KIT | KIT-Bibliothek | Impressum | Datenschutz

Punzi-loss: – a non-differentiable metric approximation for sensitivity optimisation in the search for new particles

Abudinén, F.; Bertemes, M.; Bilokin, S.; Campajola, M.; Casarosa, G.; Cunliffe, S.; Corona, L.; De Nuccio, M.; De Pietro, G.; Dey, S.; Eliachevitch, M.; Feichtinger, P. ; Ferber, T. 1; Gemmler, J. 1; Goldenzweig, P. 1; Gottmann, A. ORCID iD icon 1; Graziani, E.; Haigh, H.; Hohmann, M.; ... mehr

Abstract:

We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.


Verlagsausgabe §
DOI: 10.5445/IR/1000143424
Veröffentlicht am 28.03.2022
Originalveröffentlichung
DOI: 10.1140/epjc/s10052-022-10070-0
Scopus
Zitationen: 5
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2022
Sprache Englisch
Identifikator ISSN: 1434-6044, 1434-6052
KITopen-ID: 1000143424
Erschienen in The European Physical Journal C
Verlag Springer-Verlag
Band 82
Heft 2
Seiten 121
Bemerkung zur Veröffentlichung Gefördert durch SCOAP3
Vorab online veröffentlicht am 08.02.2022
Nachgewiesen in Dimensions
arXiv
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page