The consistency of these models cannot be currently checked during the modeling
process. That means the con�icts, that may be caused by development, synchronization
or because of unknown correspondences hidden in tools, will be discovered only after
integrating the C code generated from AMALTHEA and ASCET. As mentioned in the last
section 3.3.3 the inconsistency between the models will cause compilation and linking
errors, which take a long time to be �xed, because each translation may take several
hours. What exacerbates the problem, is that not all con�icts can be detected using the
compiler /linker. The later the con�icts are detected, the more e�ort and cost are needed.
Additionally, the con�icts resolution after generating the code will cause drift and erosion
between the models and the implementation.

Hence, we can see that the consistency preservation between Bosch’s models is an
expensive process. This is mainly because the time needed for synchronization and
resolving the con�icts in the implementation stage.

Thereby, there is a need to reduce this e�ort and cost through applying more e�cient
mechanism to detect the inconsistent cases automatically, synchronize the models and �x
the con�icts in earlier stages.

3.5 Research question

This study aims to improve the automotive system development process to ensure the
consistency of the heterogeneous used models with lowest possible cost. The current
automotive software development process su�ers that the automotive models that share
semantic overlaps are developed independently of each other using special tools. The
fragmentation and redundancy of the information between these models can lead to in-
consistency. The correspondences between the automotive metamodels are nevertheless
neither explicitly de�ned nor suitable for all projects. Therefore, there is need to express
these correspondences declaratively in high level of abstraction, like the declarative ex-
pression using MIR language. De�ning these correspondences will enable the automatic
detection of the inconsistent cases in the modeling stage and will allow applying automatic

33

3 Automotive system development in the context of Bosch case study

synchronization mechanism based on these correspondences. To our knowledge, there is
no e�cient mechanism to detect the potential inconsistency and resolve it fully automati-
cally. Vitruvius view-based development concept o�ers a gut mechanism for the automatic
synchronization, from which this work aims to bene�t. However, the automotive software
development is performed using di�erent domain-speci�c modeling tools, which are not
supported by Vitruvius. Besides that, the current Vitruvius prototype does not support the
integration of two or more legacy models that are developed using the existing external
tools. This raises the main research question: How can Vitruvius concept be extended in
order to be used for improving the automotive software development? This main question
can be divided into the following research questions:

• RQ1: Can MIR language express the correspondences rules between the automotive
metamodels in abstract form? If not, what is missed and has to be developed?

• RQ2: How should the development process of Vitruvius be evolved in order to sup-
port the automotive systems development? What are the most prominent activities
that should be included?

• RQ3: How can the scenario of "legacy" models be supported by Vitruvius? I.e. how
can two or more related legacy models be integrated in change-based development?

• RQ4: How can Vitruvius approach be applied when the used models are developed
and updated using other tools, especially when these tools are not open source tools
and cannot be integrated with Vitruvius prototype?

• RQ5: Can the e�ort needed to detect and resolve potential inconsistencies be reduced
by applying Vitruvius approach?

• RQ6: How far can the automatic consistency preservation between automotive
systems be achieved?

34

4 Applying Vitruvius approach in
automotive systems development

This chapter describes the main research objectives in section 4.1. Section 4.2 discusses
using MIR for expressing the correspondences between the automotive metamodels. The
main new activities that have to be included in Vitruvius development process are described
in section 4.3. Section 4.4 illustrates mechanism for integrating two and more related
legacy models in Vitruvius. Section 4.5 de�nes two scenarios to apply Vitruvius concept
when the legacy models are developed using external modeling tools.

4.1 Research objective

To answer and evaluate the research questions I have divided my work into the following
objectives:

• RO1: Evaluate MIR language through detecting the consistency rules between the
standards used by Bosch (AMALTHEA, ASCET and SysML) and express them by
MIR in abstract level. Then validate and test MIR’s features and abilities and suggest
solution, new features or updates if needed.

• RO2: Investigate whether the default steps of Vitruvius development process can
be followed to apply this approach in practice (like the case by automotive system
development). If not, describe the additional steps.

• RO3: De�ne and evaluate a speci�c algorithm to support the scenario of integrating
several related legacy models in Vitruvius development process. This requires to
detect and link the correlated artifacts of the models, check the consistency and
resolve the con�icts between them. Then evaluate the de�ned algorithm by the
case-study of Bosch.

• RO4: De�ne the required conditions of using external modeling tools with change-
based development approach and describe how we can achieve them to bene�t from
Vitruvius’ features.
Present strategy that can facilitate the using of Vitruvius platform to preserve the
consistency between the models, which are built and developed outside Vitruvius
environment using external tools, like closed-source modeling tools.

• RO5: Assess the extended Vitruvius prototype in practice via a case study of auto-
motive system development through evaluating two features: the consistency check

35

4 Applying Vitruvius approach in automotive systems development

and con�icts resolution. Compare the result with traditional method (exchange XML
�les) to determine the e�ciency of the proposed solution.

• RO6: Determine whether Vitruvius can achieve the automatic consistency preser-
vation. If it cannot, list the cases which need a review and feedback from developer

4.2 Using MIR language to declare the consistency rules

The �rst research objective RO1 aims to evaluate the expressing of the correspondence
rules by MIR language. The main purpose is to evaluate the capabilities and features of
MIR by the case study and conclude whether it can be used in Vitruvius development
process. The following section 4.2.1 explains the bene�ts of using this language during
applying Vitruvius approach in automotive systems development. Moreover, in section
4.2.2 I will illustrate which parts of MIR are evaluated and which points are considered by
the evaluation. The problem found by evaluation, the suggested solution and the ideas of
developing MIR will be discussed in the section 4.2.3

4.2.1 The reason of using MIR language

The consistency preservation of the automotive system (as large model-based system)
lacks to the formalism that declares the correspondence rules in an abstract, easily readable
and more comprehensible form. The declarative de�ning these rules will help to avoid the
potential inconsistency between the models. Additionally, it will be used as a basis for
adopting automatic consistency preservation approach instead of the manual used one.

The MIR language (described in section 2.4) is compatible with Vitruvius framework
and meets the abovementioned requirements. This language de�nes the mapping between
the artifacts, the consistency invariants and the appropriate modi�cation response action,
which can be executed when the invariants are violated.

The main feature of MIR is that it is designed to be able to generate automatically the
bidirectional transformations between the metamodels from the declarative expression
of the correspondence rules between them. These transformations can be used by the
synchronisation or by resolving the con�icts between the models.

As a result, the developers will not need to deal with the technical details of these
transformations because they are separated from abstract synchronization logic. Moreover,
the declarative expression of the individual rules and actions will ease the reuse within
projects with identical or similar metamodels.

For the abovementioned reasons, I choose MIR to declare the correspondence between
the automotive system as a �rst step of applying Vitruvius in automotive system develop-
ment on one hand and to evaluate its potential by a practical case study for the purpose of
improving it in the other hand.

4.2.2 The evaluationmechanisms

MIR is still under development. Actually the editor of MIR supports only the declaration of
mapping. Therefore both of the invariants and responses are not evaluated. Declaring the

36

4.2 Using MIR language to declare the consistency rules

mapping between elements can be done using the mapping blocks (which are described in
section 2.4.1 and shown in listing 1). These blocks are when-where block, which determines
the pre- and post- conditions of this mapping, with-block block, which de�nes computed
values for the mapped attributes, and with map which declares the sub-mapping.

The example illustrated in listing 3 describes the mapping between the runnables in
AMALTHEA (type of Runnable) and the processes in ASCET (type of Method). In this
example the when-where block restricts the mapping with the condition that the method
in ASCET must have neither arguments nor return values.

This restriction can be expressed as two when-where conditions. The �rst one is
equals(pr.ret, null), which is checked as the pre-condition(pr.net == null) by the mapping
from ASCET to AMALTHEA (from left to right) and enforced as the post-condition (pr.net
= null) by the mapping from AMALTHEA to ASCET (from right to left). The second con-
dition isempty(pr.arguments), which will be translated to a pr.arguments. isEmpty() check
by the mapping from ASCET to AMALTHEA (from left-to-right) and pr.arguments.clear()
enforcement by the mapping from AMALTHEA to ASCET (from right to left). The with
map de�nes the sub-mapping between the attributes.

map adom.Method as pr and sw.Runnable as runn

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

Listing 3: The MIR de�nition of the correspondence between runnable and
process(method)

The evaluation of MIR language ability of express the correspondences considers the
following points: the ability of de�ning the mapping between the artifacts of the automotive
metamodels, the level of the abstraction, readable and clarity of the de�ned declarative
mapping, and the validity of the generated bidirectional transformations.

To achieve this evaluation the correspondence rules between the metamodels of the
case study are de�ned and written using the current version of MIR. The found problems
by de�ning the mapping or by the readability of the rules in addition to some suggested
solutions to solve them will be discussed and illustrated by examples in section 4.2.3.

4.2.3 The problems by MIR language and the suggested solutions

The current version of MIR have some obstacles that hinder the use of MIR in automotive
system development using Vitruvius approach. In this section I will illustrate the problems
of MIR with examples and I will suggest solutions and improvement ideas.

4.2.3.1 Referring to any order of objects

The correspondence rules can be nested to declare the sub-correspondences between the
attributes or the references. That requires the ability to refer to these references in order

37

4 Applying Vitruvius approach in automotive systems development

to map them. In some cases the access of these references is not obvious and depends on
calling di�erent order of instances.

This problem can appear in some structures like composite pattern design. This design
de�nes simple objects and a complex composite objects and treats them similar (as it shown
in �gure 4.2.3.1). If the mapping between the Composite1 class for instance and another
class is declared using MIR, then the description of the sub-mapping or constraints related
related to Class B cannot be de�ned. That is because the referring to an object of Class B
can be done only through calling unknown arrangements of instances of Composite1 class
and Composite2 class.

The following examples show some of the multiple ways to refer to an object of class B
that can be found:

comp1.comp2.lea f .b,
comp1.comp1′ .lea f .b,

comp1.comp2.comp1′ .comp2′ .lea f .b,
comp1.comp1′ .comp2.comp2′ .lea f .b, ...

where (comp1, comp1′) instances of Composite1, (comp2, comp2′) instances of Compos-
ite2 and b is instance of B.

The expression of any order of objects is not supported by MIR. To make this problem
much clearer I will illustrate it by the following concrete example of the case study.

Component

B

Leaf1Composite2Composite1

Figure 4.1: Composite pattern structure illustrates the multiple ways to refer to on object
of class B.

Example: Both the task type in ASCET and the task type in AMALTHEA are correspon-
dent with each other. This correspondence is nested to include the runnables of the Task in
AMALTHEA and their implementation processes de�ned in the ASCET task. To illustrate
this sub-correspondence I will explain the structure of the Task type in both metaclasses.

The Task in ASCET has multiple processes. The processes are type of Method and
have neither arguments nor return type (see �gure 4.4). These processes describe the
functionality of the runnables, which are described in AMALTHEA. Therefore the corre-
spondences between the processes (type of Method) and runnables in AMALTHEA have

38

4.2 Using MIR language to declare the consistency rules

to be de�ned during the de�nition of the correspondence between the Task metaclasses. It
is easy to refer to the methods in ASCET (as shown in 4.4), however it is not the case in
AMALTHEA. Each Task in AMALTHEA, which is a subclass of Process class, de�nes its
behavior during the execution, which includes the calling of various items. The runnables
are part of these called items. The calling of items di�ers according to the task and can be
one of the following types or mixing of them see �gure 4.2.

• Call a sequence of elements (using CallSequence class). This type determines a list
of elements that are called to be executed by the Process.

• Call one of di�erent de�ned execution paths according to either value of a label
(using LabelSwitch class) or a probability-value (using ProbabilitySwitch class).
This kind is like if-else or switch-case statements in a programming language and
requires de�ning the values related to each path (when LabelSwitch class is used)
or the probability of executing each path (when ProbabilitySwitch class is used).

So, to know the runnables which belong to a task all the elements called from all the
possible execution paths have to be selected and then �ltered according to the type call-
Runnable (�gure 8.4 shows example of the di�erent types of execution paths). As we
have seen in this example, the referring of all the runnables, which are belong to a task
depends on di�erent unknown order of instances (CallSequence,LabelSwitch and Prob-
abilitySwitch), which is impossible to be de�ned as a declarative general correspondence
rule using the current version of MIR.

Suggested solution: The suggested solution depends on referring to any order of objects
with new de�ned keyword like three successive points "...", which can be de�ned in the
Xtext grammar with the help of Xbase expressions. For this purpose the Xtext code de�nes
and calls a recursive Xbase method, which checks all the possible nested paths that can lead
to the target objects through calling di�erent orders of objects and collects these objects
using collection, �lter and aggregation lambda operations. As a result, the correspondence
rules will be described in abstract level and the di�erent orders of object will be handled
internally during the translation of the rule.

Listing 4 shows the applying of this solution by the mapping between Task metaclass of
AMALTHEA (shown in �gure 4.2) and Task metaclass of ASCET (shown in �gure 4.4).
map adom.Task as at and sw.Task as st

{ with map at.(name) and st.(name)

with map at.(priority) and st.(priority)

with map at.(processes as pr) and st.(callGraph)... (graphEntries[sw.

CallSequence]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{ when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name as n1) and runn.(name as n2)

} }

Listing 4: Declare the correspondence rule between Task in AMALTHEA and Task in
ASCET Using "..." to refer to any order of objects

39

4 Applying Vitruvius approach in automotive systems development

ProcessTask

GraphEntryBase

CallSequence

LabelSwitchProbabiltitySwitch

CallGraph

Label

initialValue : EInt = 0
constant : EBoolean = false
bVolatile : EBoolean = false

LabelSwitchEntry

value : EInt = 0
isDefault :
EBoolean = false

ProbabilitySwitchEntry

probability : EDouble = 0.0

CallSequenceItem

ClearEvent SchedulePoint SetEvent TaskRunnableCallWaitEvent Runnable

[0..1].callGraph

[0..*].graphEntries

[0..1].label

[0..*].entries[0..*].graphEntries[0..*].entries
[0..*].graphEntries

[0..*].calls

[0..1].runnable

Figure 4.2: Example of referring to object (TaskRunnableCall) using unde�ned order of
objects (LabelSwitch, ProbabilitySwitch and CallSequence)

40

4.2 Using MIR language to declare the consistency rules

4.2.3.2 One-to-manymapping

In some cases one element is corresponding with multiple elements in the contrast meta-
model. For example, by the inheritance the subclasses may have the same correspondence
of their superclass. This means, they will be correspondent with the same element in the
contrast metamodel (see �gure 4.3). Hence, it is necessary to determine with which one of
these classes the related element in the corresponding metamodel has to be mapped. The
description of this corresponding rule using MIR language requires repeating similar rules
for each subclass to illustrate that all subclasses have to be mapped to the corresponding
element. Nevertheless, the mapping is unclear, because MIR language does not o�er a
method to determine the target element, which has to be chosen as a default choice for
the inverse mapping.

SupperClass

SubClass1 SubClass2 SubClass3 SubClass4

Class_A

Corresponding
with

Metaclass1 Metaclass2

Figure 4.3: Example of mapping one-to-many relation

Examples: In this example I will explain how the type Task in ASCET and some of
its subtypes are corresponding with the type Task in AMALTHEA. The type Task in
ASCET metamodel has �ve subtypes (InitTask, SoftwareTask, PeriodicTask, TimeTableTask
and InterruptTask) see �gure 4.4. Wherase there is only one Task type in AMALTHEA
metamodel shown in �gure 4.5.

41

4 Applying Vitruvius approach in automotive systems development

Task

priority : EInt = 0

Method

InitTaskInterruptTask

Named

name : EString

PeriodicTask

period : EDouble = 0.0
delay : EDouble = 0.0

SoftwareTask TimeTableTask

[0..*] processes

Figure 4.4: The task type in ASCET

Task

preemption : Preemption = cooperative
multipleTaskActivationLimit : EInt = 0

Process

ISR

Figure 4.5: The Task and ISR types in AMALTHEA

The Task type in ASCET is corresponding with Task type in AMALTHEA. This cor-
respondence is inherited partly. In other words, all the subtypes of ASCET Task (except
InterruptTask) are corresponding with Task type in AMALTHEA metamodel. Declaring
these correspondences with MIR requires writing �ve similar correspondences (one for
the supertype and four for the subTypes). Moreover, it is ambiguous to which one of these
�ve types the Task type in AMALTHEA has to be mapped.

The listing 5 shows the similar MIR mapping blocks between Task type in AMALTHEA
on one hand and the Task type, InitTask type, SoftwareTask type and TimeTableTask type
from ASCET on the other hand.

The last mapping block describes the additional needed mapping between the subtype
InterruptTask in ASCET and ISR type (not Task type) in AMALTHEA.

42

4.2 Using MIR language to declare the consistency rules

generates package mir.ascet2amalthea

generates type ASCET2AMALTHEA

import package "http://www.amalthea.itea2.org/model/1.1.0/sw" as sw

import package "http://amalthea.itea2.org/model/1.1.0/components" as components

import package "http://com.bosch.swan.ascet.adom/1.0" as adom

map adom.Task as at and sw.Task as st

{

with map at.(name) and st.(name)

with map at.(priority) and st.(priority)

with map at.(processes as pr) and

st.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.TaskRunnableCall])

.(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name as n1) and runn.(name as n2)

}

} //==

map adom.InitTask as ait and sw.Task as st

{

with map ait.(name) and st.(name)

with map ait.(priority) and st.(priority)

with map ait.(processes as pr) and

st.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.

TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

} //==

map adom.SoftwareTask as ast and sw.Task as st

{

with map ast.(name) and st.(name)

with map ast.(priority) and st.(priority)

with map ast.(processes as pr) and

st.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.TaskRunnableCall])

.(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

} //==

map adom.TimeTableTask as attt and sw.Task as st

43

4 Applying Vitruvius approach in automotive systems development

{

with map attt.(name) and st.(name)

with map attt.(priority) and st.(priority)

with map attt.(processes as pr) and

st.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.TaskRunnableCall])

.(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

} //==

map adom.PeriodicTask as apt and sw.Task as sisr

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.

CallSequence]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

with-block

{

switch sisr. stimuli[sw.Periodic].offset.unit

{

case TimeUnit.ps : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^12

case TimeUnit.ns : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^9

case TimeUnit.us : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^6

case TimeUnit.ms : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^3

default : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value

}

}

switch sisr. stimuli[sw.Periodic].Recurrence.unit

{

case TimeUnit.ps : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^12

case TimeUnit.ns : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^9

case TimeUnit.us : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^6

case TimeUnit.ms : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^3

default : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value

}

} } //==

map adom.InterruptTask as ait and sw.ISR as sisr

{

with map ait.(name) and sisr.(name)

with map ait.(priority) and sisr.(priority)

44

4.2 Using MIR language to declare the consistency rules

with map ait.(processes as pr) and

sisr.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.TaskRunnableCall

]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

}

Listing 5: The similar correspondence rules between Task and its subclasses in ASCET
and Task in AMALTHEA

The suggested solution:

• The �rst solution for one-many mapping problem, is to determine one default
corresponding rule, which has to be executed for the inverse mapping. To achieve
this goal the keyword "default" can be added to the MIR language, otherwise the
developer has to be asked every time to choose the appropriate element for the
mapping. The mechanism of asking the developer has to be supported from MIR
too.

• A more e�cient solution for the inherited corresponding rule is to de�ne only one
correspondence rule (between the superclass and the corresponding class) using the
following keywords:

– the keyword "inherited" to indicate to the inherited correspondences.
– the keyword "default" with the name of the default class for the inverse map-

ping.
The following listing shows the applying of the suggested solution to the abovemen-
tioned example 4.2.3.2.
inherited map adom.Task default adom.SoftwareTask as at and sw.Task as st

{

with map at.(name) and st.(name)

with map at.(priority) and st.(priority)

with map at.(processes as pr) and st.(callGraph)...(graphEntries[sw.

CallSequence]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name as n1) and runn.(name as n2)

}

}

Listing 6: Applying of the suggested solution to the abovementioned example, using
inherited and default keywords 4.2.3.2

45

4 Applying Vitruvius approach in automotive systems development

When the default keyword is not used, the developer has to be asked every time to
identify whether the superclass or one of the subclasses will be used for the one-many
mapping. Moreover this solution suggests declaring the rules of the subclasses, which
do not inherit the correspondence rule of the superclass, separately. For example in
the abovementioned example the correspondence between the type InterruptTask in
ASCET (subtype of Task) and its corresponding type in AMALTHEA (ISR instead of
Task) has to be declared once again separately as it has been shown in the listing 7.
map adom.InterruptTask as ait and sw.ISR as sisr

{

with map ait.(name) and sisr.(name)

with map ait.(priority) and sisr.(priority)

with map ait.(processes as pr) and

sisr.(callGraph)...(graphEntries[sw.CallSequence]).(calls[sw.

TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

}

Listing 7: Applying of the suggested solution to the abovementioned example 4.2.3.2 will
de�ne additional rules for the non-inherited rules

In this example the mapping between PeriodicTask and Task is nested to de�ne
the relation of the time constraints (recurrence and o�set), therefore it will be also
separately de�ned in order to describe the additional sub-mapping. This rule will be
discussed in details in the section 4.2.3.3.

4.2.3.3 Duplicate writing similar rules

The main objective of using MIR language is to describe the correspondence rules in high
level of abstraction and readable way. Therefore MIR has to avoid repeating similar rules,
which can not be well read or distinguished from each other.

In some cases, several similar rules can be repeated in order to re�ect small changes (like
values of the attributes) occurred because of di�erent possible changes in the pre-conditions
de�ned in when-where block.

For example, by the mapping between attributes that have di�erent measurement units
it is necessary to convert the values of these attribute according to certain unit de�ned
as pre-condition in when-where block and assign them to the related attributes using
with-block (mentioned in section 2.4.1). The changes of the measurement units lead to
changes in the attributes’ values. As a result, similar rules will be repeated to re�ect the
change of the attribute’s value according to the selected measurement unit.

Example: For example, the PeriodicTask in ASCET and Task in AMALTHEA are cor-
respondent with each other. De�ning the mapping between them requires de�ning the

46

4.2 Using MIR language to declare the consistency rules

sub-mapping between the temporal attributes too. The PeriodicTask has two attributes
periodic and delay. The related information of these attributes are stored in Periodic class
in AMALTHEA, which the Task class refers to (for more information see stimulus model
8.2.1.2 and the software model structure that illustrates the relation between Task and
Stimulus in the appendix 8.1).

The attribute recurrence in AMALTHEA is correspondent with the attribute periodic
in ASCET and the attribute o�set in AMALTHEA is also correspondent with the attribute
delay in ASCET.

Depending on the attribute TimeUnit the value of both the attributes recurrence and
o�set in AMALTHEA can be in seconds, milliseconds, microseconds, nanoseconds or
picoseconds, whereas the values of the attributes period and delay are always saved in
seconds.

De�ning the sub-mapping have to convert the attributes’ values according to their units.
As aforementioned MIR allows to determine the time unit of each of these attributes as

a pre-conditions using when-where block and assign the converted value to the related
attributes using the with-block.

In each mapping block we can determine only one time unit for each of the recurrence
and o�set attributes. This means, we need to declare 25 rules in order to cover the all
possible cases needed to describe the correspondence between PeriodicTask and Task.

That is because these attributes are independent of each other and each one may have
one of �ve measurement unit. Therefore, there are (5 multiple by 5) di�erent possible
pre-conditions as well as required mapping blocks. In the following listing 8 I will show
an example of the �rst four rules. The rest 21 rules will be implemented similar with small
changes in both when-where block and with-block. In other words, each one of these similar
rules assign the converted values of the attributes Recurrence and o�set using with-block
according to the measurement units determined in when-where block.

//The first rule when offset is in second and recurrence in second

map adom.PeriodicTask as apt and sw.Task as sisr

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map sisr.(stimuli[sw.Periodic]).(recurrence).(value) and apt.(period)

{

when-where { equals(sisr. stimuli[sw.Periodic].Recurrence.unit, TimeUnit

.s)}

}

with map sisr.(stimuli[sw.Periodic]).(offset).(value) and apt.(delay)

{

when-where {equals(sisr.stimuli[sw.Periodic].(recurrence).(unit),

TimeUnit.s)}

}

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.CallSequence

]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

47

4 Applying Vitruvius approach in automotive systems development

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}}

//The second rule when offset is in second and recurrence in millisecond

map adom.PeriodicTask as apt and sw.Task as sisr

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map sisr.(stimuli[sw.Periodic]).(recurrence).(value) and apt.(period)

{

when-where {equals(sisr. stimuli[sw.Periodic].Recurrence.unit, TimeUnit.s)}

}

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.CallSequence

]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

when-where {equals(sisr.stimuli[sw.Periodic].(Recurrence).(unit),TimeUnit.ms)}

With-block

{

apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^3

}}

//The third rule when offset is in second and recurrence in nanosecond

map adom.PeriodicTask as apt and sw.Task as sisr

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map sisr.(stimuli[sw.Periodic]).(recurrence).(value) and apt.(period)

{

when-where {equals(sisr. stimuli[sw.Periodic].Recurrence.unit, TimeUnit.s)}

}

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.CallSequence

]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

when-where {equals(sisr.stimuli[sw.Periodic].(Recurrence).(unit),TimeUnit. us)}

With-block

{

apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^6

}}

//The fourth rule when offset is in second and recurrence in nanosecond

map adom.PeriodicTask as apt and sw.Task as sisr

48

4.2 Using MIR language to declare the consistency rules

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map sisr.(stimuli[sw.Periodic]).(recurrence).(value) and apt.(period)

{

when-where {equals(sisr. stimuli[sw.Periodic].Recurrence.unit,TimeUnit.s)}

}

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.CallSequence

]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)}

with map pr.(name) and runn.(name)

}

when-where {equals(sisr.stimuli[sw.Periodic].(Recurrence).(unit),TimeUnit.ns)}

With-block

{

apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^9

}}

/* The rest 21 rules will be similar,the unit of recurrence and the unit of are

independent of each other and can take one of the 5 units, therefore the total

number of possible rules are 5*5. */

Listing 8: Example of repeating similar rules according to de�ned constraints

Other example that illustrates this problem is the description of the correspondence
between AscetModule from ASCET and Block from SysML. This example will explained
in details in the next section 4.2.3.4 and the repeated similar rules is found in appendix 11.

Suggested solution: Supporting of if or switch statements can reduce the replication
of similar rules. The di�erences of constraints can be represented as the conditions of
if or switch statements, which control and declare the re�ected changes without the
need of repeat the other information. As a result of applying the suggested solution the
correspondence of the previous example 4.2.3.3 will be declared in only one correspondence
rule using two switch statement instead of 25 rules, as it is shown in listing 9.
map adom.PeriodicTask as apt and sw.Task as sisr

{

with map apt.(name) and sisr.(name)

with map apt.(priority)and sisr.(priority)

with map apt.(processes as pr)and sisr.(callGraph)...(graphEntries[sw.

CallSequence]).(calls[sw.TaskRunnableCall]).(runnable as runn)

{

when-where {empty(pr.arguments)

equals(pr.ret,null)

}

with map pr.(name) and runn.(name)

}

49

4 Applying Vitruvius approach in automotive systems development

with-block

{

switch sisr. stimuli[sw.Periodic].offset.unit

{

case TimeUnit.ps : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^12

case TimeUnit.ns : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^9

case TimeUnit.us : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^6

case TimeUnit.ms : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value / 10^3

default : apt.delay=sisr.(stimuli[sw.Periodic]).offset.value

}

}

switch sisr. stimuli[sw.Periodic].Recurrence.unit

{

case TimeUnit.ps : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^12

case TimeUnit.ns : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^9

case TimeUnit.us : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^6

case TimeUnit.ms : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value / 10^3

default : apt.period=sisr.(stimuli[sw.Periodic]).Recurrence.value

}

} }

Listing 9: Avoid the repeating of similar rules in example 4.2.3.3 using the suggested switch
statement

The MIR code in the next section 4.2.3.4 shows also using the suggested switch keyword
by describing the correspondence between AscetModule from ASCET and Block from
SysML.

4.2.3.4 No direct access on ametaclass

By describing of the mapping block, it may be needed to access other artifacts in the
structure for the purpose of de�ning the sub-mapping or to add constraints, pre-conditions
that related to the attributes/ references of these artifacts. Sometimes there is no direct
access to the desired artifacts.

For example, the unidirectional association, aggregation or composition relations are
strictly one way association. That means, the access to the metaclass in the reverse
direction of this association cannot be done directly and needs to explore the metamodel
in search of the desired metaclass. The �gure 4.6 shows three examples of the strictly one
way association. Each one illustrates how it is not impossible to access the class B directly
from the class A.

50

4.2 Using MIR language to declare the consistency rules

B B B

A A A

Figure 4.6: Examples of one way association, in each one the metaclass A is not able to
access the class B directly

Example: Both SysML and ASCET describe the software components (in term of block
in SysML and ASCET module in ASCET) in addition to their interfaces (in term of in/ out
�ow ports in SysML and read/ write messages in ASCET).

In following I will give an overview about the metaclasses related to the aforementioned
semantic correspondence in order to illustrate the problem of declaring this correspondence
using MIR.

On one hand each SysML Block metaclass refers to its base-class, which has multiple
ports. Each of these ports are encapsulated with the metaclass FlowPort, which has more
information about the port like the direction of port (in, out or inout). The �gure4.7 shows
the relation between Block and FlowPort.

Block

isEncapsulatedI:IBooleanI=Ifalse

Class

isActive : Boolean = false
passive_class(diagnosticsI
EDiagnosticChain,IcontextI
EMap)I:IEBoolean

Port

isBehavior : Boolean = false
isConjugated : Boolean = false
isService : Boolean = true
port_aggregation(diagnosticsI
EDiagnosticChain,IcontextIEMap)I:I
EBoolean

FlowDirection

in
out
inout

FlowPort

/isAtomic : Boolean = false
isConjugatedI:IBooleanI=Ifalse
direction : FlowDirection = inout
getIcon()I:IImage

EncapsulatedClassifier

getOwnedPorts()I:IPort

[1..1] base_Class

[1..1] base_Port

[0..*] /ownedPort

Figure 4.7: Example of no direct access problem

51

4 Applying Vitruvius approach in automotive systems development

AscetModule

Component

getDiagram(name) : Diagram
getElement(name) : Element
getMethod(name) : Method
getDataset(name) : Dataset
getImplementationSet(name) :
ImplementationSet
toString()

Element

comment : EString
unit : EString
calibratable : EString

Variable

get : EBoolean = false
set : EBoolean = false
read : EBoolean = false
written : EBoolean = false
reference : EBoolean = false
volatile : EBoolean = false
virtual : EBoolean = false

Message

[0..*] elements

Figure 4.8: The metaclass of AscetModule

On the other hand AscetModule metaclass consists of multiple elements, which can
be instance of the type Message. These messages according to their attributes can be
classi�ed in one of these types: "message can be only read", "message can be only written"
or "message can be read or written" (see �gure 4.8).

De�ning the mapping between Block and AscetModule requires the ability to access the
both of FlowPort and Message metaclasses for the purpose of de�ning the sub-mapping
between them. The Message metaclass can be referred and accessed directly from the
AscetModule metaclass whereas the Block metaclass cannot access the FlowPort metaclass
directly because of the unidirectional association between them.

De�ning this sub-mapping by MIR is not possible because MIR does not support explor-
ing the metamodel in order to inquire about the FlowPort.

Suggested solution: The optimal suggested solution is that MIR Language supports new
keywords like referencedBy, composedBy and aggregatedBy. These keywords can
ease the declarative expression of the corresponding rules in high level of abstraction.
Then these keywords are interpreted internally and generate the mapping depending on
Xbase expression.

De�ning the appropriate search method for the suggested keywords can be done us-
ing lambada expressions, which support the needed aggregation, �lter and collection
operations.

The other solution is that MIR language enables using either the abovementioned
Xbase expressions or OCL constraints, which o�ers also the required collection and �lter
operations to explore the metamodel [17].

52

4.3 Development process using Vitruvius

The following MIR code shows applying the �rst suggested solution to the aforemen-
tioned example 4.2.3.4.
generates package mir.sysml2ascet

generates type SYSML2ASCETs

import package "http://com.bosch.swan.ascet.adom/1.0" as adom

import package "http://www.eclipse.org/papyrus/0.7.0/SysML/Blocks" as sysml

map sysml.blocks.Block as bl and adom.AscetModule as ascetModule

{

when-where {equals(bl. isEncapsulated,true)}

with map sysml.PortAndFlow.FlowPort referencedBy bl.(base_Class).(ownedPort) as

flowport

and ascetModule.elements(Message) message

{

with map flowport.(name) and message.(name)

/*The switch block is used as a suggested solution for the problem of repeating

similar rules. see this example without using switch block in the appendix*/

with-block {

switch flowport.(direction)

case FlowDirection.Out:messag.read= true

messag.written=flase

case FlowDirection.In:messag.read= false

messag.written=true

case FlowDirection.Inout:messag.read= true

messag.written=true

}

}}

Listing 10: Using the suggested key referencedBy to declare the mapping between SysML
Block and AscetModule

4.3 Development process using Vitruvius

This section meets the research objective RO2, which aims to explore the actual devel-
opment process of Vitruvius and determine whether additional steps may be needed for
applying Vitruvius in automotive system development.

Vitruvius Development process according to the methodologist’s role can be divided
into two stages. The �rst stage is initialize the environment (create VSUM metamodel,
de�ning view types, de�ning correspondences between the metamodels, etc.) and it is
described in the responsibilities of the methodologist (see section 2.3.1). The tasks of this
stage shall be applied in order to use Vitruvius in practice. The �rst important task is
creating VSUM metamodel. VSUM has to be able to represent all the models of the project,
for example in the case study of automotive system VSUM metamodel will consist of the
legacy SysML, AMALTHEA and ASCET metamodels. The second step is to deduce the
semantic correspondences between the metamodels (as it will be described in automotive

53

4 Applying Vitruvius approach in automotive systems development

system example 5.1.1). These correspondences rules have to be written either with MIR
language (see the example in section 5.1) or by using another transformation language
like Xtend (as it explained in section 5.3.1). Then these consistency rules are added to the
VSUM metamodel. After that the next stage of the development begins. In this stage the
developers have to be able to access and modify the view types of VSUM metamodel.

Current version of Vitruvius support only few modeling tools. That means, the devel-
opers of the model-based system (like automotive system) have to use existing external
modeling tools to build and manipulate their models. As a consequence the development
process has to be updated in order to support the following tasks:

• Import a legacy model for one of the following purposes:
– Generate its related model depending on the integration strategy [29] explained

in the section 2.3.3. This step is already performed.
– Integrate it with the other legacy models. This means �nding the correlated

elements that belong to di�erent models and linking them together.
– Update an existing models, which demands deduction of the changes through

calculating the di�erences between the old and new model. Then synchronize
the updated models with the other models. This step is colored with green
in the use case diagram shown in �gure 4.3 to point that this step will be
implemented in the future work.

• Check the consistency between the integrated models and resolving the found incon-
sistent cases, which can be occurred during the modeling using external modeling
tools.

• Export the integrated consistent models.

The updated development process of Vitruvius is shown in �gure 4.3. In this �gure the
red use cases indicate to the extension performed by this work, whereas the green use
case points to the extension that will be performed by a future work. Moreover shows this
�gure that the developer uses also an external modeling tool, which allows him to develop
the models, export them to Vitruvius environment or import them again for the further
development.

The new steps of the development process will be discussed and explained in details in
the following sections (4.4,4.5).

4.4 Support the scenario of legacymodels

Applying Vitruvius in the automotive system requires the ability of integration the legacy
models in Vitruvius development process for the purpose of the reusability and supporting
the modeling using external tools during Vitruvius development process. This section
propose strategy that meets these requirements and achieves the third research objective
RO3 through explaining how the di�erent related legacy models can be integrated in
Vitruvius development process.

54

4.4 Support the scenario of legacy models

create SUM metamodel

define viewtype

<<include>>

modify SUM
metamodel

import legacy model

generate the
related models

integrate several
legacy models

update legacy
model

<<extend>>
<<extend>><<extend>>

find and resolve the
inconsistent cases

<<include>>

export the consistent
models

Methodologist

Developer

build model

modify model

export model

import model

Figure 4.9: The updated use cases for developer roles in Vitruvius. Use cases colored with
red are performed in this work. Use case colored with green will be performed
in the future work. Old use cases is colored with gray.

55

4 Applying Vitruvius approach in automotive systems development

As mentioned in section 2.3.3 it is possible to integrate a structural model or object-
oriented code into change-based development approach (such as Vitruvius) using RSI and
LSI strategies [29]. However, these strategies do not support the integration of two or
more models, which share a certain semantics. Therefore I introduce a new strategy to
integrate several legacy architectural models in change-based development approach like
Vitruvius.

The strategy expects at least two legacy models as input. These models have to be valid
and compatible with the de�ned view types. The pre-conditions of the further delta-based
development are that all models under development are consistent with each other and
the related elements that belong to these models are linked.

Therefore, the support of legacy models in delta- and view-based development en-
vironment like Vitruvius requires linking the related artifacts, the ability of check the
consistency and resolving the con�icts between the legacy models.

This work proposes strategy that applies the abovementioned requirements through
the following steps (see �gure 4.10):

start

define the correspondence rules between the
metamodel

import the legacy models

build the correspondences according to the
defined rules

verify the consistency

The models are consistent

no

find and resolve the inconsistent cases

yes
End

Figure 4.10: Integrate structural models into change-based development approach

56

4.4 Support the scenario of legacy models

• S1: Describing the correspondences between the metamodels. These correspon-
dences will be used to initialize Vitruvius (creating VSUM metamodel and de�ning
view types that compatible with the legacy models) on one hand and to link the
correlated elements on the other hand. The later use of these correspondences rules
will be discussed again in the section 4.4.1).

• S2 Import the legacy models and build the correspondences between them according
to the rules de�ned in the �rst step. These correspondences are needed for further
development using change-based development (more details in section 4.4.2).

• S3 Verify the consistency between the artifacts and resolve con�icts and inconsistent
cases occurred during the independently development. (read the suggested algorithm
in section4.4.3)

The following sub-sections will introduce more details of this strategy.

4.4.1 S1: Describe the correspondences between themetamodels of legacy
models

In this step the correspondences between the di�erent elements are de�ned and the
metarepository according to these correspondences are created.

In this section I will suggest two classi�cation of the correspondence rules that ease the
implementation of the legacy models integration. Moreover, I will add an additional point
that have to be considered by describing the correspondences rules, which is the type of
the related attributes and the references of the corresponding elements. I will distinguish
and explain two types, which will help to use the correspondence rules in the next step S2
4.4.2 to indicate if two artifacts are correspondent or not.

The correspondence rules describe the semantic relation and the consistency between
the elements that belong to di�erent metamodels in addition to the semantic relation
between the elements’ attributes as well as the references. The correspondence rules
have to consider the di�erent kinds of the relation between the artifacts. For example I
distinguish between two cases of relation:

• The inherited correspondence, which means that the subclasses of a superclass are
correspondent with all the classes, which their superclass is corresponding with.
In this case, the correspondence rules can be de�ned brie�y by declaring the rule
between the superclasses and indicating that this rule can be inherited.

• The non-inherited correspondence means that the subclasses of a class may have
correspondences, which di�er from the correspondences of their superclass. In this
case the correspondency rules of these subclasses have to be declared separately
and clearly.

• The semi-inherited correspondence, which is mixture of the abovementioned corre-
spondences. In this type some of the subclasses inherit the same correspondence,
whereas the other not. The correspondence between the Task of AMALTHEA and

57

4 Applying Vitruvius approach in automotive systems development

The Task of ASCET is semi-inherited correspondence and is explained in details in
the section 4.2.3.2.

Moreover, I sort the correspondences rules according to the di�culty of the relation into
two kinds:

• The simple correspondence rules, which determine the correlated artifacts and
describe correspondences between their simple features.

• The nested correspondence rules, which describe the nested correspondences be-
tween the references of the artifacts in addition to the simple correspondences
between the attributes.

The abovementioned classi�cation will ease the use of these rules in the following steps,
like by legacy models integration.

These rules will be used to keep the consistency between the di�erent views. They
will be also used by the proposed integration strategy to identify the correlated objects
that belong to di�erent correlates legacy models. Therefore, I distinguish also between
two types of the relation between attributes /references of the correlated metaclasses.
The �rst type can identify whether two objects are correspondent or not. The symmetry
between the �rst type attributes/ references of two objects re�ects that these objects
are correspondent and represent common semantic. As a result, these objects have to
be linked with each other, even if there are no match of the values of the second type
related attributes. I have marked these attributes as identi�er attributes. In contrast
the second type of the attributes/ references cannot determine whether their objects are
correlated or not. To clarify the meaning of identi�er attributes I will give an example from
Bosch case study. The two corresponding metaclasses called Task that belong to di�erent
metamodels (AMALTHEA metamodel and ASCET metamodel) have the attributes name
and priority. These attributes are also correspondent with each other. The attribute name
can be classi�ed as identi�er attributes. That means if AMALTHEA task object and ASCET
task object have identical values of the name then these objects are correspondent with
each other. However that is not the case by priority attribute. If these objects have identical
values of the priority attribute, they can be correspondent or not.

In the following section 4.4.2 I will explain the use of this classi�cation by identifying
and linking the correlated artifacts.

4.4.2 S2: Build the correspondences between legacy models

The goal of this step is to �nd the corresponding elements which ensure the de�ned
correspondence rules and link them together. To achieve this goal the legacy models are
traversed sequentially. For each object that may ful�ll one of the de�ned correspondence
roles, the strategy will search for its corresponding object in the other legacy model through
comparing the values of the identi�er attributes/ references de�ned in the correspondence
rules. If the correspondence rules are simple, then it is enough to compare the identi�er
simple features of the objects with each other. If they are identical then these object will
be linked and the potential con�icts by the other attributes will be resolved in the next
step of the integration strategy.

58

4.5 Modeling using external tools

By the nested correspondence rules we need also to check the correspondences between
the identi�er objects referred by the related objects in order to make decision whether
they are correlated or not. If we found that they are correspondent, then we link them as
well as the objects that they refer to. This step can be performed separately or integrated
with the next step (�nd and resolve the con�icts between the legacy models), in order to
traverse the models only once. By this traversing the correspondences will be added and
the con�icts will be solved as it will be explained in the suggested algorithms in section
4.5.

4.4.3 S3: Find and resolve inconsistent cases

This step detects the inconsistent cases and con�icts. Then it resolves them depending
on Vitruvius change-based development approach. To achieve this goal the algorithm
shown in the �gure 4.11 is applied. This algorithm illustrates the implementing of the
second and third steps (S2 and S3) of the strategy of integrating legacy models in change-
based development. According to this algorithm the artifacts which have no relation
with the artifacts of the other model will be ignored whereas the other artifacts that have
correspondence with artifacts of the other model are traversed consecutively in order to
ensure that they ful�ll the de�ned corresponding rules. The order of traversed artifacts is
important. First the root artifacts are checked then their sub elements and so on.

For each artifact the algorithm searches for their corresponding artifacts by comparing
the identi�er-key attributes that are de�ned in the last step. If the corresponding objects
are found, then they will be linked with this artifact (as it has been illustrated in the last
step 4.4.2) and the identical of the non-identi�er attributes values will be checked. The
potential con�icts of the non-identi�er attributes values is the �rst type of the inconsistency
that is detected by this algorithm. This type of the inconsistency can be resolved semi-
automatically by one of the two following solution. The �rst one is by asking the developer
to determine the correct value. The second one is by choosing a default synchronization
direction between for each pair of the legacy models, which allows to update values of the
target attributes according to the values of the source attributes.

The second type of the inconsistency which can also automatically be detected and
resolved is the absent of the corresponding artifacts or the nested corresponding artifacts.
To solve this type of inconsistency the algorithm assumes that the artifact, which its
corresponding artifacts are not found in the related legacy models, has been newly created
and thus generates the appropriate atomic changes (create change), in order to resolve
this inconsistent case automatically. These atomic changes are saved in a list and trigger
the synchronization by Vitruvius after traverse all legacy models. Consequentially, the
change-driven model transformations will create the missed corresponding artifacts and
link them also with the related artifact.

4.5 Modeling using external tools

For the discussion of RO4 the modeling using external tools, I distinguish between two
cases of using Vitruvius. The �rst bene�ts of all the features of Vitruvius like View-based

59

4 Applying Vitruvius approach in automotive systems development

Start

Import legacy models

The
corresponding
elements are

found

generate create-change as if this
element is just now created

Add the found correspondence to
the correspondence instanc, if it is

not added

Stop

Yes
No

Create empty correspondence instance

Traverse the first model

Read the root object

Search for the corresponding elements in the
other models

There is conflicts between
the corresponding elements

yes
Solve the conflicts by
asking the developers

noThere is more
objects

yesread the next object

no

There is more
model

trigger the
synchronization

no yes
Traverse the next

model

Figure 4.11: Resolve con�icts during the integration of legacy models.

60

4.5 Modeling using external tools

modeling and Consistency preservation. The second concentrates only on using Vitruvius
to declare the correspondency rules and resolve potential inconsistencies between the
models.

4.5.1 Using Vitruvius as a view-based development approach

Vitruvius is view-and change-based development approach. It depends on recording all
the changes during manipulating a model and propagating them to the related views to
save the consistency. Applying this approach in the case of using external modeling tools
requires implementing bidirectional transmitter, which detects the changes made by the
external modeling tools, transforms them to Vitruvius, records the changes applied by
Vitruvius during the synchronisation and transform changes applied by Vitruvius to update
the models under development in the external tools. Implementing such this transmitter
is not always feasible. That is because recording the series of the atomic changes or access
the models to update them is not applicable in the case of the closed-source modeling
tools (like ETAS ASCET embedded control development systems used in this case study).
Therefore, I suggest the following scenario to the collaborative usage of Vitruvius as
view-based approach.

In this scenario the developers integrate the automotive legacy models developed in the
external tools for the �rst time using the integration strategy explained in the last chapter
4.4. If there is no legacy models, then only the �rst step S1 of the strategy is performed in
order to create the metarepository including the metamodels and the correspondences
between them. Then the developers check out their copies and develop them iteratively.
In each iteration the models are modi�ed in the external tools. During the modi�cation of
the models the atomic changes have to be either recorded (if it is possible) or calculated
using the di�erences between last two versions. Then the atomic changes are imported to
Vitruvius and trigger the synchronisation. As a result, Vitruvius will update the related
views and resolve potential con�icts semi-automatically. To re�ect the changes executed
by the synchronization, the consistent resulting models are exported to the external tools
again and new iteration begins.

If the automotive models are not EMF-based format as the case of ASCET models,
which is in AMD format(ASCET Modeling Data), then we need an adapter, which can
transform the models to/from EMF-based format by implementing the suitable model-
based transformations. As a result, importing/exporting the model from/to the external
models will be done using this adapter. Moreover, the atomic changes can be then detected
from the EMF-based models using comparison tools like EMF compare [12, 51], which
calculates the changes between two versions of models. According to the above, we can
summarize the use of Vitruvius as a view-based development approach using external
modeling tools as shown in Flowchart 4.12.

61

4 Applying Vitruvius approach in automotive systems development

start

import legacy models

integrate the legacy models and solving the potential
inconsistency

export the resulted consistent models

further development is needed

yes

modify the consistent models using external modeling tools

calculate the series of the atomic changes

import the atomic changes into Vitrovius

synchronize the changes and resolve the potential conflicts
no

END

Figure 4.12: Vitruvius development process using external tools.

4.5.2 Using Vitruvius to ensure the consistency between legacy models

In this usage, Vitruvius is used from time to time to check the consistency and resolve
potential inconsistent cases between the automotive models. In this case, it is not important
to record or calculate the atomic changes. The most recent models are imported to Vitruvius
and integrated there. As a result, the abovementioned integration strategy (described in
section 2.3.3) will check the consistency automatically and resolve potential inconsistency
semi-automatically.

If needed, the resulting consistent models can be further developed using the external
models. Then the modi�ed models can be once again imported to Vitruvius to check and
ensure the consistency.

The following �gure 4.13 illustrates the process of using Vitruvius to preserve the
inconsistency between the models created and modi�ed using external tools.

62

4.5 Modeling using external tools

start

import the legacy models

Integrate the legacy models and resolve the
inconsistency

export the consistent models

further modification is needed

yes

modify the consistent models using external tools
and export them to Vitruvius again

no
End

Figure 4.13: Using Vitruvius to resolve the inconsistency of the models, which are created
and modi�ed using external tools

63

5 Evaluation

The evaluation of my case study can be divided into the steps de�ned in my research
objective in section 4.1. In this chapter, I will explain the results and conclusions reached
in this research. Consequently, I will answer the research question from section 3.5.

5.1 Evaluation of the correspondences rules expression using
MIR language

This section discusses the result of applying the �rst research objective RO1 which is
divided into two steps: detecting the correspondence rules and evaluating the expression
of them using MIR language. This discussion will answer the �rst Research question RQ1.

The following sub-section 5.1.1 introduces the main correspondences between the
metamodels of the case study. The subsection 5.1.2 explains how the found correspondences
are evaluated. The results of MIR evaluation are summarized in the section 5.1.3

5.1.1 Themain correspondences between the case studymetamodels

This section explains the main founded correspondences between the AMALTHEA, ASCET
and SysML, which are related to the case study explained in the section 3.3.

5.1.1.1 The correspondence between AMALTHEA and ASCET

The implementation of the software components de�ned in AMALTHEA is executed in
ASCET. Therefore, there are semantic overlaps between these models. The AMALTHEA
model is divided into the following sub-models: components model, con�guration model,
constraints model event model, hardware model, mapping model, operating system model,
property constraints model, stimuli model and software model. The main correspondences
between AMALTHEA and ASCET are between the main model of ASCET on the one hand
and both of the software model and component model of AMALTHEA on the other hand.
In the following some examples about these correspondences:

Examples:

• Component and AscetModule: The components model consists of the compo-
nents of the system in addition to the de�nition of the system architecture using
System class, which contains several components and the connection-instances
between them (see �gure 8.5 in appendix).

65

5 Evaluation

The AMALTHEA components (shown in �gure 5.1) describe the software architec-
ture and are implemented in ASCET using AscetModule type(�gure 8.7). AscetMod-
ule is one of the component types in ASCET, which describes a number of processes
that can be activated by the operating system.
Hence, the �rst correspondence is between Component and AscetModule metaclass.

Component

IComponentsModelElement

IPort

Runnable

Label

AbstractProcess

[0..*] ports

[0..*] runnables

[0..*] labels

[0..*] tasks

Figure 5.1: The component type in AMALTHEA

• Runnable-Method: The component in AMALTHEA de�nes the runnables. The
actual implementation of these runnables are described using the processes of
the AscetModule. These Processes are methods called from an operating system
task and have neither arguments nor return values. As a result, the runnables are
correspondent with the methods achieving the aforementioned conditions.

• Label-Message: The components in AMALTHEA exchange the data using data
elements named labels (see �gure5.2). Each runnable consists of di�erent elements
(shown in �gure 8.6), one of which is LabelAccess that enables the access to labels
based on selected access permission (read or write). Similarly, the data is exchanged
between the components in ASCET using Messages type. These Message objects are
accessed according to the value of their boolean attributes (read and write) shown
in �gure 5.3.

66

5.1 Evaluation of the correspondences rules expression using MIR language

Label

initialValue : EInt = 0
constant : EBoolean = false
bVolatile : EBoolean = false

DataType

[0..1] dataType

Figure 5.2: The Label type in AMALTHEA

• Label-di�erent types of data elements: The data element Label in AMALTHEA
can be used as a parameter, a temporarily existing variable or a constant value (see
�gure 5.2). In ASCET there are di�erent types of data elements like Parameter,
Constant, SystemConstant, Variable, Message, Input, Output and Argument (see
�gure 5.3). These data types can be mapped to the Label type in AMALTHEA and
vice versa according to their use.

The problem of mapping one element to many elements (this problem has been
de�ned in section 4.2.3.2) appears again in this correspondence. But in this case
the value of the attribute constant of label can reduce the number of the possible
corresponding elements. In other words, if the value of the boolean attribute is false
then the label can be mapped to one of the following classes: Variable, Message,
Argument, Input and Output (Argument, Input and Output types can be also ignored
because they are not used in the scenario of this case study). On the other hand
if the value of this attribute is true label will be mapped to one of the following
classes: Parameter, Constant and SystemConstant. In both of the cases the problem
of mapping one element to many elements is still existed.

• Task-Task: The software model in AMALTHEA de�nes the tasks, which call one or
various sequences of the runnables, according to some constraints. In a similar way
di�erent types of tasks are de�ned in ASCET. Each of them de�nes a set of processes
and is corresponding to the task type in AMALTHEA. This correspondence has been
explained in details in sections 4.2.3.2, 4.2.3.1.

• ISR-Task: Similar to the previous correspondence the InterruptTask is correspond-
ing with the type ISR (Interrupt Service Routines) in AMALTHEA, which is for
interrupt processes (see the example in section 4.2.3.2 and the related �gure 4.5).

67

5 Evaluation

Element

comment : EString
unit : EString
calibratable : EString

Constant

value : EString

Named

name : EString

Parameter

dependent : EBoolean = false
virtual : EBoolean = false
get : EBoolean = false

Return Variable

get : EBoolean = false
set : EBoolean = false
read : EBoolean = false
written : EBoolean = false
reference : EBoolean = false
volatile : EBoolean = false
virtual : EBoolean = false

Argument

index : EInt = 0

InputMessage OutputSystemConstant

Figure 5.3: ASCET data types

68

5.1 Evaluation of the correspondences rules expression using MIR language

Table 5.1: Examples of the correspondences between AMALTHEA and ASCET metamodels

AMALTHEA
metaclasses

ASCET
metaclasses

OCL constraints Correlated attributes/
references

AMALTHEA ASCET

Component AscetModule name Name

Runnable[]
runnables

Method[]
methods*

Labels[] labels Element[]
elements**

Task Task,
InitTask,
SoftwareTask,
TimeTableTask

 name Name

priority Priority

called
runnables****

Method[]
processes***

ISR InterruptTask name Name

priority Priority

called
runnables****

Method[]
processes***

Runnable Method Context Method
Inv: self .ret. oclIsUndefined ()
Inv: self -> collect(arguments)->
size()=0

Label Parameter,
Constant,
Systemconstant

Context Label
Inv: self.constant=true

name Name

Datatype Type

Label Variable,
Message,
Argument,
Input,
Output

Context Label
Inv: self.constant=false

name Name

Datatype type

BaseTypeDefinition Log Context BaseTypeDefinition
Inv: self.size=1

BaseTypeDefinition Udisc,
Sdisc

Context BaseTypeDefinition
Inv: Set{8,16,32}->includes{ self.size}

BaseTypeDefinition Cont Context BaseTypeDefinition
Inv: Set{32,64}-> includes{ self.size }

Array ArrayType numberEleme
nts

Size

Datatype basicType

* Additional sub-constraint: Context AscetModule Inv: self -> collect(elements)-> oclIsTypeOf(Message)

** Additional sub-constraints: Context AscetModule Inv: self -> collect(methods) -> ret. oclIsUndefined ()

 Inv: self -> collect(methods) -> collect(arguments)-> size()=0

*** Additional sub-constraints: Context Task Inv: self -> collect(processes) -> ret. oclIsUndefined ()

 Inv: self -> collect(processes) -> collect(arguments)-> size()=0

**** All runnables that can be called by this task (see the example illustrated in section 4.2.3.1)

69

5 Evaluation

5.1.1.2 The correspondences between SysML and ASCET

The software structure of the automotive system can be de�ned in ASCET using the block
diagram. The blocks represent the system components, which can be ASCET module or
ASCET classes. The same semantics can be described in SysML either with the BDD or
IBD diagram.

For example in our case study the block ControlAlgorithm de�ned in SysML(shown in
�gure 3.3) can be represented in ASCET as AscetModule named also ControlAlgorithm
(shown in �gure 3.7).

Based on this example, I will give in the following more example about the correspon-
dences between the ASCET and SysML model.

• Block-AscetModule ASCET module represents a number of processes that can
be activated by the operating system. This component cannot be used as a sub-
component within other components. Therefore it is corresponding with the Block
metaclass in SysML, when this block is not encapsulated in other Block. In other
words the value of the boolean property isEncapsulated has to be false. For example
the ASCET module ControlAlgorithm is corresponding with the Block object which
has the same name. This correspondence is explained in details in section 4.2.3.4
too.

• Block-AscetClass Classes in ASCET are like object-oriented classes. Their func-
tionality is described by methods which have oft arguments as input and return
type as output. For example, in Bosch case study both of the PIDT1 and Limiter
components of the ASCET module ControlAlgorithm are instances of AscetClass
type (see �gure 3.7). These classes are corresponding with the parts of the Block
contrlAlgorithm. In other words, the AscetClass metaclass has correspondence with
the Block metaclass when this block is part of other block.

• FlowPort-MessageAs it is illustrated in section 3.3.2 the data can be followed in and
out the ASCET module using Message type. Therefore the correspondence between
the AscetMdule type and Block type will be nested to include the correspondences
between the messages (type of Message) of AscetModule and the �ow ports, which
belong to the Block (type of FlowPort). The direction of the �ow port will be
determined according to the value of boolean attributes read and written de�ned in
Message type.

• FlowPort-Argument Unlike ASCET module the ASCET class receives the data
using the arguments of its method. This means that the arguments of a ASCET class
(type of Argument) will have sub-correspondence with �ow ports of Block (type of
FlowPort) when the direction of �ow port is in.

• FlowPort-Return Similar to the previous correspondence the return of the methods
de�ned in ASCET class (type of Return) will have a correspondences with the out
�ow ports of the block correlated with their ASCET class.

70

5.1 Evaluation of the correspondences rules expression using MIR language

Table 5.2: Examples of the correspondences between SysML and ASCET

SysML
metaclasses

ASCET
metaclasses

OCL constraints Correlated attributes/ references

SysML ASCET

Block AscetModule Context Block
Inv: self. isEncapsulated= false

Name name

flowPorts** Element[] elements*

FlowPort Message Context FlowPort
Inv:
Block.allInstances()->
select(x|x.base_Class->
collect(ownedports)->
includes(self.base_Port)).
isEncapsulated= false

Base_Port. name name

Direction=0 written=false
read=true

Direction=1 written= true
read=false

Direction=2 written=true
read=true

Block AscetClass Context Block
Inv: self. isEncapsulated= true

Name name

flowPorts** Element[] elements*

FlowPort Argument Context FlowPort
Inv: Block.allInstances()->
select(x|x.base_Class->
collect(ownedports)->
includes(self.base_Port)).
isEncapsulated= true
Inv: self.direction=0

Base_Port. name name

FlowPort Return Context FlowPart
Inv: Block.allInstances()->
select(x|x->
collect(flowparts)->
(base_Port) ->
includes(self.base_Port)).
isEncapsulated= true
Inv: self.direction=1

Base_Port. name name

*Additional sub-constraint: Context AscetModule Inv: self -> collect(elements)-> oclIsTypeOf(Message)

** The flow ports that belong to a block can be collected as following:

 Context Block

 Inv: FlowPort.allInstances()-> select(x |self.base_Class-> collect(ownedPort)-> includes(x.(base_Port)) .

71

5 Evaluation

5.1.2 The evaluation and the feedback of the found correspondence rules

The found correspondences rules are summarized in both of the table 5.1 and the table
5.2, which illustrate the mapping between the di�erent types in addition to the pre-/ post-
conditions that de�ned using OCL. After that these correspondences are discussed and
evaluated with Bosch’s experts. Some of the found correspondences are ignored, like the
correspondences between Argument, Input and Output types from ASCET on one hand and
Label type from AMALTHEA on the other hand because they are not used in the scenario
of this case study. Moreover other correspondences are ignored in the implementation
like the correspondences between the data types. Because the model types in ASCET are
transformed to the implementation (data) types through describing the implementation
process. As a result, there is no concise information about the implementation type during
the design, like the size of type in memory.

5.1.3 The result of MIR evaluation

The �rst research objective RO1 aims to evaluate the features of MIR language by Bosch
case study. As mentioned in section 2.4 MIR language is still under development and
its editor only supports de�ning the declarative mapping. Therefore, only the mapping
blocks (which is described in section 2.4.1) are evaluated. Besides that, the implementation
needed for the automatic generation of the required model transformations are also not
�nished. Hence, the evaluation does not include the evaluation of the correctness of the
generated model based transformations. In other words, the evaluation includes only the
ability of expression the mapping between the abovementioned correspondences 5.1.1 in
readable and high level of abstraction.

The expression of the mapping in MIR su�ers from some problems discussed in the
section 4.2.3. This section will summarize them according to their importance. The most
important problem is the inability of expressing the correspondences whereas the less
important one is related to its e�ect on the quality. I mean with the quality the level of
clarity and abstraction of rules, which can be measured by the number of the MIR rules
needed to express one correspondence.

Depending on this aspect the found problems can be divided into two types:

• Problems by de�ning the correspondences. For example the correspondences which
have either no direct access on a metaclass or require referring to any order of
objects cannot be declared using the current version of MIR. These problems meet
11 correspondences (the former problem meets 5 and the last meets 6) and applying
the suggested solutions will enable MIR to de�ne one MIR correspondence rule for
each correspondence.
Other example is the problem of mapping one metaclass to many metaclasses.
Although the correspondences can be declared in MIR but the de�ned MIR corre-
spondence rules lack information that determines to each one of these multiple
metaclasses the single corresponding metaclass has to be mapped.
Applying the suggested solution (described in 4.2.3.2) will allow de�ning the rules
correctly and can raise also the level of the quality through preventing the repetition

72

5.2 Applying the extended Vitruvius development process

Table 5.3: Summary of MIR problems
The MIR Problem Corresponden

ces
Number of needed rules

with this problem after applying
suggested solution

No direct access on a metaclass 5 0 (cannot be declared) 5 rules

One-to-many mapping 19 7 using pre-condition 7+6 rules

Referring to any order of objects 6 0 (cannot be declared) 6 rules

Duplicate writing similar rules 3 31 similar rules 3 rules

By all the problem 23 1 rule 17 rules

of similar rules by the case of inherited correspondences. This problem meets 19 of
23 correspondences of this case study.
However, 7 of these correspondences can be declared in the current version of MIR
by adding some precondition. For example the Block in SysML is corresponding
with both of the ASCET module and ASCET class, but these correspondences can
be distinguished according to the value of the attribute isEncabsulated. (see table
5.2). The rest 12 correspondences can be de�ned by 6 MIR rules using the suggested
solution.

• Problem by the quality of the MIR correspondence rules. For instance the problem
of repeating similar rules. In this case study it is required to repeat 31 MIR rules in
order to declare only 3 correspondences. Solving this problem will allow to explain
these 3 correspondences using only 3 MIR rules instead of 31 one. Solving this
type of problem is less important than the former type (problems by de�ning the
correspondences) because the correspondences can be de�ned but with low quality.

The table 5.3 summarizes the abovementioned problems and indicates the number
of the correspondences that have this problem in the second column correspondences.
Additionally, the table compares between the number of the needed MIR rules to declare
these correspondences before and after applying the suggested solution, regardless of
the other problems and without applying their suggested solutions. The last row of
table clari�es that from the total 23 correspondences only one of them can be de�ned
with this MIR version. Furthermore, 17 MIR rules will be needed to de�ne the rest 22
correspondences after using the suggested solution.

5.2 Applying the extended Vitruvius development process

In my case study the models used by Bosch are modeled using di�erent tools: SysML
modeling tool like Enterprise Architect and papyrus (I depended on papyrus tool and
its metamodel, because it is open source), AMALTHEA tool platform and ETAS ASCET
embedded control development systems (V6.3). Vitruvius o�ers no editor for these models.
Moreover, I have more than one legacy model, which have to be integrated in Vitruvius
platform. Therefore, this Version of Vitruvius cannot be applied to this case study. Conse-
quently, I can answer the second research question RQ2: "How should the development

73

5 Evaluation

process of Vitruvius be evolved in order to support the automotive systems devel-
opment?" that the extended development process has to support the integration of the
legacy models and the development using external tools. The main steps of the extended
development process have been de�ned in section 4.3 and shown in �gure 4.3. According
to these steps I build the metarepository of the related metamodels (SysML, ASCET and
AMALTHEA) and implement the proposed strategy for integrating the legacy models
(this strategy is introduced in section 4.4). The section 5.3 will describe the results of this
implementation.

Furthermore, the section 5.4 will discuss the development process using external tools
based on this implemented strategy. Then the section 5.5 will compare the results of the
consistency preservation using the extended development process of Vitruvius with the
traditional consistency preservation used by Bosch.

5.3 Support and integration of the legacymodels by Vitruvius

The suggested strategy described in the section 4.4 has been implemented and evaluated
with Bosch case study. For this purpose, I have applied the �rst step of the strategy and
created VSUM metamodel. Performing this step S1 does not di�er from the old version
of Vitruvius. According to the correspondence rules de�ned in the last section I have
expressed and implemented the most important of them using Xtend (see section 5.3.1).
That is because MIR language is still under development and cannot generate the required
transformation rules. Then the next steps S2 and S3 are implemented (see section 5.3.2)
in order to build the correspondences between the imported models and resolve the
inconsistency between them. The results of applying this strategy will be summarized
later in the section 5.3.3.

5.3.1 Themapping of the correspondences

For the mapping I have use Xtend programming language, whose syntax is slimmer than
java. It is integrated very well with Eclipse IDE and is suitable to express model transfor-
mation using large available library. Moreover, it generates the java code automatically.
Therefore It is used by the implementation.

However, mapping using Xtend compared to MIR language needs more e�orts. Because
more code will be written to express the model-based transformation between the meta-
models in the two directions (from the �rst metamodel to the second metamodel and visa
versa).

Therefore,I implemented the model-based transformations only between AMALTHEA
and ASCET as a �rst step. These transformations represent the main rules between the
software components in AMALTHEA and their implementation component called ASCET
Module in ASCET, in addition to the correspondence between the runnables and the
correlated processes in ASCET on one hand and the labels and the messages on the other
hand.

Hence, the metaclasses included in the transformations are:

• AMALTHEA: ComponentsModel, Component, SwModel, Runnable and Label.

74

5.3 Support and integration of the legacy models by Vitruvius

• ASCET: AscetModule, Method and Message.

The evaluation: The implemented transformations are tested using di�erent de�ned test
cases. In each one a test model �le is created and then new elements are created, added
to the model and manipulated. When the de�ned transformations are correct then the
corresponding elements will be e�ected correctly after triggering the synchronization
using Vitruvius platform. The results are evaluated using assertion functions, which show
that the transformation are correctly implemented.

5.3.2 The integration of AMALTHEA and ASCETmodels

To evaluate the integration strategy I implement the algorithm shown in �gure 4.11 in
order to build the correspondences between the imported legacy model, check of the
consistency and resolve potential con�icts.

Evaluation: In order to evaluate di�erent cases, the legacy model integration algorithm
is evaluated by the following test case in addition to the Bosch case study (the result of
Bosch case study is explained in the section 5.4). The reason is that this case study has
more inconsistent cases. In this test case three inconsistent legacy models are imported.
The �rst model is ASCET model (.xadom �le). The second one is AMALTHEA software
model (sw-amxmi �le), which saves the all software elements like tasks, runnable and
labels. The third one is the AMALTHEA components model (.components-amxmi �le),
which distributes the de�ned software elements to speci�c components. The �gure 5.4
shows the three legacy models with its elements. The AMALTHEA components model
has two components, one of them is correlated with the ASCET module named comp1.
However not all the methods de�ned in ASCET module (M1,M2) are declared as runnables
in the correlated AMALTHEA component comp1. Furthermore the runnable R1 in the
AMALTHEA component comp1 is not implemented in the correlated ASCET module.

According to the legacy model integration algorithm these emf-based inconsistent
models are consequently traversed and then the correspondences are added and saved
in Vitruvius platform. Adding the correspondences between the object depends on the
de�ned correspondences (the identi�er attributes, pre-condition, etc.). For example when
the object is instance of Runnable then the algorithm searches for an object of Method
type in ASCET, which have the same name of runnable, no arguments and no return type.
When it is found, then it links the two objects (runnable object and the found method,
which represents a process and de�nes the implementation of this runnables) and adds
them to the created correspondence instance. An example of the case study is that the
algorithm links the runnable RM of the component comp1 with the method RM of the
correlated ASCET module comp1. As a result, the correspondences between these models
are added. Moreover, the con�icts are resolved through creating and adding the required
objects to the models. To achieve this purpose the algorithm supposes that the objects,
whose corresponding elements are not existed, have just been established. According to
this suppose it creates then the related change (create-change) and supplies this change

75

5 Evaluation

.s
w

-a
m

xm
i f

ile SwModel

•Runnables:

•R1

•R2

•RM

.c
o

m
p

o
n

e
n

e
ts

-a
m

xm
i f

ile ComponentsModel

•Components

•comp1

•Runnables

•R1

•RM

•Comp2

•Runnables

•R2

.x
ad

o
m

 f
ile AscetModule

(comp1)

•Methods (Processes)

•RM

•M1

•M2

Figure 5.4: The inconsistent legacy models of the test case before the integration into
Vitruvius platform (the round rectangles represent the �les of the models and
the bulleted list represent the model’s elements).

to Vitruvius platform. As a result Vitruvius will create the corresponding objects after
triggering the synchronization.

For example, if the algorithm �nds no method in ASCET model, which can be considered
as implementation for an existing runnable in AMALTHEA like the case of runnable R1
of the component comp1, then it creates create-change for this runnable and as a result
Vitruvius will create a suitable method for this runnable and add it to the ASCET model.
Creating this method will depend on the de�ned model-based transformation. In my
example Vitruvius will create a Method named R1 and has neither arguments nor return
type. Then it will add this Method to correlate ASCET module comp1). As a result of
applying this algorithm, the missed corresponding elements will be created and added
to the models as it is shown in following �gure 5.5. The objects, which are written with
yellow color, are created by Vitruvius to resolve the found inconsistency.

5.3.3 Results

Applying the abovementioned strategy can help by integrating the legacy models in
Vitruvius under the following condition:

• The imported models have to be valid. For example, AMALTHEA metamodel allows
that the Task object have multiple Stimulus (see �gure 8.1 in appendix), but at most
one of these Stimulus can be type of the subclass periodic (the class stimulus and its
subclasses are shown in �gure 8.2.1.2 in appendix). If the model has a Task object
with more than one Periodic object, then this model is invalid. Integrating this
invalid model will cause a problem when the invalid Task object is transformed to
the PeriodicTask type in ASCET, because it will be not clear which one of the multiple
Periodic objects has the correct information about the time attributes (recurrence
and o�set).

76

5.3 Support and integration of the legacy models by Vitruvius

.s
w

-a
m

xm
i f

ile SwModel

•Runnables:

•R1

•R2

•RM

•M1

•M2

.c
o

m
p

o
n

e
n

e
ts

-a
m

xm
i f

ile ComponentsModel

•Components

• comp1

•Runnables

•R1

•RM

•M1

•M2

•Comp2

•Runnables

•R2

.x
ad

o
m

 f
ile AscetModule

(comp1)

•Methods (Processes)

•RM

•M1

•M2

•R1

.x
ad

o
m

 f
ile AscetModule

(comp2)

•Methods (Processes)

•R2

Figure 5.5: The resulting consistent test case models after resolving the inconsistency by
applying suggested synchronization algorithm.(the round rectangles represent
model �les and the bulleted list represent the model’s elements. Elements
created by Vitruvius to resolve the inconsistency are colored with yellow).

Other example is that the runnables’ names as well as the components’ names
have to be unique, otherwise neither the mapping nor the linking with the related
element can be successfully executed. The developers of Bosch comply usually with
these restriction. However, these constraints can be de�ned and checked again in
Vitruvius but this implementation does not implement such restrictions. It supposes
that the imported models is valid.

• The integration of the legacy models cannot be always executed automatically. In
some cases the developers have to make decision how the inconsistency have to be
resolved. For example when one element is corresponding with many elements.

• If the inconsistency found because of missing the related elements, then this strategy
solves the inconsistency always by creating these missed elements whereas the
inconsistency can be also resolved by deleting the element, whose corresponding
elements are not exist. However, the developer is informed about the changes and
can delete this element and the new added corresponding elements.

• The implementing of this strategy, which integrates more than two models in the
same time, may lead to recreate of existing objects. For example, if the algorithm
integrates the models of AMALTHEA, ASCET and SysML in the same time and there
is an object of AscetModule named "ControlAlgorithm", then the strategy will search
for an AMALTHEA Component object named "ControlAlgorithm" and SysML Block
object with the same name too. If only one of these objects is existed, then the
create-change will be created in order to resolve the inconsistency and create the
missed object. The synchronisation by Vitruvius will propagate this change and
create both of the two corresponding objects (Component object in AMALTHEA
and Block object in SysML). Consequently, one of these object will be recreated.

77

5 Evaluation

This Problem can be solved either by the incremental integrating or by de�ning
the suitable constraints and responses. The �rst solution requires repeating the
algorithm several times, as long as each pair of the models should be integrating
with each other. By using this solution by the case study the integration algorithm
will integrate AMALTHEA and ASCET models �rst, then the resulted ASCET model
will be integrated with SysML model.

The second solution de�nes the appropriate invariants and responses, which prevent
the recreation of the existing object. In the last example the de�ned invariant will
prevent creating two objects with the same name and ignore the later created object
as a response of violation of this invariant. This response is not optimal by the further
development, because the developer can unintentionally create two Component
objects (for example) with the same name and this violation of invariant can be
solved by changing the name of the recent created object, and not by ignoring it.
Therefore, the optimal response of this invariant is to ask the developer in order to
decide whether to ignore the recent object or to change its name, if this constraints
is violated.

• The automatic resolution of the inconsistency will create the missed corresponding
objects with the shared information only. This means that the updated legacy models
have to be reviewed after the integration in order to supply and add the additional
needed information. For example when Vitruvius creates a Method object, then
it supplies this object only with the name and the additional information about it
has to be added in ASCET. Similarly, when an AMALTHEA Task object is created
by Vitruvius, then all its runnables will be created and saved in one call sequence
whereas AMALTHEA allows de�ning di�erent call sequences and selecting one
of them during the runtime according to other data (see section 4.2.3.1). So, the
developer can update the created Task object in AMALTHEA platform and divide
the calling of the created runnables into di�erent call sequences if it is needed.

• Checking the consistency between two elements and linking them is based on the
identi�er attributes. The con�icts of the values of the non-identi�er attributes can
not be automatically resolved. The developer will be asked to determine the correct
value every time.

According to the previous discussion I can answer the third research question RQ3"How
can the scenario of "legacy" models be supported by Vitruvius?" as the following. Vitruvius
can support the development of the legacy models by applying the suggested integra-
tion algorithm shown in �gure 4.11 under the abovementioned conditions. Building the
correspondences and checking the consistency can be done automatically. Resolving the
potential inconsistency are done semi-automatically. The resulted consistent models have
to be reviewed in order to add the additional needed information.

78

5.4 Vitruvius development process using external tools

5.4 Vitruvius development process using external tools

In this section, I will answer the following research question RQ4 : "How can Vitruvius be
used when the used models are developed and updated using other tools?". In my case study
the models are developed and updated using external modeling tools. Therefore, I have
suggested two possible scenarios to use Vitruvius (see section 4.5).

The �rst one uses Vitruvius continuously as view-based development approach. This
scenario will bene�t from the approach of asynchronous collaborative software develop-
ment (see 2.3.1). In this approach the developers will check out their copies, manipulate
them using external tools, calculate the made changes in EMF format through recording
them or comparing between two versions of models, check in the changes in Vitruvius
and resolve potential con�icts.

The advantages of this scenario is supporting view-based development and ensuring
the consistency along the development process.

The requirements of this usage is the detection of the changes made during the devel-
opment in external tools. This can be done through adding a listener to records these
changes (if it is possible, like by open source EMF-based modeling tools) or by calculating
the changes by comparing between two versions of models, which can be done using EMF-
compare techniques [12] when the models are based on XMI (XML Metadata Interchange
[37]). If the models are not EMF-based then an adapter which transform the models to/
from EMF-based model will be also needed.

The second scenario uses Vitruvius in selective points for the purpose of checking the
consistency and resolving the potential con�icts. In this scenario the legacy models are
imported to Vitruvius. Then they are integrated using the integration strategy explained
in the section 4.4. During the integration the strategy checks the consistency and resolves
the prospective inconsistent cases semi-automatically. Finally, the models may be exported
to the external tools again either to supply some additional needed information to the
elements created automatically by Vitruvius or to develop them further. Moreover, further
consistency veri�cation may be done by integrating the new versions of the models again
in Vitruvius.

This scenario o�ers only semi-automatic consistency preservation. In the best case, the
consistency will be checked by the extended Vitruvius prototype only two times (the �rst
to detect and resolve potential inconsistency and then to insure that the models are still
consistent after the further development of the performed changes).

According to the previous I can summarize and answer the fourth research questionRQ4
as following: Vitruvius can be used in one of the two aforementioned scenarios. Choosing
the preferred scenario is based on the desire of developers to use Vitruvius on an ongoing
basis as view-based development or only occasionally to ensure the consistency. In the
two cases the inconsistent cases will be detected and resolved e�ciently in the design
stage. As a result, the burden and time needed by the used approach will be reduced (as it
will be declared in the section 5.5).

Unfortunately, the test case could not determine which of the aforementioned usage is
more e�cient because the case study is not complicated compared to the real project and
both AMALTHEA and ASCET models are already formed. Therefore, the second scenario
of using Vitruvius is adopted for the purpose of checking the consistency of these models

79

5 Evaluation

before generating and integrating the code. The result of the case study is discussed in the
following subsection (section 5.4).

The result of using Vitruvius to ensure the consistency of the case study As aforementioned
in the last section Vitruvius approach is used to preserve the consistency between the
models of the case study (de�ned in section 3.3).

The consistency is veri�ed using Vitruvius two times. In the �rst time the legacy models
shown in the �gure 5.6 are integrated in Vitruvius.

.s
w

-a
m

xm
i f

ile SwModel

•Runnables:

•ControlAlgorithm_out

•ControlAlgorithm_normal

• Labels

•new_position

• target_pos

•actual_position

.c
o

m
p

o
n

en
et

s-
am

xm
i f

ile ComponentsModel

•Components

•ControlAlgorithm

•Runnables

•ControlAlgorithm_out

•ControlAlgorithm_normal

• Labels

•new_position

• target_pos

• actual_position

.x
ad

o
m

 f
ile AscetModule

(ControlAlgorithm)

•Methods (Processes)

•normal

•out

•Messages

•new_position

• target_pos

•actual_position

Figure 5.6: The inconsistent case study legacy models. (the round rectangles represent
model �les and the bulleted list represent the model’s elements.)

According to the de�ned correspondences rules the inconsistency is detected. The
inconsistent cases are:

• There is two Runnable objects (ControlAlgorithm_normal, ControlAlgorithm_out)
in AMALTHEA model, whereas there are no processes that implement their func-
tionality in ASCET.

• The two Method objects (normal, out) represent processes in ASCET but there are
no runnables in AMALTHEA model, which represent these execution units.

As a consequence, the integration algorithm resolves the inconsistency by creating two
Runnable objects with the same name of the existed Method objects (normal, out) on
one hand and creating two Method objects with the same name of the de�ned Runnable
objects (ControlAlgorithm_normal, ControlAlgorithm_out) on the other hand (the �gure
5.7 shows the models after resolving the con�icts and creating the new objects that written
with yellow color).

The integration strategy export the updated models and informs the developer about
these updates. Then the developer reviews them and �nds that the reason of the inconsis-
tency is the di�erent naming convention. Consequently, the developer deletes the new
created runnables and methods and modi�es the names of the runnables to (normal, out)
as it is shown in �gure 5.8. After that the consistency is veri�ed for the second time. The

80

5.5 Evaluate the consistency preservation by Vitruvius in practice

.s
w

-a
m

xm
i f

ile SwModel

•Runnables:

•ControlAlgorithm_out

•ControlAlgorithm_normal

•out

•normal

•Labels

•new_position

•target_pos

•actual_position .c
o

m
p

o
n

e
n

e
ts

-a
m

xm
i f

ile ComponentsModel

•Components

•ControlAlgorithm

•Runnables

•ControlAlgorithm_out

•ControlAlgorithm_normal

•out

•normal

•Labels

•new_position

•target_pos

•actual_position

.x
ad

o
m

 f
ile AscetModule

(ControlAlgorithm)

•Methods (Processes)

•out

•normal

•ControlAlgorithm_out

•ControlAlgorithm_normal

•Messages

•new_position

•target_pos

•actual_position

Figure 5.7: Case study models after the �rst integration in Vitruvius platform. (the round
rectangles represent model �les and the bulleted list represent the model’s
elements. Elements created by Vitruvius to resolve the inconsistency are colored
with yellow)

models are integrated again in Vitruvius. As a result, the consistency of the case study
models are con�rmed.

.s
w

-a
m

xm
i f

ile SwModel

•Runnables:

•out

•normal

•Labels

•new_position

•target_pos

•actual_position

.c
o

m
p

o
n

e
n

e
ts

-a
m

xm
i f

ile ComponentsModel

•Components

•ControlAlgorithm

•Runnables

•out

•normal

•Labels

•new_position

•target_pos

•actual_position

.x
ad

o
m

 f
ile AscetModule

(ControlAlgorithm)

•Methods (Processes)

•normal

•out

•Messages

•new_position

•target_pos

•actual_position

Figure 5.8: The consistent case study models after the second integration in Vitruvius plat-
form (the round rectangles represent model �les and the bulleted list represent
the model’s elements.)

5.5 Evaluate the consistency preservation by Vitruvius in
practice

The developers of automotive system aim to develop consistent automotive models with
the lowest cost. Therefore, they seek detecting and resolving the potential inconsistency

81

5 Evaluation

as early as possible. This section summarizes the consistency preservation on the basis of
applying Vitruvius extended development process, which supports the integration of the
legacy models on the one hand and the development using external modeling tools on the
other hand. This section answers also the following questions:

• RQ5: Can the e�ort needed to detect and resolve the potential inconsistent be
reduced by applying Vitruvius approach?

• RQ6: How far can the automatic consistency preservation between automotive
systems be achieved?

The traditional consistency preservation approach detects some of the inconsistent
cases for the �rst time in the implementation stage using the compiler and linker. These
cases causes bugs when the before generated codes are integrated and compiled. Resolving
the inconsistency in this late stage needs a great e�ort. That is because the compilation
process takes a long time (several hours) and it has to be restarted after correcting errors.
Comparing to this method, I can answer the �fth research question RQ5 with yes. Using
the extended Vitruvius development process will reduce the burden and the time needed to
check the consistency and resolve potential inconsistent cases. That is mainly because this
process will save the additional time and manual e�ort needed by traditional approach for
generating the codes, integrating these codes with each other, translating the integrated
code, debugging the code and �xing the errors.

In contrast to the traditional approach, Vitruvius avoids also the drift and erosion
between the code and the design on one hand and detects all the inconsistent cases on the
other hand, as long as they are de�ned by the corresponding rules.

Besides that, the case study shows that the detected inconsistent cases cannot be always
automatically resolved. Thus, I answer the last research questionRQ6 with the following,
it is not possible to perform the fully automatic consistency preservation because the
con�icts are semi-automatically resolved. There are several cases, which need asking the
developer about the correct solution. For example, the case of the di�erence between
the values of the related non-identi�er attributes. In this case the inconsistency will be
resolved according to the choice of the developer, who determines the correct value.

Other example is the case of the one-to-many mapping. In this case the developer cannot
always select one of the multiple types as a default to perform the mapping, otherwise the
developer will be asked every time to choose the correct. For instance, the corresponding
object of an AMALTHEA BaseTypeDe�nition object, whose size attribute has the value 32
bit, can be mapped to one of the following ASCET types:

• Udisc (unsigned discrete, which is mapped by the implementation to the type uint
with 8, 16 or 32 bit).

• Sdisc (signed discrete, which is mapped by implementation to the type sint with 8,
16 or 32 bit).

• Cont (continuous, which is mapped by implementation to real32 or real 64)

82

5.5 Evaluate the consistency preservation by Vitruvius in practice

The developer in this case cannot choose one of these di�erent types as a default when he
de�nes the correspondence rules. Because selecting the suitable type depends mainly on
the ASCET element and its use. Therefore, the best solution in this case will be asking the
developer.

Besides that, the automatically resolution of the inconsistency has to be also evaluated
and reviewed by the developer in order to add the additional needed information to the
elements created automatically on one hand and to correct the resolutions that are not
performed properly on the other hand. For example naming convention con�icts is not
resolved properly (see the concrete example in section 5.4).

83

6 Related work

The related work will be presented here in two sections. First, I will present related
consistency preservation approaches in section 6.1. The traditional approach which
depends on the documents interchange will be explained in the section 6.1.1. Other model-
based approaches addressing the consistency problem are discussed in the section 6.1.2.
A related work to integrate legacy models in change-based development is discussed in
section 6.2.

6.1 Consistency preservation in automotive system
development

During the automotive development process, di�erent heterogeneous models are developed
separately by di�erent project partners using several modeling tools. These models are
often correlated and share the same semantic. Therefore, the project partners have to keep
them consistent. To achieve this goal one of the following two approaches or mixture
between them can be applied. The �rst one is document-centric approach, which keeps the
consistency through exchanging the information and documentation in form of documents
along the development process. The second one is model-based approach which reduce
the manual e�ort using the model-based transformation for the synchronization. The
following subsections present some works based on these approaches.

6.1.1 Consistency preservation using document-based approach

In document-based approach the information is exchanged using documents along the
development process to ensure the consistency. This approach su�ers, that some of these
documents are written by hand. Moreover, the stored information is reused in this approach
through copy-and-paste techniques.

The exchanged documents store related information. Consequently, each change in
an individual artifact will require update in multiple documents and there is no e�cient
mechanism to determine the a�ected documents. In the following some works, that are
based on this approach.

consistencypreservationbasedonMSRstandard Manufacturer Supplier Relationship MSR
is a consortium of a car manufacturers and suppliers, which supports common develop-
ments between car manufacturers and their electronic system suppliers by enabling process
synchronization and proper information exchange based on XML. AE division of Bosch

85

6 Related work

applies technology based on this standard in addition to XML standard [49] 1 in order to
achieve a consistent information handling throughout the entire software development
process [52]. According to this technology the information is stored uniformly using only
consistent formats for de�nition and exchange all relevant information. These formats are
provided from MSR standard which de�nes for this purpose several XML Document Type
De�nition (DTD) based on common set of de�nition and practices. DTDs allow storing
information from di�erent models to reduce the redundancy of information and ease the
consistency preservation. The uniformly de�ned information is saved only once in a data
bank to enable the exchange of the information between project partners in any point of
the development process.

This approach su�ers from the manual production of the MSR documents in addition to
the manual synchronization, which can lead to inconsistency. Moreover, this approach
does not support e�cient mechanism to check the consistency, which is checked often
in too late stage using the compiler and linker. Implementing checks based on MSR �les
is also possible and can detect more inconsistencies than compiler and linker tools but it
requires more e�ort. Resolving the con�icts is also performed manually and needs a great
e�ort since it is performed in late stage.

Consistency checking by applying ISO 26262 standard ISO 26262 [34, 40] speci�es a func-
tional safety life-cycle for automotive systems comprised of electrical, electronic and
software components.

Born et al. [9] suggests using safety analysis of ISO 26262 which requires e�cient and
consistent product development. Therefore, they represent the exchanged information
(even if it is a document) as a models in order to separate the artifacts from their external
representation. Moreover they prevent the redundancy of the information through storing
them in a single source and allow generating or importing the documents from this
resource.

Model-based representation of the exchanged documents eases the tracing of the dis-
tributed information. As a result semi-automatic consistency checking can be performed.

In my work the consistency can be fully automatically checked. Moreover the potential
con�icts can be resolved semi-automatically, whereas they are still resolved manually by
Born et al.

6.1.2 Consistency preservation depending onmodel-based approach

The model-based approach aims to tackle the di�culty of the document-centric approach
through using the model-to-model transformation techniques to o�er automatically devel-
opment (e.g. driving one model from the other) or automatically synchronization of the
heterogeneous models.

Model Synchronization based on triple graph grammars Triple graph grammars (TGGs)
are a formalism for declarative description of correspondence relationships between two

1http://www.msr-wg.de/

86

6.1 Consistency preservation in automotive system development

types of models. This concept was introduced in [43] in order to generate the required bidi-
rectional model transformations using a declarative transformation speci�cation. Contrast
to MIR approach, TGGs do not support the rules that delete elements.

TGGs have been employed in several domains. Some examples are, generating the
bidirectional transformation between SDL and UML models during integrating them
within the fujaba tool suite [16], preserving the consistency of models from the domain
of chemical engineering [5] and integrating of SysML models with Modelica simulation
models [25].

Another example from the automotive systems domain, TGGs is employed for the
purpose of the synchronization between system engineering models in SysML and software
engineering models in AUTOSAR [19].

The synchronization in this approach can be only done between two models. If there
are more than two models, then chains of transformations should be built to connect them.
However, that is not the case in our approach where the synchronization between several
models are applied using VSUM, which propagates the changes to all models that are
a�ected by these changes.

The changes are propagated by the approach of Giese in two modes, the synchronisation
mode and transformation mode. In the �rst mode the consistency in the target model will
be checked after executing the transformation. When the changes violate the consistency
constraints in the target model, they will be ignored. That is not the case in our approach
where the appropriate actions can be de�ned during the declarative description of the con-
sistency rules. Consequently, these actions will be performed when the related constraints
are violated. Similar to our approach, one model can be driven from other legacy model.

By the case of two legacy models in Giese approach, the changes in the source model
are propagated to the target one and by con�icts the elements of the target model will be
updated. Moreover, some changes could be ignored when they lead to the inconsistency in
the target model. In my work the bidirectional propagation of the changes will be available.
By the con�icts, the developer will be asked to determine which elements have to be
updated; in other words, the resolving of con�icts is not related of the synchronization
direction.

Consistency management using macromodels Salay et al. [41] de�ne the relationships
between the models in dependence on macromodel concept. In this concept a formal
method is used for the speci�cation of model relationships (mapping and constraints).
Depending on macromodels any change made to a model will be checked formally using
techniques such as logic inference rules and constraint satisfaction in order to determine
the existence of inconsistency.

This concept is applied in vehicle control system development. The relationship between
two types of �ow diagrams in a functional architecture model (Functional Architecture
Diagram (FAD) and Component Diagram (CpD)) is de�ned using macromodel. Then
some inconsistencies between these models can be detected using macromodels, and may
repaired automatically, through formal expressions of model relationships.

87

6 Related work

This work shows positive impacts on inter model consistency during evolution of
the system but it does not support the inconsistency detection and con�icts reservation
between the legacy models.

Developing consistent models using model transformations Selim et al.[44] apply model
transformations to migrate from the legacy models of General Motors (GM) company,
which are built using custom-built and domain-speci�c modeling language, to the stan-
dardized AUTOSAR models. These model transformations are validated by a case study
using the MDWorkbench tool, the Atlas Transformation Language and the metamodel
Coverage Checker tool.

Model-to-model transformations have been used also by Sindico et al. [45] in order to
generate Simulink models from SysML models and vice versa.

Similar work [46] is also performed to transform Simulink models to UML composite
structure and activity models based on Atlas Transformation Language ATL.

The abovementioned approaches are limited to a speci�c combination of two models or
languages, and generate the related model of a legacy one based on the model transfor-
mation into one direction. Moreover they have no mechanism to ensure the consistency
between two legacy models like the case of our approach.

ConsistencypreservationdependingonSeamlessModel-basedDevelopmentapproach This
approach is based on the integration of the di�erent models covering all phases of system
development from system requirements to system design and veri�cation in order to ease
the information exchange between them and to ensure the consistency between them [11].
However, applying this approach su�ers from enormous political and technical barriers,
which are illustrated from Broy et al [11].

Macher et al. [30] depend on seamless combination of the heterogeneous tools to
improve the continuity of information interchange of architectural designs from sys-
tem development level to software development level through adopting bidirectional
tool-bridge. The application of this approach implements tool-bridge, which supports
exporting software architectures designed in SysML to Matlab/Simulink tool on one hand
and importing the software module implemented in Matlab/Simulink on the other hand.
Moreover model-driven software engineering tools is used for adding more details about
the software architecture, software modules and the correspondences between them. This
eases the tractability between software architecture and software modules and ensures
the consistency along the development process.

Another work of Macher [31] generates the con�guration of automotive real-time
operating systems OSEK (like allocation to a CPU respectively to a task) using control
system information in SysML (such as control strategies) in order to ensure the consistency
and the correctness required by automotive safety standards (such as ISO 26262). The work
also enables the update of the con�guration information saved in OSEK Implementation
Language (OIL) �le in addition to the possibility of importing the information from OIL �les.
For that purpose a bidirectional tool-bridge between model-driven systems engineering
tools and software engineering for automotive real-time operating systems (RTOS) tools
is established.

88

6.2 Integration of the legacy models in the change-based development

The approach of Macher is similar to Vitruvius approach, where both of them support
the model-based development of consistent models and extraction of the corresponding
models from a legacy one using model transformations.

However, the synchronisation mechanism of Vitruvius approach is easier, when more
than two models are developed (see the section 2.2.2). Furthermore, the extension of
Vitruvius enables the integration of more than one legacy model.

6.2 Integration of the legacymodels in the change-based
development

The authors of [29] present two integration strategies that could be applied to either a
model or code in order to integrate them in a change-based development. The �rst one
is reconstructive integration strategy (RIS), which traverse the elements of the legacy
models and suppose that these elements have been just now created. Consequently, the
suitable create-changes for each element will be generated and propagated by the change-
based development tool (Vitruvius prototype is used in the case study). As a result, the
legacy model will be recreated and its correspondence model will be also established. The
implemented version of the reconstructive strategy allows the integration of PCM models
into Vitruvius. During the integration, related Java code and a correspondence model are
created.

The second strategy linking integration strategy (LIS) relies heavily on the reverse
engineering tool SoMoX. It allows the integration of source code (It is implemented for the
Java source code) and its component models (PCM model in the case study) , generated
using reverse engineering tools SoMoX. The correspondences between the source code
and component model are added depending on the information resulted by the reverse
engineering Process.

The approach of Giese et al. [19] enables also the integration of one legacy model in
change-based development. According to this approach the elements, which match the
de�ned rules, will be transformed and their correspondences will be stored. As a result
the related model can be generated from a legacy one.

The two abovementioned strategies integrate only one legacy model in the change-based
development. However, this work represents strategy to integrate multiple legacy models
in the change-based development environment.

89

7 Conclusion

In this chapter I will summarize the results and draw the conclusions of my work in the
next section 7.1. Furthermore, I will describe the following steps to extend the work in the
future work section 7.2.

7.1 Summary

This work has extended Vitruvius approach in order to improve the automotive system
development and keep the consistency between the di�erent automotive models that are
separately developed.

First, the work evaluates the declarative expression of the automotive correspondences
rules using MIR through de�ning the most important correspondences between the au-
tomotive metamodels used in the case study (SysML, AMALTHEA and ASCET). The
problems and restrictions found in the current version of MIR are documented and illus-
trated by examples. Furthermore, the thesis suggests some solutions and ideas to improve
MIR and enable using it for the declarative expression of the correspondences in high level
of abstraction.

Second, the thesis presents and implements a strategy to integrate multiple legacy
models in Vitruvius. The consistency of these models are checked automatically during
the integration. Besides that, the strategy enables mechanism to solve the potential
con�icts semi-automatically based on Vitruvius approach. This integration strategy is
important to enable applying Vitruvius concept, when the models are developed using
modeling tools that are not supported from Vitruvius prototype.

Third, the work presents two scenarios for adopting the Vitruvius approach when the
heterogeneous models are developed using external modeling tools. The �rst one uses
Vitruvius continuously and bene�ts from the synchronization mechanism of Vitruvius to
keep the models consistent along the development process. The second one uses Vitruvius
from time to time to integrate the legacy models and bene�t of the automatic consistency
check and semi-automatic resolving of con�icts.

As a result, this work o�ers more e�cient mechanism for the consistency preservation
during the automotive system development. In this mechanism the inconsistent cases can
be detected earlier comparing to the traditional concept, which detects only some of them
after the modeling stage when the generated codes are integrated and compiled. Conse-
quently, the time and e�ort needed for detecting and resolving the potential inconsistent
cases will be signi�cantly reduced. Furthermore, the proposed mechanism avoids also the
drift and erosion between the models and the implementation of the system, because the
detected con�icts are resolved semi-automatically in the design stage.

91

7 Conclusion

7.2 Future work

The future work of this research will build on the obtained results in three ways.
First, we will develop the MIR language in order to cope with the problems encountered

and the restrictions and be able to generate the bidirectional transformations needed. This
allows us to develop the semi-automatic repairing methodology of identi�ed inconsis-
tencies. Second, we will test the integration of the legacy models and evaluate it with
other test cases in order to assess the robustness. Third, we will implement the second
strategy of using Vitruvius in the automotive development system and evaluate it by use
cases. This strategy enables using Vitruvius along the development process and is based
on recording or calculating the changes done by the external tools. The EMF-based models
(like AMALTHEA and SysML) are in EMF format and allow the calculation of changes
using EMF-comparison techniques. The other models (like ASCET model, which is in
XML-AMD format) need building an adapter, which can transform the model from/to the
EMF-based model. (In this work we use an AMD-to-ADOM adapter in order to convert
the ASCET model (XML-AMD Format) to ADOM (EMF format). However, this adapter
has to be improved to be able to transform the model from ADOM to XML-AMD format
too). These changes have to be transferred to Vitruvius in order to update the models and
synchronize them with each other.

92

Bibliography

[1] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic software modeling:
a practical approach to view-based development”. In: Evaluation of Novel Approaches
to Software Engineering. Springer, 2010, pp. 206–219.

[2] Colin Atkinson et al. “Modeling components and component-based systems in
kobra”. In: The Common Component Modeling Example. Springer, 2008, pp. 54–84.

[3] AUTOSAR. worldwide development partnership of car manufacturers, suppliers and
other companies from the electronics, semiconductor and software industry. http:
//www.autosar.org/. 2012.

[4] K Beck, M Beedle, A Bennekum, et al. Manifesto for Agile Software Development.
Agile Alliance (2001). 2012.

[5] Simon M Becker et al. “A graph-based algorithm for consistency maintenance in
incremental and interactive integration tools”. In: Software & Systems Modeling 6.3
(2007), pp. 287–315.

[6] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software 82.1
(2009), pp. 3–22.

[7] Lorenzo Bettini. Implementing Domain-Speci�c Languages with Xtext and Xtend.
Packt Publishing Ltd, 2013. isbn: 9781782160304.

[8] Jean Bézivin. “On the uni�cation power of models”. In: Software & Systems Modeling
4.2 (2005), pp. 171–188.

[9] Marc Born, John Favaro, and Olaf Kath. “Application of ISO DIS 26262 in practice”.
In: Proceedings of the 1st Workshop on Critical Automotive applications: Robustness
and Safety. ACM. 2010, pp. 3–6.

[10] Christopher Brink and Jan Jatzkowski. AMALTHEA (ITEA2 - 09013) - White Paper.
Tech. rep. University of Paderborn, Germany, 2013.

[11] Manfred Broy et al. “Seamless model-based development: From isolated tools to
integrated model engineering environments”. In: Proceedings of the IEEE 98.4 (2010),
pp. 526–545.

[12] Cédric Brun and Alfonso Pierantonio. “Model di�erences in the eclipse modeling
framework”. In: UPGRADE, The European Journal for the Informatics Professional 9.2
(2008), pp. 29–34.

[13] Erik Burger. “Flexible Views for Rapid Model-Driven Development”. In: Proceedings
of the 1st Workshop on View-Based, Aspect-Oriented and Orthographic Software Mod-
elling. VAO ’13. Montpellier, France: ACM, 2013, 1:1–1:5. isbn: 978-1-4503-2070-2.

93

http://www.autosar.org/
http://www.autosar.org/

Bibliography

[14] Erik Burger. “Flexible Views for View-Based Model-Driven Development”. In: Pro-
ceedings of the 18th international doctoral symposium on Components and architecture.
WCOP ’13. Vancouver, British Columbia,Canada: ACM, 2013, pp. 25–30. isbn: 978-1-
4503-2125-9.

[15] Erik Burger. “Flexible Views for View-based Model-driven Development”. PhD
thesis. at the department of Informatics, Institute for Program Structures and Data
Organization - KIT, Karlsruhe Institute of Technology, July 2014.

[16] Sven Burmester et al. “Tool integration at the meta-model level within the fujaba
tool suite”. In: In Proc. of the Workshop on Tool-Integration in System Development
(TIS). 2003.

[17] Jordi Cabot and Martin Gogolla. “Object constraint language (OCL): a de�nitive
guide”. In: Formal Methods for Model-Driven Engineering. Springer, 2012, pp. 58–90.

[18] Sanford Friedenthal, Alan Moore, and Rick Steiner. “OMG Systems Modeling Lan-
guage (OMG SysML) Tutorial”. In: INCOSE International Symposium. Vol. 18. 1. Wiley
Online Library. 2008, pp. 1731–1862.

[19] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. “Model synchronization at
work: keeping SysML and AUTOSAR models consistent”. In: Graph transformations
and model-driven engineering. Springer, 2010, pp. 555–579.

[20] Thomas Goldschmidt, Ste�en Becker, and Erik Burger. “View-Based Modelling – A
Tool-Oriented Analysis”. In: Proceedings of the Modellierung 2012. Ed. by Elmar J.
Sinz and Andy Schürr. Vol. P-201. GI-Edition – Lecture Notes in Informatics (LNI).
Bamberg, Mar. 2012.

[21] Etas Group. ASCET Model-based Software Development. Flyer. Feb. 2016. url: http:
//www.etas.com/download-center-files/products_ASCET_Software_Products/

ASCET_6.4_Flyer_EN.pdf.
[22] Etas Group. ASCET V7 Tools for Developing Safe and E�cient Software. Flyer. Feb.

2016. url: http://www.etas.com/download- center- files/products_ASCET_
Software_Products/ASCET_V7_Flyer_EN.pdf.

[23] Etas Group. ETAS, A global and growing company. Flyer. 2014. url: http://www.
etas.com/download-center-files/company/etas_global_growing_company.pdf.

[24] Industrial automation systems and integration. International Organization for Stan-
dardization (ISO), 1994.

[25] Thomas Johnson et al. “Integrating models and simulations of continuous dynamics
into SysML”. In: Journal of Computing and Information Science in Engineering 12.1
(2012), p. 011002.

[26] Hermann Kopetz et al. “Automotive software development for a multi-core system-
on-a-chip”. In: Software Engineering for Automotive Systems, 2007. ICSE Workshops
SEAS’07. Fourth International Workshop on. IEEE. 2007, pp. 2–2.

94

http://www.etas.com/download-center-files/products_ASCET_Software_Products/ASCET_6.4_Flyer_EN.pdf
http://www.etas.com/download-center-files/products_ASCET_Software_Products/ASCET_6.4_Flyer_EN.pdf
http://www.etas.com/download-center-files/products_ASCET_Software_Products/ASCET_6.4_Flyer_EN.pdf
http://www.etas.com/download-center-files/products_ASCET_Software_Products/ASCET_V7_Flyer_EN.pdf
http://www.etas.com/download-center-files/products_ASCET_Software_Products/ASCET_V7_Flyer_EN.pdf
http://www.etas.com/download-center-files/company/etas_global_growing_company.pdf
http://www.etas.com/download-center-files/company/etas_global_growing_company.pdf

Bibliography

[27] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric engineering
with synchronized heterogeneous models”. In: Proceedings of the 1st Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13. Mont-
pellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2.

[28] Max E Kramer et al. “Change-Driven Consistency for Component Code, Architec-
tural Models, and Contracts”. In: Proceedings of the 18th International ACM SIGSOFT
Symposium on Component-Based Software Engineering. ACM. 2015, pp. 21–26.

[29] Sven Leonhardt et al. “Integration of Existing Software Artifacts into a View-and
Change-Driven Development Approach”. In: Proceedings of the 2015 Joint MORSE-
VAOWorkshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering. ACM. 2015, pp. 17–24.

[30] Georg Macher, Eric Armengaud, and Christian Kreiner. “Integration of Heteroge-
neous Tools to a Seamless Automotive Toolchain”. In: Systems, Software and Services
Process Improvement. Springer, 2015, pp. 51–62.

[31] Georg Macher et al. “Automotive real-time operating systems: a model-based con-
�guration approach”. In: ACM SIGBED Review 11.4 (2015), pp. 67–72.

[32] Harald Mackamul. Building an open source, extendible development platform. Tech.
rep. Robert Bosch GmbH, 2011.

[33] Harald Mackamul. “Model Based Open Source for Embedded Multi-Core Systems”.
In: EclipseCon Europe 2013. Ludwigsburg, Germany, Oct. 2013.

[34] Johannes Matheis.Abstraktionsebenenübergreifende Darstellung von ElektrikElektronik-
Architekturen in Kraftfahrzeugen zur Ableitung von Sicherheitszielen nach ISO 26262.
Shaker, 2010.

[35] MOF 2.5 Core Speci�cation (formal/2015-06-05). Object Management Group (OMG),
June 2015. url: %5Curl%7Bhttp://www.omg.org/spec/MOF/2.5%7D.

[36] Siegfried Nolte. QVT-operational mappings: Modellierung mit der Query views Trans-
formation. Springer-Verlag, 2009.

[37] XML OMG. Metadata Interchange (XMI) Speci�cation. URL: http://www.omg.org/
docs/formal/05-05-01.pdf. (accessed October 10, 2005). 2000.

[38] K Venkatesh Prasad, Manfred Broy, and Ingolf Krueger. “Scanning advances in
aerospace & automobile software technology”. In: Proceedings of the IEEE 4.98 (2010),
pp. 510–514.

[39] Recommended Practice for Architectural Description of Software-intensive Systems.
http://www.iso-architecture.org/ieee-1471/. ISO. International Organization
for Standardization (ISO), 2011.

[40] Road vehicles - Functional safety. http://www.iso.org/iso/home/store/catalogue_
tc/catalogue_detail.htm?csnumber=43464. ISO.

[41] Rick Salay, Shige Wang, and Vivien Suen. Managing related models in vehicle control
software development. Springer, 2012.

95

%5Curl%7Bhttp://www.omg.org/spec/MOF/2.5%7D
http://www.omg.org/docs/formal/05-05-01. pdf
http://www.omg.org/docs/formal/05-05-01. pdf
http://www.iso-architecture.org/ieee-1471/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464

Bibliography

[42] Tariq Samad and Thomas Parisini. “Systems of systems”. In: The Impact of Control
Technology (2011), pp. 175–183.

[43] Andy Schürr. “Speci�cation of graph translators with triple graph grammars”. In:
Graph-Theoretic Concepts in Computer Science. Springer. 1995, pp. 151–163.

[44] Gehan MK Selim et al. “Model transformations for migrating legacy deployment
models in the automotive industry”. In: Software & Systems Modeling 14.1 (2015),
pp. 365–381.

[45] Andrea Sindico, Marco Di Natale, and Gianpiero Panci. “Integrating SysML with
Simulink using Open-source Model Transformations.” In: SIMULTECH. 2011, pp. 45–
56.

[46] Carl-Johan Sjöstedt et al. “Mapping Simulink to UML in the design of embedded
systems: Investigating scenarios and transformations”. In: OMER4 Workshop: 4th
Workshop on Object-oriented Modeling of Embedded Real-Time Systems. 2007.

[47] Allgemeine Modelltheorie. Springer-Verlag, Wien, 1973. isbn: 978-3-7091-8327-4.
[48] Systems and software engineering - Architecture description. http : / / www . iso -

architecture.org/ieee-1471/. ISOIECIEEE 42010, 2010-2011.
[49] Marek Szwejczewski, Fred Lemke, and Keith Go�n. “Manufacturer-supplier relation-

ships: An empirical study of German manufacturing companies”. In: International
Journal of Operations & Production Management 25.9 (2005), pp. 875–897.

[50] Martin Törngren et al. “Model-based development of automotive embedded systems”.
In: Automotive Embedded Systems Handbook (2008).

[51] Antoine Toulmé and Intalio Inc. “Presentation of EMF compare utility”. In: Eclipse
Modeling Symposium. 2006, pp. 1–8.

[52] Bernhard Weichel and Martin Herrmann. A backbone in automotive software devel-
opment based on XML and ASAM/MSR. Tech. rep. SAE Technical Paper, 2004.

[53] Carsten Wol� et al. “Automotive software development with AMALTHEA”. In:
Practice and Perspectives (2015), p. 432.

96

http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/

97

8 Appendix

8 Appendix

8.1 Abbreviations

AE Automotive Electronics
ASCET Advanced Simulation and Control Engineering Tool
ASCET-MD ASCET Modeling and Design
ASCET-MIP ASCCET MATLAB Integration Package.
ASCET-RP ASCET Rapid Prototyping
ASCET-SE ASCET Software Engineering
ATL Atlas Transformation Language
AUTOSAR AUTomotive Open System ARchitecture
BDD Block De�nition Diagram
CpD Component Diagram
DSL domain-speci�c language
DTD Document Type De�nition
ECU Electronic Control Unit
ESDL Embedded Software Description Language
FAD Functional Architecture Diagram
IBD Internal Block Diagram
ISO International Organization for Standardization
JML Java Modeling Language
LIS Linking Integration Strategy
MDD Model-Driven Development
MDE Model Driven Engineering
MIR Mappings, Invariants, and Responses
MSR Manufacturer Supplier Relationship
OIL OSEK Implementation Language
OSM Orthographic Software Modeling
PCM Palladio Components Model
RIS Reconstructive Integration Strategy
RTE Real-Time Environment
RTOS Real-Time Operating Systems
SoS System of Systems
SUM Single Underlying Model
SysML Systems Modelling Language
TGGs Triple graph grammars
UML Uni�ed Modeling Language
Vitruvius VIew-cenTRic engineering Using a VIrtual Underlying Single model
VSUM Virtual Single Underlying Model
XML Extensible Markup Language

98

8.2 AMALTHEA models

8.2 AMALTHEAmodels

8.2.1 So�waremodel

The AMALTHEA software model is central accessible through the SWModel element. The
namespace for the model is "http://www.amalthea.itea2.org/model/1.1.0/sw".

8.2.1.1 Task

Figure 8.1: Metamodel excerpt for Task, ISR and Stimulus

99

8 Appendix

8.2.1.2 Stimuli model

Figure 8.2: Metamodel excerpt for Stimulus and Periodic

100

8.2 AMALTHEA models

8.2.1.3 Data types

Figure 8.3: Metamodel excerpt for AMALTHEA data types

101

8 Appendix

8.2.1.4 Call graph

Figure 8.4: Callgraph structure

102

8.2 AMALTHEA models

8.2.2 Components model

Figure 8.5: Components model in AMALTHEA, which is central accessible through the
ComponentsModel type

103

8 Appendix

8.2.3 Runnable items

Figure 8.6: The runnable items in AMALTHEA

8.3 ASCETmodel

ASCETmodule

104

8.4 MIR examples

Figure 8.7: The AscetModule type in ASCET

8.4 MIR examples
mapping between SysML Block and AscetModule

generates package mir.sysml2ascet //no code is written

generates type SYSML2ASCETs

import package "http://com.bosch.swan.ascet.adom/1.0" as adom

import package "http://www.eclipse.org/papyrus/0.7.0/SysML/Blocks" as sysml

map sysml.blocks.Block as bl and adom.AscetModule as am

{

105

8 Appendix

when-where {equals(bl. isEncapsulated,true)}

with map sysml.PortAndFlow.FlowPort referencedBy bl.(base_Class).(ownedPort) as

flowport

and am.elements(Message) message

{

with map flowport.(name) and message.(name)

when-where equals(flowport.(direction),FlowDirection.In)

with-block {messag.read= true

messag.written=flase

}

}

}

//==

map sysml.blocks.Block as bl and adom.AscetModule as am

{

when-where {equals(bl. isEncapsulated,true)}

with map sysml.PortAndFlow.FlowPort referencedBy bl.(base_Class).(ownedPort) as

flowport

and am.elements(Message) message

{

with map flowport.(name) and message.(name)

when-where equals(flowport.(direction),FlowDirection.Out)

with-block

{

messag.read= false

messag.written=true

}

}

}

//===

map sysml.blocks.Block as bl and adom.AscetModule as am

{

when-where {equals(bl. isEncapsulated,true)}

with map sysml.PortAndFlow.FlowPort referencedBy bl.(base_Class).(ownedPort) as

flowport

and am.elements(Message) message

{

with map flowport.(name) and message.(name)

when-where equals(flowport.(direction),FlowDirection.Inout)

with-block

{

messag.read= true

messag.written=true

}

}

}

106

8.4 MIR examples

Listing 11: Declare the correspondence rule between Task in AMALTHEA and Task in
ASCET Using "..." to refer to any order of objects

107

	Abstract
	Zusammenfassung
	Introduction
	Contributions
	The structure of the thesis

	Foundations
	Model driven development
	View-based development
	The synthetic approach
	The projective approach

	Vitruvius
	Vitruvius development process
	Synchronization mechanism in Vitruvius
	Integration of a legacy model in Vitruvius environment

	MIR Language
	MIR syntax

	AMALTHEA
	Overview of AMALTHEA data model
	Model-based development process:

	ASCET
	SysML

	Automotive system development in the context of Bosch case study
	The challenges of automotive system development
	Overview about the automotive system development by Bosch
	Bosch case study
	AMALTHEA modeling process
	ASCET modeling process
	The integration of the ASCET and AMALTHEA models

	The consistency problem in Bosch case study
	Research question

	Applying Vitruvius approach in automotive systems development
	Research objective
	Using MIR language to declare the consistency rules
	The reason of using MIR language
	The evaluation mechanisms
	The problems by MIR language and the suggested solutions
	Referring to any order of objects
	One-to-many mapping
	Duplicate writing similar rules
	No direct access on a metaclass

	Development process using Vitruvius
	Support the scenario of legacy models
	S1: Describe the correspondences between the metamodels of legacy models
	S2: Build the correspondences between legacy models
	S3: Find and resolve inconsistent cases

	Modeling using external tools
	Using Vitruvius as a view-based development approach
	Using Vitruvius to ensure the consistency between legacy models

	Evaluation
	Evaluation of the correspondences rules expression using MIR language
	The main correspondences between the case study metamodels
	The correspondence between AMALTHEA and ASCET
	The correspondences between SysML and ASCET

	The evaluation and the feedback of the found correspondence rules
	The result of MIR evaluation

	Applying the extended Vitruvius development process
	Support and integration of the legacy models by Vitruvius
	The mapping of the correspondences
	The integration of AMALTHEA and ASCET models
	Results

	Vitruvius development process using external tools
	Evaluate the consistency preservation by Vitruvius in practice

	Related work
	Consistency preservation in automotive system development
	Consistency preservation using document-based approach
	Consistency preservation depending on model-based approach

	Integration of the legacy models in the change-based development

	Conclusion
	Summary
	Future work

	Bibliography
	Appendix
	Abbreviations
	AMALTHEA models
	Software model
	Task
	Stimuli model
	Data types
	Call graph

	Components model
	Runnable items

	ASCET model
	MIR examples

