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Abstract: Vehicle drive systems are often oversized for common customer operation in order to cover
the high demands of rare driving events such as towing a trailer, high acceleration or steep inclines.
This high torque and power requirement affects the efficiency map and the highest efficiency is around
the area of increased torque and speed. However, in everyday use, drive systems are mostly driven by
customers at low speed and load, and therefore are not operating in the most efficient area. Designing
a drive system that only covers the area of highest customer operation can increase efficiency by
moving the sweet spot of efficiency to the relevant area, and thus reduce energy consumption.
Therefore, customer data need to be analyzed in order to identify customer requirements and to
localize the area of greatest operation. The method presented in this paper analyzes customer data
in order to identify design-relevant parameters for a customer-specific drive system design. The
available customer data results from event-based counts and are submitted as a statistical frequency
distribution. These statistics are compared with discrete time series recorded during test drives in
order to derive representative time series that correspond to customer behavior. By applying the time
frame-based load analysis to these relevant time series, the desired design-relevant parameters are
pointed out.

Keywords: statistical customer data; design-relevant parameters; design of vehicle drive systems

1. Introduction

Increasing the efficiency of vehicle drive systems is one of the highest goals in the au-
tomotive industry. By reducing energy consumption, further benefits such as an increase in
electric range or reduced vehicle mass can be realized. Since drive systems are occasionally
oversized in terms of performance for the actual requirements, efficiency can be increased
by adjusting the performance [1–4]. This increase in efficiency can be achieved by reducing
the performance of a drive system to the requirements that customers mostly need in daily
operation. Furthermore, a second drive system is required in order to enable high demands,
which occur rather rarely.

As part of a dissertation, this publication gives an insight into the method for analyzing
customer-relevant driving requirements and converting them into relevant target values
for the design of overall drive systems. In the context of the dissertation, an overall drive
system is designed which combines increased efficiency by focusing on the core area of
customer needs with high functionality by covering high requirements.
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2. Methods

This paper is divided into two methodical approaches as shown in Figure 1: first, time
series data (TS) from endurance testing are compared with statistical customer data (CLC)
with regard to identifying customer-relevant time series. In the second step, the root mean
square (rms) is calculated for different widths of time frames and the time frame-based
analysis (TFBA) is used to derive design-relevant parameters for the overall system design.

Figure 1. Scheme of the methodological structure.

The following Sections 2.1–2.3 explain the first methodical approach, shown on the
left side in Figure 1. Sections 2.4 and 2.5 are then dedicated to the second approach.

2.1. Database

The first approach is based on two types of data, namely time series and customer
load collective. The available time series data are records of various signals from endurance
testing, from which the relevant load variables that are required for the drive system design
must be selected. The main design-relevant parameters are the mechanical power and the
torque on the wheel. In addition, the vehicle speed, respectively the wheel speed as well
as the acceleration, is also used to identify representative time series. Dependent on the
available customer data, other parameters may be considered.

The available customer data are the results of event-based counts in the control unit of
the customer vehicles, so-called customer load collective. These counts provide information
about the frequency distribution, i.e., how often certain events occur. They are shown in
Figure 2 using the example of the vehicle speed and acceleration distribution while the
drive system is active. The color scheme represents the accumulation of the customer’s
driving behavior. According to the color bar, the vehicles in customer operation actually do
not drive at all about 25% of the time despite the ignition being switched on.

The largest accumulation in these statistical distribution matrices of around 95% covers
the range between approximately 0 and 130 kph as well as −2 and 2 m/s2. This conspicuity
is also reflected in [5], where the driver behavior of the 34 participants is analyzed based
on recorded real drives over a distance of around 35,000 km. The evaluation shows that the
highest accelerations actually driven in the speed range up to approximately 100 kph are
below 1.5 m/s2 and at speeds of up to 140 kph are mostly not higher than approximately
1.0 m/s2. The limitation of the speed range to a maximum of 130 kph is derived from [6].
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According to this report, the average top speed on German highways without speed limit
is between 110 and 130 kph. Abroad, this value is lower due to speed limits. Based on
these findings, accelerations between −2 and 2 m/s2 and speeds of up to 130 kph can
initially be assumed to be customer relevant. Consequently, this area can be identified as
the focus of customer driving operations and used as the basis for a customer-specific drive
system design.

Figure 2. Exemplary heat map for customer operation.

2.2. Comparison of the Data Bases and Derivation of Representative Time Series

After selecting appropriate, design-relevant signals from the time series data and
determining the focus of customer driving operations, the next step is to merge these two
databases. For this purpose, distribution matrices for all time series are created analogous
to the customer data. The aim is to describe the time series statistically by transferring them
into heat maps such as acceleration versus vehicle speed, as shown above in Figure 2, as
well as motor torque versus motor speed with the same clustering as the CLC data.

The deviation of these matrices from the CLC data is the measure of the customer
relevance of the time series. First, the cell-specific deviation |Xi,j| as absolute value of the
cell-by-cell difference between time series cellTS and CLC data cellCLC is calculated according
to Equation (1). ∣∣Xi,j

∣∣ = cellTS − cellCLC (1)

The relevance of each time series is evaluated based on the mean total deviation. In this
respect, the time series, whose deviation is the smallest, represents the best approximation
to the customer distribution matrices. As shown in Equation (2), the arithmetic mean of
the total deviation X is the sum of all cell-specific deviation values |Xi,j| divided by the
number of all cells n in the above-mentioned area of greatest customer operation.

X =
1
n

n

∑
i=1
|Xi,j| (2)

This approach allows the time series to be sorted in ascending order by their total
mean deviation. According to the method of [7], time series are combined with one another
to minimize the total deviation, starting with those two, whose deviation is the lowest.
Increasing the number of combined time series leads to a decrease in the mean deviation,
as shown by the blue curve as well as the yellow trend line in Figure 3. The red markers
highlight exactly that time series whose combination leads to the smallest deviation of the
key area pointed out in Section 2.1.
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In this case, 1000 time series are evaluated, of which the combination of all 45 red-
marked time series shows minimal total deviation. In other words, combining exactly these
45 out of the 1000 time series, which the markers indicate, reduces the deviation the most
and leads to the minimum of 3.13 in mean deviation.

Figure 3. Exemplary regression curve: mean deviation versus number of time series.

Following the steep drop, the slope decreases with an increasing number of time
series and the mean deviation decreases only slightly. Due to the trade-off of reducing the
mean deviation as much as possible while at the same time minimizing the computational
effort, the red regression curve shows several optima displayed by the dashed black lines.
According to these, considering 12 specific time series, indicated by the first 12 markers
from the left, would lead to the first big decrease in the mean deviation from about 3.7 to
3.3. The second and third dashed lines show the consideration of 17 and 28 time series,
respectively, with a decrease in the mean deviation to 3.25 as well as 3.18, respectively.
In this respect, considering these numbers of time series represents optimums regarding
computational effort and deviation in order to describe customer behavior in the best
possible way.

2.3. Validation of the Purposed Method

This methodological approach must take into account that the derivation of certain
time series from statistics such as CLC data is ambiguous due to the lack of the time
reference. In this case, the statistical frequency distribution can only be approximated by
selecting suitable time series. In contrast, the reverse method of statistical representation of
a time series represents a clear correlation.

Despite the lack of unambiguity, the procedure is admissible, as this method aims to
approximate, rather than exactly represent, customer requirements by combining several
time series.

In order to ensure the plausibility of the method, a given time series is first transferred
into a distribution statistic for unambiguous assignment. In the next step, the method
from [7] is used to analyze imported time series, one of which is the given one, with the aim
of deriving the initial time series. The result of this analysis was a calculated deviation of
zero. This shows that the procedure is able to re-identify the originally read-in time series,
thus proving its functionality. To further check the plausibility, this process is repeated
twice on top of that. Both different as well as the same time series are combined several
times with one another and the method is applied, leading to the same result both times.

In addition, the available customer data represent a solid database due to the extensive
amount of data. Using the example of an investigated model series, the data contains
more than 15,000 vehicles with a total mileage of more than 100 million km. These selected
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vehicles all have a certain minimum mileage to evaluate only representative customer
driving profiles. Reverse driving is also taken into account. This signifies a meaningful
statistic, both in terms of different customer types and markets.

Furthermore, as already pointed out in Section 2.1, the entire heat map of customer
data is not of equal interest, but rather the focus of the research is on the area of greatest
accumulation.

2.4. Time Frame-Based Analysis (TFBA)

The second methodological aspect introduces the time frame-based analysis according
to [8]. This method is used to identify design-relevant loads based on time-dependent crite-
ria and to further evaluate their intensities, durations and frequencies, which is necessary
for the design of drive system components.

For illustration, Figure 4 schematically shows two loads, z1 and z2, which are identical
with respect to their classic statistical properties such as the root mean square (rms) zrms,
the minimum value zmin and maximum value zmax as well as their distribution functions.

Figure 4. Comparison of two statistically equal loads. Modified from [9], Technische Universität
Dresden, 2016.

Since these parameters do not provide any time-related information such as duration
and frequency or the time interval between specific loads, the characteristics of these two
loads cannot be compared. This circumstance is illustrated by the different temperature
curves ϑ1 and ϑ2, which leads to different temperature gradients and thus, different thermal
stresses on the components.

Therefore, the time frame-based load analysis is needed, in which time frames τtf with
continuously increasing width are defined and shifted over the time series [9]. According
to Equation (3), the maximum rms value is calculated for each time frame width.

Z
(
τt f
)
= max


√√√√ 1

τt f
·

t+τt f

∑
t

z(t)2 · ∆t

 (3)

For this purpose, the conditions pointed out in Equation (4) need to be considered:
The time frame width τtf must be at least equal to the time step width ∆t. Additionally, the
overall time series length T must be extended to length ttotal to ensure considering sufficient
values for the largest time frame τtf,max at the last time step t = T. Finally, the time frame is
moved over the whole time series from t = 0 to t = T.

τt f ≥ ∆t
T + τt f ,max ≤ ttotal

0 ≤ t ≤ T
(4)
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Figure 5 shows the resulting time-related continuous load curves for the two loads
mentioned above. The diagram displays the maximum values for both loads z1 and z2 and
each time frame width, which indicates that the respective rms value is demanded at least
once for that frame.

Figure 5. Exemplary time-weighted continuous load curves. Modified from [9], Technische Univer-
sität Dresden, 2016.

As expected from the temperature curves ϑ1 and ϑ2 above, the comparison between
the two signals at τtf = 3 s indicates that the rms value z1 is greater than z2. This leads to the
envelope curve zmax, which represents the overall highest value of all loads. These highest
values indicate maximum thermal load and are therefore crucial for the system design.

This method allows the analysis of different time series, regardless of their length.
However, only those physical quantities that are directly proportional to the losses of a
component can be analyzed [9]. With respect to the design of drive systems, power and
torque are suitable quantities.

2.5. Frequency of Time Frames

Finally, the analysis of the frequency of time frames evaluates the correlation of
duration and frequency of occurrence. By displaying the time frame frequency over the
time frame width, as shown in Figure 6, different loads can be compared by evaluating
how often and for how long certain loads occur.

The curves visualize the duration and frequency of the rms value of both loads z1
and z2. First of all, the black graph shows that all rms values are positive for both loads,
so, as expected, the frequency of the rms value is 100%. Additionally, the figure displays
the curves for an exemplary threshold value of 60, so the curves show the rms values
zrms ≥ 60. In this case, zrms,1 is greater than zrms,2, both in terms of duration and frequency.
This not only means that the time frame τtf,1 for this specific rms value is longer, but also
the frequency of occurrence in this load has a higher share in the overall process. This
leads to z1 being critical for the system design. With the help of these analyses, loads of
different duration, intensity and characteristics can be compared and design-critical loads
can be identified.
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Figure 6. Exemplary frequency of time frames.

3. Conclusions and Future Work

The method introduced in this work allows the derivation of relevant parameters for
the design of vehicle drive systems based on statistical customer data. For this purpose,
time series are analyzed by comparing them with customer data. The aim is to identify
customer-representative time series. Furthermore, these representative time series are
investigated using the time frame-based load analysis. This procedure of describing the
time-dependent characteristics of a time series allows the detection of design-critical loads
and generates relevant parameters for the system design.

These relevant parameters such as peak values and continuance values for torque
and power as well as working points and sweet spots represents the input for the design
of overall drive systems. By limiting this input to the most frequently required customer
needs, the efficiency of the overall system can be increased.
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